
Formal Specification of MPI 2.0:
Case Study in Specifying a Practical

Concurrent Programming API

Guodong Li, Robert Palmer, Michael DeLisi,
Ganesh Gopalakrishnan, Robert M. Kirby

UUCS-09-003

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

May 28, 2009

Abstract

We describe the first formal specification of a non-trivial subset of MPI, the dominant com
munication API in high performance computing. Engineering a formal specification for
a non-trivial concurrency API requires the right combination of rigor, executability, and
traceability, while also serving as a smooth elaboration of a pre-existing informal specifi
cation. It also requires the modularization of reusable specification components to keep the
length of the specification in check. Long-lived APIs such as MPI are not usually ‘textbook
minimalistic’ because they support a diverse array of applications, a diverse community of
users, and have efficient implementations over decades of computing hardware. We choose
the TLA+ notation to write our specifications, and describe how we organized the specifi
cation of 150 of the 300 MPI 2.0 functions. We detail a handful of these functions in this
paper, and assess our specification with respect to the aforesaid requirements. We close
with a description of possible approaches that may help render the act of writing, under
standing, and validating specifications much more productive.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The Message Passing Interface (MPI, [32]) library has become a de facto standard in HPC,
and is being actively developed and supported through several implementations [9, 31,7].
However, it is well known that even experienced programmers misunderstand MPI APIs
partially because they are described in natural languages. The behavior of APIs observed
through ad hoc experiments on actual platforms is not a conclusive or comprehensive de
scription of the standard. A formalization of the MPI standard will help users avoid misun
derstanding the semantics of MPI functions. However, formal specifications, as currently
written and distributed, are inaccessible to most practitioners.

In our previous work [22], we presented the formal specification of around 30% of the 128
MPI-1.0 functions (mainly for point-to-point communication) in a specification language
TLA+ [33]. TLA+ enjoys wide usage in industry by engineers (e.g. in Microsoft [34]
and Intel). The TLA+ language is easy to learn. A new user is able to understand our
specification and start practicing it after a half-an-hour tutorial. Additionally, in order to
help practitioners access our specification, we built a C front-end in the Microsoft Visual
Studio (VS) parallel debugger environment, through which users can submit and run short
(perhaps tricky) MPI programs with embedded assertions (called litmus tests). A short
litmus test may exhibit a high degree of interleaving and its running will reveal the nuances
of the semantics of the MPI functions involved. Such tests are turned into TLA+ code and
run through the TLC model checker [33], which searches all the reachable states to check
properties such as deadlocks and user-defined invariants. This permits practitioners to play
with (and find holes in) the semantics in a formal setting.

While we have demonstrated the merits of our previous work ([22]), this paper, the journal
version of our poster paper [15], handles far more details including those pertaining to data
transfers. In this work, we have covered much of MPI-2.0 (has over 300 API functions, as
opposed to 128 for MPI-1.0). In addition, this new work provides a rich collection of tests
that help validate our specifications. It also modularizes the specification, permitting reuse.

Model Validation. In order to make our specification be faithful to the English description,
we (i) organize the specification for easy traceability: many clauses in our specification are
cross-linked with [32] to particular page/line numbers; (ii) provide comprehensive unit tests
for MPI functions and a rich set of litmus tests for tricky scenarios; (iii) relate aspects of
MPI to each other and verify the self-consistency of the specification (see Section 4.11);
and (iv) provide a programming and debugging environment based on TLC, Phoenix, and
Visual Studio to help engage expert MPI users (who may not be formal methods experts)

into experimenting with our semantic definitions.

The structure of this paper is as follows. We first discuss the related work on formal speci
fications of large standards and systems; other work on applying formal methods to verify
MPI programs is also discussed. Then we give a motivating example and introduce the
specification language TLA+. This example illustrates that vendor MPI implementations
do not capture the nuances of the semantics of an MPI function. As the main part of this
paper, the formal specification is given in Section 4, where the operational semantics of
representative MPI functions are presented in a mathematical language abstracted from
TLA+. In Section 5 we describe a C MPI front-end that translates MPI programs written in
C into TLA+ code, plus the verification framework that helps users execute the semantics.
Finally we give the concluding remarks. In the appendix we give an example to show how
the formal semantics may help the rigid analysis of MPI programs — we prove formally
the definition of a precedence relation is correct, which is the base of a dynamic partial
order reduction algorithm.

2 Related Work

The idea of writing formal specifications of standards and building executable environ
ments is a vast area.

The IEEE Floating Point standard [12] was initially conceived as a standard that helped
minimize the danger of non-portable floating point implementations, and now has incarna
tions in various higher order logic specifications (e.g., [10]), finding routine applications in
formal proofs of modern microprocessor floating point hardware circuits. Formal specifi
cations using TLA+ include Lamport’s Win32 Threads API specification [34] and the RPC
Memory Problem specified in TLA+ and formally verified in the Isabelle theorem prover
by Lamport, Abadi, and Merz [1], In [13], Jackson presents a lightweight object modeling
notation called Alloy, which has tool support [14] in terms of formal analysis and testing
based on Boolean satisfiability methods.

Bishop et al [3,4] formalized in the HOL theorem prover [20] three widely-deployed imple
mentations of the TCP protocol: FreeBSD 4.6-RELEASE, Linux 2.4.20-8, and Windows
XP Professional SP1. Analogous to our work, the specification of the interactions between
objects are modeled as transition rules. The fact that implementations other than the stan
dard itself are specified requires repeating the same work for different implementations.

In order to validate the specification, they perform a vast number of conformance tests:
test programs in a concrete implementation are instrumented and executed to generate ex
ecution trances, each of which is then symbolically executed with respect to the formal
operational semantics. Constraint solving is used to handle non-determinism in picking
rules or determining possible values in a rule. Compared with their work, we also rely on
testing for validation check. However, since it is the standard that we formalize, we need
to design and write all the test cases by hand.

Norrish [19] formalized in HOL [20] a structural operational semantics and a type system of
the majority of the C language, covering the dynamic behavior of C programs. Semantics of
expressions, statements and declarations are modeled as transition relations. The soundness
of the semantics and the type system is proved formally. Furthermore, in order to verify
properties of programs, a set of Hoare rules are derived from the operational semantics. In
contrast, the notion of type system does not appear in our specification because TLA+ is
an untyped language.

Each of the formal specification frameworks mentioned above solves modeling and analysis
issues specific to the object being described. In our case, we were initially not sure how
to handle the daunting complexity of MPI nor how to handle its modeling, given that there
has only been very limited effort in terms of formal characterization of MPI.

Georgelin and Pierre [8] specify some of the MPI functions in LOTOS [6]. Siegel and
Avrunin [29] describe a finite state model of a limited number of MPI point-to-point op
erations. This finite state model is embedded in the SPIN model checker [11]. They [30]
also support a limited partial-order reduction method - one that handles wild-card commu
nications in a restricted manner, as detailed in [24], Siegel [28] models additional ‘non
blocking’ MPI primitives in Promela. Our own past efforts in this area are described in
[2, 21, 25, 23]. None of these efforts: (i) approach the number of MPI functions we
handle, (ii) have the same style of high level specifications (TLA+ is much closer to math
ematical logic than finite-state Promela or LOTOS models), (iii) have a model extraction
framework starting from C/MPI programs, and (iv) have a practical way of displaying error
traces in the user’s C code.

3 Motivation

MPI is a standardlized and portable message-passing system defining a core of library
routines useful to a wide range of users writing portable message-passing programs in
Fortran, C or C++. Versions 1.0 and 2.0 were released in 1994 and 1997 respectively.

Currently more than a dozen implementations exist, on a wide variety of platforms. All
segments of the parallel computing communicty including vendors, library writers and
application scientists will benefit from a formal specification of this standard.

3.1 Motivating Example

MPI is a portable standard and has a variety of implementations [9, 31, 7]. MPI programs
are often manually or automatically (e.g., [5]) re-tuned when ported to another hardware
platform, for example by changing its basic functions (e.g., MPI_Send) to specialized
versions (e.g., MPI_Isend). In this context, it is crucial that the designers performing
code tuning are aware of the very fine details of the MPI semantics. Unfortunately, such
details are far from obvious. For illustration, consider the following MPI pseudo-code
involving three processes:

PO MPI_Irecv(rct'6w/l. *, reql);
MPI_Irecv(ret>&«/2. from 1. req2);
MPI_Wait(reql);
MPI_Wait(req2);
MPI_Bcast(ret'6w/3. root = 1);

PI sendbuf 1 = 10;
MPI_Bcast(sendfru/l. root = 1);
MPI_Isend(send6w/2. to 0. req);
MPI_Wait(req);

P2 sendbuf 2 = 20;
MPI_Isend(send6w/2. to 0. req);
MPI_Bcast(reet>&«/2. root = 1);
MPI_Wait(req);

Process 1 and 2 are designed to issue immediate mode sends to process 0, while Process
0 is designed to post two immediate-mode receives. The first receive is a wildcard receive
that may match the send from PI or P2. These processes also participate in a broadcast
communication with PI as the root. Consider some simple questions pertaining to the
execution of this program:

1. Is there a case where a deadlock is incurred? If the broadcast is synchronizing such
that the call at each process is blocking, then the answer is ‘yes’ , since P0 can
not complete the broadcast before it receives the messages from PI and P2, while
PI will not isend the message until the broadcast is complete. On the other hand,
this deadlock will not occur if the broadcast is non-synchronizing. As in an actual
MPI implementation MPI_Bcast may be implemented as synchronizing or non
synchronizing, this deadlock may not be observed through ad hoc experiments on a
vendor MPI library. Our specification takes both bases into consideration and always
gives reliable answers.

PO p i

Irecv
Irecvv

P2

■ Isend

- Beast
Wait

2. Suppose the broadcast is non-synchronizing, is it possible that a deadlock occurs?
The answer is ‘yes’ , since PO may first receive a message from PI, then get stuck
waiting for another message from PI. Unfortunately, if we run this program in a
vendor MPI implementation, PI may receive messages first from P2 and then from
PI. In this case no deadlock occurs. Thus it is possible that we will not encounter
this deadlock even we run the program for 1,000 times. In contrast, the TLC model
checker enumerates all execution possibilities and is guaranteed to detect this dead
lock.

3. Suppose there is no deadlock, is it guaranteed that rcvbufl in PO will eventually
contain the message sent from P2? The answer is ‘no’ , since PI ’s incoming messages
may arrive out of order. However, running experiments on a vendor implementation
may indicate that the answer is yes, especially when the message delivery delay from
PI to PO is greater than that from P2 to PO. In our framework, we can add in PO
an assertion rcvbuf 1 = = 20 right before the broadcast call. If it is possible under
the semantics for other values to be assigned to these two variables, then the model
checker will find the violation.

4. Suppose there is no deadlock, when can the buffers be accessed? Since all sends
and receives use the immediate mode, the handles that these calls return have to be
tested for completion using an explicit MPI_Test or MPI_Wait before the asso
ciated buffers are allowed to be accessed. Vendor implementations may not give
reliable answer for this question. In contrast, we can move the assertions mentioned
in the response to the previous question to any other point before the corresponding
MPI .waits. The model checker then finds violations— meaning that the data cannot
be accessed on the receiver until after the wait.

5. Will the first receive always complete before the second at PO? No such guarantee
exists, as these are immediate mode receives which are guaranteed only to be initiated
in program order. Again, the result obtained by observing the running of this program
in a vendor implementation may not be accurate. In order to answer this question,
we can reverse the order of the MPI_Wait commands. If the model checker does
not find a deadlock then it is possible for the operations to complete in either order.

The MPI reference standard [32] is a non machine-readable document that offers English
descriptions of the individual behaviors of MPI functions. It does not support any exe
cutable facility that helps answer the above kinds of simple questions in any tractable and
reliable way. Running test programs, using actual MPI libraries, to reveal answers to the
above kinds of questions is also futile, given that (i) various MPI implementations exploit
the liberties of the standard by specializing the semantics in various ways, and (ii) it is
possible that some executions of a test program are not explored in these actual implemen
tations.

Thus we are motivated to write a formal, high-level, and executable standard specification
for MPI 2.0. The availability of a formal specification allows formal analysis of MPI pro
grams. For example, we have based on this formalization to create an efficient dynamic
partial order reduction algorithm [26]. Moreover, the TLC model checker incorporated in
our framework enables users to execute the formal semantic definitions and verify (simple)
MPI programs.

3.2 TLA+ and TLC

The specification is written in TLA+ [33], a formal specification notation widely used in
industry. It is a formal specification language based on (untyped) ZF set theory. Basically
it combines the expressiveness of first order logic with temporal logic operators. TLA+ is
particularly suitable for specifying and reasoning about concurrent and reactive systems.

