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Abstract 

 

Domain knowledge permeates all aspects of the engineering drawing analysis process, 

including understanding the physical processes operating on the medium (i.e., paper), the 

image analysis techniques, and the interpretation semantics of the structural layout and 

contents of the drawing.  Additionally, an understanding of the broader reverse  

engineering context, within which the drawing analysis takes place, should be exploited.  

Thus as part of a wider project on the reverse engineering of legacy systems, we have 

been developing an agent-based engineering analysis system called NDAS 

(NonDeterministic Agent System). 

 

In this paper, we discuss the nature of such a system and how knowledge can be made 

explicit (both for agents and humans) and how performance models can be defined, 

calibrated, monitored, and improved over time through the use of persistent knowledge.  

A framework is proposed that allows computational agents to: (1) explore the threshold 

space for an optimal analysis of a drawing, (2) control information gain through agent 

invocation, (3) incorporate and communicate knowledge, and (4) inform the software 

engineering and system development with deep knowledge of the relationships between 

modules and their parameter (at least in a statistical sense). 

 

1.0 Introduction 

 

The reverse engineering of legacy systems is a difficult and complex problem, but of vital 

importance.  This usually involves a physical instance of the system, as well as some 

paper drawings produced by hand or from mechanical CAD systems.  The goal may 

range from exact replication, to changing some parameters, to a major re-design.  For 

example, Figure 1 shows a gearbox that operated for many years as part of a shipyard 

crane system.  Developing reverse engineering techniques from such a physical example 

and any available related engineering drawings is our goal. 

 

 

 

Figure 1.  Newport News Gearbox 

 

Figure 2 shows the overall reverse 

engineering system we are developing; 

the goal is to take advantage of data about 

the system in all its forms: drawings, 3D 

scans, and CAD models as they are 

constructed, as well, and to allow the user 



virtual access during the redesign process (see Figure 3).  The wider knowledge involved 

includes manufacturing information and constraints, design analysis codes (e.g., stress or 

aerodynamics), cost/performance models, etc. 

 

 
 

 

Figure 2. Reverse Engineering System 

 

 
 

Figure 3.  Envisioned Virtual Interface to model surface, point cloud and drawing data. 

  



2.0 The Vision 

 

Before giving details on the systems we have been building, we would like to give our 

vision of how to construct a system so that domain knowledge can be exploited in a 

powerful way.  We now give a high-level summary of our proposed theoretical 

framework and enumerate some advantages that may result from this approach. 

 

Figure 4 shows a set of agents, Ai, each of which produces various outputs using a set of 

parameters and thresholds, Ti, and each having an associated model (or set of models), 

Pi(Xi|Ti), describing the agent’s variance from the ideal in terms of some appropriate 

measure.  Knowledge of three sorts (physical, image analysis, and structural 

interpretation) is available and informs the agents’ actions and understanding of each 

others results.  Higher-level control processes may exploit this in several ways: 

 

1. Explore the threshold space for global optima (see feedback loop in Figure 4). 

2. Control acquisition of new data (e.g., view token generation as state estimation 

and select agent action that optimizes information gain). 

3. Incorporate knowledge in abstract form and communicate abstractions between 

agents and users. 

4. Inform the software engineering and system development with deep knowledge 

of the relationships between modules and their parameters (at least in a statistical 

sense). 

 

 
 

Figure 14.  Smart Agents Network System 

 

The current status of the project (called the Smart Agent Network System or SANS) is 

that the core image and structural analysis components have been developed and applied 



to engineering drawing analysis to gain experience and insight into crucial agents, their 

parameters and interactions.  We are now exploring the representation of this domain 

knowledge in specific nomenclatures.  We are also investigating state estimation 

frameworks to provide a more incremental analysis based on observations provided by 

the system, and the associated information measures (see [Catlin 1989] for an 

introduction to the area).  Notice that each program execution can be viewed itself as a 

measurement on the image, and the set of measurements will be used by a control process 

to achieve the best interpretation of the drawing. 

 

Note that state estimation is a reasonably mature tool in many engineering applications.  

More recently, such methods have been incorporated in multisensor systems to try and 

achieve optimal control and sensing [Durrant-Whyte 2003].  More broadly, this approach 

is starting to see proponents in scientific computing as well [Emery 2001, Emery 2002]. 

We believe that it can be applied to general large software systems; however, in this 

paper, we discuss how it might be used in engineering drawing analysis. 

