
hopCP: Language Definition, 
Semantics and Examples

Venkatesh Akella

UUCS-90-010

Department of Computer Science 
University of Utah 

Salt Lake City, UT 84112 USA

August 27, 1990

Abstract

We describe a formalism for high level modeling of hardware based on flow graphs and 
nonatomic actions called hopCP. A module is the description of a hardware system in 
hopCP, which contains a flow graph to model the behavioral aspects and ports which rep
resent the communication links. Operations are provided to manipulate modules and flow 
graphs. Nonatomic actions provide the necessary functional and temporal abstraction to 
model hardware and action refinement is introduced to bridge the abstraction gap for high 
level synthesis. Examples are provided to elucidate the semantics of liopCP and illustrate 
the expressive power of the language.
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A b stra c t . We describe a form alism  fo r  high level modeling o f  hardware based on flow  graphs and nonatom ic 
actions called hopCP. A module is the description o f  a hardware system  in hopCP, which contains a flow  
graph to m odel the behavioral aspects and ports which represent the com m unication links. Operations are 
provided to manipulate modules and flow graphs. N onatom ic actions provide the necessary functional and 
tem poral abstraction to model hardware and action refinem ent is introduced to bridge the abstraction gap fo r  
high level synthesis. Examples are provided to elucidate the sem antics o f  hopCP and illustrate the expressive 
pow er o f  the language.

1 Introduction

In this report we describe the language hopCP and its semantics. hopCP is a high level 
formalism to capture the behavior of hardware systems in a precise mathematical notation 
and facilitate their synthesis and validation. hopCP is the descendant of the language HOP 
[4] which is basically a process model to capture the behavioral aspects of synchronous VLSI 
circuits.

hopCP specification take a sequence domain view of hardware where the behavior of a 
system is captured by the causal relationship between a set of actions which the hardware 
can perform. The specification formalism does not prescribe any timing discipline. The 
designer is free to adhere to any timing discipline during synthesis, as long as it does not 
violate the causal relationship between actions noted in the specification. In this sense, 
hopCP specifications are asynchronous. The benefits of this asynchronous view of hardware 
include the flexibility to specify and reason about circuits with different timing disciplines 
like speed independent, delay insensitive, synchronous (with various clocking schemes) in a 
uniform  framework and also refrain from introducing any unnecessary constraints, such as 
sequentiality in the specification domain itself.

In hopCP, the computational and communication aspects of hardware behavior are cap
tured by actions. The principal reason for success of the sequence domain view of hardware
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is the nonatom icity of actions. We can impart structure to actions by means of action 
refinement rules.

Significance of Refinable Actions

Every behavioral description formalism should have the ability to model (and reason 
about) a hardware system at different levels of hierarchy. In hopCP, we capture this no
tion of hierarchical modeling using nonatomic actions.

For example, at the architecture level description of a system, it is perfectly reasonable 
and is in fact sufficient to consider the add instruction as just an action. But, reasoning at 
the gate level soon reveals that an execution of the add instruction actually involves several 
microinstructions like instruction fetch, decode, operand fetch etc. spread across an interval 
o f  time (hence nonatomic). Going further down to the circuit level we see that each of the 
microinstruction itself needs certain signals (voltages) going high or low. In fact, even at the 
level o f signals, it is still not very obvious whether they should be considered atomic, since 
there is always the notion of rise time and fall tim e of specific signals. This is especially 
important in clocked synchronous systems.

The example above motivates the usefulness of considering actions to be nonatomic to 
begin with and later refining them to facilitate detailed modeling of the practical implemen
tation schemes.

This gives us several advantages:

1. In the context of the conventional hierarchical view of hardware design, these action 
refinement rules bridge the abstraction gaps between different levels of hierarchy and 
thereby promote an incremental approach to hardware design.

2. Action refinement rules provide a mechanism for circuit synthesis from hopCP speci
fications, because when the actions have been refined to the level o f electrical signals 
we get an implementation for our specification.

3. The incremental approach to hardware synthesis via action refinement lends itself to 
easy validation and performance analysis procedures.

2 Overview of hopCP

In this section we shall give an overview of the language hopCP by highlighting its salient 
features and presenting the goals of this research.
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is also under investigation)
Tools will be provided for simulation of these behaviors and systematic translation into ei

ther synchronous, speed independent or hybrid (partly synchronous and partly asynchronous) 
circuits.