TLC, a model checker for TLA+, explores all reachable states in the model defined by the
system. TLC looks for a state (i.e. an assignment of values to variables) where (a) an
invariant is not satisfied, (b) there are no exits (deadlocks), (c) the type invariant is violated,
or (d) a user-defined TLA+ assertion is violated. When TLC detects an error, a minimal-
length trace that leads to the bad state is reported (in our framework this trace turns into a
Visual Studio debugger replay of the C source).

It is possible to port our TLA+ specification to other specification languages such as Alloy
[13] and SAL [27]. We are working on a formalization of a small subset of MPI functions
in SAL, which comes with state-of-the-art symbolic model checkers and automated test
generators.

4 Specification

TLA+ provides basic modules for set, function, record, string and sequence. We first ex
tend the TLA+ library by adding the definitions of advanced data structures including array,
map, and ordered set (oset), which are used to model a variety of MPI objects. For in
stance, MPI groups and I/O files are represented as ordered sets.

The approximate sizes (without including comments and blank lines) of the major parts
in the current TLA+ specification are shown in Table 1, where #funcs and #lines give
the number of MPI functions and code lines respectively. We do not model functions

(rendezvou^ (fren d) (w in s) (f ile s) (shared_envs)

p r o c e s s j) ^ ^ ^ ^ " ^ ^ p r o c e s T n ' '^ ^

(datatypes) (en vs) (datatypes) (en vs)

(grou p s) (o s) (grou p s) (o s)

(m em s) (m em s)

; (reqs) (fre q s) (eps") ■ ; (reqs) (fireqs) (eps) !

(MPI System Scheduler)

Figure 1: MPI objects and their interaction

whose behavior depends on the underlying operating system. For deprecated items (e.g.,
MPLKEYVAL.CREATE), we only model their replacement (MPLCOMM .CREATE _KEYVAL).

Main Module #funcs(#lines)
Point to Point Communication 35(800)
Userdefined Datatype 27(500)
Group and Communicator Management 34(650)
Intra Collective Communication 16(500)
Topology 18(250)
Environment Management in MPI 1.1 10(200)
Process Management 10(250)
One sided Communication 15(550)
Inter Collective Communication 14(350)
I/O 50(1100)
Interface and Environment in MPI 2.0 35(800)

Table 1. Size o f the Specification (excluding comments and blank lines)

4.1 Data Structures

The data structures modeling explicit and opaque MPI objects are shown in Figure 1. Each
process contains a set o f local objects such as the local memory object mems. Multiple
processes coordinate with each other through shared objects r e n d e z v o u s , w ins , and
so on. The message passing procedure is simulated by the MPI system scheduler (MSS),
whose task includes matching requests at origins and destinations and performing message
passing. MPI calls and the MSS are able to make transitions non-deterministically.

Request object r e q s is used in point-to-point communications to initiate and complete
messages. A message contains the source, destination, tag, data type, count and commu
nicator handle. It carries the data from the origin to the target. Note that noncontiguous
data is represented as (user-defined) datatypes. A similar file request object f r e q s is for
parallel I/O communications.

A group is used within a communicator to describe the participants in a communication
“universe” . Communicators comms are divided into two kinds: intra-communicators each
of which has a single group of processes, and inter-communicators each of which has two
groups of processes. A communicator also includes virtual topology and other attributes.

A rendezvous is a place shared by the processes participating in a collective communica
tion. A process stores its data to the rendezvous on the entry of the communication and
fetches the data from the rendezvous on the exit. A similar f r e n d object is for (shared)
file operations.

For one-sided communications, epoches e p o s are used to control remote memory ac
cesses; each epoch is associated with a “window” , modeled by w ins , which is made
accessible to accesses by remote accesses. Similarly, a “ file” supporting I/O accesses is
shared by a group of processes.

Other MPI objects are represented as components in a shared environment s h a r e d . e n v s
and local environments envs . The underlying operating system is abstracted as o s in a
limited sense, which includes those objects (such as physical files on the disk) visible to the
MPI system. Since the physical memory at each process is an important object, we extract
it from o s and define a separate object mems for it.

4.2 Notations

We present our specification using notations extended and abstracted from TLA+.

4.2.1 TLA+

The basic concept in TLA+ is functions. A set of functions is expressed by [domain —»•
range]. Notation /[e] represents the application of function / one; and [x G S ^ e]
defines the function / such that f[x) — e for x G S. For example, the function f double that

doubles the input natural number is given by [s € N 2 x s] or [1 H4 2, 2 4 , . . .]; and
fd ou b le^ } — 8.

For a n-tuple (or n-array) (ei, • • • , en), e[i\ returns its ith component. It is actually a func
tion mapping i to e[i\ for 1 < i < n. Thus function f double is equivalent to the tuple
(2,4, 6 , 8 , • • •). An ordered set consisting of n distinct elements is actually a n-tuple.

Notation [/ EXCEPT ![ei] = e2] defines a function / ' such that f — f except f '[e i] = e2.
A @ appeared in e2 represents the old value of f [ei]. For example, [fdouble EXCEPT ! [3] =
@ + 10] is the same as / double except that it returns 16 when the input is 3. Similarly,
[r EXCEPT \.h — e] represents a record r' such that r' — r except r'.h — e, where r.h
returns the /i-field of record r.

The basic temporal logic operator used to define transition relations is the next state oper
ator, denoted using ’ or prime. For example, s' — [s EXCEPT ![x] = e] indicates that the
next state s' is equal to the original state s except that x ’s value is changed to e.

For illustration, consider a stop watch that displays hour and minute. A typical behavior
o f the clock is the sequence (hr — 0,mnt — 0) —> (hr — 0 ,mnt — 1). — • • • . (hr —
0. rnnt — 59). (hr — 1. rnnt — 0),—>,•••, where (hr — 0. rnnt — 1) is a state in which the
hour and minute have the value 0 and 1 respectively.

The next-state relation is a formula expressing the relation between the values o f hr and
rnnt in the old (first) state time and new (second) state time' o f a step. It assert that rnnt
equals rnnt + 1 except if rnnt equals 59, in which case rnnt is reset to 0 and hr is increased
by 1.

time' = le t c = time[mnt\ ^ 59 in
[time EXCEPT \[mnt] = i f c then @ + 1 else 0,

l[hr] = i f -ic then @ + 1 else @]
Additionally, we introduce some commonly used notations when defining the semantics

o f MPI functions.
Fi o F2 the concatenation of queue Fi and F2
Fi o Xk o F2 the queue with x being the kth element
e null value
a an arbitrary value
T and _L boolean value ture and false
Fi C r 2 Fjisa sub-array (sub-queue) of F2
1j v is an array
/ W (x,v) a new function (map) /1 such that/i [:c] = v and Vy ^ x. f\ [y] = f[y]
f\x the index of element x in function / , i.e. f[f\x) = x
e ? ei : e.2 i f c then x else y
s ize (f) or |/| the number of elements in function /
remove(/, k) remove from / the item at index k
unused_index(/) return an i such that i ̂ DOM(/)

TLA+ allows us to specify operations in a declarative style. For illustration we show below
a helper function used to implement the MPI_COMM_SPLIT primitive, where DOM, RNG,
CARD return the domain, range and cardinality of a set respectively. This code directly
formalizes the English description (see page 147 in [32]): “This function partitions the
group into disjoint subgroups, one for each value of c o l o r . Each subgroup contains all
processes o f the same color. Within each subgroup, the processes are ranked in the order
defined by key, with ties broken according to their rank in the old group. When the process
supply the color value MPI .UNDEFINED, a null communicator is returned.” In contrast,
such declarative specification cannot be done in the C language.

Comm_split(group, colors, keys, proc) =
1 : le t rank = group\proc in
2 : i f color s{rank) = MPI .UNDEFINED then MPI.GROUP JSfULL
3 : else
4 : le t s = {k € DOM (group) : color s[k] = color s[rank]} in
5: le t Si =
6 : choose g € [O . .C A R D (s) — 1 —> DOM (group)] :
7 : A RNG(g) = s
8 : A Vi. j € s :
9 : g\i < g\j =» (keys[i\ < keys[j] V keys{i] = keys[j] A i < j)
12 : in [i £ DOM(si) i—> group{si{i]]]

After collecting the color and key information from all other processes, a process proc
calls this function to create the group of a new communicator. Line 1 calculates the rank of
this process in the group; line 4 obtains a set o f processes o f the same color as proc’s; lines
5-11 sort this set in the ascending order of keys, with ties broken according to the ranks.-------- y ------y
For example, suppose group = (2, 5,1), colors = 1, 0, 0 and keys = (0, 2 .1), then the
call o f this function at process 5 creates a new group (1, 5).

4.2.2 Operational Semantics

The formal semantics of an MPI function is modeled by a state transition. A system state
consists of explicit and opaque objects mentioned above. We write o b j p for the object
o b j at process p. For example, r e q s p refers to the request object (for point-to-point
communications) at process p.

We use notation = to define the semantics of an MPI primitive, and = to introduce an auxil
iary function. The pre-condition cond of a primitive, if exists, is specifies by “requires { cond
An error occurs if this pre-condition is violated. In general a transition is expressed as a
rule of format where guard specifies the requirement for the transistion to be trig
gered, and action defines how the MPI objects are updated after the transition. When the
guard is satisfied, the action is enabled and may be performed by the system. A null guard
will be omitted, meaning that the transition is always enabled.

For instance, the semantics o f MPI_Buffer.detach is shown below. The pre-condition
says that buffer at process p must exist; the guard indicates that the call will block until all
messages in the buffer have been transmitted (i.e. the buffer is empty); the action is to write
the buffer address and the buffer size into the p ’s local memory, and deallocate the space
taken by the buffer. The buffer locates in the envs object. A variable such as b u ff is
actually a reference to a location in the memory; in many cases we simply write b u ff for
memsp[buff] for brevity.

MPI_Buf f er_detach(6«//, size.p) =
requires { b u f f e r p ^ e}

b u f f e r p.capacity = b u f f e r .max jcapacity
mems'p[buff] = b u f f e r p.buff A memspfsize] = b u f f e r p.size A b u f fe r ^ = e

In the following we describe briefly the specification of a set o f representative MPI func
tions. The semantics presented here are abstracted from the actual TLA+ code for suc
cinctness and readability, which has been tested thoroughly using the TLC model checker.
The entire specification including tests and examples and the verification framework are
available online [17].

4.3 Quick Guide

In this section we use a simple example to illustrate how MPI programs and MPI functions
are modeled. Consider the following MPI program involving two processes:

PO : MPLSend(bufs, 2, MPI INT. 1 ,10 , MPI COM M WORLD)
MPI BeaM (>//(•• I. MPI FLOAT. 0, MPI COM M WORLD)

P I : M PI_Bcast(6«/6,1, MPI FLOAT. 0, MPI COM M WORLD)
MPI_Recv(6«/r, 2, MPI INT. 0, MPI AN Y TAG. MPI COM M WORLD)

This program is converted by the compiler into the following TLA+ code (i.e. the model
o f this program). An extra parameter is added to an MPI function to indicate the process
this primitive belongs to. In essence, a model is a transition system consisting o f transition
rules. When the guard of a rule is satisfied, this rule is enabled and ready for execution.
Multiple enabled rules are executed in a non-deterministic manner, leading to multiple
executions. The control flow of a program at a process is represented by the pc values: pc[0]
and pc{ 1] store the current values o f the program pointers at process 0 and 1 respectively.
In our framework, a blocking call is modeled by its non-blocking version followed by a
wait operation, e.g. MPI_Send = MPI_Isend + MPI_Wait. Note that new variables
such as requesto and statuso are introduced during the compilation, each o f which is
assigned an integer address. For example, suppose request0 = 5 at process 0, then this
variable’s value is given by mems[0] [requesto) 0'-£- mems[0] [5]). To modify its value to v in

a transition rule, we use mems'[0][rcqucsto] = v (or request0 = v for brevity puipose).

pO's transition rules

V A |«’ [0] = Lp A p c ' = [pc FXCFPT ![0] = L?\
A M P L Isend(6 i i / s , 2 ,M P I_IN T , 1 .1 0 , M P I .C O M M .W O R L D . r e q u e s lo , 0)

V A |«’ [0] = T. 2 A p c ' = p c ' = [pc FXCFPT ![0] = T-a]

A M P L W a itfre y iie sto , s ta tu s o , 0)
V A |«’ [0] = T. 3 A p c ' = [pc FXCFPT \[pid[= I. \j

A M P I_H casti„it(6« / i , . 1. M P IJ !L O A T. 0 , M P I .C O M M .W O R L D , 0)
V A pc\pn!] = I- \ A p c ' = [pc FXCFPT \[pid[= I .-]

A M P L B castw ait(b u fb , 1. M PLh’L O A T, 0 ; M P I_C O M M _W O R L D ; 0)

p i's transition rules

V A |«’ [1] = Lp A p c ' = [pc FXCFPT ![1] = f.-2[
A M P L B c ast,,r; t (b n f b. l ; M P IJ !L O A T ; 0 ; M P I_C O M M _W O R L D ; 1)

