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Higher-Order Nonlinear Priors 
for Surface Reconstruction

Tolga Tasdizen, Member, IEEE, and Ross Whitaker, Member, IEEE

Abstract— For surface reconstruction problems with noisy and incomplete range data, a Bayesian estimation approach can improve 
the overall quality of the surfaces. The Bayesian approach to surface estimation relies on a likelihood term, which ties the surface 
estimate to the input data, and the prior, which ensures surface smoothness or continuity. This paper introduces a new high-order, 
nonlinear prior for surface reconstruction. The proposed prior can smooth complex, noisy surfaces, while preserving sharp, geometric 
features, and it is a natural generalization of edge-preserving methods in image processing, such as anisotropic diffusion. An exact 
solution would require solving a fourth-order partial differential equation (PDE), which can be difficult with conventional numerical 
techniques. Our approach is to solve a cascade system of two second-order PDEs, which resembles the original fourth-order system. 
This strategy is based on the observation that the generalization of image processing to surfaces entails filtering the surface normals. 
We solve one PDE for processing the normals and one for refitting the surface to the normals. Furthermore, we implement the 
associated surface deformations using level sets. Hence, the algorithm can accommodate very complex shapes with arbitrary and 
changing topologies. This paper gives the mathematical formulation and describes the numerical algorithms. We also show results 
using range and medical data.

Index Terms—Surface reconstruction, robust estimation, anisotropic diffusion, level sets.

-------------------------------------------  ♦  -------------------------------------------

1 Introduction

T h is  paper addresses the problem  of Bayesian 3D  surface 
reconstruction. Specifically, we consider reconstruction 

from  m ultip le  reg istered  range im ages, b u t we also 
dem onstrate the application of the m ethods developed in 
th is p ap er to  surface reconstructions from  m agnetic 
resonance imaging (MRF) data. The im portance of high- 
quality surface reconstructions from range data is growing 
as range m easurem ent technologies become more accurate 
and affordable. Despite the increased accuracy in these 
m easurem ent devices, significant challenges to surface 
reconstruction remain. Fn particular, surface reconstruction 
is complicated by m easurem ent noise and  variations in 
m easurem ent density. For instance, the m easurem ent 
density is high at regions of the surface that are visible in 
m ultiple images. By contrast, parts of the surface that are 
occluded in all of the images have no data.

We model the uncertainties arising from m easurem ent 
noise, overlapping m easurem ents, and  occlusion in a Baye
sian framework, w hich form ulates surface reconstruction as 
the m axim ization of a posterior probability function. Accord
ing to  Bayes rule, m axim um  a posteriori (MAP) estim ators 
maxim ize the product of tw o distinct probabilities: the 
likelihood of the m easurem ent data conditioned on the 
surface m odel and the prior probability distribution for the 
model. We refer to these tw o probabilities, respectively, as the 
likelihood and the prior. A major challenge of Bayesian surface 
reconstruction is the determ ination of these tw o quantities.
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This paper focuses on the prior probability distribution. 
Specifically, we attem pt to correctly generalize statistical 
image reconstruction strategies [1], [2], [3], [4], [5] to surface 
reconstruction, and  we propose h igher-order nonlinear 
feature-preserving surface priors as the solution to this 
problem.

Fn a variational optim ization fram ework, penalty func
tions on the surface curvature give rise to fourth-order partial 
differential equations (PDE). Fn previous w ork [6], we 
propose that the natural generalization of image processing 
to surfaces occurs via the surface normal vectors and show 
results for postprocessing of noisy surfaces. For example, a 
sm ooth surface is one that has sm oothly varying norm al 
vectors. O ur strategy is to use a two-step approach: 1) operate 
on the norm al m ap of a surface to reduce its curvature and
2) fit a surface to the processed norm als and  the range data. 
Iterating this tw o-step process, we can efficiently im plem ent a 
flow that resembles a fourth-order PDE. Fn this light, the 
differences betw een surface processing and image processing 
are threefold. Norm als exist on a m anifold (the surface) and 
cannot be processed using a flat metric, as is typically done 
w ith images. Processing techniques m ust also accommodate 
vector valued norm als that are constrained to be unit length. 
Because norm als are coupled w ith the surface shape, the 
norm als should drag the surface along as their values are 
modified during processing.

The rem ainder of this paper is organized as follows: 
Section 2 presents a discussion of the related w ork in  the 
literature. Section 3 gives a brief sum m ary of Bayesian 
image and surface reconstruction formulations. Fn Section 4, 
w e form ulate h igher-order feature preserv ing  surface 
energy functions that give rise to a useful family of priors 
and, in Section 5, we introduce a strategy to solve them. 
Section 6 dem onstrates results and  com pare them  to results 
from previous m ethods, and discuss some properties of the
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proposed approach. Section 7 presents conclusions and 
directions for future research possibilities.

2 Related  W ork

Surface reconstruction m ethods can roughly be classified into 
high-level and low-level approaches. The high-level ap
proaches are generally formulated as a problem of finding 
sets of geometric prim itives that best represent the objects 
being m easured [7], [8], [9], [10], [11]. High-level descriptions 
of scenes are useful for certain com puter vision tasks such as 
object recognition; however, scenes described by simple 
prim itives have limited complexity. Low-level m ethods are 
based on either explicit m odels such as surface meshes or 
implicit models such as level sets. The literature dem onstrates 
m ethods for zippering together meshes that describe differ
ent sides of an object [12], and fitting deform able models that 
expand inside a sequence of range images [13]. These 
approaches are suitable for use w ith high quality range 
images w ith relatively small am ounts of noise. Several 
authors propose volum etric m ethods [14], [15], [16], [17], 
[18] that combine range m easurem ents in a volum etric 
m edium . The reconstructed surfaces are the zero-sets, or 
isosurfaces, of such volumes.