This report will focus on the definition and semantics of hopCP. In the next section we 
provide the methodology of behavioral description by describing the flow graph model and its 
operations. It will be followed by techniques for structural specification and a detailed study 
of the various action categories and the synchronization and interaction schemes. Finally, 
we provide three examples of increasing complexity and distinctly different requirements to 
illustrate the expressive power of our language.

3 Behavioral Descriptions in hopCP

Specification of a hardware systems in hopCP consists of a behavioral description and a 
structural description. The behavior of a hardware system is captured by a state transition 
system  called HFG (hopCP Flow Graph) which is defined as follows: 1

D efin ition  1 A HFG is a 4-tuple, (Si, S, Act, —>) where S is the set o f  states, Si C S is the 
set o f  initial states, Act is the set o f  actions and —>C (7?+(5 ) x Act x 7?+(5 )) . (V+ (S) is 
the non empty power set o f  S.)

5  is typically a pair (cs ,d s) with cs denoting the control state and ds representing the data 
state. Act is the set of actions which capture the computational and communication aspects 
of the hardware in hopCP.

Let P  =  (S i,S ,A ct,^> ) be a HFG denoting a behavioral description in hopCP. Then 
Sip, sp, Actp and —>p denote the set of initial states, set of states, set of actions and set of 
transitions in P. These are selector functions which facilitate the manipulation of H F G s .

D e fin ition  2 A transition or occurrence o f  an action a 6  A ctp in a H F G  P, is defined as 
a triple (s ,a ,s  ) 6  —>p.

Note that a given action may have more than one transitions associated with it. 

C o m p o u n d  A ctio n s

Act which represents the actions in a H F G  is basically a set of nonatomic actions, in the 
sense that they have structure and are amenable to refinement. So, they are different from 
the conventional notion of actions in process calculi and transitions in net theory. In fact,

1More precisely, it is a hypergraph, if the states are viewed as vertices and the actions as edges.
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the basic modeling power and ease of synthesis in hopCP is derived from these nonatomic 
actions. Moreover, there are three types of actions which can be defined using the following 
syntactic domains:

A  = C +  D  +  E

C = Set o f  Control Actions
D  = Set o f  Data Actions

E  = Set o f  E xpression Actions
Act V (A ) Set o f  Compound Actions

Let P  be a H F G  and a =  {a i ,a 2, . . .  ,a n} £ Act. Then, a transition (s ,o , s#) £ — means 
that if the system (being modeled) is in a state s, then it performs a1? a2, . . .  an concurrently 
(in an unspecified order) and reaches the new state s . Hence the following definition for 
compound actions:

Definition 3 A compound action is defined as a set o f  actions (potentially nonatomic and 
compound) which are performed concurrently i.e. in an undetermined order. The set o f  ac
tions defining a compound action are called subactions o f a compound action, {a i, a2, .. ., an} 
are called subactions o f a.

Now, let us briefly explain the individual constituents of the domain A  of actions.

• Control Actions (C ): dictate the control flow of a hardware module and typically de
scribe the control wire encodings. They capture the synchronization aspects of hard
ware behavior in our formalism. These are boolean signals and are also referred to as 
events in our formalism. Events are directional i.e. they could be input (passive) or 
output (active).

Example

pi denotes an output event on port p while ql denotes an input event on port q. (Note: 
ports are structural entities in a hopCP specification which will explained shortly.)

• Data Actions (C ): capture synchronization and value communication aspects of hard
ware behavior. Data actions are further classified into data queries which denote input 
or passive actions and data assertions which refer to active actions.

Example

p\exp denotes asserting an expression exp  on port p (output data action) while qlx  
denotes receiving a value x on port q (input data action).
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• Expression A ctions (C ): capture the computation aspects o f a hardware m odule and are 
described in a purely functional subset o f Standard ML.

Definition 4 Let P  be an H F G  and (s , a, s') E — The elementary flow graph correspond
ing to a transition (s ,a ,s  ) is defined by

e fg  : V+{S)  x Act x V+(S)  ^  H F G

such that e fg (s ,a ,s ')  is a H F G  described by {<j>, {s  U s ’ } , {a } ,  { (s , a, s ’ ) } ) .