V A |«’ [1] = T. 2 A p c ' = [pc FXCFPT ![1] = Lp}[
A M P I.B ca st1I,a it (6 « / i , . 1. M PI_i!L O A T. 0 ; M P I_C O M M _W O R L D ; 1)

V A |«’ [1] = T. 3 A p c ' = [pc FXCFPT ![1] = / ’..(]
A M PI_Irecv(6 u / s . 2 ; M P U N T . 0 ; M P I_A N Y _T A G . M P I_C O M M _W O R L D ; r e q u e s t 1 .0)

V A |«’ [1] = L. 1 A p c ' = [pc FXCFPT ![1] = Lp,[

A M P I.W a it(» -c< /«csti. s ta tu s \ , 0)

A enabled rule may be executed at any time. Suppose the program pointer of process //) is
L i, then the MPI _I send rule may be executed, modifying the program pointer to L >. This
rule creates a new send request req of format {destination. communicator id, tag, value) request id,
and appends req to pO's request queue reqs0- Here function read,-dota reads an array of
data from the memory according to the count and datatype information.

le t v = read-data(memso, bufs, 2. MPUNT) in
reqsn = r e q s 0 o (1, commsn [MPI_COMM_WORLD].cid, 10, v)requestu

Similarly, when the MPI_Irecv rule at process pi is executed, a new receive request
o f format {buffer, source, communicator id, tag, -)request id is appended to reqsl5 where _
indicates that the data is yet to be received.

r e q s i = r e q Sl o {bufr, 0, commsi [MPI_COMM_WORLD].rid, MPI_ANY_TAG, jrequesn

As indicated below, the MPI System Scheduler will match the send request and the receive
request, and transfers the data v from process //) to process pi. Then the send request
request^ becomes (1 , cid, 1 0 , _), and the receive request requesti becomes (1 , cid, 1 0 , v),
where cid is the context id o f communicator MPI_COMM_WORLD.

isjm atch({0 , requests), (1, requesti))
rec[s'n[requestn) = [@ EXCEPT Lvalue = _]
reqs'j [request\] = [@ EXCEPT Lvalue = d]

Suppose the send is not buffered at pO, then the MPl_Wait rule shown below will be
blocked until the data in the send request is sent. When the value is sent, the send request
will be removed from pO's request queue. We use notation T to denote all the requests
excluding the one pointed by request^ in pO's request queue, and reqs0 = Gamma o
(• • - “/r e q u e s t , , is a predicate for pattern matching.

reqsp = T o (1, cid, 10,-)requestu
reqs[, = F

Analogously, the M Pl.W ait rule at process pi is blocked until the receive request re
ceives the incoming value. Then this request is removed from p i's request queue, and the
incoming value v is written into p i's local memory.

re q s , = T o (bufr, 0, cid, MP1_ANY_TAG, v)request.!
reqs', = F A mems'i [bufr] = v

In our formalization, each process divides a collective call into two phases: an “ init”
phase that initializes the call, and a “wait” phase that synchronizes the communications
with other processes. In these two phases processes synchronize with each other through
the rendezvous (or rend for short) object which records the information including
the status of the communication and the data sent by the processes. For a communicator
with context ID cid there exists a separate rendezvous object rend[cid]. In the “ init”
phase, process p is blocked if the status o f the current communication is not V (‘ vacant’);
otherwise p updates the status to be ‘e‘ (‘entered’) and store its data in the rendezvous.
Recall that notation ^ t±) (p, V) represents the function ^ with the item at p updated to V,
and [i i—> v-\, j ^ v-2\ is a function that maps i and j to v-\ and v2 respectively. In the given
example, the rendezvous object pertaining to communicator MPI_COMM_WORLD becomes
([0 i—j- V, 1 i—j- V], [0 i—j- v]), where v — reiuLdata(memsQ,bufb, 1, MPI_FLOAT), after
the “ init” phases o f the broadcast at process 0 and 1 are over.

syninit(cHi! v, p) = process p joins the communication and stores data v in rend
rend[d<i] = {$ W (p. ‘v'). Sv)

rend'[c«i] = (\P W (p, le ’), ,SV W (p, v))

In the “wait” phase, if the communication is synchronizing, then process p has to wait until
all other processes in the same communication have finished their “ init” phases. If p is the
last process that leaves, then the entire collective communication is over and the object will
be deleted; otherwise p just updates its status to be I (‘left’).

synwait(e«i. p) = process p leaves the synchronizaing communication
rend[e»'<i] = (\P W (p. ‘e'). Sv) A
VA: e commsp[cid\.group : $[A:] €

rend^cid] = i f VA: e commsp[cid}.group : \P[A] = ‘V then e
e lse W (p, ‘V), Sv)

These simplified rules illustrate how MPI point-to-point and collective communications are
modeled. The standard rules for these communications are given in Section 4.4 and 4.6.

4.4 Point-to-point Communication

In our formalization, a blocking primitive is implemented as an asynchronous operation
followed immediately by a wait operation, e.g. MPI_Ssend = MPI_Issend + MPI.Wait and
MPI_Sendrecv = MPI_Isend + MPI.Wait + M PIJrecv + MPI_Wait. The semantics o f core

point to point communication functions are shown in figures 3, 4, 5 and 6 ; and an example
illstruating how a MPI program is “executed” according to these semantics is in figure 2.
The reader is supposed to refer to these semantics when reading through this section.

A process p appends its send or receive request containing the message to its request queue
reqsp. A send request contains information about the destination process (cist), the con
text ID of the communincator (aid), the tag to be matched (tag), the data value to be send
(value), and the status (omitted here) of the message. This request also includes boolean
flags indicating whether the request is persistent, active, live, canceled and deallocated
or not. For brevity we do not show the last three flags when presenting the content of a
request in the queue. In addition, in order to model a ready send, we include in a send
request a field prematch of format (destination process, request index) which refers to
the receive request that matches this send request. A receive request has the similar format,
except that it includes the buffer address and a field to store the incoming data. Initially the
data is missing (represented by the “ _” in the data field). Later on an incoming message
from a sender will replace the “ _” with the data it carries. Notation v_ indicates that the
data may be missing or contain a value. For example, (buf, 0,10, *, T, T, (0, h)Y2ecv is a
receive request such that: (i) the source process is process 0 ; (ii) the context id and the tag
are 10 and M PI_ANY_TAG respectively; (iii) the incoming data is still missing; (iv) it is a
persistent request that is still active; (v) it has been prematched with the send request with
index 5 at process 0; and (vi) the index of this receive request in the request queue is 2.

MPI offers four send modes. A standard send may or may not buffer the outgoing mes
sage. If buffer space is available, then it behaves the same as a send in the buffered mode;
otherwise it acts as a send in the synchronous mode. A buffered mode send will buffer
the outgoing message and may complete before a matching receive is posted; while a syn
chronous send will complete successfully only if a matching receive is posted. A ready
mode send may be started only if the matching receive is already posted.

As an illustration, we show below the specification of MPI_lBsend. Since dtype and
comm are the references (pointers) to a datatype and a communicator object respectively,
their values are obtained by datatypesP[dtype] and commsp[comm} respectively. The
value to be send is read from the local memory of process p through the read-data func
tion. It is the auxiliary function ibsend that creates a new send request and appends it
to p ’s request queue. This function also modifies the send buffer object at process p (i.e.
buf ferp), to accomodated the data. Moreover, the request handle is set to point to the

PO
Issend(t?i, dst = 1, cid = 5,

tag = 0, req = 0)
Irsend(v2* dst = 2, cid = 5,

tag = 0, req = 1)
Wait (req = 0)
Wait (req = 1)

Pi
Irecv(6, src =

tag = *,
Wait(reg = 0)

0, cid = 5
reg = 0)

P2
Irecv(6, src =

tag = *,
Wait(reg = 0)

*, = 5
reg = 0)

step event reqso reqsj req52
1 issend(n. 1. 5.0. 0) {1.5.0. v. J-.T.c)gs
2 irecv(6. 0. 5. *. 1) {1.5.0. v. X. T. ()gs {b. 0. 5. *___L. T. ()
3 irecv(6. *. 5. *. 2) {1.5.0. v. J-.T.c)gs (b. 0. 5. *---L. T. ()gc (b. *. 5.*---L. T.()gc
4 irsend(n. 2. 5.0. 0) {1.5.0. T.()gsc. (b. 0. 5. *___L. T. ()gc (b. *. 5.*---L. T. {0.1))5C

{1.5.0. vo. X. T. {2.0))JS
5 transf er(0.1) {1.5.0. _. X. T. ()gs <■ (b. 0. 5. *. hi. X. T. ()qc (b. *. 5.*---L. T. {0.1))5C

{1.5.0. vo. X. T. {2.0))JS
6 wait(0. 0) {1.5.0. vo. X. T. {2.0))JS {b. 0.5.*.m.X.T.c)gc (b. *. 5.*---L. T. {0.1))5C
7 wait(l. 0) {1.5.0. vo. X. T. {2.0))!s {b. 0. 5. *. ui. X. T. ()oc {6. *. 5.*---L. T. {0.1))5C
8 transf er(0. 2) (b. 0.5.*. m.X.T.()gc (b. *. 5.*. t>2. X. T. {0. l»g
9 wait(0. 2) (b. 0.5.*. m.X.T.()gc
10 wait(0.1)

Figure 2: A point-to-point communication program and one of its possible executions.
Process p 0 sends messages to p\ and p2 in synchronous send mode and ready send mode
respectively. The scheduler first forwards the message to p1; then to p2. A request is
deallocated after the wait call on it. Superscripts ss, rs and rc represent ssend, rsend and
recv respectively. The execution follows from the semantics shown in Figures 3, 4 and 5.

new request, which is the last request in the queue.

ibsend(t*, dst, eld, t-ag, p) = buffer send
requires {size(t') < b u f f e r p:vacaneg}

append a new send request (which is active and non-persistent) into the queue
req.Sp = reqsp o {dst, cid, tag, v, _L, T , €)bsend a
reduce the capacity of the send buffer by the size of v

b u f £ er'p.vacancy = b u f fe r p.vacancy — size(v)

MPI_IBsend(6'u/, count, dtype, dest, tag, comm, request, p) = top level definition
le t crn = commsp[comm] in the communicator
A ibsend(read-data(memsp, buf, count, d a t a t y p e s p[dtype\), cm.group[dest],cm.cid, tag,p)
A memsp[request] = l e n (r e q s p) set the request handle

The M PI_Recv is modeled in a similar way. If a send request and a receive request match,
then the MPI System Sceduler can transfer the value from the send request to the receive
request. Relation = defines the meaning o f “matching” . There are two cases needed to be
considered:

• The send is in ready mode. Recall that when a send request reqs is added into the
queue, it is prematched to a receive request reqr such that the prematch field (abbre-

viated as u) in reqs stores the tuple (destination process, destination request index),
and in reqT stores the tuple (sourceprocess, source request index). The MSS knows
that reqs and reqT match if these two tuples match.

• The send is in other inodes. The send request and receive request are matched if their
source, destination, context ID and tag information match. Note that the source and
tag in the receive request may be MPI _ANY-SOURCE and MPI _ANY_TAG respec
tively.

({p,dst,tagp,uip,kp) = {src,q ,tagq,uiq,k q)) =
i f uiq = e A uiq = e then
the two requests contain no pre-matched information

A tagq e \tagp, ANYJTAG} the tags match
A q = dst q is the destination

A src € {p, ANY-SOURCE} the source is p or any process
e lse the two requests should have been pre-matched

^ p = (< hkq) A U!q = (p , k p)

It is the rule transfer that models the message passing mechanism: if a send message
in process p's queue matches a receive request in g’s queue, then the data is transferred.
Note that messages from the same source to the same destination should be matched in a
FIFO order. Suppose in process p ’ s request queue there exists an active send request / eg,; =
{dst, cid. tagp. v,prp. T, ujp) f nd, which contains a data value v to be sent; and process g’s
request queue contains an active receive request reg,: = (buf. src. cid,. tagq. _. prq. T, ujq} y cv,
whose data is yet to be received. If reqp ('reqp) is the first request in its queue that matches
reqq (reqp), then the value in reqp can be transferred to reqq. The following predicate
guarantees this FIFO requirement:

${dst.,cid,tagu v,p ru T,u)-l)%nd € Tf : $ {b u f,src2,cid, tag2, - , ^ 2 , T,u>2)r„ect' e Tf :
V {p,dst,tug-[,uj-[,m) = (src,q ,tagq,u>q, j) V {p,dst,tagp,uip, i) = {src2,q ,tug2,u}2 ,n)
V (p, dst, tugi ,u}i,m) = (src2, q, tag2, ui-2, n)

As shown in this rule, when the transfer is done, the value field in the receive request req,
is filled with the incoming value v, and the value field in the send request reg,; is set to
indicating that the value has been sent out. If the request is not persistent and not live (i.e.
the corresponding MPI_Wait has been called), then it will be removed from the request
queue. In addition, if the receive request at process q is not live, then the incoming value
will be written to g’s local memory.