 

2.0 Engineering Drawing Analysis with NDAS 

 

We have shown that a structural model may be realized through a set of software agents 

acting independently and in parallel to ultimately achieve a coherent analysis of CAD 

drawings [Henderson2003a,Henderson2003b,Henderson2003c,Swaminathan2002].  The 

high-level goals of the analysis are to: 

 

� Understand legacy drawings. 

� Acquire context of field and engineering data. 

� Respond to external analysis, user input. 

� Integrate drawing analysis in redesign. 

 

NDAS allows multiple agents to produce the same type of data, for example, line 

segments or text.  Other agents which use these entities as inputs may choose from any or 

all of the available sets of data to produce their own data.  Moreover, even a single agent 

can produce its output using multiple thresholds, or can be asked by another agent to 

produce output with a given set of control parameters.  This allows people or more 

sophisticated agents to explore the entire parameter space of all the agents involved in the 

analysis. 

 

The mechanism to handle the combinatorial explosion of data is tied to the structural 

definition of the engineering drawing, and uses syntactic analysis to eliminate redundant 

comparisons.  This symbolic redundancy calculation uses both the syntax of structural re-

write rules, as well as parsing constraints on the tokens generated from the image analysis 

to achieve orders of magnitude reductions in the possible combinations of tokens.  

However, NDAS to date has done little else to incorporate or exploit the wealth of other 

knowledge involved in understanding engineering drawings. 

 

3.0 Knowledge about Engineering Drawing Analysis 

 



Figure 4 shows the sequence of paper drawing creation and exploitation with which we 

are concerned.  We consider knowledge about physical processes, image analysis and 

document interpretation. 

 

 
 

Figure 4.  Engineering Drawing Analysis Process 

 

3.1 Physical Processes 

 

It is important to capture knowledge about all aspects of the physical processes involved.  

For example, printing gives rise to certain errors that can influence the image analysis 

and subsequent interpretation.  During storage and usage, it is possible to introduce lines 

by folding or creasing, or to obscure lines and text by stains, writing or damage to the 

paper.  Scanning is itself a physical process subject to motion blur, lighting, scale and 

other perturbations.  Good understanding is necessary for robust and correct analysis, and 

a good synthesis model will allow the controlled creation of test data with defects. 

 

3.2 Image Analysis 

 

Discrete geometry plays a large role in the analysis of engineering drawings, and involves 

abstract notions, including: 

 

 0-dimensional objects: isolated points, corners, branch points, end points, etc. 

                  and relations: distance, near, same kind, etc. 

 1-dimensional objects: line segments, straight segments, circles, boxes, etc. 

                             and relations: collinear, parallel, perpendicular, neighbor, closed, etc. 

 2-dimensional objects: blobs (e.g., arrowheads) 

                             and relations:  above, left of, touches, occludes, etc. 

 

Moreover, these notions cannot be implemented perfectly, and it is important to know 

how the realizations differ from the ideal (e.g., what’s the threshold for parallel?).  Even 



more important is the relation of these notions and their recovered approximations to the 

semantic tokens which form the basis for the structural analysis. 

 

 

 

3.3 Structural Analysis 

 

The structure of the drawing is given by a set of tokens (e.g., line segments, text, pointers, 

graphics, manufacturing symbols, etc.) and the relations that hold between them.  Thus, 

the production of the tokens is crucial, and interpretation problems arise when tokens are 

missing, broken into parts, or falsely reported.  The relations between the tokens need to 

be clearly defined, as well as the amount of divergence from the ideal.  Context of 

various sorts is also extremely important, and ranges from geometric frame (which way is 

up?) to drawing type (detail drawing, assembly description, manufacturing constraint 

requirements, etc.). 

 

These various sets of knowledge are usually not made explicit, either during the 

development of the system or for exploitation during an analysis.  We are interested in 

answering the following kinds of questions: 

 

1. How can this knowledge be made explicit? 

2. How can the differences between the ideal and the implementations be given? 

3. Can some of the knowledge (ideal or performance) be learned by the agents? 

4. How can people interact with this knowledge to understand why the system does 

something or to change how the system does it? 

5. How can the knowledge be exploited during the analysis of one image; over a set 

of related images; over various projects, i.e., in order to gain and record more 

insight on engineering drawing analysis in the log term. 

 

It is essential to answer these questions so that the system can improve over time, and be 

more effectively understood and exploited by its human operators. 

 

4.0 Proposed Method 

 

We propose the following approach to address this problem: 

 

1. Give a specification for the ideal. 

2. Give ways that implementation can differ from ideal. 

3. Give a measure of the difference. 

4. For every analysis, keep a record of the ideal referent, actual produced, difference 

measure and analysis parameters. 