Operations on Flow Graphs

hopCP provides three combinators (or functions) to manipulate HFGs and construct HFGs 
denoting more complex hardware behaviors from HFGs describing simpler ones. The behav
ior of a hardware system is captured via these combinators which are formalized as follows: 
2

progress

Syntax: P  <= a Q where Q =  (S{q, Sq, A ctq, —>9) and a £ Act.
Sem antics: The progress combinator, defines a new HFG, P  denoted by the four tuple 

{Sip, Sp, Actp, —>p) where

{ p }
{ P} U  S,
{a }  U A ctq 
~^q U { ( P , a , S iq)}

with the following signature:

H F G  x Act ^  H F G

Points to  Rem em ber:

1. is similar to the sequencing operator found in several languages.

2. If a is empty then H F G  (P )  and H F G  (Q ) are identical

3. The name of the H F G  is usually taken to be synonymous with the name of the control 
state. It may be recalled that the set of states in a hopCP behavioral descriptions are 
pairs of control and data states.

Sp =
Sp -  

A c t p =

Hence, can be regarded as a function a

2<= stands for is defined by in the hopCP semantic definition
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choice
Syntax: P  <= a Q  [] R

S e m a n tic s :T h e  choice ([]) operator describes the construction o f a new H F G P  {S {p, Sp, A ctp, —>p) 
from  Q  and R  defined as follows:

Si, =  { P } '
S r =  ( P J U S .U S ,

Actp =  {a }  U {&} U A ctq U A c tr •
-> p =  U -> P U { (P , a, Q ) ,(P , & ,/?)}

Choice com binator could be regarded as a function with the following signature:

|] : H F G  x  H F G  x  A ct  x  A ct  ■-> H F G

From the above definition, it can be easily shown that choice ([]) is both  associative and 
commutative. So, in general we could have an m -ary choice operation defined over H F G s .

Choice is used to m odel nondeterministic behavior in hopCP. In our above definition, a 
hardware m odule in a configuration (state) described by P  could nondeterministicly choose 
to participate in an action a or an action b.

Restrictions on choice

1. Actions a and b are distinct. Tw o actions are said to  be distinct if they are either 
not the same or if they do not have any com m on subactions. This disallows output 
nondeterm inism  which is said to occur when the m odule makes a nondeterministic 
choice by itself. However, this does not rule out input nondeterm inism  wherein the 
environment can make the choice.

2. a and b should not contain any output actions i.e. (output control actions or data 
assertions)

3. If a or b contain any expression actions, they should be simple predicate tests to 
facilitate a direct implementation.

4. If the environment o f the system being modeled guarantees that either only a occurs 
or only b occurs but never both , then we get a deterministic behavior o f the system.

parcom p
Syntax: P  <= Q  || R

This is the familiar composition operator defined in various process calculii which captures 
the interaction between independent behaviors (which in our case are captured by different
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HFGs). It deals with both synchronization (temporal constraints on the causal behavior) 
and value communication which reflects the exchange of data. Parcomp is a function with 
the following signature

||: H F G  x  H F G  ^  H F G

Sem antics: Let Q =  {Siq, Sq, Actq, —+q) and R  — (5,-r, Sr, A ctr, —+r). || is defined by three 
inference rules which capture the different synchronization scenarios (which will be explained 
in detail shortly). It is interesting to note that || is actually defined in terms of the elementary 
flow graph associated with each action occurrence in H F G s Q and R.

( s i , a ,  Sj) G —>q, (s2,b ,s 2) G —>T

(si U s2, a, Sj U s2) G —>p 
(si, a, Sj) G —>q, (s2, b, s2) G
( s i ,  a, 5 j )  G —>p, ( s 2 ,&, s 2) G

i s l i a i s i )  £  — * q ,  (s 2 j ^ j s 2 ) ^

a =  b 

a fl b =  <j> 

a n b 7̂  <j)

(1)

(2)

(3)
( s i  U 5 2 , S Y N C (tra, trb), s i  U s'2) G - > p 

where tra =  (si,a , si) and trj =  (s2,6, s2)

Synchronization with Nonatomic Actions

The major challenge to defining the parcomp operator in hopCP is the nonatomicity of 
the actions. To recapitulate, we said that typically an action a G Act is actually a collection 
of concurrent actions {a 1,a 2,. .  .a n} (which was also defined as an compound action, defini
tion 3). When we consider interaction of two H F G s  then, we should discuss the interaction 
of such compound actions. Let a =  ai, a2, . . .  an and b =  &i, &2, . . .  bm be two actions in Act.