The MPI_Wait call returns when the operation identified by the request request is com
plete. If request is a null handle, then an empty status (where the tag and source are
MPI_ANY_TAG and MPI_ANY_SOURCE respectively, and count equals to 0) is returned;
otherwise the assitant function wait_one is invoked, which picks the appropriate wait func-

Data Structures
send request : important fields + less important fields

[dst : in t , cid : in t , tag : in t , value, pr : bool, active : bool, prem utch),"ode +
(cancelled :

recv request :
(bu.f : in t , src : in t , cid : in t , tag : in t , value, pr : bool, active : bool, premat c.h)reev +
(cancelled : bool, dealloc : bool, live : bool)

ibsend(v , dst, cid, tag, p) = buffer send
requires {s ize (v) < h u f f e r p.vacancy} check buffer availability

r e q s ', = reqsp o (dst, cid, tag, v, _L, T , e)bsend A append a new send request
b u f f e r ' .vacancy = b u f f e r p.vacancy — s iz e (v) allocate buffer space

issend(v , dst, cid, tag, p) = synchronous send
r e q s ', = r e q s , , o (dst, cid, tag, i1, _L, T , e)sse,,rf

({p,dst,tagp,uip,k p) = (src,q ,tagq,uiq,k q)) = match a send request and a receive request
i f uiq = e A uiq = e then

tagq e {tugp, ANY_TAG} A q = dst A src E {p, ANY_SOURCE}
else uip = (q, kq) A uiq = (p,kp) prematched requests

irsend(v, dst, cid, tag, p) = ready send
, r 3q : 3(src, cid, taq\, _, pr\, T , e)'iecv € r e q s „ :

requires { ^ ^ ^ (len {req S p)) J (iTf. ^ ^ f k) }

r e q s ', = r e q s (, <> (dst, cid, tag, v, -L, T , (q, k))rsend A req s^ .o i = (p, l e n (r e q s p))

isend = i f useJm f f e r then ibsend e lse issend standard mode send

irec v (bu f,src,cid ,tag ,p) = receive
r e q s ', = r e q s (, o (bu.f, src, cid, tag, J -,T , e)recv

MPI_I send (bu.f, count, dtype, dest, tag, comm, request, p) = standard immediate send
le t cm = c o r n s p[comm\ in the communicator
A isend(read-duta(memsp, bu.f, count, dtype), c.m.grou.p[dest],c.m.cid, tag, p)
A memsp[requ.est] = l e n (r e q s p)

MPI_Irecv(6'u/, count, dtype, source, tag, comm, request, p) = immediate receive
le t cm = commsp[c.omm\ in
A irecv(6'u/, c.m.grou.p[dest],
A mems '[request] = l e n (r e q s p)

wait_on^(request, status, p) = wait for one request to complete
i f r e q s p[memsp[request]\.mode = recv
then recv_wait(re(/'ue«f) for receive request
else send_wait(request) for send request

MPI_Wait(re(/'ue«f:, status, p) = the top level wait function
i f memsp[re</'ttes#] = REQUEST_NULL then

mems' [status] = empty s ta tu s
e lse wait_one(re(/'ue«f:, status, p)

the handle is null, return an empty status

for receive reque

for send request

the communicator
cm.cid, tag, p)

set the request handle

a matching receive exists?

b o ol, dealloc.: b o o l, live : bool)
important fields + less important fields

tr a n s fe r (p. q) = message transferring from process p to process q
A re q sp = F f o (dst, cid, tagp, v ,prp, T . ujp) f md o r f
A r e q s 9 = r f <> {buf, src, cid, tagq, _,p rq, T . u>q) f cv o T\ A
A match the requests in a FIFO manner

{p,dst-,tagp,Lop,i) = (src,q,t-agq,Loq,j) A
${dst, cid, tags ■ v,pr\, T , Ui)%nd € T f :

$ {b u f,s ro 2,cM ,ta g 2,-,pr-2,T ,u j2Y„ecv € r f :
V {p, dst, ta g ,. w-,. m) = {.src, g. ta,99. i)
V {p, dst, tagp, u)p, i) = {.src2 , q, tag2, '^2, n)

____________V {p, dst, to,9-1. uj-i . m) = (src2,g , tag2,uj2, n)______________
A req S p = send the data

l e t b = r e q s p[i].live in
i f -<b A -^req.Sp[/'].p r th en o r f
e ls e F f o {dst, d-d, tagp, -,prp, b, v p)send o r f

A r e q s ' = receive the data
l e t b = r e q s q[j].live in

i f -<b A - i r e q s q[j].pr then Tf o T\
e ls e r f o {buf,p, d-d, tagq, v,prq, b, u)q)recv o r f

A - i r e q s (y[y].live => memsq[buf] = v write the data into memory

r e c v jwa.it(request, status, p) = wait for a receive request to complete
l e t reqJndex = memsp[request] in
A req s^ ,[reqJndex] .live = _L indicate the wait has been called
A

V -ire q sp [reqJndex] .active =$■ mems p[status] = empty status
V the request is still active

l e t T-| ❖ {buf,src,cid,tag, v_,j)r,T,ijj)'‘̂ " i:ridex o T2 = r e q s q in
l e t b = pr A -^reqsp[reqJndex].dealloc in
l e t new-reqs =

i f b then

F | o {buf,src ,cid ,tag , v_,pr,±,u.’) recv o T2 set the request to be inactive

e ls e F 1 o f 2 remove the request
in
l e t n ew -reqJ n d ex = update the request handle

i f b th en reqJ n d ex e l s e REQUEST-NULL in
i f r e q s 9[reqJndex].can-celled then

memsp[,s-totf'u,s-] = g et-M -a tu s{req sp [reqJndex]) A
re q S p = new -reqs A memSp[reg'ue,sf] = new -req -in d ex

e l s e i f src = PROCJNfULL then
memsp[.sfaftt.s] = null s ta tu s A
re q S p = new -reqs A mems^regtte.s-f] = new -req -in dex

e ls e
wait until the data arrive, then write it to the memory

______________________7 ^ - ___

memsp[,s-totf'u,s-] = get-status(reqsp[reqJndex]) A
memsp [im /] = v_ A
r e q S p = new-reqs A memSp[reg'ue,sf] = new-req-index

Figure 4: Modeling point-to-point communications (II)

send_wait(regtte,s<. status, p) = wail for a receive request to complete
l e t req-index = memsp[request] in
A req s 'p [reqJndex}.live = _L indicate the wait has been called
A

V -^ reqsp[req-index}.active =4- memsp[status] = empty s ta tu s
V the request is still active

l e t r-| ❖ (dst,dd,tag,v_,pr,T,J)™ °*_fndex o T2 = r e q s , in
l e t b = pr A -^reqs p [reqJndex].dealloc V in
l e t new-reqs =

i f b then
F | o (buf, src,cid ,tag, v_,pr, ± ,u i)recv o T2 set the request to be inactive

e ls e F i o F 2 remove the request
in

l e t new -reqJndex = update the request handle
i f b then req-index e ls e REQUEST-NULL in

l e t action =
update the request queue, the status and the request handle

A memsp[,stai'u,s] = g e ts ta tu s {r e q s p[req-index})
A reqS p = newjreqs A mems' [request] = new jreqJndex

in
i f r e q s q[req-index}.mnceUed then action
e ls e i f dst = PROC_NULL then

memsp[,stai'u,s] = null sta tu s
reqSp = new .reqs A mems'p[request\ = new jreqJndex

e ls e i f mode = ssend then synchronous send

can complete only a matching receive has been started
3q : 3{src-\, cid, tags, - ,p n , T . a)rkecv € :

(dst.p, tag, u>, req) = (src-i, q, tag t, iQ-j, k)
action

e ls e i f mode = bsend then
action A b u f f e r ' .capaticy = b u f f e r .capaticy— size(v_)

e ls e if no buffer is used then wait until the value is sent
-i'use_buf f er (v_ = _)

action

is s e n d _ in it (v. d st. c id , tag , p) = persistent (inactive) request for synchronous send
reqSp = r e q s p ❖ (dst, cid, tag, v, T . _L. e)ssend

ire c v _in it(fru /. src, cid, tag, p) = persistent (inactive) receive request
reqS p = r e q s p <> (buf, src, cid, tag, _. T . _L. e)recl’

s t a r t {req In d ex , p) = stall (activate) a persistent request

re q u ire s { r e q s p[req-index}pr A - ir e q s p[reqJndex].active}
r e q s fp[req-index] = [r e q s p[reqJndex] EXCEPT !.active = T]

Figure 5: M odeling point-to-point communications (III)

ca.ncel(reqJndex.p) = cancel a request

i f r e q s p [reqJndex].active then r e q s 'p[reqJndex].cancelled = T mark for cancellation
e ls e r e q s ', = rem ov e(req sp. reqJndex')

f ree_request(reg'ttest, p) = free a request
l e t reqJndex = mems p[request] in
l e t Ti o •;</••>/. tag. r . pr. act. <) ’"l‘lf'„llll o F 2 = r e q s q in

i f act then reqSp[reqJn4e-x].dealloc = T mark for deallocation
e ls e r e q s ', = Ti o T2 A mems',['TOjue,s#] = REQUEST_MULL remove the request

Iias_completed(reqJndex. p) = whether a request has completed

V 3 {buf. src. cid. tag. v. pr. T , uj) recv = r e q s q [reqJndex] the data v have arrived
V 3{dst. cid. t-ag.v_.pr, T , uj)mode = r e q s g[reqJndex] :

V mode = bsend the data are buffered
V mode = rsend A (useJtruffer V (v_ = _)) the data have been sent or buffered
V mode = ssend A there must exist a matching receive

3q : 3 {b u fi,src i,c id ,ta g i,- ,p r i,T ,u .’i)l?'cv € r e q s , :
{dst. p. tag. uj. req) = {.srci, q. tagi. u.’\. k)

wait_any(cottrrf, reqorroy, index, status, p) = wait for any request in reqorroy to complete

i f Vi- € 0 ..count — 1 : reqorroy[i] = REQUEST_MULL V -> re q sp[reqorroy[i]].active
then mems',[index] = UNDEFINED A memsp[status] = ernpty-status

choose i : has_conipletcd(reqc,rrc,I [/1. q)
e l s e ---------------rj-.— ;— ;------ ;---

memsp[/T(.de,rj = i A
memsp[status] = g et-s ta tu s(req sp[req0rroy[i]])

w a it_ a l l (count, reqjarray, status jarray. p) = wait for all requests in reqorroy to complete

Vi- € 0 .. count — 1 : wait-0n-e(reqorrOy[i], statusjirray[i].p)

wait for all enabled requests in req0rr0y to complete, abstracting away the statuses

w ait j3ome(mcotmf, reqorroy. outcount. indie p) =
i f Vi € 0 ..count — 1 : reqorroy[i] = REQUEST-NULL V -* r e q sp[reqorroy['■]].active
then mems',[index] = UNDEFINED
e ls e

l e t (index, count) = pick all the completed requests

ch oose (A C reqorroy. max k € 1 .. incoimt — 1) : V/ € 0 .. k — 1 : Iias-compIeted(A [I].p)
in

wait allicnunt. index.p)
outcount' = count A indiceorroy = index

Figure 6: M odeling point-to-point communications (IV)

tion according to the type of the request.

wait_one(?-e</, status, p) = wait for one request to complete
i f r e q s p[req].mode = recv

th en recv_wait(?-e</) for receive request

e ls e send_wait(?-e</) for send request

MPI_Wait(request, status, p) =
l e t reqJndex = merrisp[request] in
i f reqJndex = REQUEST_MULL then

mems 1 [status] = empty s ta tu s the handle is null, return an empty status
e ls e wait_one(?-e</ Jndex, status, p)

Let us look closer at the definition of recv_wait (see figure 4). First of all, after this wait
call the request is not “ live” any more, thus the live flag is set to false. When the call is
made with an inactive request, it returns immediately with an empty status. If the request
is persistent and is not marked for deallocation, then the request becomes inactive after the
call; otherwise it is removed from the request queue and the corresponding request handle
is set to MPI .REQUEST JNIULL.

Then, if the request has been marked for cancellation, then the call completes without
writing the data into the memory. If the source process is a null process, then the call returns
immediately with a null status with source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and
count = 0. Finally, if the value has been received (i.e. v_ ^ _), then the value v is written to
process p's local memory and the status object is updated accordingly.

The semantics of a wait call on a send request is defined similarly, especially when the
call is made with a null or inactive or cancelled request, or the target process is null. The
main difference is that the wait on a receive request can complete only after the incoming
data have arrived, while the wait on a send request may complete before the data are sent
out. Thus we cannot delete the send request when its data haven't been sent, this requires
the condition b to be pr A ->reqsp[reqJndex].de.alloc V v_ ^ After the call, the
status object, request queue and request handle are updated. In particular, if the request has
sent the data, and it is not persistent or has been marked for deallocation, then the request
handle is set to MPI-REQUEST JSIULL. On the other hand, if the data have not been sent
(i.e. v_ 7 ̂ _), then the request handle will be intact.

mems1 [status] = get s ta tiL s(req sp{req-index])
r e q s ', = new-reqs A mems p[requ.est] = new .req Jndex

Depending on the send mode, the wait call may or may not complete before the data are
sent. A send in a synchronous mode will complete only if a matching receive is already
posted.

