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ABSTRACT

Recent interactive ray tracing performance has been mainly derived
from the use of ray packets. Larger ray packets allow for signifi-
cant amortization of both computations and memory accesses; how-
ever, the majority of primitives are still intersected by each ray in
a packet. This paper discusses several methods to cull entire ray
packets against common primitives (box, triangle, and sphere) that
allows an arbitrary number of rays to be tested by a single test.
This provides cheap “all miss” or “all hit” tests and may substan-
tially improve the performance of an interactive ray tracer. The
paper surveys current methods, provides details on three particular
approaches using interval arithmetic, bounding planes, and corner
rays, describes how the respective bounding primitives can be eas-
ily and efficiently constructed, and points out the relation among
the different fundamental concepts.

Keywords: ray tracing, interval arithmetic, culling, ray packets,
frustum culling

1 INTRODUCTION

Ray tracing programs are particularly compute-intensive, and meth-
ods to make them faster have a long history. Traditionally, research
has focused on individual rays, using various spatial or hierarchical
index structures [1, 3, 7, 17, 18, 23] to reduce the number of traver-
sal steps and primitive intersections that a ray has to perform. Re-
cently, single ray implementations have been supplanted by those
that use sets of rays together to improve the cohence of memory
access, to share common operations, and to allow the use of SIMD
units in modern CPUs [5, 10, 16, 19, 22, 26–28]. These “packets”
of rays introduce several new software architecture issues and op-
portunities not found in a single-ray (non-packet) implementation.
One of these opportunities is to test a whole packet for intersection
against a primitive to avoid testing each ray individually.

This paper deals with a particular type of packet-primitive test:
determining whether all the rays in a packet miss a primitive. Such a
test is most useful for culling which implies a fast conservative test.
By “conservative” we mean that the test either determines all rays
certainly miss, or that some might or might not hit. Although such
tests might or might not miss some opportunities to cull because
they are conservative, they can be much faster than the more accu-
rate tests used in applications such as beam tracing [15]. These con-
servative culling tests are especially useful for terminating acceler-
ation structure traversals (e.g. when the whole packet misses some
box) [22, 26, 27] or when testing a ray packet against a geometric
primitive such as a sphere or triangle (e.g., [10, 13]). This algorith-
mic use of ray packets provides a large benefit that any packet based
system can take advantage of and can provide much more than the
speedup achieved through simply tracing rays in a SIMD fashion.
Note that though we focus mostly on “all miss” tests (which are par-
ticularly effective as they avoid any work if an all miss is detected),
these tests generalize naturally to “all hit” cases as well.

We concentrate on three basic approaches to culling: interval
arithmetic, plane tests, and corner rays tests. Interval arithmetic
is an algebraic approach with implicit underlying geometry, while
plane tests and corner ray tests explicitly use geometric reasoning

to exclude intersections. We also discuss the ramifications of differ-
ent types of ray packets, including general ray packets that neither
share directions nor share common signs for the Cartesian compo-
nents of their direction vectors. The rest of the paper derives these
concepts in detail. Some of the material has appeared previously at
a high level, but we believe many of the details necessary for im-
plementing these techniques, as well as the generalization of some
of the techniques, appear here for the first time.

2 TOOLS FOR ARITHMETIC AND GEOMETRIC CULLING

In this section we review both the basics of interval artimetic as well
as the use of planes to partition point sets based on side-tests.

2.1 Properties of plane equations

A plane in 3D can be defined by any point ~p0 and a normal ~N. For
any point ~p on the plane, there is an implicit equation f (~p) = 0.
For points not on the plane, the function f returns either a positive
number or a negative number depending on which side of the plane
the point is on. The magnitude of the number is proportional to dis-
tance from the plane (in the case of unit length normal it is exactly
the distance from the plane).

Unions of half-spaces defined by lines in 2D or planes in 3D can be
used to define convex polygons/polyhedra. This is illustrated for a
triangle in Figure 1(a). Any point that is on the same half-space for
all three sides is in the triangle.