Given the nature (structure) of the compound actions, there could be the following three 
styles of interactions between actions a and b:
T o ta l Synchronization  is said to occur when a =  b; the equality is the well known equality 
relation on sets. It is interesting to note that, in this case (i.e. when a =  6), the nonatomicity 
of the individual actions is unimportant. To the external world it appears as though a single 
atomic action has taken place.
IMo Synchronization is said to occur when a fl b =  (f>. This is fairly intuitive, since hopCP is 
centered around an asynchronous nature of computation and control flow. When two actions 
have nothing in common, then they can taken place independently. No temporal constraint 
is imposed on when an action is initiated and when it is completed.
Partia l Synchronization is said to occur when a fl b ^  (j>. This occurs when a and b share 
some common subactions. An action x typically occurs in a H F G  as a transition triple 
trx =  (sjjS jS j). Let, tra =  (s !,a ,s j)  G —>q and trb =  (s2, 6, s2) G —>T be the occurrences of 
a and b in H F G s Q and R.
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D efinition 5 Partial synchronization o f  two actions a and b with respect to their occurrences 
tra and tr{, is defined as an action or a H F G

syn c (tr a, trb) =  p r e fin e (tr a) || p r e fin e (tr b) 

where p r e fin e  is described in definition 7. •

A ction  Refinem ent

We have found that a very general class of causal constraints between actions can be 
captured by just two refinement rules( where = >  denotes the refinement of a action):

•  Series R efinem ent: a = >  ax a2

The series refinement strategy denotes the execution of the action a being tantamount 
to the execution of action a\ followed by the execution of action a2. Note that we have 
intentionally used the progress combinator, to depict the series refinement because 
they are similar semantically.

•  Parallel R efinem ent: a  = >  0 1 , 0 2

The parallel refinement strategy denotes the execution of action a being tantamount 
to the execution of action Oi and 02 concurrently. Any action following a in a H F G  
will not be started till both a\ and a2 are completed.

In the H F G  model for behavioral descriptions in hopCP, we see that there is a dual role 
for actions: they can either be viewed as just denoting transitions from one configuration to 
another or can be viewed as H F G s  themselves. We shall characterize the series and parallel 
refinement rules in terms of occurrences of actions within a H F G  . Let, P  denote an H F G  
, a 6 A c tp and tra =  ( s , a , s  ) be an occurrence of a in P  (note that there could be many 
occurrences of a in P.)
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Figure 2: Illustration of Series Refinement of Actions in hopCP
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Then, series refinement (see figure 2) and parallel refinement (see figure 3) o f a into actions 
a1 and a2 is defined as follows:

D efin ition  6 The series refinement o f  a into actions and a2 is defined by the function 
s re fin e

where

s r e fin e  : V (S ) x Act x Act x Act x V (S )  h-> H F G

s r e f in e ( tr a) =  {<f>,

s U s  U { s la, s cai, s ca} ,

{a\  a l5 a2, ac}
{(s , a\ s\){sla, au scai), (s^ , a2, < ) ,  ac, s ') }  

)

D efin ition  7 The parallel refinement o f  a into actions ai and a2 is given by the function 
p refin e

where

p re fin e  : V (S ) x Act x  Act x Act x V (S )  h-> H F G

p refin e (tra) =  {(j),

s U s  U s eai, s ^ 2},

{a®, a2? « c})
{ ( 5 , a1, s lai)(s , a% s la2), (slai, a ^ s ^ ) ,  « 2, a2, s“a), 

)

Note that we have illustrated the refinement o f a action into two actions to simplify the 
presentation. In general an action could be refined into m  serial or parallel actions. The 
construction o f the new H F G  is identical. The power o f the action refinement strategy 
becom es apparent in the verification process and the synthesis o f circuits from  hopCP de
scriptions. However, verification and synthesis are not addressed in this report. 3

3Note that the names o f the actions and states introduced in definitions are not arbitrary, they have 
very vital significance which will be apparent once you consider the abstract time semantics of the hopCP 
behaviors



Illustrating Behavioral Modeling in hopCP

We have introduced sufficient machinery to model interesting hardware applications in 
hopCP. To facilitate textual descriptions in hopCP, we will slightly abuse the syntactic 
notions developed so far, but one can get used to it fairly quickly. In the long run, we would 
actually encourage a graphical input mechanism, wherein H F G s  could be directly described 
using graphics primitives, pretty much like the conventional schematic capture tools.

