

I m p l e m e n t i n g F u n c t i o n a l P r o g r a m s
U s i n g M u t a b l e A b s t r a c t D a t a T y p e s

Ganesh C. Gopalakrishnan,
Department of Computer Science, Univ. of Utah, Salt Lake City, Utah 84112

and

Mandayam K. Srivas,
Department of Computer Science, SUNY, Stony Brook, N Y 11794

We study the following problem in this paper. Suppose we have a purely functional program
that uses a set of abstract data types by invoking their operations. Is there an order
of evaluation of the operations in the program that preserves the applicative order of
evaluation semantics of the program even when the abstract data types behave as mutable
modules. An abstract data type is mutable if one of its operations destructively updates
the object rather than returning a new object as a result. This problem is important
for several reasons. It can help eliminate unnecessary copying of data structure states.
It supports a methodology in which one can program in a purely functional notation for
purposes of verification and clarity, and then automatically transform the program into
one in an object oriented, imperative language, such as CLU, AD A , Smalltalk, etc., that
supports abstract data types. It allows accruing both the benefits of using abstract data
types in programming, and allows modularity and verifiability.

K eyw ord s: Functional Program Implementation, Mutable Modules, Abstract Data
Types, Syntactic Conditions.

C o n t e n t s

1 In trod u ction 1
1.1 Related W o r k ... 2
1.2 Terminology, Assumptions, and Problem Statement... 2

2 Syntactic C haracterization o f In Situ Evaluability 3
2.1 Syntactic Conditions for Straight-line Expressions... 4

2.1.1 Definition of graph(E), a Graphical Representation of Expressions . 4
2.1.2 Informal P r o o f ... 5
2.1.3 Formal Proof (In two parts, Theorems 2.1 and 2 .2) 6

2.2 Handling cond and recursion ... 10
2.2.1 c o n d .. 10
2.2.2 R ecursion .. 11

2.3 The Number of Module Instances to be Allocated... 12

3 T ransform ations for Im plem entability 12

4 C on clu din g R em arks 13

A A p p en d ix 15
A .l Example-1: Reversing a Memory Array .. 15
A .2 Example-2: Reversing a Q u e u e .. 15

L i s t o f F i g u r e s

1 Dags of E q and E m .. 5
2 Violation of C h a i n .. 6
3 Sufficience of Chain and A cyclic 8
4 An Example Illustrating the Treatment of cond Expressions............................. 10
5 Reversal of a Memory Expressed Functionally.. 15
6 Memory Reversal: Incorporating In Situ Evaluation Rule (Smalltalk) 16
7 Memory Reversal: Incorporating In Situ Evaluation Rule (A D A) 16
8 Functional Description of Queue R e v e rsa l... 17
9 Queue Reversal Incorporating In Situ Evaluation Order (Sm alltalk)............... 18
10 Queue Reversal Incorporating In Situ Evaluation Order (A D A) 18

u

1 I n t r o d u c t i o n

Suppose we have a purely functional [9] program P that uses a set of abstract data types
[8,3] by invoking their operations. Suppose we view every abstract data type in P to be
mutable, i.e., one in which some of the operations creates an instance of the module type
by destructively updating the old instance, rather than creating a new copy. This will, in
general, alter the meaning of P . P with mutable data types is sensitive to the order of
evaluation of the data type operations in it. This poses the following interesting questions:
Is there a way of correctly implementing a functional program employing in situ (in place)
update operations so that no copying is necessary ? If so, under what conditions is this
possible ? In this paper, we study a property, referred to as the in situ evaluability property
of functional programs, which helps answer the above questions. .

We define a purely functional program P to be in situ evaluable if

• Some of the data types in P can be implemented using mutable modules;
• An evaluation order for the operations in P can be found such that the intended

semantics of P is preserved. This evaluation order will be called the in situ evaluation
order.

Our work analyses the conditions for in situ evaluation in the context of applicative order
evaluation. W e formulate syntactic conditions on functional programs, and show that they
are sufficient to ensure in situ evaluation. These conditions are also necessary for expres
sions not containing conditionals or recursion. (For conditionals and recursive expressions,
a set of necessary syntactic conditions seem to be impossible to formulate because of the
undecidability of the halting problem.) The proof that our syntactic conditions are suffi
cient is constructive in that it defines the in situ evaluation order.