 

For example, parallel segments should ideally have 0 degrees difference in angle.  A 

difference measure would be the actual difference in angle, or some monotonically 

increasing function (square, exponential, etc.).  Various implementations would carry 

different information; e.g., if parallel is computed from the two segment angles, then an 

angle difference threshold would be kept; if parallel is determined by whether the points 

defining the one segment are all the same distance from the other segment, then the 



maximum and minimum distances would be kept.  It is possible to have agents for both 

parallel operators, and the system can decide (based on training or operator feedback) 

which is better.  This goes with our notion to develop a system which allows many 

different analysis methods in parallel, and from this wealth of data, chooses between 

them to construct the best interpretation possible. 

 

This approach also fits well with statistical approaches.  For example, various 

information measures can be defined and used to steer the analysis.  Once we have 

established mechanisms for knowledge expression and use, we will explore alternative 

mechanisms for the exploitation of that knowledge (for example, Durrant-Whyte and 

colleagues [Durrant-Whyte 2003] have developed methods to maximize information gain 

with each observation action – this approach might give good results here). 

 

4.1 Knowledge about Engineering Drawings 

 

Let’s look in more detail at the knowledge that would be useful in this application.  As 

for engineering drawings per se, Table 1 gives some of the useful information: 

 

Subject Issues Form of Knowledge 

Layout Up/down, text orientation Semantic network/ grammar

Symbols Alphabet, digits, special Dictionary; images; nets 

References Conventions for pointers, 

names, use of circles, etc. 

Semantic net; image 

features 

Characters Language, numbers, 

measures 

Semantic nets, feature 

vectors, images 

Real world semantics Manufacturing info, 3D, 2D 

projections, etc. 

Semantic network 

 

Table 1. Types of Knowledge in Engineering Drawing Analysis 

 

As can be seen, most of this knowledge, if it exists, might be better expressed as a 

semantic network or in vector or image form.  We are currently investigating the 

construction of a domain ontology, and hope to base it on the Standard Upper Merged 

Ontology (or SUMO) [Niles 2001].  In this way, we make the assumptions of the agents 

explicit, and provide a SUO-KIF [SUO-KIF] interface to other users and systems.  

However, it must be pointed out that our domain requires analogical forms of knowledge 

as well, including: images, 3D data sets from Coordinate Measurement Machines or laser 

scanners, etc.  Some axiomatizations and ontologies for geometry exist (e.g., see [Asher 

1995, Pratt 1997, and Tarski 1956], but their usefulness in this context remains to be 

seen. 

 

Image analysis has its own set of concerns, including: 

 

 1D segments, 

 pixels (digitization), 

 relations, and 

 realization of geometry. 



 

Algorithms include: thresholding foreground/background, thinning, segment extraction, 

straight segment determination, geometric objects detection (e.g., boxes, circles), pointer 

detection, and text detection.  Each of these must deal with thresholds, sensitivity 

analysis, quality estimates, complexity, and robustness with respect to other algorithms. 

 

Finally, knowledge about goals may influence agent actions; here are some goals that the 

system may be asked to achieve: 

 

 Find part name. 

 Find label information. 

 Extract references to other parts. 

 Get dimension information for specific part features. 

 Determine manufacturing constraints. 

 Determine safety or other special descriptions in the text. 

 

These various forms of knowledge should not be static, but should be adjustable over 

time, as more experience is gained.  For example, the use of pointers in drawings can be 

quite creative, and these need to be cataloged and accounted for.  At a minimum, 

threshold exploration should be possible and recorded.   

 

Another issue is what needs to be communicated between agents (and/or users) which 

includes at least the following: 

 

 the goal, 

 the results of an agent; this includes the info produced, info about the production 

of the info, and some quality of result measures, and 

 feedback to an agent; for example, “this data resulted in no solution” or “parallel 

constraint needs to be tighter” or “your results are not necessary for this goal”; 

this last feedback would lead to greater efficiency if agents know when they are 

unnecessary. 

 

For example, the circle agent uses simple 1D segments (a set of pixels) as input and 

checks if the set of pixels forms a circle.  However, this agent is not necessary for the 

analysis of the title block of a drawing; it is essential, however, for full drawing analysis.  