1. A piece of hardware which does nothing *

Textual Description : S T O P  

H FG  Representation: {<f>, { S T O P } ,  <j>, <f>)

Actually S T O P  represents an interesting piece of hardware, namely, a finite 
The utility of this hardware by itself maybe questionable but it certainly 
in describing computation oriented hardware, like the expression actions we 
earlier.

2. A cyclic behavior

Textual Description : P  •<= a P  

H FG  Representation: ( {P } , {P } ,  {a } , {(P , a, P )})

The behavior is self-explanatory. It illustrates the progress combinator.

3. A piece of hardware with two actions

Textual Description : Q •<= b c P 
H FG  Representation : ({Q }, { Q , Z , P }, {a, 6, c}, {(Q , b, Z ), (Z , c, P ), (P, a, P )})

Q denotes a piece of hardware which does actions b and c sequentially and then be
haves like the hardware described in the previous example. Notice that in behavioral 
modeling using hopCP we do not commit to any absolute time. Actions b and c need 
not take the same amount of time to execute; in fact, they will not because, they are 
typically nonatomic actions wherein b could merely be the assertion of a signal while 
c is a function computation like a multiply (expression action).
Note: We have introduced an arbitrary state Z  to facilitate the H F G  description and 
used P  as a state and also as a H F G  . The former merely reflects that Z  is an internal 
state of the module, which we do not worry about while the latter is merely a notational 
convenience to save retyping the whole behavior of P  once again.

HOPCP: LANGUAGE DEFINITION, SEMANTICS AND EXAMPLES 13

behavior, 
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discussed



4. Illustrating compound actions
Textual Description : R  -4= x ,y  P  

H FG  Representation : ( {P } ,  {P , i?}, {<z, £, ?/}, {(P , {a;, ?/}, P ), (P, a, P )})

R  is piece of hardware which engages in actions x and y concurrently (in an unspecified 
order) and after the completion of both the actions proceeds to behave like the hardware 
described by P.
Note: { x , y }  C  /P (A ctr) denotes a compound action, but theset notation for the action 
has been dropped to avoid cluttering the textual descriptions.

5. Illustrating Alternate Behaviors
Textual Description : M  b P|c~> R  

H FG  Representation : ( { M } , { P , M , R } , { a , b , c , x , y } ,

{(M , b, P ), (M , c, R),  (R,  {x,  y}, P ), (P, a, P )})
M  denotes hardware which has two alternate modes o f behavior. It can either engage 
in action 6 and proceed to behave like the hardware described by P  or perform action 
c and behave like the hardware described by H F G  R. If we assume that only one 

. of b or c is feasbile at anytime then we get deterministic behavior otherwise we get 
nondeterminism.

6. Illustrating Parallelism and Synchronization
Textual Description : 51 <= a c 51

T 1 -4= b c d T l 
JV <*= 51 || T l

iJFG Representation: ({51 , T l} ,  {51, 52, T l,T 2 , T3}, {a, 6, c, d},
{(51, a, 52), ({52, T2}, c, {51, T 3}), (T l, 6, T2), (T3, d, T l) } )

Notice, that we have two initial states now, which immediately reflects that there are 
two threads of parallel activity. Also, the transition ({52 , T 2 },c , {51, T3}) C  —>n 
denotes the total synchronization on action c

7. Modeling Fork Behavior
Textual Description : M  4= (b G) || (6 F )

H FG  Representation: { { M } , { M , G , F } ,  {b} Li Actg U A ctf,

M denotes a piece of hardware which performs action b and then forks two independent 
threads of behavior described by H F G  G  and H F G  F . Typically, the transition 
(occurrence of action) (AT, b, {G , F } )  denotes forking behavior.

14 VENKATESH AKELLA



4 Structural Specifications in hopCP

In hopCP the basic structural entity being modeled is a module which is defined as follows:

D efinition 8 A module is defined in hopCP by a behavioral description and the set o f ports 
(channels). .