In this paper, we utilize the level set-based Bayesian range 
m ap registration and surface reconstruction fram ew ork 
developed by W hitaker and Gregor [17], [19], [18]. This 
strategy uses maxim um  likelihood param eter estimation to 
register the views before combining m ultiple range images 
via a level set im plem entation that can represent any solid 
object, regardless of shape and topology. The combination of 
a Bayesian formulation with level set m ethods is effective for 
complex, noisy scenes. The Bayesian formulation requires the 
determ ination of the likelihood probability density function, 
which depends on the range sensor properties, and the prior 
probability density function, which m odels the space of the 
physical objects being m easured. The role of the likelihood 
term is to force the fitted m odels to be accurate representa
tions of the m easured data. W hitaker and Gregor derive the 
likelihood term from a line-of-sight error form ulation, which 
is shown to accurately model laser range finders [17], [18]. 
This paper seeks to im prove the prior term which serves to 
elim inate the m easurem ent noise and other artifacts in the 
fitted model by requiring it to adhere to certain expectations 
about the application domain or scene.

The use of priors have been extensively investigated in 
related works in image processing. For instance, Mumford 
and Shah form ulate the problem of image segmentation in a 
variational fram ework with a Bayesian rationale [1], [2], 
N ordstrom  [3] investigates the relationship of the Perona & 
M alik (P&M) anisotropic diffusion approach to edge 
detection [20] to the M umford-Shah variational strategy. 
O ther authors [21], [5], [22] also present an unified view of 
the reconstruction, nonlinear diffusion, and robust statistics 
approaches. O ur method is motivated by N ordstrom 's 
biased anisotropic image diffusion.

In contrast to the research in image processing, investiga
tion of more effective surface priors has not been em phasized 
in previous surface reconstruction literature. This is partly 
due to the prevalent strategy of fitting shape prim itives to 
data in com puter vision. Primitives usually have only a few 
shape param eters, i.e., height and radius for a cylinder. They 
impose their own structure on to the data and act as our prior

belief about the contents of a scene and, hence, there is no 
need for a separate prior probability term in the reconstruc
tion. Loosely structured explicit models such as surface 
meshes and implicit models such as level set surfaces of 
volumes, can represent complicated scenes; however, these 
low-level m odels do not impose a rigid shape structure. 
Therefore, prior probability term s m ust be included in 
surface reconstruction with such m odels to reduce the effects 
of noise and fill in surfaces w here there is no data.

Surface area penalty serves as a simple prior for surface 
reconstruction [17], [19], [18], and a gradient descent on the 
surface area energy results in mean curvature flow (MCF). 
However, in the context of surface reconstruction, MCF 
suffers from several problem s including volum e shrinkage 
and elimination of sharp features (creases). A great deal of 
research focuses on m odified second-order flows that 
produce better results than MCF. Using level set m ethods, 
several au thors have proposed sm oothing surfaces by 
weighted combinations of principal curvatures. For instance, 
W hitaker [23] proposes a nonlinear reweighting scheme that 
favors the sm aller curvature and preserves cylindrical 
structures. Lorigo et al. [24] propose a sm oothing by the 
m inim um  curvature.

A sim ilar set of curvature-based algorithm s have been 
developed for surface meshes. For instance, Taubin [25] 
proposes a nonshrinking Gaussian smoothing. Clarenz et al.
[26] propose a modified MCF as an anisotropic diffusion of 
the surface. They threshold a weighted sum of the principal 
curvatures to determ ine the surface locations w here edge 
sharpening is needed. Tangential displacem ent is added to 
the standard MCF at these locations for sharpening the edges. 
Another mesh-based modified MCF is proposed in [27] 
where a threshold on the mean curvature is used to prevent 
over-sm oothing. Taubin proposes a "linear anisotropic 
Laplacian operator" for meshes that is based on a separate 
processing of the norm als [28]. Although these flows produce 
results that tend to preserve sharp features, they are not a 
strict generalization of P&M anisotropic diffusion [20] from 
images to surfaces. Because they are based on reweightings of 
curvature, these m ethods always smooth the surface in some 
direction. Thus, they do not exhibit a sharpening of details, 
which is achieved by the P&M equation (for images) through 
an inverse diffusion process.

Chopp and Sethian [29] derive the intrinsic Laplacian of 
curvature for a 2D  implicit curve, and solve the resulting 
fourth-order PDE. They argue that the numerical m ethods 
used to solve fourth-order flows are not practical, because 
they lack numerical stability. They propose several new 
numerical schemes, bu t none are satisfactory due to their slow 
com putation and inability to handle singularities. In related 
works [30], [31], approxim ations of higher-order geometric 
surface flows have been applied to surface fairing in 
com puter graphics.

3 Bayesian  R econstruction

This section provides a brief discussion of the 
Bayesian formulation for the im age/surface reconstruc
tion framework.

3.1 Surface Reconstruction
Let S  and M  be a surface and the collective set of m easured 
data, respectively. We will assum e that M  consists of a set of
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n  registered range images, { ! }^=, - For all the exam ples in 
this paper, we used the registration m ethods described in [19], 
[18]. Then, the posterior probability of S  given the data is

P (S  | M )
P (M  | S)P(S)  

P( M)  ' (1 )

S - - arg iuf [— In P ( M  \ S) — In P(S)}, (2 )

AC
—  = - f ( s )N - m s ), (3)

/ '  G (|| V / II2) dx dy , (4)

w here F ( M  | S)  is the likelihood term and P(S)  is the prior. 
Because the goal is to find the surface that maximizes the 
posterior, the denom inator P(M) ,  which is a constant 
norm alization factor that is independent of <S, can be dropped. 
Typically, MAP estim ators are im plem ented as m inim iza
tions of the negative logarithm of the posterior probability

where U is the image dom ain. In its original form, P&M 
diffusion was introduced to replace Laplacian smoothing, 
which is equivalent to the solution of the heat equation 
81 j'dt =  V • V /, with a nonlinear PDE

D I/D I V  • [f/(|| V /  II2) V / ] , (5)

w here S  is the estimator.
Using the independence of the range images, the log- 

likelihood can be expressed as a sum  l u P ( M \ S )  =
— Yl'j-i l i i P( P(:jl | S).  W hitaker et al. [17], [19], [18] form u
late the conditional likelihood of a range image as a volum e 
integral over the object ft enclosed by S.  In this way, the 
gradient descent for the log-likeli hood term is expressed as a 
function, f ( x ) ,  w here x  denotes surface locations in the 
volume. This function provides a weighted sum of the 
effects of m easurem ents from different scans on the point x. 
Details of f i x )  are beyond the scope of this paper, for a more 
in depth discussion, we refer the reader to [17].