The result of the analysis is a list of point sets determined to constitute circles, and for 

each circle gives the center and radius, the segments or pixels involved, a quality measure 

of the circle, and the resources used to produce the circle (e.g., data files used, space and 

time complexity, etc.).  It may also be necessary to include information about why the 

thresholds and parameters were selected.  As an example of feedback that the circle agent 

may want to provide, suppose that it uses straight line segments to detect circles (i.e., a 

set of straight line segments form a circle if they are connected end to end and their 

points do not lie to far from a circle); if the straight segments are fit too coarsely, they 

may not form a circle, when in fact the pixel data would permit a circle.  Thus, the circle 

agent may want to ask the segment agent to re-fit the data with a tighter linear fit 

threshold. 

 



As a starting point, we have investigated the knowledge about thresholds and their 

interplay between entities produced, consumed, and the semantic tokens generated. 

Figure 5 shows the image analysis part of NDAS.  Threshold utilization is indicated by 

the circled numbers.  Table 2 gives the meanings of the thresholds. 

 

 

 
Figure 5. The Image Analysis Agents and the flow of data between them. 

 

Circle no. in Figure 5 Thresholds/parameters Related Impact 

1 foreground/background extra/missing pixels; 

connectivity of segments 

2 pixel curvature parameters corner detection, straight 

segment endpoints 

3 circle fit parameters circle detection, reference 

detection 

4 line fit parameters number and quality of 

segments 

5 collinear; line fit parameters large-scale object detection 

6 endpoint distances; segment 

lengths; collinear 

pointer ray detection, 

dimension analysis, 

references 



7 segment length, separation 

threshold, parallel, 

perpendicular, duplicate 

threshold 

box detection; document 

block analysis, text analysis 

 

Table 2.  Image analysis agent thresholds and parameters and their impact. 

 

We term the image analysis knowledge given in Figure 5 as superficial knowledge, since 

it concerns only the external relations between the agents and their products.  Thus, 

information about the organization of modules, which use the data from which others, 

their production information, the quality measures on the data, the amount and trends of 

data production, and the system activity all fall under this term. 

 

Opposed to that is deep knowledge, which concerns the inner workings and decision 

rationales for implementations, threshold settings, etc.  This then includes an ideal 

description of the process, an explanation set of how the implementation differs from the 

ideal, a characterization of the likelihood of the variances from the ideal, and the relation 

of the variations to further processing, including semantic token (terminal symbol) 

creation and semantic analysis. 

 

To clarify these ideas, let’s consider the image thinning process.  There is a mathematical 

notion of a valid thinning operator on point sets, but implementations may vary from this 

ideal for many reasons and with different implications.  Consider the four versions of the 

thinned partial segment in Figure 6. 

 

 
Figure 6.  Four variations of a thinning operation. 

 

Which of these is produced may significantly impact later analysis; e.g., abstractions 

based on end point, branch point and straight line segment relations can be radically 

different.  Figure 7 shows a set of relation graphs for the thinned objects above. 

 

 
 

Figure 7.  Graphs of connectivity between end points (e1,e2,…), and branch points 

(b1,b2,…) of thinned objects from Figure 6.  (Between every pair of nodes is a, not 

necessarily straight, line segment.) 



 

As can be seen, the number of line segments, the position of their endpoints and the 

geometric relations between them (distance, parallel, etc.) can all be greatly affected by 

these differences in the thinning.  Thus, what might be viewed as a local or minor 

algorithm issue, may lead to a radical change in performance (including increase in 

complexity if lots of small segments are generated) if there is no knowledge of how one 

process impacts other processes through shared analysis objects.  It is of great interest to 

understand these relationships, and to declare them when the system is designed and 

implemented, but even if that is not possible or accurate (the developers may not 

understand the impact!), it would be good to allow the system to determine some of this 

knowledge as various algorithms are executed with different parameter values. 

 

In terms of the thinning operation, we might proceed as follows: 

 

Ideal definition of thinning: One example of this is the medial axis transform [Blum 

1973].  This is the set of points such that a circle centered at the point touches the 

boundary of the object in at least two distinct places. 

 

Algorithm difference from ideal: the algorithm may approximate the ideal definition in 

order to reduce computational complexity and because the ideal notions don’t apply 

perfectly to digital geometry.  The following differences may occur: 

 

1. Ends of segments may be fragmented. 

2. Corner regions of segment may be fragmented 

3. Medial axis may be displaced from actual corner location. 

 

Measures of difference: Several possibilities exist to measure the three differences listed 

above.  There are two levels of measure, however.  First, it is of interest to measure 

individual errors in terms of the number of extra segments produced, or the distance a 

thinned set is displaced from a point of interest in the original point set.  In addition, it is 

useful to have some statistics over the whole population.  For example, this might be 

either (1) a likelihood on the number of extra fragments expressed as a mean and 

variance or in other forms, or as a function of the original segments, the features of the 

segment or those of the thinned segment.  For example, if the thinned segment is 

perfectly straight, then it is most likely that it perfectly represents the ideal. 

