
Data D riv en Net s :

A M ax im a lly C o n cu rre n t , P ro c e d u ra l ,

P a r a l l e l P ro ce ss R e p re se n ta t io n

f o r D is t r ib u te d C on tro l System s

A . L . D av is

UUCS - 78 - 108

J u ly 1978

Th i s work was supported by a g ra n t from Burroughs C o rp o ra t io n .

Data Driven Nets:

A Maximally Concurrent, Procedural,

Parallel Process Representation

for Distributed Control Systems

A. L. Davis

Computer Science Department

University of Utah

Salt Lake City, Utah

ABSTRACT - A procedural parallel process representation, known as data-driven

nets is described. The sequencing mechanism of the data-driven representation is

based on the principle of data dependency. Operations are driven into action by

the arrival of the required working set of input operands. Execution of DDN

processes is side-effect free, and influence in the net representation is

transparent. Data-driven nets have several advantages over many of the existing

parallel process representations. These nets are capable of representing

parallelism below the statement level, and in addition may be arbitrarily

pipelined. Data-driven nets are simpler than other data-flow schema in that no

distinction need be made between control and data. A process model for

data-driven nets is given and a number of properties of the model are discussed.

The operating rules for data-driven nets are completely asynchronous and the nets

therefore serve as an excellent low-level process notation for distributed

systems. -

KEY WORDS - data-driven nets, data-flow schema, asynchronous, distributed

control, data dependency.

I. INTRODUCTION

A procedural parallel process representation, known as "data-driven nets’1

(DDN's) is described. The sequencing mechanism of the data-driven representation

is based on the principle of data dependency. Operations are driven into action

by the arrival of the required "working set" of operand data. Execution of DDN

processes is side-effect free, and the things which influence individual DDN

operations are transparent. The intent of the DDN schemata is to provide a low

level representation for the study of parallel processes which are to be executed

on fully distributed, asynchronous machine systems. Fully distributed systems

are defined here to have two principle physical characteristics: 1) at no time

can a module of a fully distributed system determine the total system state, and

2) a fully distributed system is incapable of enforcing simultaneity in its

distributed nodules. . _

It is not intended that anyone should program directly in the low-level DDN

representation, but rather that the actual programming language be translated

into DDN form for execution. It is possible to translate well-structured

programs in conventional languages into DDN's, but these languages are not well

suited to the specification of parallel algorithms. A better approach would be

to program in a language such as ID[2], which is both well suited to the

description of parallel programs and easily translated into DDN's.

DDN's have several advantages over existing parallel process languages and

representations. DDN's are capable of representing concurrency below the

statement level, and therefore inherently represent much higher levels of

concurrency than statement-oriented languages such as parallel PASCAL[6]. In

addition, DDN's may be arbitrarily pipelined (physical resources permitting),

while statement languages do not admit so readily to pipelined execution. DDN's

are more concrete than the conceptually nice models of Seror[10], and Adams[1].

Another nice model for parallel processing is Kotov's trigger function

Note - The DDN representation described here has been implemented as the machine
language on a special purpose data-driven machine, DPMI. DDM1[3] was built and

Erogramraed by the author and two colleagues from Burroughs Corporation, Karl oekelheide and L. D. Rogers. DDM1 was completed in July of 1976 and now
resides at the University of Utah, where the project continues under Burroughs

support.

approach[7]. Trigger functions however require centralized storage and control

for execution and are therefore not well suited for distributed control systems.

DDN’s are similar to the data-flow nets of Dennis [4], and Rodriguez[9], which

share the above stated advantages over the non data-flow representations. The

advantage of DDN’s over the data-flow models of Dennis and Rodriguez is that no

distinction need be made in DDN's between information tokens used for control

purposes and other types of information. The lack of this distinction yields

increased simplicity in DDN processes with no loss of representational power. In

addition the DDN primitives, while not being any more numerous than those of the

other data-flow languages, are more general.

A process model will be defined for DDN processes and certain properties of

these processes will be described. A process call mechanism will then be given

which allows hierarchically and recursively defined DDN's to be specified. This

permits a clean substitution rule, and allows DDN's to be created and executed in

a well-structured, hierarchical manner. Dealing with data structures has

traditionally been a major downfall of data-flow schemata. A method will be -

suggested for dealing with data structures, which marks a distinct departure in

thinking from other data-flow groups. Finally, DDN's will be used to represent a

variety of situations in order to illustrate the model.

II. The Data Driven Schema

A data-driven net is a bipartite graph, which consists of cells

interconnected by directed data paths. A cell may have any number of input and

output paths. Information is passed along the data paths in quantum units called

items. An item may be a character, number, vector, matrix, literal, etc. A data

item is similar to a variable name in conventional program representations. An

important distinction is that a named item does not correspond to a storage

location in DDN’s, but rather to a value which plays a particular role in some

computation. The data paths are queues of arbitrary length. The length of these

queues may be specified a priori or constrained by an implementation. To avoid a

detailed description of the queuing phenomena, it will be assumed here that each

data path is a queue of finite but arbitrary length. Implicit in the mechanism

for transferring data items between cells on FIFO data paths is an asynchronous

request-acknowledge control protocol.

When each member of a set of input data paths (called the firing set)

contains at least one item, the cell is said to be fireable. A cell fires at

some finite (but unspecified) time after it becomes fireable. When a cell fires,

the firing set data items are destroyed, and a set of resultant data items are

placed on the output paths. The order in which the output data items appear on

the output paths is unknown. The time at which the outputs appear after a cell

fires is finite but unspecified, and no assumption can be made about the order or

the relation between the times at which the output items appear. This completely

asynchronous cell behavior is essential to a schema which is to be easily

implemented in a distributed control environment. A cell is said to have fired

only after all of the firing set data items have been removed and all output data

items have been placed on the output paths.

An example of a cell firing is shown in Figure 1, where a cell performs a

simple integer addition. In this case, the firing set is the set of all input

data paths. .

A cell

Figure

Figure

support pipelined execution. In the DDN schemata, cell functions are defined by

the cell type (except for the OPERATOR cell, whose cell function is further

modified by the specification of a particular operator).