Consequently, the gradient descent that minimizes (2) is 
described by the surface motion

where /  is the gray-level image and g, the derivative of G  with 
respect to || V /  ||2 , is the edge stopping function. Perona & 
Malik suggest using g =  e_HVfH“/2#r, w here /i is a positive, free 
param eter that controls the level of contrast of edges that can 
affect the sm oothing process. Notice that r/(|| V I  ||2) ap 
proaches 1 for || V I  | | «  /i and 0 for || V I  ||>- /i. Edges are 
generally associated with large image gradients and, thus, 
diffusion across edges is prevented while relatively flat 
regions undergo smoothing. A mathematical analysis shows 
that solutions to (5) can actually exhibit an inverse diffusion 
near edges and enhance or sharpen smooth edges that have 
gradients greater than /i [33]. These properties make P&M 
diffusion a good candidate for edge detection.

N ordstrom 's biased anisotropic diffusion converts the 
variational form of anisotropic diffusion to a reconstruction 
energy by adding a data term to (4). This yields the 
variational energy

i t (I0 -  n 2 +  G(|| V /  ||2) 1 dxdy.

w here 6 denotes the Euler-Lagrange operator and N  is the 
surface normal. Notice that the effects of the likelihood and 
the prior term s on the gradient descent are additive; hence, 
they can be analyzed separately. The priors we introduce in 
this paper are not particular to the range data reconstruction 
problem; they are suitable for use in any Bayesian surface 
reconstruction problem. For example, the results of this paper 
can also be applied to tomographical surface reconstruction 
[32]. Section 4.2 presents results with MRI data as well as 
range data.

3.2 Image Reconstruction
In this section, we discuss the use of priors in image 
reconstruction and their relationship to P&M anisotropic 
diffusion. M umford and Shah [1], [2] propose an energy 
minimization approach for image reconstruction/segm en
tation. The M umford-Shah energy is the sum of three terms:
1) the quadratic data-m odel discrepancy, 2) a quadratic 
penalty on the variation of the piecewise smooth model 
over the image dom ain except on a set of discontinuities 
which are modeled by a separate binary model, and 3) the 
length of the discontinuities. The first term is the data 
likelihood term , and the latter two term s act as the prior in 
this energy. This m inimization problem is difficult to solve 
because of its dependence on binary functions.

N ordstrom  [3] established the connection between the 
M umford-Shah energy m inimization approach to segm en
tation and the P&M anisotropic diffusion approach to edge 
detection [20]. This connection is m ade by observing P&M 
diffusion from a variational perspective. The P&M diffusion 
PDE is the gradient descent derived by the first variation of

(6 )

where Itl is the in pu t image. The nonlinear anisotropic penalty 
on the variation of the model, G(|| V I  ||2), acts as the prior. 
This penalty term is practically equivalent to the sum of the 
quadratic model variation and the linear length of disconti
nuities term s in the M umford-Shah formulation. Hence, the 
addition of the data-m odel discrepancy term transform s 
P&M diffusion into a variational fram ework w ithout the need 
for an explicit binary image for m odeling the discontinuities. 
This is an im portant practical advantage over m inim izing the 
Mumford-Shah energy.

In this paper, we use energies of the same form as 
N ordstrom 's biased anisotropic diffusion. We propose that 
the correct generalization of P&M anisotropic diffusion and 
related image processing m ethods to surfaces entails the use 
of higher-order nonlinear priors. We also dem onstrate that 
penalty functions on the surface norm als can be used to 
generate this family of higher-order priors.

4 G eometric  Surface P riors

Using the Gibbs distribution, probability distributions for 
p rio rs  are  com m only expressed  in term s of energy 
functions. Let E(S)  be a function that m aps surfaces to 
scalar energy values. Then, the prior can be constructed as

P(S)  = —e -n £ (S ) (J)

where «  is a param eter that controls the sharpness of the 
distribution and Z  is a norm alizing constant which ensures 
that the probability distribution function integrates to unity 
[34]. According to (7), surfaces with lower energy states 
have a higher probability of occurrence. Geiger and Yuille 
[34] observe that the param eter «  reflects the strength of the
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prior. AU surfaces are equally likely when a  =  0; whereas, 
for n —*• oc, only those surfaces with the lowest possible 
energy have nonzero probabilities of occurrence. Substitut
ing the Gibbs prior (7) for the prior term  in (3) gives

-  6 In P(S)  =  - 6 ] n ^ e - “B(5) =  aSE(S) ,  (8)
ZJ

w here a  now appears as a relative weight on the surface 
energy term  in (3) with respect to the log-likelihood term. 
Because the gradient descent of the negative logarithm  of 
the prior is the Euler-Lagrange of the energy function E(S),  
the rest of this paper is concerned with constructing and 
solving higher-order feature preserving energy functions 
that model real surfaces m ore accurately than previous 
energy functions investigated in the literature.

Surface area is a commonly utilized surface prior energy 
based on the underlying assum ption that, am ong surfaces 
that represent a data set equally well, those with smaller 
area are relatively sim pler and, therefore, have a higher 
probability of occurrence. A gradient descent minimization 
of surface area gives the mean curvature flow PDE [33]

bE(S)  =  HN =  ( * ' +  N,  (9)

w here /vi, are the principal curvatures, H is the mean 
curvature of the surface S, and N  is the surface normal. 
Despite the simplicity of its solution, surface area is not a 
realistic shape prior. Difficulties associated with this ap
proach will be dem onstrated in Section 6. This implies that a 
successful model of the sm oothness constraints on realistic 
surfaces requires a general, higher-order and nonlinear prior.

A second-order energy function is the integral of total 
curvature, the sum  of the squares of the principal curvatures,

I  hJt +  h'i d S  (1 0 )
Js

which has been shown to deform  surfaces into spheres when 
minim ized [35]. For surfaces with a fixed topology, total 
curvature is equivalen tto the square ofthe mean curvature by 
the Gauss-Bonnet theorem. A more general energy function is

G (k2i +  k |)  dS, (11)

w here G  is a general nonlinear function of total curvature. 
M inimizing this general energy together with the data 
likelihood term  requires solving fourth-order surface PDEs.