The procedure can be used to directly transform a functional program into an equivalent
one in an imperative, object oriented language, such as CLU [14], AD A [17], Smalltalk [4].
We also show that in some cases it is possible to transform a functional program which is
not in situ evaluable into one that is, using the algebraic axioms of the abstract data types
used in the program.

As an example consider the following expression which denotes a computation on an
object q belonging to a Queue data type. The operation ins returns a new queue obtained
by adding a given element to q, and fr o n t fetches the front element of q.

in s(in s(q ,v), fron t(q)) (l)

In a purely functional language, the arguments to the operations in expression (1) can be
evaluated in any order. Suppose we assume that ins is destructive, i.e., it returns q after
it actually modifies q by adding v. Then, in order for the expression to return the same
result as before, front has to be evaluated before the (inner) ins operation unless there is a
facility to save the state of q before evaluating the (inner) ins. Now consider the following
expression:

ins(q, fro n t(in s(q ,v))) (2)

For this expression there exists no order of invocations of the operations that would evaluate
it consistent with the applicative order semantics if ins were destructive without saving

1

the original state of q. This is because the inner ins operation would modify q before

it is needed by the outer »rw, According to our definition, the first expression is in situ

evaluable whereas the second one is not. However, the second expression is semantically

equivalent to the following expression which is in situ evaluable:

i f empty(q) then ins(q ,v) else ins(q, front(q)) (3)

1 .1 R e l a t e d W o r k

The closest related effort is that reported in [10]. In this work, the problem of updating

arrays and similar contiguously allocated storage structures (aggregates) has been studied,

with a view to detect situations where destructive updates can be performed on array

locations without affecting the call by need (normal order) [9] semantics. In [12], safe

procedural implementations of data types has been studied. Our work is distinguished in

the following respects:

• We perform the analysis with respect to arbitrary abstract data types (not just Lists

or Arrays as in [10].)

• Our technique does not involve abstract interpretation. It is simpler to implement

than the analysis suggested in [10] which uses abstract interpretation [16],

• In [12], determining in situ evaluability by syntactic analysis has not been considered;

the approach taken there is to combine Dijkstra’s predicate transformer semantics

[2] and the algebraic semantics to effect transformations.

1 .2 T e r m in o lo g y , A s s u m p t i o n s , a n d P r o b l e m S t a t e m e n t

An abstract data type consists of a set (possibly infinite) of values, and a finite set of

operations with the constraint that the operations are the only means of constructing,

observing and manipulating the values. For the purposes of our examples, we group the

data types into two kinds: module type, and simple type. Examples of simple types are:

integer, boolean. Some times we refer to the values of a module type as “states” since they

denote the states of an object instance of the module type. Every data type used in our

examples other than the simple types listed above are assumed to be a module type.

We classify the operations of a data type into two groups: constructors, and observers.

Every operation of a data type which returns as its result a value of that type is a con

structor, eg., ins on Queue. Every operation which returns a value belonging to a type

other than the type under question is an observer, eg., front on Queue. We assume that

every observer of a module type returns a value of a simple type, and that every observer

of a simple type returns a value of another simple type.

An object of a data type is mutable if one or more of the operations defined by the

data type are implemented so as to destructively update one or more of their argument

objects (and immutable otherwise). We assume that objects belonging to module types are

mutable; it is these objects that we wish to avoid copying. (For brevity we often use the

phrase “a module type is mutable” .) Objects belonging to simple types are immutable;

2

therefore we do not attempt to avoid their copying. For convenience, we further assume

that every constructor of a module type is destructive, but no observer is destructive.

The aim of our analysis is to ensure that the number of instances of each module

type remains the same throughout the duration of the computation of an expression.

The number of instances of a module type used in an expression E is the same as the

number of distinct terminal nodes of the same module type present in graph(E), where

graph(E) is the graph of expression E with shared common subexpressions. (This simple

scheme to determine the number of module instances to be allocated in the beginning of

a computation can be improved as shown in section 2.3.) This implies that all common

subexpressions of a module type, as well as expressions E\ and E i of module type, one of

which is a subexpression of the other, denote “state values” that are resident in a single

instance of that module type. For example, in expression (2), the. subexpression q as well

as the expression in s (q ,v) denote the states of the same queue instance.

In general, if E i is a subexpression of E 2 and both are of the same module type, it

is the case that Ey is derived from E 2 by a series of constructor applications. Since we

require in-place updates for constructors, E\ and E 2 denote two different states of the same

module instance existing at different times.