Seven distinct cell types are used in data-driven nets. The choice of cell

types is analogous to the choice of op-codes or statement types in sequental

programming languages. It is possible to specify primitives at a higher or lower

c e l l i s
f i r e a b l e

c e l l b e f o r e f i r i n g c e l l f i r e s

(8) (8) (8)

c e l l a f t e r f i r i n g

Figure 1: A Sample Cell Firing

generates outputs according to its cell function. The cell function in

1 would be: all output paths receive the sum of the input path items.

2 shows a case where the data paths are treated as queues, and thereby

(6)

c e l l b e f o r e f i r i n g

(2)

(2 (1)
(7)

k (4)

(6)
(2)

c e l l i s
f i r e a b l e

c e l l i s s t i l l
f i r e a b l e (2)

(4

(6)

(4)

(6)
(2)

(7)
(4)

c e l l f i r e s cell after firing

Figure 2: Pipelined execution

level than that of almost any set of primitives in question. There is also the

option of selecting between a minimal set and a larger more powerful set. The

DDN cells were chosen for simplicity and generality, and each cell type was

chosen to clearly characterize a particular type of activity that exists in

parallel programs. Each cell type is represented by a unique graphical symbol.

Figure 3 shows the cell types, their firing sets, and their cell functions. Each

type of data path is named. Subscripts indicate data paths which may receive

different valued tokens, while superscripts indicate data paths which will carry

identical valued copies of output data items. Since each data item of a firing

set is destroyed when the cell fires, any time a data item is to be used in more

than one place (due to either pipelining or concurrency requirements), more than

one copy of that output item will need to be explicitly produced. This implies

that the output destination for any output may be a destination list. If there

are n elements of a given destination set, then n copies of the output item will

be made and sent to the n respective destinations. Note that input paths will

never have superscripted names, but outputs always do, indicating that any output

may be multiply copied.

Unlike the other cells, the GATE cell operates on the basis of an internal

state. The cell function and firing set depend on this internal state. Due to

the asynchronous nature of DDN's and the arbitrary length of the queue data

paths, the normal Moore or Mealy state descriptions are insufficient and the

normal asynchronous flow tables are unnecessarily complex and mask the actual

cell behavior. Therefore the state machine description for the GATE cell shown

0„ 0 0 00 0 n n
0 a 0 b

• • •

m

a t\

I C

0 a „0 b 0„ 0„ 0 0 0 0 m m

SYNCH CELL

I j : i n p u t s

O^: o u t p u t s
3

f i r i n g s e t : (I , I)0 n

c e l l f u n c t i o n : f o r e v e r y i , j : C K := I .
3 3

OPERATOR CELL

I j : i n p u t s

0 ^ : o u t p u t s

f i r i n g s e t : (I , I)0 n

c e l l f u n c t i o n : f o r e v e r y i , j : 0 ^ : = f (I , . . . , I)
3 — o n

GATE CELL

I : i n i t i a l i n p u t .

F: f e e d b a c k i n p u t

C: c o n d i t i o n i n p u t

O1 : o u t p u t s

f o r t h e c e l l f u n c t i o n and f i r i n g s e t s e e F i g . 4.-

CALL CELL

I : i n p u t s

k
0 ^ : o u t p u t s

f i r i n g s e t : < V • • ' I n>

c e l l f u n c t i o n : f o r e v e r y a , b

0, := PROC.NAME (I , . . . , 1) b ----------------- o n

Figure 3: DDN Cell Types

6

m m
°0 °A A0 nb0 0 0 0

DISTRIBUTE CELL

I : i n p u t

0 j : o u t p u t s

X: i n d e x

f i r i n g s e t : (I , X)

c e l l f u n c t i o n : 0 : = I f o r a l l i a n d x
w h e r e x i s t h e
v a l u e o f X

-0 m 0 0
SELECT CELL

I . : i n p u t s
D

0 1 : o u t p u t s

X: i n d e x

f i r i n g s e t : (I , X) w h e r e x i s t h e v a l u e o f X
x

c e l l f u n c t i o n : O1 ^ ! f o r a l l i

ARBITER CELL

I : i n p u t s

0 1 : o u t p u t s

X : i n d e x o u t p u t s

f i r i n g s e t : a t l e a s t o n e i n p u t : I_.

i ac e l l f u n c t i o n : 0 := f i r s t I . ; X : = j
f o r a l l i , a^

(N o te : i n c a s e o f a t i e a ny i n p u t I . w h i c h
i s p r e s e n t i s c h o s e n) . ^

Figure 3 (Cont'd): DDN Cell Types

' -- . ■ 7
in Figure 4 should be interpreted as a normal Moore machine except: .

1. When a data item arrives at the GATE cell that is not of the type
. labeling an exit from the current state, that data item is queued

in the normal manner and no change in the current state occurs.

2. When in a given state, and any data item of the type labeling an
exit from that state exists (at the head of the appropriate queue)
then that exit can be taken and the corresponding state change can
be made. ' .

3. When more than one next state is possible, any one may be taken.

While it is possible to define the GATE cell to operate in a more concurrent

manner, the increased complexity of the resulting state table would be

considerable. This model of the GATE cell assumes that data items will be taken

in the following order: (I, (Ct, F)* , Cf)# where ('sequence')* denotes zero or

more instances of the 'sequence'.

The basic function of the GATE cell is to perform a controlled merge

operation on inputs I and F, as specified by the input C. Initially the gate is

set "open" to pass a single I data item, then the gate "closes" to inhibit

further I's and allow F's to pass. After a Cf input arrives the gate again

opens. The GATE cell is used to control iterative situations, and will be

clarified in the examples.

The OPERATOR, SYNCH, DISTRIBUTE and CALL cells exhibit conjunctive firing

rules, i.e. all input paths must contain at least one data item for the cell to

be fireable. The GATE, SELECT, and ARBITER cells have disjunctive firing rules,

in that only a certain subset of input data paths are required to contain at

least one data item before the cell becomes fireable. Which subset is determined

by:

a) Arrival order of the ARBITER cell inputs.

b) Value of the internal state for the GATE cell.

c) Value of data item C for the SELECT cell.

