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ABSTRACT - A procedural parallel process representation, known as data-driven
nets is described. The sequencing mechanism of the data-driven representation is
based on the principle of data dependency. Operations are driven into action by
the arrival of the required working set of input operands. Execution of DDN
processes is side-effect free, and influence in the net representation is
transparent. Data-driven nets have several advantages over many of the existing
parallel process representations. These nets are capable of representing
parallelism below the statement level, and in addition may be arbitrarily
pipelined. Data-driven nets are simpler than other data-flow schema in that no
distinction need be made between control and data. A process model for
data-driven nets is given and a number of properties of the model are discussed.
The operating rules for data-driven nets are completely asynchronous and the nets
therefore serve as an excellent low-level process notation for distributed
systems. -
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I. INTRODUCTION

A procedural parallel process representation, known as "data-driven netsT
(DDN*s) 1is described. The sequencing mechanism of the data-driven representation
is based on the principle of data dependency. Operations are driven into action
by the arrival of the required "working set™ of operand data. Execution of DDN
processes is side-effect free, and the things which influence individual DDN
operations are transparent. The intent of the DDN schemata is to provide a low
level representation for the study of parallel processes which are to be executed
on fully distributed, asynchronous machine systems. Fully distributed systems
are defined here to have two principle physical characteristics: 1) at no time
can a module of a fully distributed system determine the total system state, and
2) a fully distributed system 1is incapable of enforcing simultaneity in its

distributed nodules.

It is not intended that anyone should program directly in the low-level DDN
representation, but rather that the actual programming language be translated
into DDN form for execution. It is possible to translate well-structured
programs in conventional languages into DDN"s, but these languages are not well
suited to the specification of parallel algorithms. A better approach would be
to program in a language such as ID[2], which is both well suited to the

description of parallel programs and easily translated into DDN's.

DDN"s have several advantages over existing parallel process languages and
representations. DDN"s are capable of representing concurrency below the
statement level, and therefore inherently represent much higher levels of
concurrency than statement-oriented languages such as parallel PASCAL[6]. In
addition, DDN"s may be arbitrarily pipelined (physical resources permitting),
while statement languages do not admit so readily to pipelined execution. DDN"s
are more concrete than the conceptually nice models of Seror[10], and Adams[1].
Another nice model for parallel processing is Kotov's trigger function

Note - The DDN representation described here has been implemented as the _machine
language on a 5ﬁe0|al purpose data-driven machine, DPMI._. DDM1[3] was built and
Ego ranraed by the author and two colleagues from Bur[oughs Corporation, Karl
ekelheide and L. _ D. _Rogers. DDM1 was completed in July of 1976 and now
reS|d€s at the University of Utah, where the project continues under Burroughs
support.



approach[7]. Trigger functions however require centralized storage and control
for execution and are therefore not well suited for distributed control systems.
DDN % are similar to the data-flow nets of Dennis [4], and Rodriguez[9], which
share the above stated advantages over the non data-flow representations. The
advantage of DDN % over the data-flow models of Dennis and Rodriguez is that no
distinction need be made in DDN"s between information tokens used for control
purposes and other types of information. The lack of this distinction yields
increased simplicity in DDN processes with no loss of representational power. In
addition the DDN primitives, while not being any more numerous than those of the
other data-flow languages, are more general.

A process model will be defined for DDN processes and certain properties of
these processes will be described. A process call mechanism will then be given
which allows hierarchically and recursively defined DDN"s to be specified. This
permits a clean substitution rule, and allows DDN"s to be created and executed in
a well-structured, hierarchical manner. Dealing with data structures has
traditionally been a major downfall of data-flow schemata. A method will be -
suggested for dealing with data structures, which marks a distinct departure in
thinking from other data-flow groups. Finally, DDN"s will be used to represent a
variety of situations in order to illustrate the model.

Il. The Data Driven Schema

A data-driven net is a bipartite graph, which consists of cells
interconnected by directed data paths. A cell may have any number of input and
output paths. Information is passed along the data paths in quantum units called
items. An item may be a character, number, vector, matrix, literal, etc. A data
item is similar to a variable name in conventional program representations. An
important distinction is that a named item does not correspond to a storage
location in DDN %, but rather to a value which plays a particular role in some
computation. The data paths are queues of arbitrary length. The length of these
queues may be specified a priori or constrained by an implementation. To avoid a
detailed description of the queuing phenomena, it will be assumed here that each
data path is a queue of finite but arbitrary length. Implicit in the mechanism
for transferring data items between cells on FIFO data paths is an asynchronous
request-acknowledge control protocol.