Half-spaces suggest a straightforward method of conserva-
tive convex polygon/polygon and polyhedron/polyhedron overlap
preclusion. As shown in Figure 1(b), if all the vertices of one poly-
gon lie to the “outside” of any of the edges of the other polygon, we
can conclude that they definitely overlap. Note that if this criterion
is not met, the polygons may still not overlap. That is the nature

(a) (b)

Figure 1: Defining primitives as intersection of half-spaces, and using that

for culling. a) Any convex polygon in 2D can be defined by the intersection of

the half-planes defined by its edges. The same idea applies for 3D convex

polyhedra (such as boxes and frusta). b) If all of the vertices of a polygon lie

to the “outside” of any of the half-planes defining another polygon (i.e., the

one defined through the intersection of a bounding frustum with the polygon’s

supporting plane), then the two polygons definitely do not overlap. This is a

conservative test; only using the vertices of the quadrilateral (top) does not

indicate a rejection, while reversing the tests (bottom) does.
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(a) (b)

Figure 2: Defining a primitive as intersection of “slabs”, and using this for

culling. a) A convex polygon can be defined by the intersections of two or

more slabs. For a triangle, this can be thought of as restricting all three

barycentric coordinates to [0,1] and opposed to restricting them to be non-

negative as is done for the intersection of three half-planes. b) We can con-

clude these polygons do not intersect if all of the vertices of one polygon lie

to the same side of any of the slabs defining the other polygon.

of a simple conservative test: it quickly determines whether fur-
ther computation might be avoided rather than providing a precise
answer for all cases.

A variant of the half-space method is to take intervals along var-
ious dimensions sometimes called “slabs”. For example, a triangle
can be defined as the intersection of three slabs as shown in Fig-
ure 2(a). This leads to the culling test shown in Figure 1(b) where
each vertex in one polygon is tested against each slab in the other
polygon. If all vertices are on the same side of any slab, the poly-
gons definitely do not overlap. Note that this test in Figure 1(b)
is able to cull the case that the plane test shown in the top of Fig-
ure 1(b) does not (but it is still conservative).

2.2 Interval Arithmetic (IA)

Classical arithmetic defines operations on individual numbers; each
variable is supposed to represent one exact, individual number, and
all operations (addition, multiplication, functions, relations, . . . )
work on individual numbers, and return invididual numbers. In
many applications, however, variables are subject to tolerances, un-
certainties, or rounding errors. Interval Arithmetic (IA) was devel-
oped to allow analysis in such situations. With roots early in the
twentieth century, interval aritmetic was developed in its modern
form in the 1960s and is now a mature field of study (see Hayes [14]
for an introduction and pointers to many of the key references and
surveys).

An interval is the well known one from elementary mathematics:
a set of all the points on the real line between two specified end-
points, e.g., [4,7]. In interval arithmetic we have a variable whose
value is known to be in some interval, e.g., a ∈ [a,a] is written:

a = [a,a].

Here a and a are the boundaries of the interval and can be read as
amin and amax. Note that the sum of two interval variables in also
an interval:

a+b = [a+b,a+b].

Because interval operations are not something most of us use
regularly, we think using a small set of kernal operations is a good
idea. The ones we use are addition, negation, multiplication, and
reciprocal. Division and subtraction can be constructed from these.

Negation is straightforward:

−[a,a] = [−a,−a].

Multiplication is more complicated because of the possibility of
negative numbers:

ab = [min(ab,ab,ab,ab),max(ab,ab,ab,ab)]

The reciprocal operation is complicated only because intervals that
include the origin must be accounted for:

1

a
=

{

[1/a,1/a] if a does not include 0,

[−∞,∞] otherwise

Operations with scalars can be expressed by using the zero-measure
intervals [a,a] and thus follow from the above rules. For example,

7+a = [7,7]+ [a,a] = [7+a,7+a].

Set operations In classical arithmetic, a relation (less than,
greater than) can return only two values, true or false. In inter-
val arithmetic, if two variables’ intervals overlap the outcome of
the comparison cannot be decided, yielding three different cases:

[a,A] < [b,B] =











true ;A < b

f alse ;a ≥ B

undecided ;otherwise

.

This tri-valued outcome of a test also has a direct relation to algo-
rithmic or geometrical tests: most geometrical tests contain some
“if this conservative test based on bounding primitive is true, then
A() , else B()”; in this formulation the “true” and “false” outcome
of an IA comparison correspond to a conservative test, and the “un-
decided” corresponds to the case where no conservative conclusion
could be reached by looking at the geometric bounding primitive.

For both geometric and IA tests a true/false outcome (respec-
tively a passed conservative test) usually means that the test’s out-
come decides all individual rays’ tests with a single operation, while
in the “undecided” case all invididual tests have to be performed.