The situation where several data paths terminate at a single destination is

not allowed. This would imply that non-deterministic merging could occur at such

a junction. The pragmatic approach is taken here, and non-determinacy is not

viewed as something to be sought after, but rather something that should be

explicitly avoided. Merging of data paths is allowed in well-controlled

instances as provided by the GATE, SELECTION, and ARBITER cells.

8

inputs/next state

S t a t e ID I F Ct Cf F u n c t i o n

1. i n i t i a l 2 7 6 6 w a i t

2. I s e n t - - 3 4 s e n d & d e s t r o y
I

3. i t e r a t e - 5 - - d e s t r o y C

4 . r e i n i t . 2 7 6 6 d e s t r o y C

5. F s e n t - - 3 4
s e n d & d e s t r o y

F

6. ERROR 8 7 6 6 d e s t r o y C

7. ERROR 8 7 6 6
d e s t r o y F an d
s e n d NULL

8. ERROR 8 7 6 6 d e s t r o y I and
s e n d NULL

w h e r e : C i s a t r u e c o n d i t i o n i n p u t

i s a f a l s e c o n d i t i o n i n p u t

F i s t h e f e e d b a c k i n p u t .

I i s t h e i n i t i a l i n p u t

NULL i s a s p e c i a l d a t a i t e m (s e e s e c t i o n VI)

Figure 4: GATE Cell State Table

III. Some Basic DDN Examples

Figure 5 illustrates the two types of concurrency that can be obtained using

the DDN representation (pipelining and independent operations). Under pipelining

all five cells of the net may be concurrently active, but with no pipelining at

most two cells may fire in parallel. All of the data items in this example are

simple integers. The execution sequence is not unique, but barring any new

inputs the final configuration will be the same for any execution sequence. This

aufcput functional property of DDN’s is aided by the persistence property and the

FIFO path discipline. Persistence implies that once a data item has been placed

in a destination queue, it can only be removed by the appropriate firing of the

respective destination cell. Ordering of data items within a given data path is

preserved by the queues. Persistence and data item ordering are necessary but

not sufficient conditions for output functionality. If some cell function .

specified that the cell was to pick any input and place it on any output, then a

DDN containing such a cell would not be output functional. All DDN cell

functions are output functional, and therefore it is possible to determine by

topological inspection whether or not a given DDN is output functional.

Several common conditional situations are depicted in Figure 6. Note that

conditional control (IF or CASE expressions in traditional sequential control

languages) corresponds to conditional routing of the data items in DDN’s.

Iteration in DDN's corresponds to a directed circuit in the net. In general

an iterative net is represented as: 1) a net or process to be iterated, 2) a set

of initial data paths, 3) a set of feedback data paths, and 4) a set of output

data paths. This is illustrated in Figure 7. .

Proper sequencing for such an iteration would be:

a) When each initial data path has an item, the net fires.

b) When the net has fired, output items are placed on the feedback
paths, and the net is then primed to fire again. ‘

c) Step b is repeated until the iteration started by the first set of
initial inputs terminates and the sequence is then restarted.

Iterative DDN’s present several problems:

a) How to terminate an iteration. ' •

10

t i m e t .

t i m e t ,
whe re t 1 < t 2 < t 3 < t 4

Figure 5: Two types of DDN Concurrency

indicates that
o u t p u t i t e m i s
t o be d e s t r o y e d

1 1

i

T T
(A) (B) (C)

IF A THEN C ELSE B

IF A<B THEN C

Fiqure 6: Conditionals

Fiqure 7: Data-Driven Iteration

b) How to separate possible pipelined items on the initial data paths
from the feedback items.

The GATE cell is used to prevent non-deterministic merging of data paths in

iterative situations. Halting of the iteration is implemented by the joint use

of DISTRIBUTE, and OPERATOR cells. A sample iteration is shown in Figure 8,

which increments a value iteratively until it becomes 3, and outputs it. Data

items which are not delimited by parentheses are of type CONSTANT and are

therefore not destroyed by the firing of a cell. In this manner constants are

treated as part of the cell function rather than as a special token type, which

is transmitted over the data paths.

A sample execution sequence for the net of Figure 8 is shown in Figure 9.

Note the operation of the GATE and DISTRIBUTE cells with respect to the pipelined

initial inputs. Every step of the sequence is not detailed, but the basic

progression is shown.

These examples have illustrated the basic uses of the OPERATOR, GATE,

SELECT, and DISTRIBUTE cells. Other cell use examples will appear later.

IV. The DDN Process Model and Call Mechanisms

There are many DDN structures which exhibit meaningless or erroneous

behaviors. One reason is that a DDN can be considered to be any collection of

cells connected by directed data paths which satisfies the following:

1) No directed data path may originate from a cell input.

2) No directed data path may terminate in a cell output.

3) No two distinct data paths may terminate at the same cell input.

4) Every cell of a DDN must have at least one data path connecting it
with at least one other cell of the DDN.

5) Every data path must originate at a cell output, or terminate at a
cell input, or both.

6) Every cell must have at least one output path.

7) Every cell must have at least one input path. _

Rules 1 and 2 prohibit data items from flowing in the wrong direction; Rule

3 prevents the nondeterministic merging of data paths; and Rules 4 and 5 prevent

the occurrence of isolated cells, subnets, or data paths. An isolated data path

^inputs

Figure 8: A Simple Iterative Net

Figure 9: An Iterative Pipelined Sequence

is meaningless, and isolated cells or subnets are considered to be separate

DDN's. A data path with no source can be used to indicate that the data items to

be placed on it may be marked as constants or supplied by name from some

environment. Data paths with no destination cell may indicate that data items

are to be delivered to the environment by name, or that they are to be destroyed

as in Figure 6. A cell with no inputs can never fire and is therefore useless,

as is any cell with no outputs. Rules 6 and 7 prevent these last two

possibilities. Yet certain DDN's allowed under these rules are meaningless, as

shown in Figure 10.

Extending the set of rules to eliminate all other forms of unwanted behavior

would result in an unnecessarily long and complex set of rules, and might

prohibit some useful net structures. It is therefore important to verify correct

DDN behavior. This can be accomplished by the following sequence of actions:

a) Defining a process form which can be used as an abstraction aid, and

thereby delimit the DDN which is to be analyzed.

b) Define a set of properties which guarantee that if a DDN has these
properties then it will behave in a certain manner.

c) Produce a method by which DDN processes can be analyzed to determine
whether these properties hold or not.

d) Prove that these properties guarantee the desired behavior.

k
k

Figure 10: Meaningless DDN topologies

15

To avoid undue complexity here, only a and b of this sequence will be

covered.