S ta tem en t o f the p ro b lem

The language of £ (L (£)) defines the class of programs addressed in our work:

£ ::= s(£ , . . . , £) | var \ f (M , £ ,... , £) \ C O N D {p i : £\\P2 '■ £2]---Pn • £n} I iterativejrecursion

, (4)

where pi are called antecedents and are called consequents of the conditional expression,

C O N D . Syntactic details of iterativejrecursion [15] are provided in section 2.2.2.

Here, s denotes operators of the simple types (including constants), var ranges over

simple types as well as module types, and / denotes either the tupling operator or a

constructor/observer /app lied on an instance a module M of a certain module type, with

additional expressions as arguments. The problem to be solved by us is:

Given a functional expression E belonging to the language of £ , L (£),

1. Develop syntactic conditions to determine whether E is in situ evaluable. If so,

determine the partial order of evaluation that achieves this (the in situ evaluation

order).

2. In case E cannot be in situ evaluated, find out whether E can be transformed into

a semantically equivalent E ' that can be evaluated in situ.

2 S y n t a c t i c C h a r a c t e r i z a t i o n o f I n S i t u E v a l u a b i l i t y

We consider straight-line expressions (expressions without cond and recursion) in sec

tion 2.1, and prove the necessity and sufficience of our syntactic conditions for them, cond

and recursion will be considered in section 2.2.

3

2 .1 S y n t a c t i c C o n d i t i o n s fo r S t r a ig h t - l in e E x p r e s s io n s

We illustrate our syntactic conditions on the following two expressions:

The first expression denotes a computation on a Queue object, and purports to advance

a queue Q to a state in s (Q ,v), observes its front to get a value u, and inserts u into the

original queue Q. The second expression denotes a computation on an object-M of the

M emory data type, supporting read and write operations, read takes a Memory and an

address and returns a data item of a simple type, write takes a M em ory , an address and

a data item and returns a new Memory. The expression 6 purports to read a Memory

M at an address a3 where a3 is obtained by first advancing M to state w r ite (M ,a l,d l)

To distinguish repeated occurrences of the same operator (such as ins occurring twice),

we append the suffix rank” to them. This suffix will be omitted for distinct operators.

2.1.1 D e fin it io n o f graph(E), a G raph ica l R ep re sen ta tion o f Expressions

1. Define the —> relation (read “directly depends”) for an expression as the least relation

containing all pairs < operator\,operator2 > such that operator 1 can be applied as

soon as (but not before) the value created by operator2 becomes available, (operator2

could also be a variable or a constant. Since their values are trivially available,

we prefer to overload operator2 rather than introduce another separate category

2. Define the relation (read “c-after-o”) for an expression as the least relation con-

< constructor, observer > pairs < c, o > such that they have a common subexpres

sion of module-type Mtype as an argument (they share a module instance in the

4

Example: for E m, write : 1 read : 1,

where the common sub-expression that is shared among write : 1 and read : 1 (“3x

part”) is the variable M of module type ‘Memory’.

Intuitively, c o means that “the constructor c must be applied on module M only

after all observers o have been applied on module M .”

3. Take the union of —» and for an expression E , and depict it as a graph with shared

common subexpressions. This graph, graph(E), depicts all the data dependencies of

E as well as all evaluation orderings among constructors and observers. <jraph(Eq)

and graph{Em) are illustrated in figure 1.

ins:l read:l

ins:2

--------- - - J
V

Figure 1: Dags of E q and E m

T heorem . E can be evaluated in situ if and only if:

(C lause “ Acyclic”): graph(E) is acyclic; and

(C lause “ Chain”): For each module instance M , there exists a single chain of —» arrows

in graph{E) such that all the constructors c acting on this module instance lie on

this chain.

E.g.: We can see that E m violates the clause Acyclic and E q violates the clause Chain.

Hence neither E q nor E m can be evaluated in situ.

P ro o f o f Necessity and Sufflcience

2.1.2 In fo rm a l P ro o f

The clause Acyclic means that both data dependencies as well as “constructor after ob

server” orderings can be satisfied. Viewed another way, the various operator precedences

to be observed are deadlocked if clause Acyclic is violated.

The clause Chain captures the fact that the state of each module instance M is succes

sively updated (along the chain) by constructor applications. Instead of a chain if we had

5

a branching structure, there is an attempt to simultaneously update the state of a module

in two distinct ways which is not possible without copying.