Set operations Because an interval is a set of points, set oper-
ations can apply, and the empty interval is just the empty set ∅.
The set operations union and intersection (often called collapse and
join) are fundamental in most interval computations. These are
straightforward:

a∪b = [min(a,b),max(a,b)],

a∩b = [max(a,b),min(a,b)].

Here [u,v] = ∅ when u > v. The reason that interval operations are
so fundamental for IA is that they correspond closely to the geomet-
ric culling tests: if a primitive is defined through the intersection of
several half-spaces or slabs (i.e., sets of 3D points), we can use IA
on each of these half-spaces or slabs, perform IA set operations to
intersect the resulting intervals, and test the interval for emptyness,
in which case there can be no overlap.

Intervals of vectors Often we want to use vectors whose Carte-
sian components are themselves intervals. For example, ~V =
([0,1], [−1,1], [3.2,3.3]). Operations on such “interval vectors”
also produce intervals or interval vectors. For example, the vector
dot product is:

(X0,Y0,Z0) · (X1,Y1,Z1) = X0X1 +Y0Y1 +Z0Z1.

Since we have well defined operations for multiplying and adding
intervals, we can use those to implement the equation above. Simi-
larly a cross product of two interval vectors yields an interval vector,
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and can be implemented using the scalar interval multiplication and
addition operations.

Although interval analysis has been used for many tasks in com-
puter graphics [24], we now give the example closest to how we will
use it for culling: the intersection test of a single 2D ray against a
2D axis-aligned box. We also now adopt the notation that inter-
vals will be denoted with capital letters (e.g., A) to distinguish them
from scalars. The ray is the set of points ~o + T~v. Here T = [T ,T ],
so more precisely the set of points forms a line segment for finite
intervals. The box is given by (x,y) ∈ Bx ×By, where Bx and By are
each an axis-aligned slab and their intersection (Cartesian product)
is a box. The line containing the ray will intersect each slab with its
own interval in the ray parameter space:

ox +Txvx = Bx,

oy +Tyvy = By.

We can find Tx and Ty using our interval operations. For example,

Tx = (Bx −ox)
1

vx
.

Some care must be taken about handling the sign of vx here, but
otherwise the computation is straightforward. The ray “hits” the
box if there is any ray parameter that is in each of Tx, Ty, and T , i.e.,
Tx ∩Ty ∩T 6= ∅.

3 USING IA FOR PACKET/PRIMITIVE CULLING

When using IA, the packet must first have intervals computed and
stored for the various quantities of interest. For example, Ox =
[Ox,Ox]. These may include computed quantities such as the ratio
of ox to vx which can be tighter than the ratio of the intervals Ox

and Vx, i.e., the interval associated with the ratios can be smaller
than the ratio of the intervals. For example, the interval that in-
cludes the quantities 1/2 and 2/4 is a single point while the interval

[1,2][2,4]−1 = [1,2][ 1
4 , 1

2 ] = [ 1
4 ,1]. We now discuss IA for culling

boxes, spheres and triangles against ray packers.

3.1 IA for Axis-aligned Boxes

Applying IA to cull ray-packets for boxes is straightforward1. To
see the basic idea, consider the specific 2D example in in Figure 3
with Ox = [−3,−1], Oy = [1,2], Vx = [1,2], Vy = [1,3], Vx = [2,3],
Vy = [−1,2], where the rays are ~o + [0,∞]~v and points in the box
are ~p. We can compute:

Tx = (px −ox)v
−1
x = ([2,3]− [−3,−1])[1,2]−1 = [3,6][

1

2
,1]

= [
3

2
,6]

Similarly,

Ty = (py −oy)v
−1
y = ([−1,2]− [1,2])[1,3]−1 = [−3,1][

1

3
,1]

= [−3,1]

Because Tx ∩Ty = ∅, we can conclude that none of the rays in the
packet can hit the the box without needing to test the ray interval
[0,∞] (if Tx and Ty overlapped, we would need to compare against
the ray parameter interval as well).

In 3D, we start with the interval on ray paramaters T , as well

as the interval vectors ~O and ~V for the packet. We also have the

1Applying IA to 1D planes as used by k-d trees is simply a subcase of

the analysis used for AABB and is straightforward.

❜�✁

✭✂✄☎✆

✭☎✄✂✆✭✝✄☎✆

Figure 3: Example of walkthrough of a 2D interval rejection.

interval vector B describing the box. As in the 2D example above
we compute the intervals Tx, Ty and Tz. For example, as in 2D:

Tx = (Bx −Ox)
1

Vx
(1)

We can cull the packet if T ∩ Tx ∩ Ty ∩ Tz = ∅. Note that this can
be coded very cleanly in C ++ with an interval class that supports
multiplication, subtraction and reciprocal.