3q : 3(src\, cid\,tagi, pru T , u-!i) rkecv € Ti :
(dst, p, cid, tag, ui, req) = (s r a , q, cid i, t-agi, , k)

A buffered mode send will complete immediately since the data is buffered. If no buffer

is used, a ready mode send will be blocked until the data is transferred; otherwise it returns
intermediately.

When a persistent communication request is created, we set its presistent flag. A commu
nication using a persistent request is initiated by the s t ar t function. When this function is
called, the request should be inactive. The request becomes active after the call. A pending,
nonblocking communication can be canceled byacancel call, which marks the request
for cancellation. A free .request call marks the request object for deallocation and set
the request handle to MPI_REQUEST_NULL. An ongoing communication will be allowed
to complete and the request will be deallocated only after its completion.

In our implementation, the requirement for a request to be complete is modeled by the
has ̂ completed function. A receive request is complete when the data have been received.
A send request in the buffer mode is complete when the data have been buffered or trans
ferred. This function is used to implement communication operations of multiple comple
tions. For example, MPI_Wait any blocks until one of the communication associated with
requests in the array has completed. It returns in index the array location of the completed
request. MPI.Waitall blocks until all communications complete, and returns the statuses
of all requests. MPI-Wait some waits until at least one of the communications completes
and returns the completed requests.

4.5 Datatype

A general datatype is an opague object that specifies a sequence of basic datatypes and inte
ger displacements. The extend of a datatype is the span from the first byte to the last byte in
this datatype. A datatype can be derived from simpler datatypes through datatype construc
tors. The simplest datatype constructor, modeled by cont iguous_copy, allows replica
tion of a datatype into contiguous locations. For example, contiguous .copy (2, {{double. 0),
{char, 8))) results in {{double, 0), {char,8), {double, 16), {char, 24)).

Constructor type-vector constructs a type consisting of the replication of a datatype
into locations that consist of equally spaced blocks; each block is obtained by concatenat
ing the same number of copies of the old datatype, type-indexed allows one to spec
ify a noncontiguous data layout where displacements between blocks need not be equal,
type .struct is the most general type constructor; it allows each block to consist of repli
cations of different datatypes. These constructors are defined with the cont iguous _copy
constructor and the set _of f set function (which increases the displacements of the items

in the type by a certain offset). Other constructors are defined similarly. For instance,

type_vector(2 . 2. 3. {{double. 0), {char. 8))) =
{{double. 0), {char. 8), {double. 1C), {char. 24).
{double. 48), {char. 56). {double. 64). {char. 72))

type_indexed(2. {3,1), {4. 0), {{double. 0), {char. 8))) =
{{double. 64). {char. 72). {double. 80), {char. 88),
{double. 96), {char. 104). {double. 0), {char. 8))

ty p e_ stru c t(3 , {2.1,3), {0,16, 26), { flo a t, {{double. 0), {char. 8)), char)) =
{{float. 0), { flo a t. 4). {double. 16), {char. 24). {char. 26), {char. 27), {char. 28))

When creating a new type at process p, we store the type in an unused place in the
d a ta ty p e s ^ object, and have the output reference d a ta ty p e point to this place. When
deleting a datatype at process p , we remove it from the d a t a t y p e s ,, object and set the ref
erence to MP I .DATATYPE_NULL. Derived datatypes support the specification of noncon
tiguous communication buffers. We show in Figure 7 how to read data from such buffers:
noncontiguous data are “packed” into contiguous data which may be “unpacked” later in
accordance to other datatypes.

Datatype operations are local function — no interprocess communication is needed when
such an operation is executed. In the transition relations, only the d a t a t y p e s object at the
calling process is modified. For example, the transition implementing M PI_Type_index
is as follows. Note that arguement b lo c k le n g th s is actually the start address of the block
length array in the memory; auguments oldLype and new L yp e store the references to datatypes
in the d a t a t y p e s objects.

MPI_Type_index(count, blocklengths, displacements, oldtype, newtype,p) =
l e t lengths = [■/' GO., count >-> mems p[block'lengths + ■/']] in length array

l e t displacements = [i GO., count i—► mems P[displacements + »']] in
l e t typeJndex = unused_index(data% pesp) in new datatype index
l e t dtype = datatypesp [ol dtype] in
A datatypes p[typeJndex] = type_indexed(count, blocklengths, displacem ents, dtype)
A memsP[newtype]' = typeJndex update the reference to the new datatype

4.6 Collective Communication

All processes participating in a collective communication coordinate with each other through
the shared rend object. There is a rend object corresponding to each communicator; and
rend[c«Z] refers to the rendezvous used by the communicator with context id cid. A rend
object consists of a sequence of communication slots. In each slot, the status field records
the status of each process: ‘e‘ (‘entered’), ' i (‘left’) or w (‘vacant’, which is the initial
value); the shared-data field stores the data shared among all processes; and data stores

Data S tru c tu re s
typemap : (type, disp : in t) a r ra y

contiguous .copy (count, dtype) = replicate a datatype into contiguous locations
l e t F (i) =

i f i = 1 th en dtype
e ls e F (i — 1) o [k € DOM (dtype) i—>

(dtype-{k].type,dtype]k].disp + (i - 1) * ex tend (dtype))]
in F(count)

set -O f f set (dtype, o f f s e t) = adjust displacements
[k € DOM(i%pe) ^ (dtype{k].type,dtype\k] + o f fset)]

replicate a datatype into equally spaced blocks
ty p e .v e c to r (count, hlocklength, stride, dtype) =
l e t F(i) =

i f i = count th en {)
e ls e l e t o f f s e t = se t-O f f set(dtype, extend (dtype) * stride * i) in

contiguous-Copy(blockk-ngth, o f f s e t) o F(i + 1)
in F(0)

replicate a datatype into a sequence of blocks
typeA ndexed(count, blocklengths, displacements, dtype) =
l e t F(i) =

i f i = 0 th en {)
e ls e F (i — 1) o

contiguous j'.opy(blocklengths[i — 1],
s e t s j f f se t(dtype, displacements^. — 1] * extend(dtype)))

in F(count)

replicate a datatype to blocks that may consist of different datatypes

type_struct(coM rii, blocklengths, displacements, dtypes) =
l e t F(i) =

i f i = 0 th en {)
e ls e F (i — 1) o cmitiguous-Copy(blockle-ngths[i — 1],

s e t -o f f set(dtypes[i — 1], displacements^. — 1])
in F(count)

createjd.atatype(datatype, dtype, p) = create a new datatype
l e t index = u n u se d _ in d e x (d a ta ty p e sp) in

datatype s', [index] = dtype A mems'p[dututype] = index

type-£Tee(dututype,p) = free a datatype
datatypes', = datatypes^ \ {datatypes ,p{dututype]} A datatype-' = DATATYPE_MULL

read-data(mem, buf, count, dtype) = read (non-contiguous) data from the memory
l e t read-one(bu f) =

l e t F i(i) = i f i = 0 th en {) e ls e F i(i — 1) o me-m[buf + dtype[i — \].disp]
in F\ (s iz e(dtype))

in l e t Fo(i € 0 .. count) =
i f i = 0 th en {) e ls e Fo(i — 1) o read-one(buf + (i — 1) * ex tend (dtype))

in Fo(count)

the data sent by each process to the rendezvous. We use the notation W to represent the
content in the status.

Most collective communications are synchronizing, while the rest (like MP I _ B c a s t) can
either be synchronizing or non-synchronizing. A collective primitive is implemented by
a loose synchronization protocol: in the first “init” phase, process p checks whether there
exists a slot such that p has not participant in. A negative answer means that p is initializing
a new collective communication, thus p creates a new slot, sets its status to be ‘entered’ and
stores its value v in this slot. If there are slots indicating that p has not joined the associated
communications (i.e. p ’s status is ‘v’), then p registers itself in the first of such slots by
updating its status and value in the slot. This phase is the same for both synchronizing and
non-synchronizing communications. Rule s y n init and s y n write are the simplified cases of
syr i Pu t ,

After the “init” phase, process p proceeds to its next “wait” phase. Among all the slots p
locates the first one indicating that it has entered but not left the associated communication.
If the communication is synchronizing, then it has to wait until all other processes in the
same communication have finished their “init” phases; otherwise it does not have to wait.
If p is the last process that leaves, then the entire collective communication is over and the
communication slot can be removed from the queue; otherwise p just updates its status to
be ‘left’.

These protocols are used to specify collective communication primitives. For example,
Ml' • B e a s t is implemented as two transitions: M P I _B c a s t init and MPI_Bcast„,ait. The
root first sends its data to the rendezvous in M P I _ B c a s t irait, then by using the asyn^it
rule it can return immediately without waiting for the completion of other processes. On
the other hand, if the call is synchronizing then it will use the s y n ^ t rule. In contrast, a
non-root process p needs to call the s y n wait because it must wait for the data from the root
to “reach” the rendezvous.

In the M P I . G a t h e r call, each process including the root sends data to the root; and the
root stores all data in rank order. Expression [i e DOM (gr) —> ren d p[comm.cid].data.[gr[i}}\
returns the concatenation of the data of all processes in rank order. Function write .data
writes an array of data into the memory. M P I _S c a t t e r is the inverse operation to M P I .Gather.
InMPl_Al l t o a l l , each process sends distinct data to each of the receivers. The j th block
sent from process i is received by process j and is placed in the i th block of the receive
buffer. Additionally, data from all processes in a group can be combined using a reduction
operation op. The call of M P I _ S c a n at a process with rank i returns in the receive buffer
the reduction of the values from processes with ranks 0 , • • • , i (inclusive).

D ata S tru c tu re s
rendezvous fo r a communication :

{status : [p : i n t — ► {7', 'e', V}], sdata, data : [p : i n t — ► value]) a r ra y

process p joins the communication and stores the shared data vs and
its own data v in the rendevous
synput (cid, vs, v, p) =
i f cid (f: DOM(rend) th en rend7[c/d] = {[p i—► Vr],/’.,, [p i—► t*])
e ls e i f V.s/of € rend[e/d] : slot.status[p] £ {Yi',7'} th en

rend'[e/d] = rend[e/d] o ([p i—► 'e'], vs, [p i—)• t*])
e ls e

r end[e/d] = F-i o W (p, V) , vs , S v) o F 2 A
V.s/of e F, : s 1 ot.status[p] ̂ V

rend7[c/d] = F-i o {$ W (p, V;'), vs, S v W {p, v)) o F 2

syninit (c/d, p) = syn_write(e/d, e, e, p) no data are stored

synHrite(c/d, v, p) = syn_write(e/d, e, v, p) no shared data are stored

synHait(cid, p) = process p leaves the synchronizaing communication
r end[c/d] = F i o (f UJ(p, ~e'), vs , S v) o F 2 A
VA: € commsp[cid\.group : \P[A:] € {Yi',7'} A
V,s/of e Ft : slot.status[p] ̂ 'e'

rend'[c/d] = i f VA € commsp[cid].group : \P[A:] = 7 ' th e n F i « F 2
e ls e Fi o {$ tt) (p, 7 '), vs , S't,) ^ F 2

asynHait(e/d, p) = process p leaves the non-synchronizaing communication
r end[e/d] = Fi o W (p, 'e') , vs , S v) o F 2 A
V,s/of e Ft : slot.status[p] ^ 'e'

rend'[c/d] = i f VA € commsp [cid].group : \P[A] = 7 ' th e n F i « F 2
e ls e F-i o {$ tt) (p, 7 '), vs , S v)oT o

Figure 8: The basic protocol for collective communications

PO Pi P2
syn put(cid = 0, sdata = vs ,data = wo) syninit (cid = 0) synwrite(cid = 0, data = W2)
asyn wait(cid = 0) synwait(dd = 0) synwait(cid = 0)
syninit(cid = 0)

step event rend[0]
1 synput(0,ws,Wo,0) {[0 ‘e/},vs , [0 i-> wo])
2 syninit (0, 1) {[0 ‘e/ , 1 i-» ‘e/],vs, [0 ^ wo])
3 synwait (0; 0) {[0 ‘I':, 1 i-» ‘e/],vs, [0 ^ wo])
4 synin it(0; 0) {[0 ‘I':, 1 >-> le],v8, [0 >-> wo]) 0 {[0 ‘e'], e, e)
5 Synwrite(0. V2, 2) {[0 H'., 1 i-> ‘e/, 2 1 > le'],vs, [0 i-> Wo, 2 i-» W2]) 0 {[0 i-» le/},e, e)
6 synwait (0. 2) {[0 ‘V., 1 i-> ‘e/, 2 1 ̂ ‘I’], v8, [0 1—> Wo; 2 1—> W2]) 0 {[0 i-> ‘e'], e, e)
7 synwait(0 ,1) {[0 ‘e'], e, e)

Figure 9: An example using the collective protocol. Three processes participate in collec
tive communications via a communicator with context ID = 0. Process p 0’s asynchronous
wait returns even before p 2 joins the synchronization; it also initializes a new synchroniza
tion after it returns. Process p 2, the last one joining the synchronization, deallocates the
slot. The execution follows from the semantics shown in figure 8.