5 A S plitting  S trategy  for H igher-O rder 
Priors

Several m ethods for solving fourth-order PDEs have been 
proposed in the literature. C hopp and Sethian [29] derive the 
intrinsic Laplacian of curvature for a 2D  implicit curve and 
solve the resulting fourth-order PDE. They investigate 
several numerical schemes, bu t find none to be satisfactory 
in term s of stability. This exact solution is also com putation
ally expensive.

A tw o-step  app rox im ate  solu tion to  the intrinsic 
Laplacian of mean curvature flow for meshes is proposed 
in [31]. However, that approach can only be applied to 
m eshes and relies on analytic properties of the steady-state 
solutions for that specific surface flow, AH =  0, by fitting

surface prim itives that have such properties. Thus, the 
formalism does not generalize to variational form ulations 
w here the solution need not satisfy AH =  0.

Another splitting strategy can be found in [37], w here the 
authors penalize the sm oothness of a vector field while 
sim ultaneously forcing the gradient directions of a gray-scale 
image to  closely match the vector field. The penalty function 
on the normal field is proportional to the divergence of the 
norm al vectors. This form s a h igh-order interpolation 
function, which is shown to be useful for image inpainting 
—recovering missing patches of data in 2D images. The 
strategy of sim ultaneously penalizing the divergence of a 
normal field, and the mismatch of this field with the image 
gradient is an approxim ation to  the original fourth-order 
system. Similarly, our approach also splits the fourth-order 
system using normal vectors. However, we em phasize the 
processing of norm als on an arbitrary surface manifold 
(rather than the flat geometry of an image) and use a pair of 
cascaded PDEs instead of solving them  sim ultaneously. Our 
cascading approach is closely related to the full fourth-order 
system, bu t does not result in an exact solution. A detailed 
discussion of this relationship can be found in Appendix A.

O ur proposed tw o-step solution allows the surface shape 
to lag the normals as they are filtered and then refitted by a 
separate process. This is found to be com putationally more 
efficient than sim ultaneously solving the tw o equations and 
coupling them  with a penalty term  as in Ballester et al. [37]. 
Fig. 1 shows this three step process graphically in 2D—shapes 
give rise to normal m aps, which, when filtered, give rise to 
new shapes.

5.1 Notation
To facilitate the discussion in this section, we employ the 
Einstein notation convention, w here subscripts indicate 
tensor indexes, and repeated subscripts within a product 
represent a sum m ation over the index (across the dim ensions 
ofthe underlying space). Additionally, we use the convention 
that subscripts on quantities represent derivatives, except 
w here they are in parenthesis, in which case they refer to a 
vector-valued variable. Thus, 0t is the gradient vector of a 
scalar quantity  0 :  R"h^IR. The Hessian is 0,j, and  the 
Laplacian is 0 U. A vector field is v il)r w here v : R "h^R ", and 
the divergence of that field is The m agnitude of the 
gradient of 0  is || 0t ||=  \/0 ,0 ,.

Level set surface m odels rely on the notion of a regular 
surface, a collection of 3D points with a topology that allows 
each point to be m odeled locally as a function of tw o 
variables. We can describe the deformation of such a 
surface using the 3D velocity of each of its constituent 
points, i.e., dsa)(t)/dt- for all t  S.  We represent the 
deformable surface implicitly as

5  =  { s« )W  I 0 (s(i)(*M ) =  0 }, (1 2 )

where t is a time param eter. Surfaces defined in this way 
divide a volum e into tw o parts: inside (0 >  0) and outside 
(0 < 0). Ft is common to choose 0 to be the signed distance 
transform  of S,  or an approxim ation thereof.

The surface rem ains a level set of 0 over time and, thus, 
taking the total derivative with respect to  time gives
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Fig. 1. Shown here in 2D, the surface flow process begins with a shape and constructs a normal map from the distance transform (left), modifies the 
normal map according to a PDE derived from a penalty function (center), and refits the shape to the normal map (right).

Because the gradient is proportional to the surface normal, 
0s{ j)/0t affects 0 only in the direction of the surface normal— 
motion in any other direction results merely in a reparam e
terization. To com pute the appropriate speed term 00/dt ,  we 
rewrite the energy defined in (11) in a level set fram ework

Q(0) = !  G( h2 + k |)  II 0 , II d.v, (14)

w here U c I R3 is the dom ain of <!>. The || 0t || multiplicative 
factor provides a per-level-set w eighting, and minimization 
of this energy defines d0/dt .  A discussion of d0/ d t  follows.

5.2 Curvature from Normal Maps
When using implicit representations, one m ust account for 
the fact that derivatives of functions defined on the 
surface are com puted by projecting their 3D derivatives 
onto the surface tangent plane. Let Ar(i) be the normal 
map, which is a field of norm als that are everywhere 
perpendicular to the family of em bedded isosurfaces of 
0—thus, N {1) =  0,J || 0k ||=  0,J \ /01:0k-1 The 3 x 3  projection 
matrix for the implicit surface normal is P (i;) =  0t0j / 0k0k, 
and P{tjjVJ,) returns the projection of V{i.) onto Ar(i). Let / (i;) 
be the identity matrix. Then, the projection onto the plane 
that is perpendicular to the vector field Ar(i) is the tangent 
projection operator, T(i;) =  I (l,ri —

The shape matrix [38] of a surface describes its curvature 
independent of the param eterization. For an implicit sur
face, it is obtained by differentiating the normal m ap and 
projecting the derivative, onto the surface tangent
plane. The Euclidean norm of the shape matrix is the sum of 
squared principal curvatures

K2 = \ \N{t):iTUk)\ f .  (15)

We now express the level set energy function defined in (14) 
in term s of the norm als of the level set surface as a 
volum etric integral

a(A^)) =  j  G[ \ \ N(l)jT(jk) 112)  || 0 t || d.r. (16)

The first variation of this energy with respect to the normals 
is a second order PDE. Ft is crucial to observe that, even

1. We use different indices, i and k, for the gradient and the magnitude of 
the gradient, respectively, to make it clear that the division is performed 
after the summation in the denominator.

though the projection operator T{.jk) is a function of 0, it is 
independent of the norm als because 0 is fixed as w e process 
the normals. Hence, T {j k) does not increase the order of the 
first variation of (16). In contrast, taking the first variation of 
(14) with respect to 0 directly would yield a fourth order 
PDE on 0, resulting in a much harder system to solve.