When each member of a set of input data paths (called the firing set)
contains at least one item, the cell is said to be fireable. A cell fires at
some finite (but unspecified) time after it becomes fireable. When a cell fires,
the firing set data items are destroyed, and a set of resultant data items are
placed on the output paths. The order in which the output data items appear on
the output paths is unknown. The time at which the outputs appear after a cell
fires is finite but unspecified, and no assumption can be made about the order or
the relation between the times at which the output items appear. This completely
asynchronous cell behavior is essential to a schema which is to be easily
implemented in a distributed control environment. A cell is said to have fired
only after all of the firing set data items have been removed and all output data
items have been placed on the output paths.

An example of a cell firing is shown in Figure 1, where a cell performs a

simple integer addition. In this case, the firing set is the set of all input
data paths.
8 (8 (8)
cell is
fireable
cell before firing cell fires cell after firing

Figure 1: A Sample Cell Firing

A cell generates outputs according to its cell function. The cell function in
Figure 1 would be: all output paths receive the sum of the input path items.
Figure 2 shows a case where the data paths are treated as queues, and thereby
support pipelined execution. In the DDN schemata, cell functions are defined by
the cell type (except for the OPERATOR cell, whose cell function is further
modified by the specification of a particular operator).

Seven distinct cell types are used in data-driven nets. The choice of cell
types 1is analogous to the choice of op-codes or statement types in sequental
programming languages. It 1is possible to specify primitives at a higher or lower
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Figure 2: Pipelined execution

level than that of almost any set of primitives in question. There is also the
option of selecting between a minimal set and a larger more powerful set. The
DDN cells were chosen for simplicity and generality, and each cell type was
chosen to clearly characterize a particular type of activity that exists in
parallel programs. Each cell type is represented by a unique graphical symbol.
Figure 3 shows the cell types, their firing sets, and their cell functions. Each
type of data path is named. Subscripts indicate data paths which may receive
different valued tokens, while superscripts indicate data paths which will carry
identical valued copies of output data items. Since each data item of a firing
set is destroyed when the cell fires, any time a data item is to be used in more
than one place (due to either pipelining or concurrency requirements), more than
one copy of that output item will need to be explicitly produced. This implies
that the output destination for any output may be a destination list. If there
are n elements of a given destination set, then n copies of the output item will
be made and sent to the n respective destinations. Note that input paths will
never have superscripted names, but outputs always do, indicating that any output
may be multiply copied.

Unlike the other cells, the GATE cell operates on the basis of an internal
state. The cell function and firing set depend on this internal state. Due to
the asynchronous nature of DDN"s and the arbitrary length of the queue data
paths, the normal Moore or Mealy state descriptions are insufficient and the
normal asynchronous flow tables are unnecessarily complex and mask the actual
cell behavior. Therefore the state machine description for the GATE cell shown



SYNCH CELL

lj: inputs
O™ outputs

3
firing set: (IO. e In)
cell function: for every i, j: Cg:: 3
OPERATOR CELL

lj: inputs
0”: outputs
firing set: (IO. e In)
cell function: for every i, j: 02:= f(I ,...,1
GATE CELL

I: initial input
F: feedback input
C: condition input
Ol: outputs

for the cell function and firing set see Fig. 4.-
CALL CELL

I : inputs

k
0”: outputs
firing set: ,

<V o o I n>

cell function: for every a, b

0, = PROCNAME (I .....1 )

Figure 3: DDN Cell Types



o 0 b DISTRIBUTE CELL
3 80

I: input

0j : outputs

X: index

firing set: (I, X
cell function: 0 :=1 for all i and

where x is the
value of X

SELECT CELL
Il .: inputs
D p

01: outputs

X: index
firing set: (IX, X) where x is the value of X
cell function: 0171 for all i

ARBITER CELL

I : inputs

01: outputs

X : index outputs

firing set: at least one input: I.

cell function: 0':= first l.; X?::j
for all i, a®
(Note: in case of a tie any input I. which
is present is chosen). n

Figure 3 (Cont"d): DDN Cell Types
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in Figure 4 should be interpreted as a normal Moore machine except:

1. When a data item arrives at the GATE cell that is nqot of _the type

labeling an exit from the current state, that data item is queled
in the normal manner and no change in the current state occurs.

2. When 1in a given state, and any data item of the type labeling an
exit from that state exists (at the head of the appropriate Qqueue)
then that exit can be taken and the corresponding state change can
be made. .