For the special case of shared origin ray packets, Equation 1 can
use an interval minus scalar operation for Bx − ox as the ray origin
is a collasped interval (single number). For the special case where

the components of each dimension of ~V have the same sign, the
reciprocal operation can omit the check for spanning the origin,
i.e.,

Tx = (Bx −Ox)[1/Vx,1/Vx].

If we store the ratio r = ox/vx We can tighten the interval by allow-
ing:

Tx = Bx(
1

Vx
)−R

3.2 IA for Spheres

We can first compute the intersection of a ray with a sphere. As be-
fore, a capital letter indicates an interval or a vector with intervals
for components. These can later be replaced with scalers for spe-
cial cases. The intersection points of a sphere and ray are usually
computed in ray parameter space:

‖~O+Ts~V −~C‖2 = r
2

( ~OC +Ts~V ) · ( ~OC +Ts~V ) = r
2

~OC · ~OC +2Ts~V · ~OC +T
2

s
~V ·~V = r

2

T
2

s
~V ·~V +2Ts~V · ~OC +

[

~OC · ~OC− r
2
]

= 0

We can cull the sphere when the discriminant D is negative. The
discriminant is:

D = (~V · ~OC)2 − (~V ·~V )
[

~OC · ~OC− r
2
]

Values in that interval are less than or equal to zero whenever the
intervals maximum is zero or smaller. In the case of unit length

directions, the ~V ·~V term is unity and drops out.

Note that this culling is for the 3D line containing the ray and
does not take into account the allowed interval T in ray parameter
space. If we want to also check for a proper Ts interval, we need to
solve for the range of possible Ts and see if it overlaps T . If D has

3
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a positive component we can make D = D∪ [0,∞] and then check
for the values possible for Ts:

Ts =
−~V · ~OC±

√
D

~V ·~V

In the case of normalized ~V this becomes:

Ts = [−(~V · ~OC)−
√

D,−(~V · ~OC)+
√

D]

3.3 IA for Triangles

For the case of triangles, there are numerous ray-triangle intersec-
tion routines [2, 4, 20, 21, 25] but the general interval arithmetic ap-
proach can be used for any of them. It is important to note, however,
that for the majority of tests it is important that the ray directions
have the same length (we recommend normalizing the rays to be
unit length as it allows for more optimizations) so that computed
quantities like distances to supporting planes are not scaled differ-
ently for different rays. This allows for very simple conversion of
single ray-triangle intersection routines into conservative interval-
triangle routines.

As an example, many ray-triangle intersection tests compute a
determinant (or equivalent triple-product or Plüker inner product).
One way the barycentric coordinate α can be computed is:

α =
[(~p2 −~o)× (~p0 −~o)] ·~v

[(~p1 −~p0)× (~p2 −~p0)] ·~v
.

For the shared origin case in particular this can produce intervals
efficiently. The resulting interval for α can then be checked against
[0,1].

3.4 Implementation notes

IA is extremely straightforward to implement. We have used a C++
class that implements the operations described in Section 2. Once
such a class structure is in place, the operations take care of all the
special cases and problems. However, some care must be taken as a
naive implementation of IA can generate overly large intervals (i.e.,
taking the intervals after the division of ray origin and direction
components). Most of what we discussed here assumes a general
ray packet. However, when there are special cases such as shared
origin, the code could be modified to replace interval-interval oper-
ations with interval-scaler operations for efficiency. However, this
should be looked at on a case-by-case basis as sometimes there is
no real savings.

4 BOUNDING PLANES

As mentioned before, while interval arithmetic provides excellent
analysis through equations it is also possible to use geometric inter-
pretations of all the possible rays in a packet. This naturally leads
to bounding planes that surround the rays in a packet. Given a ray
packet then, it is important to consider how to build a geometric
representation of the full packet that is useful for culling tests.

4.1 Building the Planes

4.1.1 Major Axis

Following the previous use of bounding planes for restricted ray
packets [27], we define the notion of a “major axis” for a packet of
rays. A major axis is one for which all ray directions agree in sign
(either positive or negative) and allows us to reason about a forward
expanding packet (the packet expands in this direction). The other
component axes shall be denoted u and v as in [27].