As we process the normal m ap to minimize (16), allowing
0 to lag, we m ust ensure that the normal vectors maintain the 
unit length constraint. Solutions to constrained optimization 
problem s defined on nonflat manifolds are discussed in [39], 
[40]. Using the method of Lagrange m ultipliers, the first 
variation of the constrained energy becomes

-  2 (I{ll) -  N {l)N {l]) [9(h2) ( N[l)nlT{nlk))}k, (17)

where g is the derivative of G  with respect to h2, and k 2 is 
as defined in (15). The subscript k outside the square 
brackets denotes the divergence operation. The unit length 
constraint for the normal vectors introduces the projection 
o p era to r J (i;) — Ar(i)Ar(;) to (17), i.e., the changes are 
perpendicular to the un it normal vectors. In a numerical 
im plem entation with finite time steps, a separate, explicit 
normalization step is also needed. A gradient descent of 
this metric ON^/ Ot  =  —dQ/ dN^  results in a PDE that 
minimizes (16). We will discuss several choices for G  in 
Section 6.

5.3 Surface Refitting
We have shown how  to evolve the norm als to minimize 
functions of total curvature; however, the final goal is to 
process the surface, which requires deform ing 0. Therefore, 
the next step is to relate the deform ation of the level sets of
0 to the evolution of Ar(i). Suppose that we are given the 
normal m ap Ar(i) to some set of surfaces, bu t not necessarily 
level sets of 0—as is the case if we filter Ar(i) and let 0 lag. 
We can m anipulate 0 to fit the normal field Ar(i) by 
m inim izing a penalty function that quantifies the discre
pancy between the gradient vectors of 0 and the target 
normal map. This penalty function is

V ( 0) =  j

The first variation of this penalty function with respect to
0 is

(IS)
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- i V (<> (19)

Fig. 2. Flow chart.

d V _
(1.0

w here IF’ is the m ean curvature of the level set surface and IIA 
is half the divergence of the norm al map. The gradient descent 
PDE that m inim izes (18) is dQ/dt = — | W l dT>/dQ. The factor 
of 1101-11, which is typical w ith  level set formulations, comes 
from m anipulation of the shape of the level set, w hich is 
em bedded in 0 . The surface moves according to the difference 
betw een its ow n curvature and  that of the norm al field.

Let

HiU.)
0 ,

U.)

Y t  =  ~ f ( s )N  +  a V0 || [IP -  IIK], (20)

denote the residuals at steady state. Because we m ust 
have =  0 a t stead state, we observe that /?(()< =  0. This 
re su lt sta tes th a t the  residua l vectors betw een  the 
processed norm als and the unit gradients of the refitted 
surface are a divergence free field.

The gradient descent for the MAP surface estim ator (3) is 
a w eighted sum  of the refitting term , derived in (19), and a 
data term. Therefore, the final update rule for 0 is

w here a  is a free param eter that determ ines the relative 
w eight of the prior term  w ith respect to the data term. We 
will refer to a  as the prior weight.

The norm al processing stage and  the surface refitting 
stage can now  be combined. The entire process is depicted 
in Fig. 2. We iterate dN/ d t  for a fixed num ber, 20 in our 
im plem entation, so that the difference betw een 0  and  the 
surface defined by the norm als rem ain small. The surface 
fitting to the combined norm al m ap and data term s is 
form ulated as a gradient descent in (20). This process 
comprises the d $ /d t loop in Fig. 2. The overall algorithm  
show n in Fig. 2 repeats these tw o steps to minimize the 
penalty functions in term s of the surface. This m ain loop 
iterates until the root m ean square (rms) change in  0  as a

Fig. 3. (a) A heavy tailed Gaussian probability distribution function. This 
function can be scaled to integrate to 1 because, in our discrete 
implementation, k has a finite upper bound, (b) Graph of G  versus k  with 
P =  0.2. G  is also the logarithm of (a).

result of the application of d$ /d t becomes small, less than 
10~G in our im plem entation, w hich signals convergence. 
The overall system  behavior resembles the fourth-order 
PDE that minimizes surface curvature. This m athem atical 
relationship is explored in further detail in Appendix A.

6 Ex p e r im e n ts

In Section 5, we developed a fram ework allowing the use of 
priors that are general functions of the variations of the 
surface normals. We now  explore tw o such functions and 
com pare them  to the surface area prior. Total curvature of a 
surface as defined in (10) can be obtained in our form ulation 
by choosing G  to be the identity function, i.e., G (k 2) =  k 2. The 
derivative of G  w ith respect to k 2 is g(K2) =  1. We refer to this 
choice of G  as the isotropic prior because it corresponds to 
solving the heat equation on the norm al m ap w ith a constant, 
scalar conduction coefficient. M inimizing the total curvature 
of surface norm als w orks well for sm oothing surfaces and 
elim inating noise, but, like G aussian blurring, it also deforms 
or removes im portant features.

The generalization of P&M anisotropic d iffusion to 
surfaces is achieved from variational principles by choosing 
the appropriate function of the total curvature in (16), such as

G (k 2) =  2 /.r ( I 1 J , an d  g{K2) =  e (21)

We nam e this choice of G, graphed in Fig. 3b, the anisotropic 
prior. The m inim ization of the penalty function in (16) w ith the
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Fig. 4. A noisy range image of a sphere plotted as a depth map.

anisotropic prior gives a vector-valued anisotropic diffusion 
on the level set surface—a generalization of P&M diffusion to 
surfaces—that preserves/enhances creases. Creases are the 
generalization of edges in images to surfaces. The preserva
tion of creases is achieved by the flat tails of G, that lim it the 
penalty on high curvature areas. Note that /i is fixed at 0.2 for 
all the experim ents in this paper. In contrast to its behavior in 
P&M image diffusion, this param eter does not need to be 
changed fordifferentsurface reconstructions. In thecontextof 
P&M image diffusion, the units of /i are in gray levels; 
consequently, the optimal choice of f.i is image dependent. 
However, in surface reconstruction, the units are in curvature 
as can be observed in (21). The only dependence is the scale of 
interest, i.e., the curvatures of interest. This makes it possible 
to choose a /i value that gives consistent results over a range of 
surfaces that are approxim ately of the same scale.