M O D U L E  : H F G  x P O R T

where P O R T  C I D E N T (S e t  o f  Id en tifiers ) •

A structural description in hopCP, primarily denote how modules are connected to each other 
and what the visible connections are to the external world. To facilitate such description we 
propose three operators on modules: 
renam e'

Let 1Z be the set of bijections from P O R T  > P O R T  
renam e is a function on hopCP modules defined as follows:

rename : M O D U L E  x U h  M O D U L E

Let M  =  (hfgMiPortsM) and /  6 1Z 

r e n a m e (M J ) =  (h f gM , f  (portsM)) 
export

export is a function which takes a module and a set of ports and makes the latter visible 
to the external world, and is defined as follows:

rename : M O D U L E  x P O R T  i—> M O D U L E

Let M  =  (hfgM,  portsm ) and visports C portM  

exp ort(M , visports) — (h f  gM, vis ports)

(export is similar to the hide operator in CSP) 
connect

connect is a function which takes two modules and returns a new module which reflects 
the composite behavior of both the modules when the common ports are connected and after 
verifying the well-formedness of the connections, which will be described shortly

connect can be viewed as the structural counterpart of the par comp behavioral combinator. 
It is defined as follows:

connect : M O D U L E  x M O D U L E  M O D U L E

Let M x =  (h f  gMl, portsMl) and M2 =  (h f gM2,portsMz)
Then, connect(M u M 2) =  (hfgMl || h fg Ml,portsMl U portsM2)

HOPCP: LANGUAGE DEFINITION, SEMANTICS AND EXAMPLES 15
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Conditions for well-formedness of connections

• No two output ports are connected (avoids contention).

• Every port in the modules being connected is either connected to some other port or 
made available to the external world. Of course, connected ports could be exported to 
the external world too (avoids unconnected wires).

• No port is connected to another port within the same module (avoids self loops).

These could be formulated mathematically using the ports and modules but gets cumber
some.

5 Synatatic and Semantic issues of Actions in hopCP

In section 3 we introduced the notion of actions to capture the communication and com
putation aspects of hardware behavior. In this section, first we shall take a closer look at 
ports and then document the syntactic and semantic issues involving actions in general and 
expression actions in particular. Let us define the following syntactic domains (some of them 
are being repeated for easy reference):
Primitive Domains:

I N T =  Domain o f Integers

B O O L =  Dom ain o f Booleans

I D E N T — Dom ain o f Id en tifiers

Derived Domains:

V A L  =  I N T  U B O O L  U J_

V A R  =  I D E N T

P O R T S  =  I D E N T

Ports or Communication Channels

In section 3 we introduced control and data actions to capture the communication aspects 
of hardware behavior. Ports are the structural counterparts of the control and data actions. 
They are concrete in the sense that they are directly realized in hardware via wires, though 
the actions associated with them are abstract in the H F G  (behavioral model).

• Ports could can be annotated with types, to denote the values they carry. In the present 
version of hopCP we will restrict the types of values to booleans and integers.



• Ports can be annotated with directions, i.e. they can be input,output or bidirectional. 
If p € P O R T , then p\ classifies pas a output port while p'l describes p as an input port. 
Bidirectionality of ports is only an abstraction because for a particular action the port 
can either be an input or an output (so it should be rightly called time-multiplexed 
bidirectionality).

• Output control actions are associated with output ports and input control actions are 
associated with input ports. Similarly with data actions.

Control Actions

Control actions (also referred to by events) are the behavioral models for control wire 
encodings in a hardware system. They are boolean value (either a control action has occurred 
or has not). The domain of control actions is analogous to the set of ports i.e.

C  =  P O R T  (Set of ports)

This means that an input port, pi is an input control action and output port q\ is an output 
control action.

Data Actions

Data actions are the behavioral models for value transfer mechanism in a hardware system. 
The domain of data actions D  has an internal structure:

D  =  D Q + D A  

D Q  =  P O R T  x V A R  

D A  =  P O R T x E

D Q  represents the domain of input data actions which are also known as data queries. Let 
p € P O R T  and x € V A R , then, p lx  denotes a data query on the port p. The execution of 
the action p lx  implies, variable x contains the value received from the port p. D A  represents 
the domain of output data action or data assertions. Let p € P O R T  and exp  € E , then, 
plexp denotes the assertion of the value denoted by the expression exp on the port p. We 
use CSP syntax to facilitate easy understanding.