Figure 4: Left: Rays with dk < 0. Right: Rays with dk > 0. Correct normals

are shown in black; incorrectly generated normals in green. Because dk < 0

on the left, the top ray has a negative slope while the bottom ray has a

positive slope. The normal must be flipped to account for this.

In [27] the major axis is chosen according to the maximum com-
ponent of the first ray under the assumption this will work for all
rays in the packet; this is fine for coherent primary rays, but for
general packets a more robust mechanism is necessary. We will
simply follow the definition and choose the first axis in which all
ray directions have the same sign (either all positive or all negative).

4.1.2 Slopes

Once we have chosen a major axis, we can examine the relation
of the other two axes to the major axis. This gives us a simple
2D projection of the packet, where ray directions may be reasoned
about in terms of slopes. As before this is similar to the method
used in [27] but we wish to expound the details.

For each ray in the packet, its ray direction in this 2D space can
be written as [dk,du] where k is the major axis, u is the other axis
under consideration and dk (respectively du) are the components of
the ray direction for that axis. From this we may rewrite the ray
direction as [1,du/dk] which simply gives us a ray that expands in
the major axis with slope du/dk. For now, we will ignore the case
where dk < 0 and will handle it later; however, it should be noted
that we avoid the case of dk = 0 for any ray in the packet if we use
the product test to choose an axis.

Bounding lines for a packet in this 2D space can be chosen by
finding the maximum and minimum slope over all rays in a packet.
Again if dk < 0 the maximum and minimum slope will have differ-
ent roles, but we will need both terms anyway.

4.1.3 Plane Normals

Given a slope of a ray, we can determine its normal by choosing
a suitable perpendicular vector. There are two possible choices:
[m,−1] and [−m,1] where m is the ray slope. For the “top” plane,
we want [−m,1] where m is the maximum slope while for the “bot-
tom” plane we want [m,−1]. This is fairly clear when we consider
that the “top” plane should point upwards (similarly the bottom
plane normal should point downwards) so that our normals point
outside (see Figure 4, right).

At this point we must make the only change necessary to han-
dle dk < 0. If dk < 0 then we must flip the normals so that they
appropriately point outside the region where rays may exist.
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4.1.4 Plane Origins

Once we have normals for our planes, we must determine where
to place them to ensure that they bound all the rays in our packet.
To do so, we simply insert the origins of each ray into the plane
equation and keep track of the distance term. The ray origin that
generates the maximum distance for a plane can be used directly as
the plane origin. Alternatively, once we have computed the maxi-
mum distance term, we may keep that alone (the origin itself is not
explicitly required).

4.1.5 Full Algorithm

Now that we have a method for generating plane normals and ori-
gins from ray directions, we describe a simple method to generate a
set of four planes that bound a ray packet. We begin by calculating
the maximum and minimum slope of the rays in the 2D spaces that
use the major axis as the first component: the ku and kv planes (as
defined in [27]). From these slopes we compute normals and ori-
gins for the planes as outlined above. This gives us two planes in ku
and two more from kv. These four planes then bound our packet.

4.2 Applications

Now that we have planes that bound our packet, we may use them
as a conservative representation of our packet. In particular, the
“interior” of the packet is the intersection of the four half-spaced
defined by these planes, and if any primitive lies to the outside of
any of these half-spaces, it cannot intersect any ray in the packet.

4.2.1 Axis Aligned Bounding Box

An axis aligned bounding box can be defined as the region inside
the 8 corner vertices of the box. If we take each vertex and insert it
into a plane equation we will extract a simple distance term which
allows us to decide which side of the plane it is on. If each of the 8
vertices is outside any of the bounding planes of our ray packet, we
can conclusively decide that all the rays in the packet miss the box.

Note, however that we do not have to test all of the 8 corners,
and that testing the closest one is sufficient. Based on the signs of
the plane’s normal components finding the vertex that is hindmost
along the direction along the normal is trivial, and testing this vertex
is sufficient (note that this, in fact, is another application of IA!).

4.2.2 Sphere

A sphere is slightly more interesting in that it is not a polhedron, but

is defined to be all points a distance r from a point ~C. In this case
the simple framework of testing all vertices of a primitive against
the planes does not make sense; however, we may test the center of
the sphere against each plane to determine the minimum distance
between the plane and the point. If this minimum distance is greater
than the sphere radius, r, then the ray packet can not intersect the
sphere (this test was recently used by Gribble et al. [12]).