DEFINITION: A data-driven process (DDP) is a triplet of the form {DDN, INPUT
SYNCH CELL, OUTPUT SYNCH CELL).

This form is illustrated in Figure 11,

i-------------------- - T ^ f -

o u t p u t SYNCH c e l l

i n p u t SYNCH c e l l

Figure 11: Data Driven Process (DDP)

This simple DDP model has many advantages. It is difficult to say when a

DDN has started or terminated, since DDN's may receive inputs and produce outputs

in any number of places. The two-terminal process form simplifies things

considerably. The single input SYNCH cell acts as a collector for the DDP's

working set, and the single output SYNCH cell collects the DDP results. This

makes it possible to say where DDP's terminate and where they begin. In .

addition, DDP's have exactly the same firing characteristics as simple OPERATOR

cells. When the input SYNCH cell becomes fireabler then the DDP is considered to

be fireable. When the output SYNCH cell has fired, and when no cell in the DDP

(i.e. within the enclosed DDN) is fireable, then the DDP is said to have

terminated. During the time between firing and termination, the DDP is said to

be active. Before and after this time the DDP is inactive.

Under pipelining, the definitions of termination, active, and inactive must

be modified. Pipelined operation inherently implies that another set of input

data may arrive at any time, and in this sense pipelined DDP's may never really

terminate. Certain pragmatid considerations such as resource allocation require

that some sort of termination definition be made. Since DDP's are output

■'C' ■ ■ .

16

functional, an instance of firing can be defined to be the firing of the input

SYNCH cell, and an instance of termination may be defined as the firing of the

output SYNCH cell. A more general definition could be: A DDP is said to have

terminated whenever the number of input SYNCH cell firings equals the number of

output SYNCH cell firings, and when no fireable cells remain in the DDP. All of

these definitions are stronger than they might be if certain error situations

were not taken into account. For instance, defining termination to exist

whenever no fireable cells exist is valid except when the net hangs. This occurs

when no fireable cell exists and the output SYNCH cell has not fired. A DDP

which does not produce outputs when fired is considered to be in error. The

converse possibility is that, due to the completely asynchronous nature of DDP's,

the output SYNCH cell may fire, with some remaining data items left in the DDP

that have yet to be "cleaned up" by some subsequent cell firings. The property

of clean termination need not be required, but in general is an important ■

property for pipelined situations (discussed in section VII).

Since a DDP exhibits the same behavior as a simple OPERATOR cell,-a clean

substitution rule can be formulated: within any DDN, a DDP which performs a

function £ may be substituted for any OPERATOR cell performing £ without changing

the functional behavior of the original DDN. This substitution rule allows a

call mechanism to be defined (the CALL cell), which allows for recursive and/or

hierarchically defined DDN’s and DDP’s. The CALL cell is used in DDN’s to call

DDP's. The name of the called DDP is indicated inside the CALL cell box.

There are two ways to implement non-recursive calls in DDN's: 1) open call

(macro substitution type), and 2) closed call (pass parameter list type). With

the open call, the firing of the CALL cell corresponds to substitution of the

called DDP for the CALL cell in the net. This expanded net can then be executed

in the normal manner. After the output SYNCH cell of the called DDP has fired,

the inserted net can be removed and the net may contract to its original form.

This removal of the inserted DDP is not necessary and its usefulness depends

strictly on the pragmatic considerations of storage management and pipelining

possibilities. Substitution of the CALL cell is easily accomplished by

substitution of the DDP's output SYNCH cell destinations for the CALL cell’s

output destinations, and similarly for the input paths. The advantage of the

closed call is that it allows commonly called DDP's to be shared. The closed

a) When the CALL cell is fireable a message is formed containing the
location of the CALL cell, the name of the called DDP, and the .
firing set of the CALL cell.

b) This message is then sent to the set of physical resources which •
will execute the called DDP.

c) A copy of the DDP named in the message is brought to the executing
resource (if it is not already there; and the DDP is executed. ' ■

d) When the output SYNCH cell of the called DDP fires, a message is ;
formed containing the firing set of the output SYNCH cell. This
message is then sent back to the calling net's CALL cell, the
location of which was sent in the previous message.

There are also several choices for implementing recursive calls. One method

is to implement a recursive call by repeated insertions of the called net as

described for open calls. Another method is as described for closed calls, where

each recursive call initiates a closed call to a new copy of the called net.

Both of these methods require a new copy of the DDP to be made for each level of

the recursion. This would require a large amount of storage, and therefore these

two methods are considered unsuitable. The third method is to use an approach

similar to the use of ''colored tokens" in Petri Nets [12], •

The contents of the DDN data path queues can be considered to be the

net marking. The colored token type of call may be implemented by allowing such ‘

markings to be stacked as follows: •

1. The current marking is pushed down leaving a new current marking at
the top of the stack.

2. . The new current marking places the inputs of the recursive CALL
cell to the inputs of the input SYNCH cell of the DDP.

3. The resulting DDP execution is performed in the normal manner.

On return from a recursively called DDP:

1. The marking stack is popped.

2. The outputs of the output SYNCH cell of the called DDP are sent as
outputs of the recursive CALL cell.

3. Normal processing resumes.

Using this method, each data path appears as a stack of queues. The top

queue element of the stack will be active during the execution of the DDP at the

current level of recursion. If the recursion goes deeper, then that level will

be pushed down and become dormant, and a new top level will become active. On a

return all of the top element queues will be popped. If any popped queue is not

17

call mechanism can be implemented as follows:

empty (except for the output SYNCH cell’s queues) then an unclean termination of

that recursive call has occurred, and the DDP is considered to be in ERROR.

The bottom queue element of each stack may also be active due to pipelining.

In this respect the actual data structure which exists on a data path is a deque

of elements, each of which is a queue. If special hardware (such as that

provided in DDM1[3]) does not exist, then this data structure may prove to be too

difficult and inefficient to maintain. A method which greatly simplifies this

difficulty is to restrict pipelining to not occur in recursively called DDP's.