Expression Actions and Modeling Computation in hopCP

In the definition of a H F G  to model hardware in hopCP we have introduced the no
tion of state which was described by control and datapath states. The datapath state and 
the expression actions together describe the computational aspects of hardware behavior in 
hopCP.

HOPCP: LANGUAGE DEFINITION, SEMANTICS AND EXAMPLES 17
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Formally,

C S  =  I D E N T (S e t  o f  Control States)
D S  =  V A R *(L ist Dom ain o f  Variables)

S =  C S  x D S (S et o f  States) .

We impose the restriction that the identifiers used for control states be distinct from the 
identifiers used for datapath variables.
A bstract Syntax o f  Expression A ctions: Let e E E  (the domain of expression actions) 
and x E V A R  and v E V A L ,

e ::= v \ x \ Xv.e \ ee \ e —> e ,e  \ f i x  e

Note that, we have decided to use the very basic subset of lambda calculus to specify the 
expression action. In the first version of hopCP we will allow only tail recursion. It is found 
that a very large number of interesting applications can be captured without resorting to 
general recursion.

Also, though A abstraction has been introduced as a basic construct, we do not intend 
expression actions to be higher-order (at least not in the current version of hopCP). It is 
primarily introduced to elegantly capture local computation via let expressions. In the actual 
behavioral description we will use the corresponding subset of Standard ML to describe 
expression actions.

We provide rules for translating expression actions into H F G s  . This once again gives the 
designer the flexibility to model the behavior either directly in a purely functional language 
and reason about it in terms of H F G s  or to specify the behavior in the graphical notation 
(i.e. H F G  ) using the expression actions to model functional computation.

6 Interaction of hopCP Flow Graphs and Synchronization

In this section we will take a closer look at the mechanics of synchronization and value 
communication when H F G s  interact. We defined parcomp as the behavioral composition 
operator on flow graphs in section 3 and described three kinds synchronization scenarios 
which characterize flow graph interaction.
M ultiw ay Synchronization:

Synchronization is said to occur when two modules which are making independent progress, 
wait for each other to undergo a rendezvous on a particular action. Synchronization invari
ably results in the flow of information from one module to another, either explicitly when 
the action involved is a data action or implicitly when the action involved is a control action.
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Obviously, the question of synchronization does not arise in the case of expression actions, 
which are used to merely model the computational aspects.

When, more than two modules (represented by their flow graphs) interact, it is left up to 
the designer (of the language) to suggest the interaction mechanism. In point to point 
synchronization schemes, advocated in CCS like languages, two reciprocating partners are 
chosen randomly to undergo synchronization and others are rejected. This brings about 
nondeterminism.

We adopt the synchronization strategy proposed in CSP and Trace Theory, called multiway 
synchronization with slight modification of our own. In multiway synchronization all the 
modules which share a common action (control or data) rendezvous and then resume their 
individual activity. Hence it is deterministic. We insist in hopCP that whenever there is 
a rendezvous involving more than one module, there be atmost one active partner (module 
willing to perform an output data action or an output control action) and any number of 
passive partners (module willing to engage in an input action). We ensure this by restricting 
the interconnection of modules in such way that no two output ports are connected.

Many communication architectures in hardware are naturally captured by multiway syn
chronization: for example communication via a electrical bus between a central controller 
and several recipients illustrates the utility in SIMD architectures. However, the main at
traction for multiway synchronization in hopCP is in using it to derive lockstep synchronous 
behavioral descriptions from H F G s . This is because, multiway synchronization can also be 
viewed as barrier synchronization, which suggests the existence of certain specialized actions 
wherein a subset of the participating modules stop and exchange information (regarding their 
control state) and make further progress. A lockstep synchronous behavior differs from that 
described by a H F G  only in the absence of a global synchronizing action, namely the clock. 
So, we find that one can generalize multiway synchronization (or barrier synchronization) in 
such a way that we get global information transfer via a common action, namely the clock. 
However, it will not work by just introducing a common clocking action with every action 
occurrence in a H F G  , since we have the potential o f refinement o f  actions. This is being 
currently addressed in our research.