4.2.3 Triangles

A triangle is similar to the previous case of an axis aligned box. If
all the vertices of the triangle lie to the outside of one of the ray
packet’s bounding planes, we can immediately determine that none
of the rays in the packet may intersect the triangle. Note that this
directly corresponds to frustum culling used in GPU rendering.

4.2.4 Moving Primitives

The case of moving primitives deserves some attention. For distri-
bution ray tracing [6, 9], it is important to allow primitives to move

within the frame of animation to provide motion blur. Bounding
planes may be used to test for conservative culling with moving
primitives (defined by linear movement) by simply ensuring the all
vertices are on the outside of a single plane. For example, if all
6 vertices of a moving triangle (3 from the start of the movement,
3 from the end) are on the same side of a plane then any point in
between is similarly on that side. If all 6 are on the outside of the
plane, then we may cull the moving primitive.

4.3 Implementation Notes

Though we want mostly want to abstract from implementation is-
sues, two details are worth noting: First, bounding planes are usu-
ally orthogonal to at a coordinate plane (xy, yz, or xz), and this is
particularly true for the construction method outlined above. In that
case, one of the normal’s component is always zero, so computing
a point’s distance to the plane gets quite simple, in particular if the
plane is stored in the “~x.~n− d” form instead of “(~x−~a).n”. One
can also re-sale the normal to have a ’1’ in one of the components,
saving anther multiplication per test. If spheres are to be tested,
however, it is necessary to keep the normal unit length or at least
retain the scaling factor for bookkeeping. Second, since we always
have 4 planes to be tested against, it is a natural choice to use SIMD
extensions to perform the four tests in parallel.

5 CORNER RAYS

While bounding planes may be used to cull various sets of prim-
itives, they may not cull a large portion of cases due to their axis
aligned nature. For example, when using an acceleration structure
one might expect the case shown in Figure 1(b) to be handled in
the acceleration structure (the ray packet will then not test this tri-
angle). However, if the ray packet projection instead touches inside
the bounding box of the triangle it is likely that we will still need to
test the triangle and that an acceleration structure might not avoid
this case.

For this situation, authors have used corner rays[5, 10, 22, 26, 27]
to bound the packet of rays. In most of these papers, the concept of
corner ray culling has only been used for primary rays with shared
origin, for which the “corner rays” (hence the name) are defined
by the rays passing through the corners of a tile of pixels. For pri-
mary rays with common origin, these corner rays bounds all inte-
rior rays, for secondary rays—or if depth-of-field is added to the
primary rays [6]—this property is not necessarily true any more.

Though corner ray culling has been mainly proposed for primary
rays with shared origin, it can be generalized to arbitrary ray: the
convex hull any four rays spans a volume (bounded, in general, by
bilinear patches on the sides, and if this volume does not intersect

a given primitive then no ray inside this volume can, either2 As
such, for every set of N rays we can find a set of four rays whose
convex hull bounds these rays, and use these as “corner rays”. Note,
however, that we do not have to pick 4 out of the original N rays,
but that we can pick entirely “virtual” rays that are not part of the
original set of N rays; though in this case the original meaning of
the term “corner rays” does no longer apply, we will continue to use
it, even though “bounding rays” would be more exact.

Though in general any set of four rays whose convex full en-
closes the rays, finding a good set of rays is not trivial. We will
therefore restrict ourselves to rays whose convex hull has planar
sides, which are easier to generate. We will now outline how

2Note that we have argued about the volume spanned by the corner rays,

not about these rays themselves. For any type of primitive there are cases

where all corner rays miss, but the spanned volume still intersects the prim-

itive [22]. One particularly trivial of these cases is where the primitive lies

entirely inside the spanned volume, but more cases exist.
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Figure 5: When projecting the packet into any uv plane the top and bottom

bounding planes form a square cross-section, and the corners of this square

(along the ~K axis) form our corner rays. For the quad formed by the packet’s

back plane along ~K, the corners are the origins of our corner rays.

to generate these corner rays from our previous bounding planes.
Note, however, that all the concepts naturally generalize to any four
bounding rays, as even in the general case the intersection between
the (bilinear patch-bounded) convex hull with the triangle’s embed-
ding plane forms a convex quadrilateral.