The anisotropic prior can also be analyzed from a 
statistical point of view. Typically, robust estim ators use 
heavy tailed Gaussian probability distributions such as the 
one illustrated in Fig. 3a. Such probability distribution 
functions assign nonzero probabilities to outliers, large 
k  values in our case. The logarithm of the heavy tailed 
Gaussian has the same form as the anisotropic G  we have 
chosen. In fact, using the Gibbs distribution (7), we 
observe that the prior probability distribution achieved 
by G(-) is proportional to P = e  Gl). The param eter /i in 
(21) controls the k  values for which G  and P  flatten out.

Section 6.1 presents a discussion of the quantitative 
differences between the isotropic and anisotropic priors and 
the surface area prior using synthetic data as ground truth. 
We also investigate the effects of the prior w eight on the 
results. Section 6.2 presents surface reconstruction examples 
from real data m easured by laser range finders and 
m agnetic resonance im aging devices.

6.1 Experiments with Synthetic Data
The experim ents presented in this section use geometric 
shapes for which we can construct analytical distance 
transforms. We use the following experim ent setup:

1. Build range images from the analytical distance 
transform  using the model for the laser range finder 
located at several positions.

2. Add independen t G aussian noise to the range 
images to sim ulate m easurem ent noise.

3. Reconstruct a surface model from the noisy range 
images.

Fig. 5. Rms geometric distance between the analytical sphere and the 
reconstructed surface.

4. Com pare the resulting surface model to the analy
tical shape by com puting the rms geometric distance 
between the tw o surfaces.

We first examine a sphere with radius 1 unit. All other 
distances are relative to this m easurem ent unit. For this 
experim ent, we sim ulate six range finders located at a 
distance of 3.5 units from the center of the sphere along the 
six cardinal directions. Independent Gaussian noise with a 
standard deviation that is 10 percent of the sphere's radius 
(0.1 units), is added to each range image. One of the noisy 
range images is shown in Fig. 4 as a depth map. We 
reconstruct surface m odels from these noisy range images 
using the three priors under investigation w ith a range of 
weights, a. For each choice, we run the algorithm  described 
until it reaches convergence as described in Section 5. We 
then calculate the rms distance between the original model 
and the reconstructed model and denote this distance by £.

Fig. 5 plots £  against the log a  for the different priors 
under examination. The units on the y-axis are the same as 
the units used to described the size of the shape. It can be 
observed from Fig. 5 that the lim it of £  as a  —> 0 is 
approxim ately 0.0125. This lim it is the error obtained if 
surface reconstruction is performed w ithout a prior (relying 
only on the data). It is smaller than the noise added to the 
range images because of the averaging effect of using 
m ultiple range images. The anisotropic and the isotropic 
priors a t their optim al w eight provide a 75 percent 
reduction on this error. On the other hand, surface area 
provides slightly better than a 50 percent reduction at its 
optimal weight. These best reconstructions are illustrated in 
Fig. 6. We contend that the shapes of the error plots are 
more im portant than the results at optimal choices of 
weight. The plot for the surface area prior dips down 
sharply around n =  1 which indicates a small range of 
useful w eights for this prior. The surface area prior 
perform s especially poorly as a  is increased beyond 1. This 
is due to the fact shrinkage in the surface models caused by 
the surface area prior. In practice, this will cause difficulties 
for the user in choosing a weight that works for different 
reconstruction scenarios. In contrast, both of the higher- 
order priors have relatively flat error plots because their 
lim iting behaviors match the model in this example. 
Isotropic reconstruction perform s as well as the anisotropic 
reconstruction because the sphere does not contain creases.
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W eight

(a)

Fig. 6. (a) Surface model initialization from noisy data. Resulting surface 
model for the (b) surface area prior with a- — I , (c) the isotropic prior with 
a  -  5, and (d) the anisotropic prior with a  -  10.

W eight

(b)

Fig. 7. Rms geometric distance between the reconstructed surface and 
the analytical models for (a) the cube and (b) the “3D-plus-shape.”

Fig. 8. (a) Surface model initialization from noisy data. Resulting surface 
model for (b) the surface area prior with a  -  I , (c) the isotropic prior with 
a  — I , and (d) the anisotropic prior with a  — 10.

To further examine the differences betw een the priors, we 
experim ent w ith a cube and  another piecewise p lanar shape 
which we call the "3D-plus-shape." In these experim ents, we 
used eight range finder locations (one in each octant). Fig. 8a 
shows the the surface initialization from the noisy range 
images of the cube w ith sides 1 un it long. Independent 
Gaussian noise w ith standard  deviation 0.1 w as added  to the 
sim ulated data to create the noisy range images. The results 
(see Fig. 8) w ith the surface area and  isotropic priors are 
noisier and  have rounded  corners. In contrast, the results w ith 
anisotropic reconstruction are successfully denoised and 
have sharp creases. Using higher a  values for the surface area 
and  isotropic priors to eliminate the noise results in further 
shape distortion. The last example, show n in Fig. 9a, amplifies 
the differences observed w ith the cube experiment. Ft is not 
possible to denoise the surface w ithout causing severe 
distortion to the shape w ith the other priors; see Figs. 9c, 9d, 
9e, and  9f. Anisotropic curvature reconstruction does not 
suffer from this trade off betw een sm oothing and distortion. Ft 
provides a very good (denoised and  relatively undistorted) 
reconstruction across a range of values for the prior weight; 
see Figs. 9g and  9h. The error plots for the cube and  the 
"3D-plus-shape" show n in Fig. 7 confirm that the anisotropic 
reconstruction error flattens out as a  increases beyond its 
optim al value.