This can be done as shown in Fig 12. A non-constant data item is initially

placed on the feedback path. This item is consumed on every entry to the

recursive DDP and thereby prevents further pipelined firing sets from passing

until the recursion terminates and produces another item on the feedback path.

While the DDP model has some very nice properties with respect to

abstraction, analysis, substitution, and hierarchical structure, it is more

limited in what it can represent than the more general DDN's. Consider the egg

boxing factory of Figure 13. The factory has two inputs: 1) a conveyor belt of

eggs, and 2) a conveyor belt of egg cartons. The single output is a belt

carrying cartons of one dozen eggs each. Figure 14 shows the DDN representation

of this factory process.

f e e d b a c k p a t h
t o l i m i t
p i p e l i n i n g

o u t p u t s

| DDN in" wftlch~|
. p i p e l i n i n g |
I w i l l n o t o c c ur)

i n i t i a l l y m arked
w i t h a n o n
c o n s t a n t d a t a
i t e m

Figure 12: Limiting pipelining to DDP's

cartons of 1 dozen eggs

19

Figure 13: Egg boxing factory

While the egg boxing factory can be modeled in a very straightforward manner

by a DDN, it cannot be represented by a DDP. The fact that 12 of the "EGGS"

input data item and one of the "CARTONS" inputs are required to produce a single

output item makes it impossible to find a DDP representation for this situation.

One general problem with DDP's is that for every set of input items consumed, a

set of output items is produced. The sets need not be of equal size and since

individual data items may have substructure, this restriction is usually not a

problem. However, in the case of the egg boxing factory, it is not appropriate

to require that each "EGGS" input contain exactly 12 eggs. Even though they are

less general than DDN's, DDP's provide a convenient vehicle for discussion of

some important properties for computational models of this type.

v . DPP E x ample s •

Examples are given in this section which illustrate the use of the

data-driven cells, process definition methods and various forms of net behavior.

The readers are encouraged to actually "play" the nets by physically moving their

favorite form of token around the data paths.

In order to illustrate the representational advantages of DDN's over other

data-flow representations, an example given by Dennis and Misunas in [5] is shown

in Figure 15 and compared with the simpler but fuctionally equivalent DDN of

Figure 16. Both nets distribute incoming data items uniformly onto 8 output '

paths. The DDN version is simpler, allows increased concurrency under pipelined

20

. •' "V

r~
\

CARTONS OF
1 DOZEN
EGGS

EGGS

J

add 1 egg t o
t h e c a r t o n

< — p a r t i a l l y f i l l e d
c a r t o n s

{ empty CARTONS .

Figure 14: Egg Boxing Factory DDN

21

F ig u r e 1 5 : D e n n is t r e e o f f a n - o u t a l t e r n a t o r s

o u t p u t s

o p e ra tio n , and re q u ire s no i n i t i a l m arking to be g en era ted as in th e n e t o f

F ig u re 15.

F ig u re 17 shows two n e ts , each c o n ta in in g two p a r a l le l re c u rs iv e c a l ls to

c a lc u la te the nth F ib o n acc i number, fo r p o s it iv e in te g e rs n . 17a shows th e

obvious n e t, w h ile 17b shows a n e t which w i l l execute as fa s t w ith two processors

as 17a does w ith th re e processors (assuming th a t > and - o p e ra tio n s re q u ire equal

tim e to compute and th a t execu tio n speed is m a in ly dependent on c r i t i c a l path

le n g th) . F ig u re 17b ta k es advantage o f the fa c t th a t th e incoming n g e ts

decremented re g a rd le s s o f i t s v a lu e . .

Most o f th e d a ta -f lo w n e t programs shown in th e l i t e r a t u r e a re sm all

cook-book t u t o r ia l problems which do not r e a l ly g iv e a f e e l fo r th e co m p lex ity o f

d a ta -d r iv e n programs in g e n e ra l. The fo llo w in g ALGOL program g en era tes

re c u rs iv e ly a l l s o lu tio n s to the e ig h t queens problem . The a lg o r ith m is

e s s e n t ia l ly the same as in W ir th [1 1] . A d a ta -f lo w s o lu t io n to th e e ig h t queens

problem has a lso been g iven by D e n n is [4] , which serves as a fu r th e r comparison o f

th e two schema.

a) obvious n e t b) same speed bu t re q u ire s o n ly
2 Processors fo r maximum speed

Find the nth F ib o n acc i number:
where F (l) = 0

F 2) = 1
F(n>2) = F (n - l)+ F (n -2)

F ig u r e 1 7 : F ib o n a c c i DDP's

BEGIN ^PROGRAM TO FIND ALL SOLUTIONS TO THE 8 QUEENS PROBLEM

INTEGER ARRAY R0W S[0:7]; ,

BOOLEAN ARRAY C 0 L S [0 :7], RDNDIAG[-7: 7] , LDNDIAG[0:15];

INTEGER I ;

FILE TTY(KIND=REMOTE, MYUSE=IO);

JMAIN RECURSIVE PROCEDURE IS TRY

BOOLEAN PROCEDURE TRY(ROW); .

VALUE ROW;

INTEGER ROW; '

BEGIN

INTEGER COL;

• FOR COL:=0 STEP 1 UNTIL 7

DO

IF COLS[COL] AND LDNDIAG[ROW+COL]

AND RDNDIAG[ROW-COL]

THEN

BEGIN '

ROWS[ROW]:=COL;

COLS[COL]:=FALSE;

LDNDIAG[ROW+COL]:=FALSE;

RDNDIAG[ROW-COL]:=FALSE;

IF ROW < 7

THEN

TRY(R0W+1)

ELSE

WRITE (T T Y ,< 8 I2 > ,

FOR I :=0 STEP 1

UNTIL 7

. DO ROW S[I]) ;

COLS[COL]:=TRUE;

LDNDIAG[ROW+COL]:=TRUE;

RDNDIAG[ROW-COL]: =TRUE;

. END

END TRY;

^ IN IT IA L IZ E THE ARRAYS AND CALL TRY

FOR I :=0 STEP 1 UNTIL 7 DO COLS[I]:=TRUE;

FOR I := 0 STEP 1 UNTIL 15 DO LDNDIAG[I]:=TRUE

FOR I : =-7 STEP 1 UNTIL 7 DO RDNDIAG[I]:=TRUE

TRY(O)

26

Much o f the com plexity o f the e q u iv a le n t DDP s o lu tio n is due to th e

lo w - le v e l n a tu re o f the DDN re p re s e n ta tio n . The DDN schema is b es t view ed as a

machine language. In th is l i g h t th e r e s u lt in g com plex ity is not so b a d .- The

e q u iv a le n t machine language program is 258 in s tru c t io n s on th e B6700, a machine

which is w e l l -s u ite d fo r execu tin g re c u rs iv e ALGOL programs such as t h is one.