5.1 Building Corner Rays from Bounding Planes

As mentioned above, for primary rays the generation of corner rays
is trivial, but for the general case can be more complicated. In the
previous section, however, we have already described how a set of
geomeric bounding planes can be found for general ray packets,
and once these are known we can use them to compute bounding
rays as well. If we take any pair of two neighboring planes, their
intersection form an infinite line which we can use as a corner ray.
The direction of the line is given by the cross product of the normals
(it is important to ensure that the cross product is given inputs in
the correct order to ensure that the resulting direction agrees with
the major axis). Determining the point of origin is slightly more
complicated.

We know that the line of intersection between the two neighbor-
ing planes contains all points that satisfy both plane equations. If
we intersect these four bounding planes with the “back plane” (i.e.,
the plane passing through the hindmost ray origin along the major
march direction), then we get a regular, axis-aligned quad (see Fig-
ure 5). The 3D position of this quad form the origins of our virtual

corner rays. Assuming our major axis is ~K, then the ~K component
of all these four points is kback, the position of the back plane. In
addition, the point (kback,vtop in the (kv) plane has to fulfill the top

plane’s plane equation n
(top)
k

kback + n
(top)
v vtop − d(top) = 0, yield-

ing vtop =
d(top)

−n
(top)
k kback

n
(top)
v

. Computing the remaining three values is

straightforward.

5.2 Using Corner Rays

Once we have our four corner rays for a packet, we may insert them
into any ray-triangle test we wish (similar to the case of interval
arithmetic) that returns barycentric coordinates. As shown in Fig-
ure 2(b), this results in the projection of the cross-section of the ray
packet into the plane of the triangle (forming a quad). As long as
we determine that the vertices of this projection are all on one side
of a slab/edge we may conclude that the rays miss the triangle. For
example, if α < 0 for all the corner rays then all the rays pass on

t✞✟✠✡☛☞✌

Figure 6: A 2D projection of a ray packet and a triangle within the region

bounded by the corner rays. The dots show the intersection of each ray with

the supporting plane of the triangle. The lower ray intersects the triangle’s

supporting plane behind the ray origin (t < 0); rays between the top and

bottom corner ray will not have hit points between those of the corner rays

but rather outside.

the left side of an edge (alternatively if α > 1 then we can conclude
they all pass on the right side of an edge).

One important caveat of this method is the assumption that the
ray packet builds a quad in the plane of the triangle and that all rays
within the packet will fall within this quad. This is not the case if the
corner rays do not generate hit points with positive ray parameters
(i.e. t < 0). Figure 6 demonstrates that even in 2D negative ray
parameters imply that rays within the packet do not go between
the hit points of the corner rays, but rather lie outside them. Once
this case is handled, however, corner rays produce culling tests that
bounding planes and interval arithmetic may not detect.

5.3 Implementation Notes

What kind of triangle test is being used for the actual test is com-
pletely irrelevant. Though we had originally assumed that the dif-
ferent tests would lend differently well to culling tests, no matter
what test is being used (Badouel [4], Arenberg [2], Wald [25],
Möller-Trumbore [21], in one or another (and more or less obvi-
ous) way they all have to test the ray to the sides of the triangle;
then, if all rays fail at the same side, the entire packet misses, what-
ever test is used for the actual computations, and whatever special
kind of packet was used for generating the corner rays. Of course,
this generalizes to all convex polygons, not only to triangles.

However, one important note from an implementation standpoint
is that any test that can quickly generate barycentric coordinates
may be faster than other tests. For example, if a test can deter-
mine that the four corner rays all have a negative value for the first
barycentric coordinate then the other coordinates do not need to be
checked (we already know that all the corner rays agree). Further-
more, tests that use a distance test first are not particularly advanta-
geous: corner rays do not allow us to test the packet for distance to
the plane but only allow for half-space culling.

6 FUTURE WORK

Of course the most pressing future work at a high level is to better
understand the relative merits of existing culling techniques as well
as to develop new ones. But there are some more specific ideas for
future work we can list here.

Two of these “all miss” tests can be easily inverted to perform
a simple “all hit” test. For example, interval arithmetic may reveal
that all the rays in a packet must lie within the triangle because
the barycentric coordinate intervals are always valid. Similarly, the
corner rays can say the same thing: if all the corner rays lie within
the triangle then we know the barycentric test must always pass.

6
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This simple all hit test may be useful for architectures with high
branching penalties, such as the Cell, where knowing that no tests
are needed could be beneficial. We have not yet implemented these
techniques in a Cell based ray tracer, but would expect them to yield
performance benefits similar to those on the CPU.