MPI-2 introduces extensions of many of MPI-1 collective routines to intercommunicators,
each of which contain a local group and a remote group. In this case, we just need to
replace commsp[cid].group with commsp[cid\.group U commsp[cid].remote-group in the
rules shown in figure 8 . In our TLA+ specification we take both cases into account when
designing the collective protocol.

For example, if the comm in M P I _ B c a s t is an intercommunicator, then the call involves
all processes in the intercommunicator, broadcasting from the root in one group (group
A) to all processes in the other group (group B). All processes in group B pass the same
value in argument root, which is the rank of the root in group A. The root passes the value
MPI_ROOT in root, and other processes in group A pass the value MPI_PROC_NULL in
root.

4.7 Communicator

Message passing in MPI is via communicators, each of which specifies a set (group) of pro
cesses that participate in the communication. Communicators can be created and destroyed
dynamically by coordinating processes. Information about topology and other attributes
of a communicator can be updated too. An intercommunicator is used for communication
between two disjoint groups of processes. No topology is associated with an intercommu-

the root broadcasts data to prococess
b c a s t in it(&M/, v, root, comm, p) =

(comm.group[root} = p) ? synpnt(comm.cid,v,e,p) : sy n init(comm.cid,p)
b c a s tHait (bu.f, v, root, comm, p) =

i f comm.group[root] = p th e n
n e e d s y n ? s y n (comm.cid, p) : a s y n (comm.cid, p)

e l s e s y n (comm.cid, p) A mems',[fri//] = r e n d p[comm.cid}.sdata

the root gather data from prococess
g a th e r in it(frM/, v, root, comm, p) = syn„±te(comm.cid, v, p)
g a th e r Hait (6'«/, v, root, comm, p) =

i f comm.group[root] / p th e n
n ee d syn ? synHai t (comm.cid,p) : a sy n Hai t (comm.cid,p)

e l s e
A synHait (comm.cid, p)
A l e t data = [i € BOM.(comm.group) —> r e n d p [coTOTO.ci<i].<iafa[coTOTO.(/row.p[i]

in mems', = write jdata(memsp, buf, data)

the root scatters data to prococess
s c a t t e r ±n±t(buf, ~v, root, comm, p) =

(comm.group[root] = p) ? synpnt(comm.cid, v ,e,p) : s y n ^ i t (comm.cid,p)
s c a t t e r Hait (frM/, v , root, comm, p) =

i f comm.group[root] = p A ->needsyn th e n a sy n Hai t (eororo.ei<i, p)
e l s e synHai t (comm.cid, p) A mems',[fri//] = rendp.w Jufu[eororo.#ro'up|p]

all prococess send and receive data
a l l t o a l l i nit(fri//, V , comm, p) = syru ir ite(com m .cid , ~v,p)
a l l to a l ly ,a±t(buf, ~v , comm, p) =

A synHait (comm.cid,p)
A l e t gr = comm.group in

l e t data = [i € DOM gr —> rend[coTOTO.ci<i].<iufu[</r[i]][</r|p]] in
mems', = ■write-datu(memsp, &«/, data)

nduci ;•<///(/< (op. data, start, end) = reduce the data according to the range

l e t F (i) = i f i = .start th e n <iufu[i] e l s e o p (F (i — 1), <iufu[i]) in F(e.nd)
reduce(op, data) = reduce.jrunge(op, data, 0, s i z e(data)) reduce an array of values

prefix reduction on the data distributed across the group
sc a n in it(buf, v, op, comm, p) = syn„±te(comm.cid, v, p)
sc a n Hait (buf, v, op, comm, p) =

A synvait(comm.cid,p)
A l e t gr = comm.group in

l e t data = [i € 0 ..gr \p i—> r e n d p[comm.cid}.data[gr[i}}\
in m em sj,[ta/] = reduce.jrunge(op, dataA), gr\p)

in te r _ b c a s t init(fr« /, v, root, comm, p) = broadcast in an inter-communicator
(comm.group[root] = ROOT) ? syn_put(eororo.cid, v, e, p) : sy n ±n±t (comm.cid, p)

in te r _ b c a s tHait(frM/, v, root, comm, p) =
i f root' € {PR0C_MULL, ROOT} A ->needsyn th e n a sy n Hait(eororo.C3<i, p)
e l s e s y n (comm.cid, p) A mems',[fri//] = r e n d p[comm.cid}.sdata

Figure 10: Modeling collective communications

nicator.

4.7.1 Group

A group defines the participants in the communication of a communicator. It is actually an
ordered collection of processes, each with a rank. An ordered set containing n elements
ranging from 0 to N can be modeled as a function:

[i € 0 .. n — 1 —f 0 .. N]

Given a group yr modeled as an ordered set, the rank of a process p in this group is given
by (jr\p, and the process with rank i is by yr[i\.

The distinct concatenation of two ordered sets s i and s 2 is obtained by appending the
elements in s 2 \ s i to s i:

s i ffl so = [i GO.. (|«i | + I'S'o | — 1) i—)• i < |«-| | ? s-j [i] : so[i — s ize (s- |)]].

The difference, intersection and union of two ordered sets are given by

s-\ © so = ordered set difference
l e t F (i e 0 ..|« 1 1) =

(i = 0) ? {) : (»,[; - 1] i s2) ? F(i - 1) ffl <*, [i - 1]) : F(i - 1)
in F[|«-| |]

-‘> i © so = ordered set intersection
l e t F (i £ 0 ..|« 1 1) =

(i = 0) ? {) : (*, [i - 1] e *3) ? F (i - 1) ffl {»,[; - 1]) : F (i - 1)
in F[|«-| |]

s i $ so = «i ffl (so © « i) ordered set union

Function in c l (s . n. ranks) creates an ordered set that consists of the n elements in s with
ranks ranks[0] ranks[n - 1]; e x c l creates an ordered set that is obtained by deleting
from s those elements with ranks ranks[0] ranks[n - 1]; r a n g e _ in c l (ra n g e _ e x c l)
accepts a ranyes argument of form (first rank,last rank,stride) indicating ranks in s to be

included (excluded) in the new ordered set.

in d (s , n, ranks) = [»' € 0 .. n — 1 i—> s[ranks[i]}}

exd(s , n, ranks) = s Q (ind(s, n, ranks))

range J n d (s , n, ranges) =
l e t f la tten (f i r s t , last, stride) = process one range

i f last < f irst th en {)
e ls e f irst o f la t t e n (f irst + stride, last, stride)

in
l e t F(-i) = process all the ranges

i f i = 0 th en {)
e ls e l e t ranks = flatten(ranges[i — 1])

in F(i — 1) o in d (s , s ize(ranks) , ranks)
in F(n)

rangejexd (s , n, ranges) = s Q (range J n d (s , n, ranges))

For example, suppose s-j = (a, b, c, d) and .s2 = (d, a, e) , then s-j © .s2 = (a, b, c, d, e),
•si © .s2 = (a, d), and si © .s2 = (b, c). Suppose .s = (a, b, c, d, e, f , t/, h, i, j) and ranyes =
((6, 7, 1), (1, 6, 2), (0, 9, 4)) , thenr a n y e J n d (s , 3, ra n y e s) = (y, h , b, d, f , a, e, i) and ranyeje.xcl(
•s, 3, r a n y e s) = (e, j) .

Since most group operations are local and their execution do not require interprocess com
munication, in the transition relations corresponding to such operations, only the groups
object at the calling process is modified. For example, the transition implementing the
union of two groups is as follows.

MPI_Group_union(<7rowpi. groups, g?'oupnew, p) =
l e t gid = unused_ item (groupsp) in
groups', = groups^ W (gid, groupsp[gmi/pi] © g ro u p sp[group2\) A
mems', [groupnew] = gid

4.7.2 Communicator Operations

Communicator constructors and destructors are collective functions that are invoked by all
processes in the involved group. When a new communicator is created, each participanting
process first invokes the “synchronization initialization” primitive (mentioned in the Sec
tion 4.6) to express its willing to join the creation; then it calls the “synchronization wait”
primitive to wait for the joining of all other processes; finally it creates the local version of
the new communicator and store it in its comms object.

Communicators may be attached with arbitrary pieces of information (called attributes).
When a attribute key is allocated (e.g. by calling the M P I _ C o m m _ c r e a t e _ k e y v a l) and
stored in the k e y v a 1 s object, it is attached with a copy callback function, a delete callback
function and an extra state for callback functions. When a communicator is created using
functions like MPI_Comm_dup, all callback copy functions for attributes are invoked (in
arbitrary order). When the copy function returns f lag = _L, then the attribute is deleted in
the created communicator; otherwise the new attribute value is set to the value returned in
attribute _v al jout.

The M P I _ C o m m _ d u p code shown in Figure 11 creates a new intracommunicator with the
same group and topology as the input intracommunicator. The association of cached at
tributes is controlled by the copy callback functions. As the new communicator must have
a unique context id, the the process with rank 0 picks an unused context id, write it to the
shared area of the rendezvous, and registers it in the system. In the “synchronization wait”
phase each process fetches the unique context id, finds a place for the new communicator
in its c o m m s object, and updates the reference to this place.

Intercommunicator operations are a little more complicated. For example, I n t e r comirunerge
creates an intracommunicator from the union of the two groups of a intercommunicator. All
processes should provide the same high value within each of the two groups. The group
providing the value high = T should be ordered before the one providing high = _L; and
the order is arbitrary if all processes provide the same high argument.

The TLA+ specification of communicator operations is more detailed, where we need to: (i)
check whether all processes propose the same g r o u p and the group is a subset of the group
associated with the old communicator; (ii) have the function returns M P I _ C O M M _ N U L L to
processes that are not in the group; (iii) call the error callback functions when errors
occur.

4.7.3 Topology

A topology can provide a convenient naming mechanism for the processes within a com
municator, and additionally, may assist the runtime system in mapping the processes onto
hardware. A topology can be represented by a graph, with nodes and edges standing for
processes and communication links respectively. In some cases it is desirable to use Carte
sian topologies (of arbitrary dimensions).

The primitive C a r t . c r e a t e builds a new communicator with Cartesian topology in
formation. Arguments ndirns and dims give the number of dimensions and an inte-

D ata S tru c tu re s
com municator : cid : in t . group : o se t. remote-group : o se t. topology, attributes : map/ «_/ X / «_/ X > X > X

create-cornm(comm, keyvals) = create a new communicator
l e t copy-attr (comm, attr, keyvals) = call the copy function

l e t keyval = keyvals[attr.key} in
l e t y = keyval.copyjuttr.fn(com m , attr.key, keyval.extrajstate, attr.value) in

[comm EXCEPT !.attributes =
i f y .fla g = _L th en remove(@, attr.key) e ls e @ tt) {a ttr.key , y.attribute -val -out)

} in
l e t traverse(T) = call the copy functions of all attributes

i f T = {} th en comm
e ls e choose a ttr £ T : copyjuttr(traverse(T \ {uttr}), attr, key vals) in

i f attributes £ DOM comm th en comm e ls e traverse(com m .attributes)

comm.dupinit (comm, newcomm, p) = duplicate a communicator
l e t cid = next_comm_cid in obtain an unused context id
i f comm.gr\p = 0 th en syn_put(eororo, cid, e, p) A r e g i s t e r jcid(citQ
e ls e syn_init(comm, p)

comm_dupHait (comm, newcomm, p) =
syn_wait(comm,p) A
l e t s lo to T = rend [comm.cid] in
l e t cid = slot.sduta in l e t new In d e x = umised_index(commsp) in
comms', = commsp tt) (new.index, [create.comm(comm, keyvalsp) EXCEPT l.cid = cid]) A
newcom m ' = new Jrulex

create a new intracommunicator by merging the two groups of the inter-communicator
intercom m jnergeinit(infereororo, high, in tracom m new, p) =
l e t cid = next_comm_cid in
i f comm.gr\p = 0 th en synjp\it(inte-rcornm, cid, high, p) A r e g i s t e r jcid(citQ
e ls e syn_write(intercom m , high, p)

intercom m jnergeHait(infereororo, high, in tracom m new, p) =
syn_wait(intercom m , p) A
l e t s lo to T = rend [inter comm.cid] in
l e t cid = slot.sduta in l e t new -index = unused_index(commsp) in
l e t Ir = in ter comm,group ® inte-r comm.remote-group in
l e t rl = inte-r comm.remote-group ® inte-r comm.group in
l e t group =

i f Vi , j € inte-rcomm.groupU intercomm .rem ote-group :
r end [inter comm.cid] .duta[i] = r e nd [inter comm.cid] .data [j]

th en choose gr € {Ir, rl} processes propose the same high value
e ls e high ? Ir : rl in order the two groups according to the high value

comms', = commSp tt) (new -index,
[creute-comm(©, keyvalsp) EXCEPT

l.cid = cid, I.group = group, \.remote_group = e]
) A

in ter comm!ncw = new-index

Figure 11: Modeling communicator operations

ger array specifying the number of processes in each dimension respectively, periods
specifies whether the grid is periodic or not in each dimension; and reorder specifies
whether ranks may be reordered or not. If the total size of the grid is smaller than the
size of the group of comm, then those processes not fitting into the grid are returned
MPI_COMM_NULL. Here the helper function rangejproduct{ndims, d im s , i , j) computes
the value of dims[i] x • • • x dims[j].