N ote : In general, there will be several mutable modules in a system. A computation on

such a system would advance the states of each of the mutable submodules. Our syntactic

characterization can handle this important general situation as well. The clause Chain

would then require that the states of the different submodule instances lie on their own

separate chains.

For instance, consider the expression E mn that defines a computation in a system

containing two module instances M and N:

< cl(m , ol(c2(n))), c3(n, o2(c4(m))) > .

In this example, modules M and N are respectively in states m and n to begin with. We

then attempt to create a future state for M by using the current state m of M as well

as a future state of N\ more specifically we apply the constructor cl on m and also using

a value produced by observing (via o) a future state of N , namely c2(n). Similarly we

attempt to create a future state for N using the current state n of N and a future state of

M . This example violates clause Chain twice, because neither the various states of M nor

the various states of N are along chains of -+s (figure 2). The states c l (m ,...) and c4(m)

are, for instance non-equivalent, in general.

cl c3

Note: All edges correspond to

Figure 2: Violation of Chain

2.1.3 F o rm a l P ro o f (In two parts , Theorem s 2.1 and 2.2)

In the applicative order evaluation of an expression E , each subexpression (including E)

gets evaluated at a certain time instant. (Note: We use the word time exactly as in Linear

time Temporal Logic, i.e. as a means of ordering events.) If a subexpression E denotes

a module state present in a module M , the value ceases to become available as soon as

any constructor c is applied on M . If a subexpression E denotes a simple value (a value

belonging to a simple type), the value can be regarded as being eternal because we allow

these values to be copied and saved at will.

For graph(E), we can now define the following three functions:

6

avail, that takes an operator node / in graph(E) and returns the instant at which / yields

its value;

cease, that returns for each node in the graph, the instant of time after which the value

represented by that node gets mutated (i.e. ceases to exist; this concept is analogous

to the notion of “liveness” of variables in classical compiler data flow analysis [1]).

In our framework, if c —» N , the start value for c is the cease value for N .

start, defined such that s ta rt(f) = ava il(f) — 1 (i.e. it takes “unit” time for results to

become available once the operator is started.) '

We now define in situ evaluation formally:

D e f in it io n 2.1 (In situ evaluation) An expression E is evaluable in situ if and only if:

1. For all nodes n in graph(E), avail(n) is finite (i.e. operator n is applied at some

finite time).

2. Among the terminal nodes of graph(E), there must be no more than one node

denoting the state of each module instance. This amounts to saying that at the start

of computation, all module instances are exactly in one state!

3. For every pair of nodes m and n in graph(E), if m and n denote two different states

of the same instance of a module,

avail(m) ^ avail(n).

As a special case, If c2 —» cl, then

start(c2) = cease(cl),

meaning that the value created by cl ceases to exist beyond the time at which c2 is

invoked. This also means that

avail(c2) — cease(cl) + 1.

This means that there can be only one version of the state of a module at each time

instant.

4. For every opi —► opi where one of op, is an observer,

start(op2) > start(opi).

This requirement follows from data dependencies among operators.

5. For every o —* c,

start(o) < cease(c).

This means that the observation of a module state must start before the instant at

which the cessation of the state defined by c commences.

7

Legend
in s :l

[2,3,5]

i],cease]”

[-1̂ 0,5] q [-1,0,11

Figure 3: Sufficience of Chain and Acyclic

N o te 2.1 Although the arc is not explicitly mentioned above, the precedence imposed

by it has already been captured above. To see this, consider o —> cl and c2 —> cl.

According to the definition of c2 o. Since we have start(c2) = ce<2se(cl) (clause 3)

and start(o) < cease(cl) (clause 5), we have start(o) < start(c2) which is exactly what

we wanted. Therefore,

c o implies start(o) < start(c). (Thus is introduced just for convenience; all our

proofs can be carried out without using the arc— albeit more difficultly.)

T heorem 2.1 (Necessity of Chain and Acyclic) If Chain or Acyclic are violated for a

given E , then E cannot be evaluated in situ.

P roo f: This follows from the definition of in situ evaluation.

If Chain is violated, there exist two constructors cl and c2 such that

1. either cl A x and c2 A i for some constructor x where x is the least common

descendant for both cl and c2; or

2. there exists no x as above.

In the latter case, we have two distinct chains of states for the same module instant, thus

immediately violating clause 2. In the former case, there exist M .c l —> x and M.c2 —> x.