 

Model Calibration 

 

This approach also affords the opportunity to generate controlled test data and to obtain 

very good estimates of how well the model works.  This would work as follows.  A CAD 

model is developed for some artifact.  This is then printed, possibly submitted to various 

degradations, and then scanned.  Since the actual CAD model is available, it is possible to 

know the perfect set of pixels that should have been printed and then scanned.  Once the 

thinned objects are determined, they can be compared to the perfect set of thinned 

objects, etc.  We call this model calibration, as it can be used to determine how well the 

process model measures the true state of affairs. 

 

5.0 Examples 



 

We have performed many experiments with the image analysis part of NDAS.  Figure 8 

shows part of a typical scanned engineering drawing, and the thinned image in Figure 9. 

 

 
 

Figure 8.  Part of a typical scanned engineering drawing. 

 



 
 

Figure 9. The thinned version of the image in Figure 8. 

 

One thing to notice is how the arrowheads in the original image have been changed into 

line segments.  Also, the corners of boxes have been displaced several pixels from where 

they should ideally be located.  Figure 10 shows the boxes detected in the image, so it can 

be seen that it is still possible to find them, however, this may cost a great deal in 

computational or algorithmic complexity, or the algorithms may in fact be tuned for one 

image and not work very well on another.  This is the kind of knowledge we would like 

to gain and record for better exploitation of the system, 

 



 
 

Figure 10.  Boxes found based on the thinned image in Figure 9. 

 

A change in thresholds of 2 pixels in length, and parallel segment overlap of 10 % more, 

results in missed boxes. 

 

Now consider in detail the kind of information to be gathered and characterized about the 

thinning algorithm.  (Note: the ground truth locations of corner points for the boxes in the 

image have been given by hand.)  We would like to model the impact of the algorithm 

on: 

 True corner existence. 

 Segment recovery (particularly, endpoint location). 

 Box detection and localization. 

 

For the image in Figure 8, the histogram in Figure 11 shows the ideal corner points 

distance from the thinned pixel set: 

 



 
 

Figure 11.  Histogram of ideal corner point displacement in thinned image. 

 

The segment endpoint distance histogram is given in Figure 12. 

 

 
 

Figure 12.  Histogram of Ideal Box Segment Endpoint Distances from Detected. 

 

This data is for ideal segments such that there exists a segment produced by the image 

analysis whose endpoints are within 10 pixels of the ideal segment.  (The number of 

missing segments is eight; i.e., eight ideal segments have no counterpart in the segments 

extracted from the image.) 

 

Figure 13 gives the histogram for the distance of ideal box point corners from detected 

data. 

 



 
 

Figure 13.  Histogram of Ideal Box Corner Distances from Detected. 

 

All the ideal boxes were found, and the error is very low.  The data shows that the box 

detector algorithm is insensitive to endpoint displacement in the thinning and segment 

detection algorithms.  Moreover, even a missing segment does not preclude the detection 

of a box, so long as there is a reasonably long segment found on each side.  This depends, 

of course, on the thresholds in the box detector agent.  (Also, note that the box agent 

discovers ‘boxes’ in the image that are not included in the ideal set; e.g., the upper part of 

a letter ‘B’ in the text.) 

 

6.0 Conclusions and Vision 

 

We have to this point tried to convey a sense of the kinds of knowledge that interest us, 

and how they can be used in engineering drawing analysis.  We have also given a high-

level summary of our proposed theoretical framework (see Section 2), and have 

enumerated some advantages that may result from this approach. 

 

A larger issue is the use of other types of information in the reverse engineering scenario; 

e.g., 3D scanner data, photos, manufacturing information, etc.  These analogical forms of 

data must be integrated into the re-design as well, and this should be done so as to allow 

rapid iteration, and fast exploration of the design space. 

 

We believe that the state estimation control framework espoused here may be quite useful 

in the design, development and exploitation of general purpose large software systems, 

particularly, those characterized by parameterized modules, objects or agents interacting 

rather loosely and which allow multiple passes through the processing with different sets 

of parameters.  We hope to have some experience with a prototype system by the time of 

the workshop. 
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