The e q u iv a le n t DDP s o lu tio n is shown in F ig u re 18.

C DONE)
ROWS f

8QUEENS: A re c u rs iv e DDP
fo r g e n e ra tin g a l l
s o lu tio n s to th e
8 queens problem .

TRY

CREATE

F ig u r e 18a: 8QUEENS NET

CREATE - c rea te s the v e c to rs
LDN, RDN,, ROWS, and
COLS and i n i t i a l i z e s
them.

i n i t i a l ' ite m o n ly
used to a c t iv a te
th e n e t

F ig u r e 18 b : 8QUEENS CREATE DDP

TRY - i t e r a t iv e ly try s to
d a c e a aueen on

F ig u r e 1 8 c : 8QUEENS TRY DDP

29

CHECK - checks th e c u rre n t
oueen placem ent and
a llo w s re cu rs io n to
advance i f th a t p o s it io n
i s s a fe .

F ig u r e 18d : 8QUEENS CHECK DDP

3 0

TEST - a c tu a l ly s u b s c rip ts
the v e c to rs and
does the conroares to
see i f c u rre n t p o s it io n
is s a fe .

[is th e s u b s c r ip t o p e ra to r ,
th e co n ven tio n here i s t h a t
th e s u b s c r ip t e xp re s s io n
a r r iv e s on th e r ig h t d a ta p a th
and th e s tru c tu re a r r iv e s on
th e l e f t d a ta p a th .

F ig u r e 1 8 e : 8QUEENS TFST DDP

ADVANCE - a d v a n c e s th e r e c u r s io n

31

Note: [-«- is the su b scrip ted w r i te , the convention here is th a t the s tr u c tu r e
is on th e l e f t , the s u b s c rip t expression is in th e m id d le , and th e
w r ite va lu e is on the r ig h t .

F ig u r e 1 8 f : 8QUEENS ADVANCE DDP

MARK - marks th e crueen p o s tio n

ROWS

ROWS

F ig u r e 1 8 g : 80UEENS MARK DDP

33

NEXTTRY - bumps the row count
and recurses

F ig u r e 1 8h : 8PUEENS NEXTTRY DDP

A c a re fu l exam ination o f th e 8QUEENS DDP w i l l re v e a l the usage o f a l l th e

DDN c e l l types except th e a r b i t e r . T h is n e t als.o p o in ts out some o f the

p a th o lo g ic a l problems encountered in DDN processes. The m ajor problem is t h a t

a l l non-atom ic d ata s tru c tu re s must be destroyed every tim e a s in g le elem ent o f

such s tru c tu re s is accessed. Such copies o f la rg e d ata s tru c tu re s p re se n t a

s erio u s problem in term s o f both tim e and space.

' A d e ta ile d d iscu ss io n o f d a ta s tru c tu re h an d lin g is beyond th e scope o f th e

issues discussed h e re . I t is a p p ro p ria te however to m ention a few c o n s id e ra tio n s

r e la t in g to a b e t te r method. One can consider DDN's to c o n s is t o f two f i l e s : 1)

a s t a t ic f i l e (so f a r - th e n e t d e s c r ip t io n) , and 2) a dynamic f i l e (u n t i l now -

the d ata i te m s) . A more g en era l way is to a llo w th e d a ta item f i l e to be e i t h e r

th e s t a t ic or the dynamic f i l e (and s im i la r ly fo r th e n e t d e s c r ip t io n) . The

basic n a tu re o f d a ta -d r iv e n com putation in d ic a te s th a t th e dynamic f i l e e lem ents

w i l l be destroyed upon c e l l f i r i n g , and th e re fo re some copying w i l l be n ecessary .

The proper choice fo r th e dynamic f i l e would be th e f i l e (d a ta ite m o r n e t) ,

which would m in im ize th e copying req u irem en ts . In in s tan ces where la rg e d a ta

s tru c tu re s a re used, th e s t a t ic f i l e would be the data s tru c tu re s and th e n e t

d e s c r ip t io n would be the dynamic f i l e . In th is in s tan ce the d a ta s tru c tu re would

be tre a te d as a s t a t ic resource which could then be shared by a number o f

co n cu rren t processes. To avo id th e p o s s ib i l i t y o f access c o n f l ic t s to th e

s tru c tu re , an ARBITER c e l l can be used to guarantee f i r s t come f i r s t served (b u t

s e q u e n tia l) access to th e s tru c tu re . In case o f a t i e , any pending re q u es t i s

chosen random ly.

F ig u re 19 shows a n e t fo r c o n tr o ll in g th e shared reads o f a v e c to r . The

in p u ts P I , P2, and P3 a re th e in d ic e s from co n cu rren t processes 1, 2 , and 3

re s p e c t iv e ly . The v e c to r in p u t is th e v e c to r to be loaded in to p la c e . I t is

assumed th a t th e load in p u t a r r iv e s b e fo re any o f th e Pn in p u ts .