Function coord J2jrank translates the logical process coordinates to process ranks; func
tion rankJljcoord is the rank-to-coordinates translator. They are used to implemented the
M P I _ C a r t _ r a n k and M P I _ C a r t _ c o o r d s primitives.

For further illustration we give the code of M P I _ C a r t _ s h i f t. When a M P I _ S e n d r e c v
operation is called along a coordinate direction to perform a shift of data, the rank of a
source process for the receive and the rank of a destination process for the send can be
calculated by this M P I _ C a r t _ s h i f t function. The dir argument indicates the dimension
of the shift. In the case of an end-off shift, out-of-range processes will be returned the value
M P I _PROC_NULL. Clearly M P I _ C a r t _ s h i f t is not a collective function.

4.8 Process Management

The MPI-2 process model allows for the creation and cooperative termination of processes
after an MPI application has started. Since the runtime environment involving process
creation and termination is not modeled, we do not specify MPI_Comm_spawn, which
starts multiple copies of an MPI program specification, M P I _ C o m m _ s p a w n - m u l t i p l e ,
which starts multiple executable specifications, and M P I_Comm_get-parent, which is
related to the “spawn” primitives.

Some functions are provided to establish communication between two groups of MPI pro
cesses that do not share a communicator. One group of processes (the server) indicates
its willingness to accept connections from other groups of processes; the other group (the
client) connects to the server. In order to the client to locate the server, the server provides
a portMame that encodes a low-level network address. In our specification it consists of a
process id and a port number. A server can publish a port_name with M P I _Publ i sh_name
and clients can retrieve the port name from the service name.

A server first calls M P I _ O p e n _ p o r t to establish a port at which it may be contacted; then
it calls M P I _ C o m m _ a c c e p t to accept connections from clients. This port name may be
reused after it is freed with M PI_Close_port. All published names must be unpublished

D ata S tru c tu re s
Cartesian topology :

ndirns : in t , dims : i n t a rray , periods : bool a rray , coordinate : i n t a r ra y

range.producb{nd;ims, dim s, i , j) = compute x ••• x dirns[j]
l e t F(k) = A: > j ? 1 : dirns[k] * F(k + 1) in F(i)

create a communicator with Cartesian topology
ca rt_ c rea te_ in it(eo m m , ndirns, dims,periods, reorder, comm .cart, p) =
l e t cid = next_comm_cid in
i f comm.gr\p = 0 th en syn_put(cornrn,cid,e,p) A reg is te r_ c id (d < i)
e ls e syn_init(comm, p)

cart_create_w ait(eom m , ndirns, dims,periods, reorder, cornrri-cart,p) =
syn_wait(eomm,p) A
l e t s lo to T = r e n d [cornrn.cid\ in
l e t cid = slot.sdata in l e t new Jndex = unused_item(commsp) in
l e t cornrn.„ew =

i f proc < range-proditct(ndirns,dirns,Q, ndirns — 1) th en COMM_MULL
e ls e

[create-cjyrnrn(cx)rnrn0ui, keyvalsp) EXCEPT
I. cid = cid,
I.group = reorder ? permute(@) : :?i

] l±J (topology, [ndirns i—> ndirns, dims i—> dims, periods i—> periods])
in commSp = commsp W (newJndex, cornrn„ew) A

comm-cart' = newJndex

coord-2jrank(coord, ndirns, dim s) = convert a coordinate to the rank
l e t F (n) = i f n = size(coord) th en 0

e ls e range-product(ndirns, dims, n + 1, ndirns — 1) x coord[n) + F(n + 1)
in F(0)

rank-2-coord(rank, ndirns, dims) = convert a rank to the coordinate
l e t F (x ,n) = i f n = 0 th en (x) e ls e F(x dirns[n), n — 1) o (x % dirns[n])
in F(rank, ndirns — 1)

ca rt_ sh ift(eo m m , dir , disp,p) = Cartesian shift coordinates
l e t tp = comm.topology in
l e t (dims, ndirns) = {tp.dirnsAp.ndirns) in
l e t rank = comm.group\p in l e t coord = rankJ2-C00rd(rank, ndirns, dim s) in
l e t f (i) = compute the rank of a node in a direction

i f -itp.periods[rank] A (i < dirns[dir) V i < 0) th en PROC_MULL
e ls e coord.2 jrank([coord EXCEPT l[dir) = /], ndirns, dims)

in [ranksourcc h-. /((© — disp) % dirns[dir}),
rankdest > /((@ + disp) % dirns[dir})}

Figure 12: M odeling topology operations

before the corresponding port is closed.

Call M P I _ C o m m _ a c c e p t is collective over the calling communicator. It returns an in
tercommunicator that allows communication with the client. In the “init” phase, the root
process sets the port’s client group to be its group. In the “wait” phase, each process creates
a new intercommunicator with the local (remote) group being the server (client) group of
the port. Furthermore, the root process sets the port’s status to be ‘waiting’ so that new
connection requests from clients can be accepted.

Call M P I _ C o m m _ c o n n e c t establishes communication with a server specified by a port
name. It is collective over the calling communicator and returns an intercommunicator
in which the remote group participated in an MPI_Comm_ a c c e p t . We do not model the
time-out mechanism; instead, we assume the time out period is infinitely long (thus will
lead to deadlock if there is no matching MPI_Comm_accept). As shown in the code, the
root process picks a new context id in its “init” phase. In the “wait” phase, each process
creates a new intercommunicator; and the root process updates the port so that the server
can proceed to create intercommunicators.

4.9 One-sided Communication

Remote Memory Access (RMA) allows one process to specify all communication param
eters, both for the sending side and for the receiving side. This mechanism separates the
communication of data from the synchronizations.

A process exposes a “window” of its memory accessible by remote processes. The wins ob
ject represents the group of processes that own and access the set of windows they expose.
The management of this object, e.g. the creation and destroying of a window, is similar to
that of the communicator object comms except that window operations are synchronizing.

RMA communication calls associated with a window occur at a process only within an
epoch for this window. Such an epoch starts with a RMA synchronization call, proceeds
with some RMA communication calls (MP I _P u t , M P I _G e t and M P I A c c u m u l a t e) , and
completes with another synchronization call. RMA communications fall in two categories:
active target communication, where both the origin and target processes involve in the
communication, and passive target communication, where only the origin process involves
in the communication. We model active (passive) target communication with the eps
(locks) object.

D ata S tru c tu re s
port : (name : (proc : in t . part : in t) , cid : in t , sta tus : {‘connected', 'w aiting '},

server-graup : o se t, client-group : o se t)

open-port(portjnam e,p) = establish a network address
l e t new jport. J d = u n u sed _ item (p o rtsp) in
l e t newjport- = [name >—> (p,new jport—id), sta tus >—> 'waiting'] in
p o r t s ^ = p o r tS p i±l [new jport J d i—► new jport] A
portjnam e' = new .port .name

clo se jp o x t(p o rt jname, p) = release a network address
T equires{portjnam e ^ se rv ic e _ n a m e s}
p o r t s ^ = rem o v e (p o rtsp, port -name. port)

the server attempts to establish communication with a client
comm_acceptinit(porf_n«?7/e, root, comm, newcomm, p) =
l e t portjno = port .nam e .port in
i f comni.gr\p = root th en

______ p o r t s p[portjno].status = ‘w aiting' A synpnt(comm.cid,portjno,e,p)
p o r t s 'p [port_no] = [p o r t s p [port _no] EXCEPT I.server-group = comm.group]

e l s e syninit(comm.cid,p)

comm_acceptVSLit(portjname, root, comm, newcomm, p) =
l e t portjno = r e n d p[cid].sdata in
l e t port = p o r t s comm.,jro((p[root][porf_no] in

syn wait(comm,p) A port [portjno]. sta tus = 'connected'
comm s ' [newcomm] = [cid >—> port.cid. group >—> part.server-group.L/ L J L X / «_/ X X «_/ X /

remote-group i—► port, client-group] A
(p = comm.grou.p[root]) =4- p o r t s 'p[portjno].status = 'waiting'

the client attempts to establish communication with a server
coam-coimectinit(port jname, root, comm, newcomm, p) =
l e t port = p o r t s port_nmne.pr0c[port-name.port] in
l e t cid = next_com m _cidin
i f com m .gr |p = root th en

port.status = 'waiting' A synpnt (comm.cid, cid, e, p)
re g is te r_ c id (cid)

e l s e syninit(comm.cid,p)

comm_connect¥ait (port-name, root, comm, newcomm, p) =
_______________ sy nwait(comm.cid,p)_______________________

l e t cid = r e n d p [conim.cid].sdata in
l e t port = p o r t s comm,,jroi(p[root] [portjno] in
l e t (host, portjno) = (port-name.proc, port-name.port) in
comms'p [newcomm] =

[cid i—► cid, group i—► comm.group,
remote-group i—► p o r t s f,ost[portjno].server-group] A

(p = comm.grou.p[root]) =4-
p o r t s ' [port.-no].status = 'connected' A
p o r t s ^ [port jno],client-group = comm.group A
p o r t s ^ [port jno].cid = cid

M P I _ W i n _ s t a r t and M P I _ W i n _ c o m p l e t e start and complete an access epoch (with
mode — ac) respectively; while M P I _ W i n _ p o s t and M P I _ W i n _ w a i t start and complete
an exposure epoch (with mode — ex) respectively. There is one-to-one matching between
access epoches at origin processes and exposure epoches on target processes. Distinct
access epoches for a window at the same process must be disjoint; so must distinct expo
sure epoches. In a typical communication, the target process first calls M P I _ W i n _ p o s t
to start an exposure epoch, then the origin process calls M P I _ W i n _ s t a r t to starts an
access epoch, and then after some RMA communications it calls M P I _ W i n _ c o m p l e t e
to complete this access epoch, finally the target process calls M P l _ W i n _ w a i t to com
plete the exposure epoch. This M P I _ W i n _ p o s t call will block until all matching class
t o M P I _ W i n _ c o m p l e t e have occured. Both M P I _ W i n _ c o m p l e t e and M P I _ W i n _ w a i t
enforce completion of all preceding RMA calls. If M P I _Win .start is blocking, then the
corresponding M P l _ W i n _ p o s t must have executed. However, these calls may be non
blocking and complete ahead of the completion of others.

A process p maintains in e p s p a queue of epoches. Each epoch contains a sequence of
RMA communications yet to be completed. Its match field contains a set of {:matching process ,
matching epoch) tuples, each of which points to a matching epoch at another process. An
epoch becomes inactive when it is completed. When a new epoch ep is created and ap
pended to the end of the epoch queue, this matching information is updated by calling the
helper function find-match, which locates at a process the first active epoch that has not
be matched with ep. Additionally, since M P I _ W i n _ s t a r t can be non-blocking such that
it may complete before M P I _ W i n _ p o s t is issued, M P I _ W i n _ p o s t needs to update the
matching information each time it is called. We do not remove completed epoches because
their status may be needed by other processes to perform synchronization.

Designed for passive target communication, M P I _Wi n _1 o ck and M P I _Wi n _un 1 o ck start
and complete an access epoch repsectively. They are similar to those for active target
communication, except that no corresponding exposure epoches are needed. Accesses that
are protected by an exclusive lock will not be concurrent with other accesses to the same
window. We maintain these epoches in a different object locks, which resides in the
e n v s object in our specification.

RMA communication call M P I _ P u t transfers data from the caller memory to the tar
get memory; M P I _ P u t transfers data from the target memory to the caller memory; and
M P I A c c u m u l a t e updates locations in the target memory. When each of these calls is is
sued, it is appended to the current active access epoch which may be in the e p s or l o c k s
object. Note that there is at most one active access epoch for a window at each process.
The calls in an epoch is performed in a FIFO manner. When a call completes, it is removed
from the queue.

The a c t i v e . t r a n s f e r rale performs data transferring: when the corresponding expo
sure epoch exists, the first RMA communication call in the current active epoch is carried
out and the value v will be written (or reduced) to the memory of the destination. The rule
for passive target communication is analogous.