3. When more than one next state is possible, any one may be taken.

While it is possible to define the GATE cell to operate in a more concurrent
manner, the increased complexity of the resulting state table would be
considerable. This model of the GATE cell assumes that data items will be taken
in the following order: (1, (Ct, F)* , Cf)# where ("sequence®)* denotes zero or

more instances of the “sequence-.

The basic function of the GATE cell is to perform a controlled merge
operation on inputs I and F, as specified by the input C. Initially the gate is
set "open" to pass a single | data item, then the gate "closes™ to inhibit
further I"s and allow F"s to pass. After a Cf input arrives the gate again
opens. The GATE cell 1is used to control iterative situations, and will be
clarified in the examples.

The OPERATOR, SYNCH, DISTRIBUTE and CALL cells exhibit conjunctive firing
rules, i1.e. all input paths must contain at least one data item for the cell to
be fireable. The GATE, SELECT, and ARBITER cells have disjunctive firing rules,
in that only a certain subset of input data paths are required to contain at
least one data item before the cell becomes fireable. Which subset is determined
by:

a) Arrival order of the ARBITER cell inputs.
b) Value of the internal state for the GATE cell.
c) Value of data item C for the SELECT cell.

The situation where several data paths terminate at a single destination is
not allowed. This would imply that non-deterministic merging could occur at such
a junction. The pragmatic approach is taken here, and non-determinacy is not
viewed as something to be sought after, but rather something that should be
explicitly avoided. Merging of data paths is allowed in well-controlled
instances as provided by the GATE, SELECTION, and ARBITER cells.



State ID
1. initial
2. | sent
3. iterate
4. reinit.
5. F sent
6. ERROR
7. ERROR
8. ERROR

inputs/next state

Ct

is a true condition input
is a false condition input
the feedback input

initial input

Figure 4: GATE Cell State Table

Cf

NULL is a special data item (see section VI)

Function
wait

send & destroy
I

destroy C

destroy C

send & destroy
F

destroy C

destroy F and
send NULL

destroy 1| and
send NULL



I1l1. Some Basic DDN Examples

Figure 5 illustrates the two types of concurrency that can be obtained using
the DDN representation (pipelining and independent operations). Under pipelining
all five cells of the net may be concurrently active, but with no pipelining at
most two cells may fire in parallel. All of the data items in this example are
simple integers. The execution sequence is not unique, but barring any new
inputs the final configuration will be the same for any execution sequence. This
aufcput functional property of DDN 3 is aided by the persistence property and the
FIFO path discipline. Persistence implies that once a data item has been placed
in a destination queue, it can only be removed by the appropriate firing of the
respective destination cell. Ordering of data items within a given data path is
preserved by the queues. Persistence and data item ordering are necessary but
not sufficient conditions for output functionality. If some cell function
specified that the cell was to pick any input and place it on any output, then a
DDN containing such a cell would not be output functional. All DDN cell
functions are output functional, and therefore it is possible to determine by
topological 1inspection whether or not a given DDN is output functional.

Several common conditional situations are depicted in Figure 6. Note that
conditional control (IF or CASE expressions in traditional sequential control
languages) corresponds to conditional routing of the data items in DDN .

Iteration in DDN"s corresponds to a directed circuit in the net. In general
an iterative net is represented as: 1) a net or process to be iterated, 2) a set
of initial data paths, 3) a set of feedback data paths, and 4) a set of output
data paths. This is illustrated in Figure 7.

Proper sequencing for such an iteration would be:

a) When each initial data path has an item, the net fires.

b) When the net has fired, output items are placed on the feedback
paths, and the net is then primed to fire again.

c) Step_b_ is repeated until the iteration started by the first set of
initial inputs terminates and the sequence is then restarted.

Iterative DDN % present several problems:

a) How to terminate an iteration. .



time t.

time t
where t1<t2<t3<t4

Figure 5: Two types of DDN Concurrency
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indicates that

output item is 11
to be destroyed

(1; (B)T (©)

IF A THEN C ELSE B

IF A<B THEN C

Fiqure 6: Conditionals

Fiqure 7: Data-Driven Iteration

b) How to separate possible pipelined items on the initial data paths
from the Tfeedback items.

The GATE cell is used to prevent non-deterministic merging of data paths in
iterative situations. Halting of the iteration is implemented by the joint use
of DISTRIBUTE, and OPERATOR cells. A sample iteration is shown in Figure 8,
which increments a value iteratively until it becomes 3, and outputs it. Data
items which are not delimited by parentheses are of type CONSTANT and are
therefore not destroyed by the firing of a cell. In this manner constants are
treated as part of the cell function rather than as a special token type, which



Ninputs

Figure 8: A Simple Iterative Net

is transmitted over the data paths.