From the definition of in situ evaluation (clause 3),

ava il(M .c l') = cease(x) + 1 = avail(M .c2),

contradicting clause 3. Thus if chain is violated, E cannot be evaluated in situ.

If Acyclic is violated, we can assign a high value to the avail times of all nodes within

the cycle by traversing the cycle arbitrarily many times, jacking the value of the start

function to infinity (using clauses 4 and Note 2.1), violating clause 1.

T heorem 2.2 (Sufficience of Chadn and Acyclic) If Chain and Acyclic hold, then E can

be evaluated in situ.

P roo f: W hat we have to prove is that given graph(E) satisfying both Chain and Acyclic,

we can use an evaluation rule such that all the clauses of the in situ evaluation will hold

for graph(E). Such an evaluation rule is now defined.

8

D e fin it io n 2.2 (In situ evaluation ordering) Respect the orderings imposed by both the

—► and the arcs.

The proof is completed by the following steps that define the functions avail and cease

in such a manner that all the requirements of in situ evaluation are satisfied. (We also

illustrate our steps on an example in figure 3.)

1. Define start to yield —1 for all terminal nodes of graph(E).

2. For every other node N , start assigns one less than the largest among all distances

from N to all the reachable terminal nodes. (We define the distance between two

nodes to be the length of the longest path, containing —► and arcs, connecting the

two nodes.) A vail is also defined once start is.

3. Now we define cease for the nodes lying on the chains of each module instance. For

each constructor node N 1 of a module M on this chain, cease(N l) = avail(N 2) — 1

where N 2 —> JVl is part of the chain.

4. For all nodes not on any of the constructor chains (e.g. observer nodes) as well

as for those nodes with an in-degree of 0, cease assigns a value equal to the total

number of nodes in graph(E); essentially, values produced by observers are available

throughout the duration of computation of E , and the number of nodes in graph(E)

is guaranteed to be larger than the duration of E ’s computation.

We now list the clauses pertaining to in situ evaluation, and write against them the reason

why they are satisfied:

C lause 1 is satisfied since graph(E) is acyclic, all nodes of graph(E) will be assigned

finite values.

C lause 2 is satisfied since avail and cease were defined so as to satisfy Clause 3.

C lause 3 is satisfied due to the way start was defined.

C lause 4 is satisfied due to the following argument.

For each c in o —► c, the value of c (a module state) will cease as soon as a constructor

c l is triggered, where cl satisfies cl —► c. But then, c l o. Therefore,

start(c l) > start(o) > start(c),

which means cease(c) > start(o).

Thus all clauses of in situ evaluation are satisfied if Chain and Acyclic hold. As can be seen,

our evaluation rule is basically the applicative order evaluation rule, with the additional

orderings imposed by arcs.

Although the necessity of Chain and Acyclic is easy to see, their sufficience is not that

easy to argue informally. In fact prior to the present syntactic characterization, we tried

many weaker characterizations which were necessary but were found insufficient.

9

cond { ol(m) : cl(m)

c2(m) : c3(c2(m))

true : o (c2 (m)) }

is in situ evaluable because:

- ol(m) is in situ evaluable;

- c2 (m) as well as cl(m) are in situ evaluable after evaluating ol(m);

- <ol(m) ,c 2 (m)> is in situ evaluable;

- true as well as c3(c2(m)) are in situ evaluable after <ol(m) ,c 2 (m); .

- o (c2 (m)) is in situ evaluable after <ol (m) , c2 (m) ,true>.

Figure 4: An Example Illustrating the Treatment of cond Expressions

2 .2 H a n d l i n g c o n d a n d r e c u r s io n

2 .2.1 cond

We attach sequential semantics to cond: the consequent corresponding to the first (in lexi

cal order) true antecedent is evaluated and returned as the value of cond. We consider cond

expressions of the form cond{pi : £?,•} with i belonging to a certain index set. We formulate

the syntactic conditions for cond expressions with respect to a canonical representation

defined by the following rewrite rules:

f(cond{pi : E i}) => cond { p, : / (£ ,) } (9)

cond{cond{pi : E{\ : E} => cond { p, A Ei : E] (10)

cond{p : cond{pi : Ei}} => cond{p A pi : E{} (11)

The number of antecedents of a cond that would be evaluated at run-time cannot be

predicted in general. Therefore in determining the implementability of cond expressions,

we pessimistically assume that all the antecedents are to be evaluated. It is this assumption

that renders our syntactic characterization to be sufficient but not necessary.