6.2 Surface Reconstruction from Measured 
Range Data

In this section, we first investigate these surface priors in  the 
context of the reconstruction of an  office scene show n in 
Fig. 10. This example involves 12 range scans of a room  which 
were registered using the m ethods described in [18]. One of 
these 12 range images is show n in Fig. 10a. The m odel 
initialization is show n in Fig. 10b. In addition to m easurem ent 
noise, this initialization contains artifacts such as m ultiple 
disconnected pieces seen in the upper right corner. Fig. 11 
illustrates the results obtained w ith the surface area, isotropic 
and  anisotropic priors. As in Section 6.1, we allow the 
algorithm s to run  until convergence is reached. The prior 
term  weights w ere selected as those that produced the
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Fig. 9. (a) Analytical "3D-plus-shape” and (b) surface model initialization 
from noisy data. Resulting surface model for the surface area prior with 
(c) a  -  1 and (d) a  -  10. For the isotropic prior with (e) a  -  1 and 
(f) a  -  10. For the anisotropic prior with (g) a  -  10 and (h) a  -  100.

qualitatively best results. The results w ith the anisotropic 
prior rem ain close to the actual surface while eliminating 
noise. O n the other hand, the surface area prior that produces 
a com parable am ount of denoising dem onstrates shape 
distortion such as the breaking of the arm s of the chairs and 
the rounding of the creases on the desk and  com puter 
equipm ent. The isotropic curvature prior does not cause any 
severe shape distortions, bu t it smoothes edges, creases, and 
corners as expected. This experim ent illustrates the im por
tance of the anisotropic prior in  reconstructions involving 
scenes w ith high curvature features and  sharp creases.

Fig. 12 dem onstrates the robustness of the different priors 
by a detailed exam ination of a small portion of the scene. 
Figs. 12a and 12b are the initialization and the visible im agery 
for one of the chairs in the scene. Figs. 12c, 12e, and  12g 
illustrate the results obtained by qualitatively choosing 
succesful values for a. Figs. 12d, 12f, and  12h illustrate the 
results if a  is chosen to be 10 times this value. These results 
show that the anisotropic curvature is least sensitive to the 
choice of the prior weight. Also, observe that the beam 
connecting the base to the seat is being pinched-off in Fig. 12d.

Fig. 10. (a) One of the range images used in the surface reconstruction 
experiment and (b) surface initialization.

Fig. 13 illustrates the reconstruction of a m ilitary vehicle w ith 
the anisotropic curvature prior. This reconstruction also used 
12 range images. Both reconstructions require approxim ately 
one hour of com putation on a Intel 1.7 GHz Xeon processor.

As discussed before, the prior term  and  the m ethods 
presented in this paper are not specific to reconstruction 
from range data. We now  dem onstrate results of our 
m ethod used in conjunction w ith an algorithm  for level set 
surface segm entation from volum etric MRI data. For this 
purpose, we adopt the data term  introduced in [41], [42]. 
This data term  deform s the surface m odel in such a way 
that voxels falling betw een a low and a high intensity 
threshold will be contained in the interior of the surface. 
Fig. 14a shows one slice of the the volum etric MRI data. We 
initialize the surface as a box that is slightly smaller than the 
size of the data. The intersection of this initial surface w ith 
the slice is show n as a light gray contour.

In the lack of a prior term , we the data term  forces the 
surface to m atch every detail in the data, creating a noisy 
segmentation, see Fig. 15. Using the same anisotropic prior as 
before, we obtain a sm oother, less noisy, and  feature 
preserving segm entation. Fig. 14b shows a slice of the 
resulting surface. This segm entation requires approxim ately 
tw o hours of com putation on an Intel 1.7 GHz Xeon processor.
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Fig. 11. Results with (a) surface area, (b) isotropic curvature, and 
(c) anisotropic priors.

7 Conclusion

Anisotropic diffusion and image reconstruction techniques 
based on robust metrics have been shown to be very useful 
tools in image processing. We generalize these m ethods to 
surface reconstruction by considering a general family of 
penalty functions of curvature. The minimization of these 
second-order penalty functions require solving fourth-order 
PDEs on level sets. W e avoid an exact solution because this 
w ould require very small time steps in a num erical 
im plem entation [29], Instead, we propose a cascaded pair 
of PDEs that resemble the original fourth-order PDE.

Fig. 12. (a) Initial surface model for chair and (b) a visible light image of 
the chair taken from a similar point of view. Results for the surface area 
prior with weights (c) 1 and (d) 10. Results for the isotropic prior with 
weights (e) 1 and (f) 10. Results for the anisotropic prior with weights (g) 1 
and (h) 10.

The splitting of the original fourth-order PDE in toa cascade 
system is achieved via the surface normals. This method is 
based on the proposition that the natural generalization of
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Fig. 13. Reconstruction of a military vehicle (with the anisotropic prior) 
from range data.

image processing to surfaces occurs via the normals. Normals 
a re processed sepa ra tel y from th e surf a ce usi n g a me tri c on th e 
surface m anifold, ra ther than a sim ple, flat metric. By 
processing the norm als separately from the surface, we can 
solve a pair of cascaded second-order equations instead of a 
fourth-order equation. Typically, we allow one equation (the 
surface) to lag the other. This method is numerically more

Fig. 14. A sagittal slice from a head MRI volume. The highlighted 
contours represent the intersection of the level set surface with the slice: 
(a) initialization and (b) segmented model with the anisotropic prior.

Fig. 15. Segmentation of the facial surface (a) with a data term only and 
(b) with the data term and the anisotropic prior.

stable and com putationally less expensive than solving the 
fourth-order PDE directly and resembles the original fourth- 
order system. However, it is not mathematically equivalent to 
it. We solve these equations using implicit surfaces, repre
senting the implicit function on a discrete grid and modeling 
the deformation with the method of level sets. The method 
applies equally well to surfaces that can be represented in a 
volume.