A sample execution sequence for the net of Figure 8 is shown in Figure 9.
Note the operation of the GATE and DISTRIBUTE cells with respect to the pipelined
initial inputs. Every step of the sequence is not detailed, but the basic

progression 1is shown.

These examples have illustrated the basic uses of the OPERATOR, GATE,
SELECT, and DISTRIBUTE cells. Other cell use examples will appear later.

IV. The DDN Process Model and Call Mechanisms

There are many DDN structures which exhibit meaningless or erroneous
behaviors. One reason is that a DDN can be considered to be any collection of
cells connected by directed data paths which satisfies the following:

1D No directed data path may originate from a cell input.
2) No directed data path may terminate in a cell output.
3) No two distinct data paths may terminate at the same cell input.

4) Every cell of a DDN must have at least one data path connecting it
with” at least one other cell of the DDN.

5) Every data path must originate at a cell output, or terminate at a
cell” input, or both.

6) Every cell must have at least one output path.

7) Every cell must have at least one input path. _

Rules 1 and 2 prohibit data items from flowing in the wrong direction; Rule
3 prevents the nondeterministic merging of data paths; and Rules 4 and 5 prevent
the occurrence of isolated cells, subnets, or data paths. An isolated data path



Figure 9: An lterative Pipelined Sequence



is meaningless, and isolated cells or subnets are considered to be separate
DDN"s. A data path with no source can be used to indicate that the data items to
be placed on it may be marked as constants or supplied by name from some
environment. Data paths with no destination cell may indicate that data items
are to be delivered to the environment by name, or that they are to be destroyed
as in Figure 6. A cell with no inputs can never fire and is therefore useless,
as is any cell with no outputs. Rules 6 and 7 prevent these last two
possibilities. Yet certain DDN"s allowed under these rules are meaningless, as
shown in Figure 10.

Figure 10: Meaningless DDN topologies

Extending the set of rules to eliminate all other forms of unwanted behavior
would result in an unnecessarily long and complex set of rules, and might
prohibit some useful net structures. It is therefore important to verify correct
DDN behavior. This can be accomplished by the following sequence of actions:

a) Defining a process form which can be used as an abstraction aid, and
thereby delimit the DDN which is to be analyzed.

b) Define a set of properties which guarantee that if a DDN has these
properties then it will behave in a certain manner.

c) Produce a method by which DDN processes can be analyzed to determine
whether these propéerties hold or not.

d) Prove that these properties guarantee the desired behavior.
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To avoid undue complexity here, only a and b of this sequence will be

covered.

DEFINITION: A data-driven Erocess (ODP) is a triplet of the form {DDN, INPUT
SYNCH CELL, OUTPUT SYNCH CELL).

This form is illustrated in Figure 1,

output SYNCH cell

input SYNCH cell

i ST A~ f-

Figure 11: Data Driven Process (DDP)

This simple DDP model has many advantages. It is difficult to say when a
DDN has started or terminated, since DDN®"s may receive inputs and produce outputs
in any number of places. The two-terminal process form simplifies things
considerably. The single input SYNCH cell acts as a collector for the DDP"s
working set, and the single output SYNCH cell collects the DDP results. This
makes it possible to say where DDP"s terminate and where they begin. In
addition, DDP"s have exactly the same firing characteristics as simple OPERATOR
cells. When the input SYNCH cell becomes fireabler then the DDP is considered to
be fireable. When the output SYNCH cell has fired, and when no cell in the DDP
(i.e. within the enclosed DDN) is fireable, then the DDP is said to have
terminated. During the time between firing and termination, the DDP is said to
be active. Before and after this time the DDP is inactive.

Under pipelining, the definitions of termination, active, and inactive must
be modified. Pipelined operation inherently implies that another set of input
data may arrive at any time, and in this sense pipelined DDP"s may never really
terminate. Certain pragmatid considerations such as resource allocation require
that some sort of termination definition be made. Since DDP"s are output
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functional, an instance of firing can be defined to be the firing of the input
SYNCH cell, and an instance of termination may be defined as the firing of the
output SYNCH cell. A more general definition could be: A DDP is said to have
terminated whenever the number of input SYNCH cell firings equals the number of
output SYNCH cell firings, and when no fireable cells remain in the DDP. All of
these definitions are stronger than they might be if certain error situations
were not taken into account. For instance, defining termination to exist
whenever no fireable cells exist is valid except when the net hangs. This occurs
when no fireable cell exists and the output SYNCH cell has not fired. A DDP
which does not produce outputs when fired is considered to be in error. The
converse possibility is that, due to the completely asynchronous nature of DDP"s,
the output SYNCH cell may fire, with some remaining data items left in the DDP
that have yet to be "cleaned up” by some subsequent cell firings. The property
of clean termination need not be required, but in general is an important -
property for pipelined situations (discussed in section VII).