The SHARED RESOURCE box o f th is n e t now a c ts as a s e q u e n tia l in t e r p r e t e r fo r

in s tru c t io n s flo w in g in to i t . The net a ls o shows how o rd e r -p re s e rv in g p a r a l l e l

to s e r ia l to p a r a l le l conversion takes p lace using th e a r b i t e r and DISTRIBUTE

c e l ls . The DDN ARBITER c e l l does no t perform ju s t th e normal a r b i t e r fu n c t io n ,

but a ls o genera tes an index in d ic a t in g which in p u t was s e le c te d . T h is index .

preserves s u f f ic ie n t s ta te in fo rm a tio n to a llo w th e sequenced item s to be . '

c o r re c t ly " r e p a r a l le l iz e d " . Any tim e an ARBITER c e l l is used in a n e t , i t must

be used in e x a c tly th e same ARBITER - DISTRIBUTE c e l l p a ir to po logy as shown in

Figure 19. O therw ise th e ARBITER c e l l w i l l cause n o n -d e te rm in is t ic sequencing

and the r e s u lt w i l l be a non o u tp u t-fu n c tio n a l n e t. F ig u re 20 i l l u s t r a t e s how

o rd e r-p re s e rv in g s e r ia l to p a r a l le l to s e r ia l convers ion is h an d led . Such

im p o rtan t conversion c a p a b i l i t ie s do not e x is t in o th e r d a ta -f lo w

re p re s e n ta tio n s .

V I . E rro rs

The basic n a tu re o f d a ta -d r iv e n processes is th a t o p e ra tio n s a re "pushed"

in to a c t io n by th e a r r iv a l o f the re q u ire d se t o f in p u ts . I f one o f th ese in p u ts

is prevented from a r r iv in g a t the intended d e s t in a t io n (due to a programming

problem or o th e r type o f e r r o r) , then th a t d e s t in a t io n c e l l w i l l n ever f i r e .

Consequently, a l l c e l ls having f i r in g se ts c o n ta in in g ou tp u ts from th e u n f ir e a b le

c e l l w l l never f i r e and so on. A c e l l o r a n e t which can never f i r e i s s a id to

hang. A c e l l or ne t which can never hang is sa id to be l i v e . An example o f a

n et which can hang due to poor programming is shown in F ig u re 21a .

In F ig u r e 2 1 a , i f N i s n e g a t iv e th e n R w i l l be u n d e f in e d and n e v e r r e c e iv -e . a

o u tp u t p ip e

F ig u re 20: S e r ia l to P a r a l le l to S e r ia l Conversion

F ig u re 21: C o rre c tin g a hangable n e t

v a lu e . The o u tpu t SYNCH c e l l cannot i n i t i a t e a message in o rd e r to d e te rm in e th e

s ta tu s o f th e m issing in p u t, as th a t would be in c o n s is te n t w ith the d a ta -d r iv e n

f i r i n g ru le s . S ince no c e l l can know whether i t is w a it in g fo r an in p u t th a t

w i l l never a r r iv e (i . e . w hether i t is l i v e or n o t) , i t is im p o rta n t to be a b le

to guarantee liv e n e s s o f DDP's by to p o lo g ic a l exam in atio n . F ig u re 21b in d ic a te s

how a data item o f s p e c ia l va lu e NULL can be used to c o r re c t th e problem found in

F ig u re 21a . W hile th is i l lu s t r a t e s the mechannism, the two DISTRIBUTE c e l ls can

a c tu a l ly be removed and the NULL and 1 in p u ts may be used d i r e c t ly as th e in p u ts

o f the SELECT c e l l . Such a n et would be fu n c t io n a lly e q u iv a le n t to th e n e t

shown, but c o n ta in few er c e l ls . .

The o u tp u t SYNCH c e l l o f th e DDP o f F ig u re 21b w i l l always re c e iv e an in p u t,

and is th e re fo re l i v e . I f R=NULL as a r e s u lt o f execu tin g th e DDP, th en the

c a l l in g DDP may be programmed to invoke an e r r o r process, o r w hatever e ls e is

d e s ire d . The im p o rtan t th in g is th a t th e DDP produced some o u tp u t.

The d a ta -d r iv e n c e l ls behave as fo llo w s w ith NULL va lu ed in p u ts :

A1) The SYNCH, ARBITER, and CALL c e l ls a c t in t h e i r normal manner.

A2) The GATE, SELECT, and DISTRIBUTE c e l ls produce NULL tokens on a l l
o u tp u ts , w ith o u t d estro y in g any in p u ts I except the c o n d it io n a l
in p u t NULL) when a NULL o r out o f range item a r r iv e s on th e in d ex
or c o n d itio n in p u t.

A3) The GATE, SELECT, and DISTRIBUTE c e l ls behave n o rm a lly fo r NULL
item s on o th e r in p u ts .

A4) I f any in p u t item is NULL then a l l ou tpu t item s a re NULL f o r th e
OPERATOR c e l ls except th a t th e te s t (NULL = NULL) is TRUE.

NULL va lued item s a re generated in two o th e r ways: ■

B1) As a r e s u lt o f an i l l e g a l o p e ra tio n , such as d iv id e by z e ro .

B2) E x p l ic i t l y as in F ig u re 21b. .

A consequence o f r u le A2 is th a t under p ip e lin e d o p e ra tio n th e in je c t io n o f

NULL item s may cause the va rio u s data streams to not match up in th e d e s ire d

fa s h io n . The use o f a SELECT c e l l and DISTRIBUTE c e l l p a ir to e f f e c t iv e ly

"b ra ck e t" the c o n d it io n , as shown in F ig u re 17, overcomes t h is problem .

I t is p o s s ib le fo r a c o m p ile r - l ik e program to in s e r t th e NULL h a n d lin g

s tru c tu re shown in F ig u re 21, or the programmer may d escrib e such n e ts

e x p l i c i t l y . The question o f good s ty le in d a ta -d r iv e n programs is an im p o rtn t

area but no t one to be discussed h ere . The use o f NULL va lu ed tokens in DDN's

a llo w s the hung n e t d is a s te r to be avo ided , and o th e r forms o f e r r o r s itu a t io n s

to be d e a lt w ith .

V I I . L ive .. S a fe , and Clean DDP's '

When a c o n d it io n a l expression is described as a DDN, o n ly one pa th o f th e .

c o n d itio n w i l l f i r e fo r a g iven s e t o f in p u ts . For th is reason , th e n o tio n o f •

37

w hether a p a r t ic u la r c e l l is l i v e or not is no t o f much p r a c t ic a l v a lu e , and in

f a c t , i t is im possib le to to p o lo g ic a lly d e te rm in e . S im i la r ly fo r g e n e ra l DDN's

the n o tio n o f liv e n e s s is somewhat nebulous, but fo r a DDP, liv e n e s s is an

im portant and to p o lo g ic a lly v e r i f ia b le p ro p e rty .