7 Examples in hopCP 

Specification of a Two Place Buffer

Define a module Mi e  M O  DU LE  which is a one place buffer whose behavioral description 
is given by 1P B  and whose ports are ?p and q\. The module is shown in figure 4.
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S tr u c tu r a l  D e s c r ip t io n

B eh a v io ra l D e s c r ip t io n

Figure 4: Specification of a one-place buffer in hopCP

The behavioral description is captured by the H F G  1PB which is shown in figure 4.

1P B  [s] ^  ply q\y 1P B  [y]

The notation P  [s] denotes a state, that is the control state data state pair, (P, x) where 
P  £ CS  and x G V A R .  As explained in section 5, p?y G D Q  and q\y G D A  denote input 
data action on port p and output data action on port q respectively.

The structural description o f the two place buffer is given by M 2 € M O D U L E  which is 
defined as follows

M 2 ■$= export(connect(renam e(M \, f),ren am e(M \, #)), {a? , 6!})

where /  and g G TZ- and are defined by the following mapping 
/  =  { (p ? ,a ? ) ,(g !,c !) }  and g =  { (p ? ,c ? ) , (?!,&!)}
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S tr u c tu r a l  D e s c r ip t io n

B e h a v io ra l D e s c r ip t io n  

Figure 5: Specification o f a two-place buffer in hopCP
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I N I T

Figure 6: Implementation of a two-place buffer via Action Refinement

Applying the definitions of export, connect and renam e from section 4 and the semantics 
of progress and parcomp from section 3 we get the inferred behavior for the two place buffer 
as the four tuple (5j2pb, 52p6, —>2P6) (which is also illustrated in figure 5) where

5 t2p4 =  { 5 1 ,T l }
S2pb =  { 5 l ,T l ,5 2 ,T 2 }

A ct2pb =  {a7z, clz ,c?y ,b ly}

->20 =  { ( 5 l ,a ? 2r ,5 2 ) , ( { 5 2 ,T l } , c b , { 5 l ,T 2 } ) , ( T 2 ,6 !y ,T l ) }

A speed independent implementation of the circuit using two-phase transition signaling with 
bundled data based on action refinement is shown in figure 6. We have used the circuits 
(components) described in [l]. Note that details of the compilation strategy are not the 
focus of this report (they will be described in a forthcoming report).

Specification of an Iterative Multiplier

This example illustrates the specification of a computation oriented piece of hardware. 
The structural specification is a module M  6  M O D U L E  described as follows:

M  <= (mult, {a ? , 6? ,c !} )



where mult is a H F G  which captures the behavior of the iterative multiplier and is specified 
as follows:

mult [a;,y] <= a l x , 6?y c! multiply (x , y , 0 )  mult [a:,j/] 

where •

fun m u ltip ly  x  y z  =  if  (y  =  0 )  then z  
else case (odd y ) , 

tru e  => m u ltip ly  x  ( y - l ) ( z + x )  
false => m u ltip ly  2 * x  (y  div 2 ) z;

Note, that this example illustrate the use of compound actions and the use of the iterative 
multiply function as a expression action. Translating the above specification into a H F G  is 
fairly routine.

8 Conclusions

In this report we presented the basic motivation behind the design of the language hopCP 
and described its operational semantics. We illustrated the expressive power of the language 
by presenting several commonly occurring hardware scenarios in hopCP. Currently, we are 
focussing on the formal semantics of action refinement in hopCP and deriving asynchronous 
hardware from H F G s  .

References

1. Erik Brunvand and Robert F. Sproull. Translating Concurrent Communicating Pro
grams into Delay-Insensitive Circuits. In International Conference on Computer-aided 
Design, IC C  A D  89, April 1989.

2. Steven D. Johnson. Applicative Programming and Digital Design. In Eleventh Annual 
A C M  Symposium on Principles o f Programming Languages, pages 218-227, 1984

3. Steven D. Johnson. Digital Design in a Functional Calculus. In Formal Aspects o f VLSI 
Design Edited by G.J. Milne and P.A. Subrahmanyam, Elsevier Science Publishers B. 
V.(North-Holland), Amsterdam, 1986.

4. Ganesh C. Gopalakrishnan, Richard M. Fujimoto, Venkatesh Akella and Narayana Mani. 
HOP: A Process Model for Synchronous Hardware: Semantics and Experiments in Pro
cess Composition. In Integration: The VLSI Journal, pages 209-247, August 1989

HOPCP: LANGUAGE DEFINITION, SEMANTICS AND EXAMPLES 23