Since a DDP exhibits the same behavior as a simple OPERATOR cell,-a clean
substitution rule can be formulated: within any DDN, a DDP which performs a
function £ may be substituted for any OPERATOR cell performing £ without changing
the functional behavior of the original DDN. This substitution rule allows a
call mechanism to be defined (the CALL cell), which allows for recursive and/or
hierarchically defined DDN% and DDP 3. The CALL cell is used in DDN 3 to call
DDP*s. The name of the called DDP is indicated inside the CALL cell box.

There are two ways to implement non-recursive calls in DDN"s: 1) open call
(macro substitution type), and 2) closed call (pass parameter list type). With
the open call, the firing of the CALL cell corresponds to substitution of the
called DDP for the CALL cell in the net. This expanded net can then be executed
in the normal manner. After the output SYNCH cell of the called DDP has fired,
the inserted net can be removed and the net may contract to its original form.
This removal of the inserted DDP is not necessary and its usefulness depends
strictly on the pragmatic considerations of storage management and pipelining
possibilities. Substitution of the CALL cell is easily accomplished by
substitution of the DDP"s output SYNCH cell destinations for the CALL cell 3
output destinations, and similarly for the input paths. The advantage of the
closed call is that it allows commonly called DDP"s to be shared. The closed
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call mechanism can be implemented as follows:
a) When the CALL cell is fireable a message is formed containin% the
location of the CALL cell, the name of the called DDP, and the
firing set of the CALL cell.

b) This message is then sent to the set of physical resources which .
will execute the called DOP.  ~° ..

c) A copy of the DDP named in the message is brought to the executing
resource (if it is not already there; and the DDP is executed.

d) When the output SYNCH cell of the called DDP fires, a message is ;
formed containing the firing set of the output SYNCH cell. "This
message 1Is _then Sent back tQ the calling net"s CALL cell, the
location of which was sent in the previdous message.

There are also several choices for implementing recursive calls. One method
is to implement a recursive call by repeated insertions of the called net as
described for open calls. Another method is as described for closed calls, where
each recursive call initiates a closed call to a new copy of the called net.

Both of these methods require a new copy of the DDP to be made for each level of
the recursion. This would require a large amount of storage, and therefore these
two methods are considered unsuitable. The third method is to use an approach

similar to the use of ""colored tokens"™ in Petri Nets [12], .

The contents of the DDN data path queues can be considered to be the
net marking. The colored token type of call may be implemented by allowing such
markings to be stacked as follows: .
1. The current marking is pushed down leaving a new current marking at
the top of the stack.

2. . The new current markin% places the inputs of the recursive CALL
cell to the inputs of the input SYNCH cell of the DDP.

3. The resulting DDP execution is performed in the normal manner.

On return from a recursively called DDP:

1. The marking stack is popped.

2. The outputs of the output SYNCH cell of the called DDP are sent as
outputs of the recursive CALL cell.

3. Normal processing resumes.

Using this method, each data path appears as a stack of queues. The top
queue element of the stack will be active during the execution of the DDP at the
current level of recursion. [If the recursion goes deeper, then that level will
be pushed down and become dormant, and a new top level will become active. On a
return all of the top element queues will be popped. If any popped queue is not



empty (except for the output SYNCH cell % queues) then an unclean termination of
that recursive call has occurred, and the DDP 1is considered to be in ERROR.

The bottom queue element of each stack may also be active due to pipelining.
In this respect the actual data structure which exists on a data path is a deque
of elements, each of which is a queue. If special hardware (such as that
provided in DDM1[3]) does not exist, then this data structure may prove to be too
difficult and inefficient to maintain. A method which greatly simplifies this
difficulty is to restrict pipelining to not occur in recursively called DDP"s.
This can be done as shown in Fig 12. A non-constant data item is initially
placed on the feedback path. This item 1is consumed on every entry to the
recursive DDP and thereby prevents further pipelined firing sets from passing
until the recursion terminates and produces another item on the feedback path.

outputs

feedback path

var | DDN in" wftlch~
to limit

) ni . pipelining |
pipelining Iwill not occur)

initially marked
with a non-
constant data
item

Figure 12: Limiting pipelining to DDP"s

While the DDP model has some very nice properties with respect to
abstraction, analysis, substitution, and hierarchical structure, it is more
limited in what it can represent than the more general DDN"s. Consider the egg
boxing factory of Figure 13. The factory has two inputs: 1) a conveyor belt of
eggs, and 2) a conveyor belt of egg cartons. The single output is a belt
carrying cartons of one dozen eggs each. Figure 14 shows the DDN representation
of this factory process.
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cartons of 1 dozen eggs