Once all the antecedents have been evaluated, one of the consequents will be picked

for evaluation. However since the antecedents themselves are evaluated sequentially and

since the antecedents could themselves use constructor operations on module types, a cond

expression w ith N antecedents p, and N consequents Ei is in-situ evaluable if, for all i in

l.JV ,

• the tuple < p i , ...,p i_! > is in-situ evaluable;

• pi is in-situ evaluable after having evaluated the tuple < pl5 >;

• E i is in-situ evaluable after having evaluated the tuple < pi, . . . , P i >.

For each of the above cases, a separate graph(E) is to be constructed, with a arc

capturing the “after” relationship. An example of the treatment of cond expressions is

provided in figure 4.

10

F i(X) «= i f Pi(X) then f i(X) else F jG f iX j) ,

where pt, <7, are constructors or observers, X is the formal argument vector and g i(X) is

the actual-argument vector, and (in general) i ^ j . i and j range over an index set, thus

giving a system of mutually recursive definitions.

An iterative evaluation of a “call” F i(E) essentially involves a sequence of evaluations

Pi(E), gi(E), pj(...), £,(•••)> etc-

because all recursive calls are outermost. No information (other than the argument vector)

is carried across recursive calls. Hence, it suffices to determine the in situ evaluability of

the right-hand sides of each of the individual function definitions separately. Thus, the

analysis presented so far can be applied to the right-hand sides, ignoring the outermost

recursive function call. (A more formal argument is omitted.)

H a n d lin g N on- iterative Recurs ion

We discuss techniques for handling non-iterative recursion and justify why we don’t address

it in our work.

Consider the expression < c(M), F (M) > where c is a constructor, F is a defined

function and M is an object of module type. This is not in iterative form because F , the

defined function symbol, is not textually outermost. Depending on the body of F , copying

M at the time of the call may or may not be required. We now propose several abstract

interpretations to infer this fact (only the first is practical).

1. By analyzing the body of F , infer whether F has a “constructor status” or not; i.e.

whether the body of F would update its argument. This is simply determined by

observing (i) whether there exists a constructor in the body of F that is applied to

the formal argument variable of F ’, or (ii) whether F calls a function G passing F's

formal argument variable as actual argument to G , and G has a constructor status.

(A formal definition via structural induction on the syntax is omitted.)

We can conclude that < c(M), F (M) > is in situ evaluable if F does not have a

constructor status. Otherwise the only alternative is to (pessimistically) rule out

in situ evaluation, fearing that the constructor application in the body of F to F's

argument would destructively update M .

2. Maintain enough information during the process of abstract interpretation to be

able to tell all possible ways in which F would update its arguments. This is clearly

undecidable.

3. Explore abstract interpretations that are intermediate in precision (as well as pes

simism).

2.2.2 Recursion

We consider a system of iterative recursive definitions of the form

11

The simplicity afforded by iterative recursion becomes apparent now: defined function

symbols don’t appear nested anywhere; hence all above complications are avoided and no

inter-procedural analysis is required.

In addition, if our technique is applied during the transformation of functional programs

into imperative programs with loops, starting with iterative functional programs has the

advantage of almost direct mappability into loops.

2 .3 T h e N u m b e r o f M o d u l e I n s t a n c e s t o b e A l l o c a t e d

As mentioned in section 1.2, our analysis has thus far assumed that given a function

definition:

F (X ,Y) <= bodyJF •

where X and Y are of the same module type M, two separate terminal nodes (instances)

of M would be available (allocated) at the beginning of the computation of E .

Consider the call F (E m , E m) where E m is an expression of module type M . According

to our strategy so far, X and Y would start out by being assigned to two distinct copies of

the object bearing the value E m - This would involve creating an extra copy of E m while

compiling the function call. However if we analyze bodyJF and determine that the act

of identifying the nodes X and Y does not render bodyJF in situ unevaluable, then the

creation of this extra copy at the time of the call can be avoided.

3 T r a n s f o r m a t i o n s f o r I m p l e m e n t a b i l i t y

One way in which our approach can be generalized is to perform a semantic analysis of the

program using the algebraic axioms [7] of the abstract data types to transform the program

into one that satisfies our syntactic conditions. We have found the following strategies to

be useful in performing these transformations. The first strategy can be incorporated as

a part of a program optimizer while the second and third are harder because in general

they need equational theorem provers ([11], [13]) as well as user-supplied axioms that make

explicit the presence of inverse operations (explained below).