Two o th e r im p o rtan t c h a r a c te r is t ic s o f DDP's is whether th e y a re s a fe or

c le a n . A DDP is sa id to be c le a n i f when i t te rm in a te s , th e re a re no

non-constant d a ta item s e x is t in g in the DDP. DDP's a re c lean when th e y a re

d e fin e d . I f th ey were n o t, then th e outpu t v a lu e s would be h is to r y dependent

upon th e va lu es o f th e e x is t in g non-constant d a ta ite m s . A l i v e DDP w hich when

i t te rm in a te s w ith o u t e r r o r and is always c lean is s a id to be s a fe . I t can be

shown th a t safe DDP's execute in an o u tpu t fu n c t io n a l manner under p ip e l in in g .

I t is p o s s ib le to determ ine by to p o lo g ic a l a n a ly s is o f any DDN w hether i t is

safe o r n o t. The machine a lg o rith m fo r such a n a ly s is is le n g th y and w i l l not be

presented h e re . Such a n a ly s is would be an im p o rta n t p a r t o f a DDN c o m p ile r , and

should be perform ed b e fo re execu tio n o f any DDP.

V I I I . Conclusions '

A lo w - le v e l p a r a l le l process re p re s e n ta tio n has been p resented which can be

used as a b as is fo r the re p re s e n ta tio n o f p a r a l le l programs and ad ap ts n ic e ly to

execu tio n by f u l l y d is t r ib u te d hardware reso u rces. These d a ta -d r iv e n n e ts have

s e v e ra l advantages over e x is t in g d a ta -f lo w re p re s e n ta tio n s and s e v e ra l p ro p e r t ie s

o f DDN's have been exam ined. The on ly sequencing r u le o f DDN programs is th a t o f

d ata dependency, and s in ce no weaker sequencing r e la t io n is p o s s ib le (w ith o u t

doing n o n -p ro d u ctive o p e ra tio n s , Linderman [8]) , DDN's n a tu r a l ly y ie ld a

m axim ally co n cu rren t v e rs io n o f a g iven a lg o rith m . DDN's behave on a co m p le te ly

lo c a l b as is and o p e ra tio n s do not share any common g lo b a l environm ent. T h is and

the transparancy o f in f lu e n c e in DDP's, f a c i l i t a t e s fo rm al v e r i f i c a t io n o f

process c o rre c tn e s s , which becomes even more im p o rtan t in f u l l y d is t r ib u te d

system s, in th a t i t is t y p ic a l ly im possib le to re c re a te the s it u a t io n which

caused th e e r r o r . These a t t r ib u t e s , when combined w ith the asynchronous n a tu re

o f DDN's a llo w any DDN to be pared in to an a r b i t r a r y number o f subnets w ith o u t

a lt e r in g th e fu n c t io n a l o p e ra tio n o f th e o v e r a l l n e t . T h is a f fe c ts freedom and

ease o f a ss ig n in g p a r a l le l subtasks to a v a i la b le p a r a l le l reso u rces fo r

e x e c u tio n . F u rth e r concurrency can be o b ta in ed by p ip e lin e d o p e ra tio n o f these

38

39

n e ts .

W hile some problems s t i l l e x is t w ith the d a ta -d r iv e n approach, DDN's appear

to be an a t t r a c t iv e re p re s e n ta tio n fo r d is t r ib u te d com puting. .

MO

1. Adams, D .. A Computation Model w ith Data Flow Sequencing. S ta n fo rd

U n iv e rs ity T e ch n ic a l R eport, CS—117, (1 9 6 8) . .

2. A rv in d , and K. P. G ostelow , and VI. P lo u ffe . Programming in a V ia b le D ata

Flow Language. U n iv e rs ity o f C a l ifo r n ia a t I r v in e , Departm ent o f In fo rm a tio n

and Computer S c ience, T ech n ica l R eport #89 (19 76) .

3. D av is , A. L . . The A rc h ite c tu re o f DPMI: A R e c u rs iv e ly S tru c tu re d

D a ta -D riv e n M achine. U n iv e rs ity o f U tah, Computer Science D epartm ent, UUCS -

77 - 113 (1 9 77) .

4. Dennis, J . B . . F i r s t V ers ion o f a Data Flow Procedure Language. L e c tu re

Notes in Computer S c ie n c e . 19, S p rin g er V e r la g , New York (1 9 7 *0 .

5 . Dennis, J . B . , and D. Misunas, and C. L eu n g .. A H ig h ly P a r a l le l P rocessor

Using a Data Flow Machine Laguage. MIT L ab o rato ry f o r Computer S cience Memo

134 (1 9 7 7) . • .

6 . Hansen, P. B .. C oncurrent P ascal: a programming language fo r o p e ra tin g

systems d es ig n . Cal Tech In fo rm a tio n Science R ep o rt, R eport 10 (1 9 7 4) .

7 . Kotov, V . E . , and A. S. N a r in y a n i. . Asynchronous C om putational Processes on

Shared Memory. K ib e rn e t ik a (in R u ss ian), No. 3 , K iev (1966) .

8 . Linderm an, J . P . . P ro d u c tiv ity in P a r a l le l Com putation Schemata. MIT

P ro je c t MAC, T R - 111 (1 9 7 3) .

9. R odriguez, J . D .. A Graph Model f o r P a r a l le l Com putations. M IT T e c h n ic a l

R eport, MAC-TR-64, (1 9 6 9) .

10. S e ro r, D en is . DCPL - A d is tr ib u te d c o n tro l programming lan guage . U n iv e rs ity

o f Utah T e ch n ic a l R ep o rt, U T E C - C S c - 7 0 - 1 0 8 (1970) .

11. W irth , N .. A lgorithm s + Data S tru c tu re s = Program s. P r e n t ic e - H a l l , N . J .

(1976) , p. 145. • ...

R e fe r e n c e s

12. Zervos, C. R .. C olored P e t r i N ets: T h e ir p ro p e r t ie s and a p p l ic a t io n s . PhD

T h e s is , U n iv e rs ity o f M ich igan , Ann Arbor (1 97 7) . ■