EGG BOXING
FACTORY

cartons eggs

Figure 13: Egg boxing factory

While the egg boxing factory can be modeled in a very straightforward manner

by a DDN, it cannot be represented by a DDP. The fact that 12 of the "EGGS"
input data item and one of the "CARTONS™ inputs are required to produce a single
output item makes it impossible to find a DDP representation for this situation.
One general problem with DDP"s is that for every set of input items consumed, a
set of output items is produced. The sets need not be of equal size and since
individual data items may have substructure, this restriction is usually not a
problem. However, in the case of the egg boxing factory, it is not appropriate
to require that each "EGGS™ input contain exactly 12 eggs. Even though they are
less general than DDN"s, DDP"s provide a convenient vehicle for discussion of
some important properties for computational models of this type.

v. DPP Examples .

Examples are given in this section which illustrate the use of the
data-driven cells, process definition methods and various forms of net behavior.
The readers are encouraged to actually "play" the nets by physically moving their
favorite form of token around the data paths.

In order to illustrate the representational advantages of DDN"s over other
data-flow representations, an example given by Dennis and Misunas in [5] 1is shown
in Figure 15 and compared with the simpler but fuctionally equivalent DDN of
Figure 16. Both nets distribute incoming data items uniformly onto 8 output -
paths. The DDN version 1is simpler, allows increased concurrency under pipelined
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add 1 egg to

the carton

<— partially filled
cartons

{ empty CARTONS

Figure 14: Egg Boxing Factory DDN



Figure 15:

Dennis tree of fan-out alternators
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outputs

operation, and requires no initial marking to be generated as in the net of

Figure 15.

Figure 17 shows two nets, each containing two parallel recursive calls to
calculate the nth Fibonacci number, for positive integers n. 17a shows the
obvious net, while 17b shows a net which will execute as fast with two processors
as 17a does with three processors (assuming that > and - operations require equal
time to compute and that execution speed is mainly dependent on critical path
length). Figure 17b takes advantage of the fact that the incoming n gets

decremented regardless of its value.

Most of the data-flow net programs shown in the literature are small
cook-book tutorial problems which do not really give a feel for the complexity of
data-driven programs in general. The following ALGOL program generates
recursively all solutions to the eight queens problem. The algorithm is
essentially the same as in Wirth[11]. A data-flow solution to the eight queens
problem has also been given by Dennis[4], which serves as a further comparison of

the two schema.



Find the nth Fibonacci number:
where F(I) =0
F2) =1
F(n>2) = F(n-1)+F(n-2)

a) obvious net b) same speed but requires only
2 Processors for maximum speed

Figure 17: Fibonacci DDP's



BEGIN PROGRAM TO FIND ALL SOLUTIONS TO THE 8 QUEENS PROBLEM
INTEGER ARRAY ROWS[0:7]; :
BOOLEAN ARRAY COLS[0:7], RDNDIAG[-7:7], LDNDIAG[0:15];
INTEGER 1;

FILE TTY(KIND=REMOTE, MYUSE=IO);
JMAIN RECURSIVE PROCEDURE IS TRY
BOOLEAN PROCEDURE TRY(ROW);
VALUE ROW,
INTEGER ROW;
BEGIN
INTEGER COL;
. FOR COL:=0 STEP 1 UNTIL 7
DO
IF COLS[COL] AND LDNDIAG[ROW+COL]
AND RDNDIAG[ROW-COL]
THEN
BEGIN
ROWS[ ROW]:=COL;
COLS[ COL]:=FALSE;
LDNDIAG[ROW+COL]:=FALSE;
RDNDIAG[ROW-COL]:=FALSE;
IF ROW < 7
THEN
TRY(ROW+1)
ELSE
WRITE (TTY,<812>,
FOR | :=0 STEP 1
UNTIL 7
DO ROWSII]);
COLS[COL]:=TRUE;
LDNDIAG[ROW+COL]:=TRUE;
RDNDIAG[ROW-COL]: =TRUE;
END
END TRY;
~NINITIALIZE THE ARRAYS AND CALL TRY



FOR | :=0 STEP 1 UNTIL 7 DO COLSI[I]:=TRUE;
FOR [:=0 STEP 1 UNTIL 15 DO LDNDIAG[I]:=TRUE
FOR |:=-7 STEP 1 UNTIL 7 DO RDNDIAG[I]:=TRUE
TRY(O)
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Much of the complexity of the equivalent DDP solution is due to the
low-level nature of the DDN representation. The DDN schema is best viewed as a
machine language. In this light the resulting complexity is not so bad.- The
equivalent machine language program is 258 instructions on the B6700, a machine

which is well-suited for executing recursive ALGOL programs such as this one.