The first strategy consists of partially evaluating (i.e., reducing [18]) a program using

the data type axioms as rewrite rules. For instance, the expression ins(q, fron t(ins(q ,v)),

which is not in-situ evaluable, can be transformed into the in-situ evaluable expression

i f empty(q) then ins(q ,v) else ins(q, front(q))

by partially evaluating the former using the following axiom of front:

fro n t(in s (q ,v)) = i f empty(q) then v else front(q) (12)

The second strategy is to check if the conflicting subexpressions inside a non in-situ

evaluable expression are indeed equivalent. If so, one can be replaced by the other, there

by resolving the conflict. For example, the following expression is not in-situ evaluable

because the arguments to the read operations cause the chain condition to be violated.

12

However, one of them can be replaced by the other since they are equivalent because

writes on distinct addresses commute.

read(write(w rite(M em, 2,4), 3,5), read(write(write(Mem, 3,5), 2,4), a)) (13)

Our last strategy involves the use of inverse operations. An inverse operation is one

which “undoes” the effect of a constructor operation. For instance, the operation insinv on

Queue is the inverse of ins if it such that ins inv(ins(q , v)) = q,. Thus, an inverse operation

can be used to obtain the state in which an object was prior to the application of a

constructor. This property can be exploited to resolve conflicts in an offending expression.

For example, assuming the operation insinv is defined on Queue the expression ins(q,froni(ins(q,

v)) can be transformed into the following equivalent one which is in situ evaluable:

ins(insinv(ins(q, t>)), fron t(ins(q,v))).

This method is applicable only when one has a prior knowledge of the existence of

inverses for the constructors. It is also practically useful only if the inverse operation is a

more efficient than copying.

4 C o n c l u d i n g R e m a r k s

We have presented a simple graphical model for determining when destructive updating

of abstract data types is possible for a class of functional programs in which recursion

is limited to an iterative schema. We have formulated sufficient syntactic conditions on

a program under which destructive updating of data types may be introduced without

violating the applicative order evaluation semantics of the program. Unlike the work of

[10], which employs an abstract interpretation technique, our syntactic approach is fairly

cheap computationally although not as general.

We have applied the techniques presented in this paper for the automated synthesis

of finite state controllers for hardware from functional specifications [6,5]. In addition, we

have successfully transformed (by hand) some simple functional programs into both Ada

[17] and Smalltalk [4].

Some restrictive assumptions that we make are: (i) Observers may return only simple

types; (ii) Constructors may take only one module argument. It appears that the latter

restriction can be lifted by adopting the modeling technique for the trans operations [12,

p. 149]. Other restrictive assumptions that we make actually contribute to the simplicity

of our technique.

We thank the referees and Gene Stark for their helpful comments.

R e f e r e n c e s

[l] Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers, Principles Techniques and Tools.

Addison-Wesley, 1986.

13

[2] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, N.J.,
1976.

[3] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An Initial Algebra Approach to the Spec

ification, Correctness, and Implementation of Abstract Data Types. Volume 4, Prentice Hall,

Englewood Cliffs, N.J., 1978.

[4] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.

Addison-Wesley, Reading, Mass., 1983.

[5] Ganesh C. Gopalakrishnan. From Algebraic Specifications to Correct VLSI Systems. PhD

thesis, State University of New York, December 1986.

[6] Ganesh C. Gopalakrishnan, Mandayam K. Srivas, and David R. Smith. From algebraic speci

fications to correct vlsi circuits. In Proceedings of the International Working conference From

HDL Descriptions to Guaranteed Correct Circuit Designs, Grenoble (IFIP), North-Holland,

1986.

[7] John V. Guttag and J. J. Horning. The algebraic specification of abstract data types. Acta

Informatica, 10(l):27-52, 1978.

[8] John V. Guttag, Ellis Horowitz, and David R. Musser. Abstract data types and software

validation. Communications of the ACM, 21(12):1048-1064, December 1978.

[9] Peter Henderson. Functional Programming. Prentice Hall, 1980.

101 Paul Hudak and Adrienne Bloss. The aggregate update problem in functional programming

systems. In Proc. of the 12th Annual Symposium on the Principles of Prog. Langs., pages 300

314, ACM, 1985.

I l l Deepak Kapur and Sivakumar. Rewrite rule laboratory. In Proc. G.E. Workshop on Rewrite-

rule Laboratory, Schenectady, September 1983.