We have shown that an anisotropic penalty on curvature 
com puted from the surface norm als leads to a surface 
reconstruction prior that preserves creases while denoising 
the input. This process dem onstrates im portant quantitative 
and qualitative ad vantages over processes that use the surface
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area prior. The data term can be chosen independently from 
the prior; therefore, the ideas introduced in this paper can be 
applied to other forms of surface reconstruction such as 
applications in tom ography.

The main shortcom ing of this m ethod is the computation 
time, which is significant. However, the current process 
lends itself to parallelism. The advent of cheap, specialized, 
stream -processing hardw are prom ises significantly faster 
im plem entations w hen the inherent parallelism  in the 
process is exploited [43], [41], [42], M ultithreading could 
also be utilized to exploit the parallelism in the process. 
Regarding the algorithm  itself, the use of adaptive or 
m ultiresolution level set strategies could also im prove the 
processing time.

A p p e n d ix  A

M a th e m a t ic a l  F o u n d a tio n

The proposed algorithm for im posing second-order priors 
on surfaces does not, strictly speaking, produce a fourth- 
order flow. We have avoided a true fourth-order im ple
mentation because such flows impose small time steps on 
the corresponding numerical algorithms. The proposed 
method is a second-order flow which has a fundam ental 
relationship to the second-order penalty function described 
in Section 4. As noted by Ambrosio and Masnou [36], the 
relationship between such second-order systems (see also 
[37]) and the corresponding fourth-order variational pro
blem is not fully understood.

The purpose of this appendix is to describe, in a more 
precise way, the relationship between the proposed second- 
order system and the corresponding fourth-order flow. The 
argum ent is that if the norm als are the norm als of the 
corresponding level-sets of d> and the norm als are processed 
by an infinitesimal am ount, then the refitting process 
creates a flow on the level-set surfaces which is the same 
as the corresponding fourth-order flow. This does not imply 
that the proposed method approxim ates the fourth-order 
flow, because we do not constrain the norm als and the 
surface to move together in a coupled m anner. However, 
the discussion below does give the mathematical under
pinnings of the proposed method and helps us understand 
w hy the results conform, qualitatively, to our expectations 
of the fourth-order flow.

In this discussion, we use vector notation for clarity, and 
we denote the energy Q0. We can rewrite this energy 
function by observing that the principal curvatures are 
functions of the derivatives of d>

I cm
J u

V<f) II dx. (2 2 )

dQo
r  d (G

Ju

Vd»  II)
■d<l> dx. (23)

Applying the product rule to d(i> , we obtain

dQ0
f  d-G .. „  .. , , /' 

- r -  V 0  dd) d. r +
Ju  dd> Ju

d _
d<l>

(24)

dQo. dQo.

The total derivative dG(d>) || V d)  || can be w ritten in term s of 
the surface norm als by using the equality

125)

given that the normal m ap is a function of d>. Then, the first 
term in (24) can be w ritten as

dQo
f  d G  I1VT „ _  „ , 

fiN V<£ dx.
Ju  d N

(26)

To simplify (26), we derive d N  as a function of N  and d\Id>

d V0
d N  =  ( I  -  N  is  N ) -

V 0
(27)

Substituting (27) for dN  in (26) and using the commutivity 
of differentiation (dVd> = Vd-d)), we get

dGo.i = j  ( ( /  N . N i ^ )  ■ V(d0) dr. (28)

We treat this energy minimization as an adiabatic problem, 
in which energy flow across the boundary of U is zero. 
Hence, using Neumann boundary conditions for U and 
integrating by parts, we obtain

dQ0
I M

i r - N ( S N ) ^ |  dd»d.r. (29) dJN /
We now examine the second term in (24), dQ0:>. As in 

Section 5.2, we treat G as a function of N; therefore, due to the 
decoupling between N  and <l>, G  can be considered indepen
dent of <l>. Using this assum ption, we can rewrite dQ0,•> as

dQo
r  d G N || v<i> 

Ju d-d)
tlo dx , (30)

where the superscript on G N indicates that G  is fixed with 
respect to d>. Taking the first variation of d G N || Vd> || yields

dQo
V0
Vd>

dd> dx. (31)

since for a vector v, =  p | .  Finally, combining (23), (29), 
and (31), we can derive the desired relationship between the 
variations with respect to d> and N

. (32)

Let d d ) : IR/’ —> IR.be a volum e of incremental changes applied 
to d>: IR’ —> IR. The change to Q induced by dd> can be 
expressed as the volum e integral of the total derivative of the 
penalty function, dG(d>) || Vd) || , which is the product of dd> 
and the variation of the penalty function w ith respect to d>

Let us now  consider the flow achieved by processing (17) 
and (19) back to back in one iteration of the main loop in 
Fig. 2 again. At the beginning of iteration n, the norm als are 
com puted from If we evolve the norm als for one step 
according to (17), instead of processing them m ultiple 
iterations, the new norm als are

N '7 1 + 1 ■ N " - ( f - N ( S N )
dG
d N ’ (33)
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w here we w rite ^  instead of ̂  because we are referring to 
the update  for N  at a specific point in space. If we immediately 
apply (19) to fit 0 to this new normal m ap, we get

dD
dtp

I F  -  V • N
1341

w here D  is the local function defined in (18). Because N " is 
derived directly from 0", we have V • N  =  H ''“, w hich gives 
the rule in our algorithm to make up  this infinitesimal lag:

^  =  V - ( / - N 0 N ) ^ § .
d4> ' dN

(35)

Com paring w ith (32), we find the rule to descend on the 
energy as a function of 0

d(G  [j V0 [j) 
d0

dD  „
: —r~ +  V  •

d0
G

V4>
V4>

(36)

Thus, we see that we can mimic the fourth-order flow as a 
combination of second order terms; one that fits the surface to 
the normal field and  the other that moves the surface betw een 
normal m aps to find the set of norm als that minimize the total 
curvature. In our experim ents, we have found that the 
contribution of the second term is very small and  does not 
change the results qualitatively. Therefore, we drop  it for the 
sake of com putational efficiency and im plem ent only ^  as [21 
described in Section 4. Because we discretize the equations in 
time in an uncoupled m anner and recom pute the norm als p? 
asynchronousl y at the beginning of each iteration, the 
resulting numerical scheme is not strictly fourth order.
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