The equivalent DDP solution is shown in Figure 18.

8QUEENS: A recursive DDP
CDONE ) for generating all
ROAS f solutions to the
8 queens problem.

TRY

CREATE

Figure 18a: 8QUEENS NET



CREATE - creates the vectors
LDN, RDN,, ROWS, and
COLS and initializes
them.

initial' item only
used to activate
the net

Figure 18b: 8QUEENS CREATE DDP



TRY - iteratively trys to
dace a aueen on

Figure 18c: 8QUEENS TRY DDP



CHECK - checks the current

Figure 18d:

oueen placement and
allows recursion to
advance if that position
is safe.

8QUEENS CHECK DDP
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TEST - actually subscripts
the vectors and
does the conroares to

see if current position
is safe.

[ is the subscript operator,
the convention here is that
the subscript expression
arrives on the right data path
and the structure arrives on
the left data path.

Figure 18e: 8QUEENS TFST DDP
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ADVANCE - advances the recursion

Note: [«« is the subscripted write, the convention here is that the structure
is on the left, the subscript expression is in the middle, and the
write value is on the right.

Figure 18f: B8QUEENS ADVANCE DDP



MARK - marks the crueen postion

Figure 18g: 80UEENS MARK DDP



NEXTTRY - bumps the row count
and recurses

Figure 18h: 8PUEENS NEXTTRY DDP
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A careful examination of the 8QUEENS DDP w ill reveal the usage of all the
DDN cell types except the arbiter. This net als.o points out some of the
pathological problems encountered in DDN processes. The major problem is that
all non-atomic data structures must be destroyed every time a single element of
such structures is accessed. Such copies of large data structures present a

serious problem in terms of both time and space.

"A detailed discussion of data structure handling is beyond the scope of the
issues discussed here. It is appropriate however to mention a few considerations
relating to a better method. One can consider DDN's to consist of two files: 1)
a static file (so far- the net description), and 2) a dynamic file (until now -
the data items). A more general way is to allow the data item file to be either
the static or the dynamic file (and similarly for the net description). The
basic nature of data-driven computation indicates that the dynamic file elements
w ill be destroyed upon cell firing, and therefore some copying will be necessary.
The proper choice for the dynamic file would be the file (data item or net),
which would minimize the copying requirements. In instances where large data
structures are used, the static file would be the data structures and the net
description would be the dynamic file. In this instance the data structure would
be treated as a static resource which could then be shared by a number of
concurrent processes. To avoid the possibility of access conflicts to the
structure, an ARBITER cell can be used to guarantee first come first served (but
sequential) access to the structure. In case of a tie, any pending request is

chosen randomly.

Figure 19 shows a net for controlling the shared reads of a vector. The
inputs PI, P2, and P3 are the indices from concurrent processes 1, 2, and 3
respectively. The vector input is the vector to be loaded into place. It is

assumed that the load input arrives before any of the Pn inputs.

The SHARED RESOURCE box of this net now acts as a sequential interpreter for
instructions flowing into it. The net also shows how order-preserving parallel
to serial to parallel conversion takes place using the arbiter and DISTRIBUTE
cells. The DDN ARBITER cell does not perform just the normal arbiter function,
but also generates an index indicating which input was selected. This index

preserves sufficient state information to allow the sequenced items to be



correctly "reparallelized"”. Any time an ARBITER cell is used in a net, it must
be used in exactly the same ARBITER - DISTRIBUTE cell pair topology as shown in
Figure 19. Otherwise the ARBITER cell will cause non-deterministic sequencing
and the result will be a non output-functional net. Figure 20 illustrates how
order-preserving serial to parallel to serial conversion is handled. Such
important conversion capabilities do not exist in other data-flow

representations.
VI. Errors

The basic nature of data-driven processes is that operations are "pushed"
into action by the arrival of the required set of inputs. |If one of these inputs
is prevented from arriving at the intended destination (due to a programming
problem or other type of error), then that destination cell will never fire.
Consequently, all cells having firing sets containing outputs from the unfireable
cell wll never fire and so on. A cell or a net which can never fire is said to
hang. A cell or net which can never hang is said to be live. An example of a

net which can hang due to poor programming is shown in Figure 21la.