Interval arithmetic can lead to quickly bloating intervals. Affine
arithmetic [8] is designed to address this, and it could be useful.
The amount of expansion in the dot product and cross product op-
erations is fairly large and doesn’t necessarily relate to any geomet-
ric interpretation of the operations. For example, the dot product
between the direction interval vector and itself can be much greater
than 1 even if all the ray directions are of unit length. Similarly,
the cross product operation on intervals will expand significantly
as each component of the resulting vector is the difference of two
products of intervals.

7 CONCLUSIONS

Because ray packets have taken such a central role in modern ray
tracing systems, culling entire packets against a primitive have be-
come an important topic. In this paper we have both surveyed the
common techniques discussed in the literature, as well as provided
many details we have not seen and have had to (re-)invent for our
own systems. We are especially careful to point out how to han-
dle ray packets that do not share an origin because we expect this to
become the common case for the next generation of ray tracing pro-
grams. We have not taken any position on what culling techniques
are likely to be fastest, as this depends significantly on the applica-
tion, scene, and implementation. As with frustum culling for GPU
renderers, we expect the community to take several years to under-
stand the merits and problems of the various methods in different
applications.

Though we do not want to take a stand on what techniques are
better than others (in fact, we have already shown several equiva-
lences between the various tests), a few of our experiences with the
various tests and culling methods are worth of mentioning. First,
having considered all the various tests and, in particular, their com-
monalities has led us to a much better general understanding of the
various tests. While we originally believed that the different pub-
lished ray-triangle tests would be differently suited to the various
culling methods, and would work differently well for the various
kinds of packet types (primary, shadow, seconary, . . . ) we found
that, for example, for the corner ray case they are all equivalent,
and that the different kinds of packets only influence how the cor-
ner rays are built.

Second, we found it increasingly obvious that the relation of
primitive size and packet size influence the effectiveness of the
techniques. For example, a packet-box culling technique applied to
traversing a hierarchical index structure will work efficiently only
until the traversed subtree is enclosed in the packet’s frustum. At
that stage, a packet would have to be split to smaller packets (similar
to [22]) to remain effective. How well the different culling meth-
ods map to this packet splitting; so far, however, we believe IA to
be easier to apply to this case, as no explicit planes or rays have to
be (re-)constructed, and a few only elementary intervals have to be
recomputed, which is both fast and conceptually simple.

Third, the difference in interval arithmetic and geometric meth-
ods (both corner rays and bounding planes) seems to lie less in their
efficieny, and more in their ease of use. Generally, we found geo-
metric tests, once derived, to be somewhat more appealing, as one
can build a mental image of the geometric setups involved. This
makes it easier to judge the effectiveness of a given test, or to find
cases where it may be inefficient. On the other hand, such geomet-
ric images can be deceiving, as they only correspond to a specific
setup, and the same test might fail for a different setup than the
one imagined (this is particularly true if signs and orientations are

involved). For IA, on the other hand, the geometric meaning of a
test is often not obvious, but modifications of a test are easier to
guarantee to remain correct. In particular, this implies that IA can
more easily be used, as one can use it without requiring any geo-
metric understanding of the situation: for example, a Plücker [11]
test works in 6D space; imaging geometric bounding primitives in
6D is not straightforward, but IA is trivial to apply.

Among the geometric tests, we have found that in a ray tracer
the corner ray tests often work somewhat better than culling the
primitive on the frustum’s planes. Though we have previously ar-
gues that both are mostly dual to each other (and thus in general
have similar culling efficiency), in a real ray tracer packet-primitive
intersections are not performed with random primitives, but only
with those that are visited during traversal. As most acceleration
structures use axis-aligned planes or bounding volumes, primitives
lying outside a packet’s axis-aligend bounding planes are likely to
have been culled by the traversal, anyway, but testing a set of cor-
ner rays with the side of a primitive may still work if this side is not
axis aligned. For example, a triangle inside a box will cover at most
50% of that box’s projected area, and a packet hitting that bounding
box can have a high chance of missing the triangle; a corner ray test
would most likely detect this case, but the frustum plane test would
not (the frustum test could only detect a miss if the bounding box of
the triangle were outside the frustum, in which case that box would
likely have been culled during traversal).

In summary, all of the invidiual methods have their merits, and
we do not want to point to any as being better than the other (in
fact the three can be combined as each handles cases that the others
may not find). Instead we hope this paper will be useful to system
designers exploring the option space for the culling components
of their programs. In particular, we hope that this will incite new
specific culling tests for specific applications or special cases that
have not yet been conceived.
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