121 Alfred Laut. Safe procedural implementations of algebraic types. Inf. Proc. Letters,

11(4,5):147-151, December 1980.

131 P- Lescanne. Computer experiments with the reve term rewriting system generator. In Pro

ceedings of the 10th Annual Symposium on Principles of Programming Languages, ACM, Jan

uary 1983.

14l Barbara Liskov. CLU Reference Manual. Springer-Verlag, 1981.

151 Zohar Manna. Mathematical Theory of Computation. New York: McGraw-Hill, 1974.

161 Prateek Mishra and Robert Keller. Static inference of properties of functional programs.

In Proceedings of the 11th Annual Symposium on Principles of Programming Languages,

pages 235-244, ACM, jan 1984.

17l Dept, of Defense. The ADA Language Specification, MIL-STD-1815-A. American National

Standards Institute, 1430 Broadway, NY (212) 642-4900, 1983.

18l Mandayam K. Srivas and Deepak Kapur. Program transformations and synthesis using rewrite

rules. In TapSoft Conference Proceedings, Springer-Verlag, LNCS, March 1985.

14

V, reverse (Mem, 1, N) reverses the contents of a contiguous block of
locations
V, ranging between 1 and N inside a memory module Mem.
V, A Functional Description

reverse(Mem, i, N) =

if i > N div 2 % div returns the quotient of integer division
then Mem

else reverse(store(store(Mem, N-i, fetch(Mem,i)), i, fetch(Mem, N-i),

i+l.N)

Store
Thick 1

Das he

f a / Fetch
F

Figure 5: Reversal of a Memory Expressed Functionally

A A p p e n d i x

A . l E x a m p le - 1: R e v e r s in g a M e m o r y A r r a y

A functional program to express the reversal operation on a memory array is shown. Also

shown (figures 5,6,7) are the graph to determine in situ evaluability and the imperative

code that obeys the in situ evaluation rule written in Smalltalk as well as Ada.

A . 2 E x a m p le - 2 : R e v e r s in g a Q u e u e

This example illustrates operation invocations inside the conditions of conditional expres

sions. The following function rotates a queue by moving in order at most n elements from

15

*1 After our procedure determines the order of op invocation the following
'/, description can be easily derived. Note that processes are created for
'/, running things in parallel.
reverse i N

i > N div 2 ifTrue: [“ Mem]

ifFalse : [[[X <— Mem fetch i] fork.
[Y <— Mem fetch N-i] fork] •
Mem update N-i X.
Mem update i Y.
Mem reverse i+1 N] *

Figure 6: Memory Reversal: Incorporating In Situ Evaluation Rule (Smalltalk)

reverse(in out Mem: Memory, i,N: NATURAL);

end;

if i <= N div 2
then declare

X,Y : INTEGER;
begin

declare
’ task fetchl;

task body begin X := Mem.fetch(i) end;

task fetch2
task body begin Y := Mem.fetch(N-i) end;

begin end;
Mem.store(N-i,X);
Mem.store(i,Y);
reverse(M,i+1,N)

end

Figure 7: Memory Reversal: Incorporating In Situ Evaluation Rule (ADA)

16

9

rotate(Q,n) ■
{ n - 0 or empty(Q) — > Q;

isodd(front(Q)) — > rem(Q);

else — > rotate(ins(rem(Q).front(Q)), n-1) }

ins

Figure 8: Functional Description of Queue Reversal

the front of the queue to the rear, removing any odd elements in the process. The graph

for the conditional is constructed and a arc is introduced from ins to empty to capture

the fact that the first condition of C O N D is evaluated before ins is applied. Another

arc is introduced between rem and empty as well. (Figures 8,9,10.)

rotate n

n eqO ifTrue:
ifFalse:

n-1]

[* Q]

[Q empty ifTrue:
ifFalse:

[* Q]

((Q front) isodd) '

ifTrue: [“ Q rem]

ifFalse: [X <— Q front.

((Q rem) ins X) rotate

Figure 9: Queue Reversal Incorporating In Situ Evaluation Order (Smalltalk)

rotate(in out Q: Queue, in n : INTEGER)
if n > 0 and not(Q.empty)

then if isodd(Q.front) then Q.rem

else declare
X : INTEGER

begin X := Q.front;
Q.rem; Q.ins(X);

rotate(Q, n-1)

end
end;

Figure 10: Queue Reversal Incorporating In Situ Evaluation Order (ADA)

18