In Figure 21a, if N is negative then Rwill be undefined and never receiv-e. a



output pipe

Figure 20: Serial to Parallel to Serial Conversion

Figure 21: Correcting a hangable net

value. The output SYNCH cell cannot initiate a message in order to determine the
status of the missing input, as that would be inconsistent with the data-driven
firing rules. Since no cell can know whether it is waiting for an input that

w ill never arrive (i.e. whether it is live or not), it is important to be able
to guarantee liveness of DDP's by topological examination. Figure 21b indicates

how a data item of special value NULL can be used to correct the problem found in
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Figure 2la. While this illustrates the mechannism, the two DISTRIBUTE cells can
actually be removed and the NULL and 1 inputs may be used directly as the inputs

of the SELECT cell. Such a net would be functionally equivalent to the net

shown, but contain fewer cells.

The output SYNCH cell of the DDP of Figure 21b will always receive an input,
and is therefore live. If R=NULL as a result of executing the DDP, then the
calling DDP may be programmed to invoke an error process, or whatever else is

desired. The important thing is that the DDP produced some output.
The data-driven cells behave as follows with NULL valued inputs:

Al) The SYNCH, ARBITER, and CALL cells act in their normal manner.
A2) The GATE, SELECT, and DISTRIBUTE cells produce NULL tokens on all
outputs, without destroying any inputs |except the conditional
input NULL) when a NULL or out of range item arrives on the index

or condition input.

A3) The GATE, SELECT, and DISTRIBUTE cells behave normally for NULL
items on other inputs.

A4) If any input item is NULL then all output items are NULL for the
OPERATOR cells except that the test (NULL = NULL) is TRUE.

NULL valued items are generated in two other ways: ]

B1l) As a result of an illegal operation, such as divide by zero.

B2) Explicitly as in Figure 21b.

A consequence of rule A2 is that under pipelined operation the injection of
NULL items may cause the various data streams to not match up in the desired
fashion. The use of a SELECT cell and DISTRIBUTE cell pair to effectively

"bracket" the condition, as shown in Figure 17, overcomes this problem.

It is possible for a compiler-like program to insert the NULL handling
structure shown in Figure 21, or the programmer may describe such nets
explicitly. The question of good style in data-driven programs is an importnt
area but not one to be discussed here. The use of NULL valued tokens in DDN's
allows the hung net disaster to be avoided, and other forms of error situations

to be dealt with.
V II. Live.. Safe, and Clean DDP's

When a conditional expression is described as a DDN, only one path of the

condition will fire for a given set of inputs. For this reason, the notion of «
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whether a particular cell is live or not is not of much practical value, and in
fact, it is impossible to topologically determine. Similarly for general DDN's
the notion of liveness is somewhat nebulous, but for a DDP, liveness is an

important and topologically verifiable property.

Two other important characteristics of DDP's is whether they are safe or
clean. A DDP is said to be clean if when it terminates, there are no
non-constant data items existing in the DDP. DDP's are clean when they are
defined. |If they were not, then the output values would be history dependent
upon the values of the existing non-constant data items. A live DDP which when
it terminates without error and is always clean is said to be safe. It can be

shown that safe DDP's execute in an output functional manner under pipelining.

It is possible to determine by topological analysis of any DDN whether it is
safe or not. The machine algorithm for such analysis is lengthy and w ill not be
presented here. Such analysis would be an important part of a DDN compiler, and

should be performed before execution of any DDP.
V IIl. Conclusions

A low-level parallel process representation has been presented which can be
used as a basis for the representation of parallel programs and adapts nicely to
execution by fully distributed hardware resources. These data-driven nets have
several advantages over existing data-flow representations and several properties
of DDN's have been examined. The only sequencing rule of DDN programs is that of
data dependency, and since no weaker sequencing relation is possible (without
doing non-productive operations, Linderman [8]), DDN's naturally yield a
maximally concurrent version of a given algorithm. DDN's behave on a completely
local basis and operations do not share any common global environment. This and
the transparancy of influence in DDP's, facilitates formal verification of
process correctness, which becomes even more important in fully distributed
systems, in that it is typically impossible to recreate the situation which
caused the error. These attributes, when combined with the asynchronous nature
of DDN's allow any DDN to be pared into an arbitrary number of subnets without
altering the functional operation of the overall net. This affects freedom and
ease of assigning parallel subtasks to available parallel resources for

execution. Further concurrency can be obtained by pipelined operation of these
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nets.

While some problems still exist with the data-driven approach, DDN's appear

to be an attractive representation for distributed computing.
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