PO Pi P‘2
w in .s t a r t {group = {1.2) .wino) w in .p o st{group = {0}.wino) w in .p o st{group = {0}.wino)
put(origin = 0. target = 1. wino) w in_wait(tuino) win_wait(tum o)
g e t {origin = 0. target = 2. wino)
w in.com plete(tuino)

step e p s 0 e p s i e p s 2
1 {0 (0) 0 T m x
2 {0 (0) 0 T o > r {0, {0) {) T {}>§"
3 {0, {1 2) 0 , T , {{1, 0), {2, 0)})gC {0 (0) 0 T m o)» g - {0, {0) {) T {{0,0)})
4 {0, {1 2) {{0, l) vut). T , {{1. 0). (2. 0)})gc {0 (0) 0 T { { 0 ,0)})- {0, {0) {) T {{0,0)})
5 {0, {1 2) {{o, i y rat o {o, i) Bet), {0 (0) 0 T m o) » - {0, {0) {) T {{0,0)})

T ,{{1 ,0) = (2, 0)})gc
6 {0, {1 2) {{0, 2)®et), T . {{1. 0). (2. 0)})gc {0 (0) 0 T {{0,0)})- {0, {0) {) T {{0,0)})
7 {0, {1 2) 0 ,± ,{{ i,o),{2, o)})gc {0 (0) 0 T {{0,0)})g* {0, {0) {) T {{0,0)})
8 {0, {1 2) 0 ,± ,{{ i,o),{2, o)})gc {0 (0) 0 ± {{0,0)})g- {0, {0) {) T {{0,0)})
9 {0, {1 2) 0,±,{{1,0),{2, 0)})gc {0 (0) 0 ± {{0,0)})g- {0, {0) {) ± {{0,0)})

the execution (format: even t step) :
w in .p o st({0). wino. l) i • w in .p o st({0). w ino■ 2)2 • w in .s t a r t ({1. 2). wino- 0)3. p u t(0 . l .w ino . 0)4 .
g e t(0 . 2 . wino- 0)5 . a c t i v e . t r a n s f e r (0)e . w in_complete(tum o; 0)7 . w in_w ait(tum o; 2)g. w in .w ait (wino. 1)9

Figure 14: An active target communication example. The execution shows a case of strong
synchronization in the window urines with wid 0. Process p 0 creates an access epoch, pi
and p -2 creates an exposure epoch respectively. An epoch becomes inactive after it com
pletes. For brevity we omit the value in a RMA operation. The execution follows from the
semantics shown in Figure 15 and 16.

4.10 I/O

MPI provides routines for transferring data to or from files on an external storage device.
An MPI file is an ordered collection of typed data items. It is opened collectively by a
group of processes. All subsequent collective I/O operations on the file are collective over
this group.

MPI supports blocking and nonblocking I/O routines. As usual, we model a blocking call
by a nonblocking one followed by a wait call such as MPI_Wait. In addition to normal
collective routines (e.g. MPI_File_read_all), MPI provides split collective data access
routines each of which is split into a begin routine and an end routine. Thus two rounds
of synchronizations are needed for a collective I/O communication to complete. This is
analogous to our splitting the collective communications into an “init” phase and a “wait”

Data S tru c tu re s
epoch :

{wid : in t . group : o se t. rrria : (R M A com munication) array, active : bool,
match : (in t . in t) se t) mo<fe:̂ “ '-ex-/e'‘

lock : {wid : in t . R M A : (R M A com munication) a rray , active : b o o l)twe^ EXC,'l:STVE"5hARED'‘
R M A communication- :(src : in t , dst : in t , value)op:^ 1

f iruLmatch(mode, group, p) = match access epoches and exposure epoches
{{q, f i r s t k) | q € group A e p s [k].mode = mode A

p € e p s q[fc].group A ${p,a) € e p s q[k}.match}

v im p o s t (group, w in ,p) = start an exposure epoch
re q u ir e s {${win.wid, a, a, T, a)ex € e p s p} non-overlapping requirement
l e t m t = f ind-rnatch(ac, group,p) in

e p s ', = epsp o {u in .u id , group, {), T, m t)ex A
V</ € group : 3{q, k) € m t => eps^fcj.mf = epsq[k].mt U (p, len(eps',))

w in _ s ta r t(group, win,p) = start an access epoch
re q u ir e s {${win.wid, a, a, T)“c € e p s p} non-overlapping requirement
l e t m t = / ind-m atch(ex, group, p) in
l e t action =

e p s ', = epsp o {-win.-wid, group, {), T, m t)ac A
V</ € group : 3{q, k) € m t => eps^fcj.m f = e p s q[k].mt U (p, len (ep s ',))

in i f -i is Mock- th en action
’ig € group : 3epex £ e p s q : p € ep.group

action

win_com plete(wm ,p) = complete an access epoch
l e t k = f i r s t : e p s p[i].wid = win.wid A e p s [i].mode = a-c A e p s p[i].active
in

Veps.p[k].rma = {)
i f -iisM ock th en e p s ' [k].active

s i z e f e n s .. [k)
e ls e

s iz e (e p s ,), [k] .match) = s iz e (ep s ,), [k].group)
e p s p[k].active ■■

win_wait(win.p) = complete an exposure epoch
l e t k = f i r s t i : e p s p[i]:wid = win.wid A e p s p[i].mode = ex A e p s [i],active
in

Vcail € epsp[fc] : -■call.active A
V(q,i) € e p s p [fc].m atch : - ie p s q [/].active

e p s '[k],active --

Figure 15: Modeling one-sided communications (I)

post a RMA operation by adding it into the active epoch
RMA_op(fype, origin, target, disp, v, op, win, p) =

i f 3k : l o c k s p[i].wid = win.wid A l o c k s p{i],active th en
l e t k = f i r s t i : l o c k s p[i].wid = win.wid A l o c k s p[i].active
in lockSp[A:].?-ro« = l o c k s p [A:].?-rott o (origin, target, disp, v,op}tupe

e ls e
l e t k = f i r s t i :

epsp[i].wid = win.wid A epsp[?'].mode = uc A e p s p[i].active
in eps'p[k].rmu = epsp[A:].?-ro« o (origin, target, disp, v , op}tupe

p u t (origin, target, addrori,fm,disptarqet, win, p) = the “put” operation
RMA_op (put, origin, target, disptar,jet-.read-data(memsp, uddracicir), win, p)

perform active message passing origining at process p
a c t iv e .t r a n s f er(p) =
l e t k = f i r s t i : epsp[i].mode = uc A epsp['i].?-TO« ̂ () in
l e t (src, dst, disp,v,op)tupe o F = epsp[A:] in

epSp[A:].?-ro« = F A

i f type = get th en mems^ = write-dutu(memsp, win.buse + disp, v)
e ls e i f type = put th en

l e t (q,a) = e p s p[k}.mutch in
mems' = uTite-dutu(memsq,win.buse + disp, v)

e ls e
l e t (q,a) = e p s p[k}.mutch in
memSp = reduce.jdatu(memsp, win.buse + disp, v, op)

start an access epoch for passive target communication
win_lock(lock J.ype, dst, win, p) =

r e q u ire s {${win:wid, a, a, T)“ € e p s p } non-overlapping requirement
i f lock-type = SHARED th en

lockSp = locksp o (win.wid, dst, (), T)tocfc-t'-/pe
e ls e

V</ E Lvin.group : $k : l o c k s q[k]:wid = win.wid A l o c k s q[k].uctive
lockSp = locksp o (win.wid, dst, (), T)/ocfc-t'-/pe

complete an access epoch for passive target communication
win_unlock(dst, win,p) =

l e t k = f i r s t i : l o c k s p['<].w!'<t/ = win.wid A e p s p[i].uctive

l o c k s p[k].rmu = {)
locks 'p[k].uctive = _L

Figure 16: Modeling one-sided communications (II)

phase.

Since at each process each file handle may have at most one active split collective opera
tion, the f r e n d object, which represents the place where processes rendezvous, stores the
information of one operation rather than a queue of operations for each file.

With respect to this fact, we design a protocol shown below to implement collective I/O
communications: in the first “begin” phase, process p will proceed to its “end” phase pro
vided that it has not participated in the current synchronization (say syn) and s y n ’s status
is ‘enlerint/ (or Note that if all expected processes have participated then sy n ’s status
will advance to ‘leavimf (or I). In the “end” phase, p is blocked if syn is not in leaving
status or p has left. The last leaving process will delete the syn. Here notation represents
the participants of a synchronization.

D ata S tru c tu re s
f r e n d for each file :

(status : }, participants(|i?) : i n t s e t ,
[shared .data], [data : (proc : i n t .data) set])

f i l e put(f id , vs, v, p) = process p joins the synchronization
i f f i d £ DOM f r e n d th e n f r e n d '[fid] = {‘e‘, {p}, vs, {{p, v}}}
e ls e

frend [fid] = {‘e', \&, vSl, S L,} A
frend '[fid] = ((\& U {p} = files p[f id],group) ? T : ‘e‘,

'I' U {/>}. vs , S L, U {<P,1')})

f i l e begin(f id , p) = f i l e put(f id , e, e, p)
f i l e writ e (f id , v, p) = f i l e put(f id , e, v, p)

f i l e end(f id , p) = process p leaves the synchronization
___________frend[fi< i] = (lV, V U {p}, vs, S 0)___________

f r e n d '[fid] = i f = {} th en e e ls e (‘T, \&, vs , S v)

We use the f i l e s object to store the file information, which includes an individual file
pointer, which is local to a process, and a shared file pointer, which is shared by the group
of processes that opened the file. These pointers are used to locate the positions in the
file relative to the current view. A file is opened by the M P I _ F i l e _ o p e n call, which is
collective over all participanting processes.

When a process p wants to access the file in the operating system os . file, it appends a
read or write request to its request queue f r e q s p. A request contains information about
the offset in the file, the buffer address in the memory, the number of items to be read,
and a flag indicating whether this request is active or not. The MPI system schedules the
requests in the queue asynchronously, allowing the first active access to take effect at any

time. After the access is finished, the request becomes inactive, and a subsequent wait call
will return without being blocked. Note that we need to move the file pointers after the
access to the file.

Analogous to usual collective communications, a split collective data access call is split
into a begin phase and a end phase. For example, in the begin phase a collective read
access reads the data from the file and stores the data in the f r e n d object; then in the end
phase it fetches the data and updates its own memory.

4.11 Evaluation

How to ensure that our formalization is faithful with the English description? To attack this
problem we rely heavily on testing in our formal framework. We provide comprehensive
unit tests and a rich set of short litmus tests of the specification. Generally it suffices to test
local, collective, and asynchronous MPI primitives on one, two and three processes respec
tively. These test cases, which include many simple examples in the MPI reference, are
hand-written directly in TLA+ and modeled checked using TLC. As we have mentioned in
Section 3, thanks to the power of the TLC model checker our framework supports thorough
testing of MPI programs, thus giving more precise answers than vendor MPI implementa
tions can.

Another set of test cases are built to verify the self-consistency of the specification. For
a communication (pattern), there may be many ways to express it. Thus it is possible to
relate aspects of MPI to each other. Actually, in the MPI definition certain MPI functions
are explained in terms of other MPI functions.

We introduce the notation MPI_/1 ~ MPI_i? to indicate that A and B have the same func
tionality with respect to their semantics.

Our specification defines a blocking point-to-point operation by a corresponding nonblock
ing operation followed immediately by a M P l _ W a i t operation. Thus we have

MPI_Send(n) ~ MPI_Isend(n) + MPI_Wait
MPI_Recv(n) ~ M PI_Irecv(n) + MPI_Wait

M PI_Sendrecv(ni, n2) ~ M PI_Isend(ni) + M PI_Irecv(n2) + MPI_Wait + MPI_Wait

Typical relationships between the MPI communication routines, together with some exam
ples, include:

D ata S tru c tu re s
file information at a process :

f i d : i n t , group : o se t, fn a m e : s t r in g , a mode : mode s e t , size : i n t , view,
pts : {pshared, i n t , pind : in t)

file access request:
{/ / t , o f f s e t : in t , buf : in t , count : in t , active : bool)

ire a d (//f , o f f s e t , buf, count, request, p) = nonblocking file access
f r e q s ', = f r e q s p o (fh, o f f s e t , buf , count, T) read A
memsp[?‘e</'ttesf] = s i z e (f r e q s p)

iw r i t e (//t, of f s e t , buf , count, request, p) =
f r e q s ', = f r e q s p o (f h , o f f s e t , bu f , count, T) wrlte A
memsp[?‘e</'ttesf] = s i z e (f r e q s p)

f ile_ access(p) = perform file access asynchronously
l e t (f h , o f f s e t , buf, co u n t,T)mode o T = freqsp in
A freqsp = (f h, o f f set, b u f , count, ±)mode o T
A i f mode = w rite th en

l e t v = r e-ad jti i e-m (mems p, buf , count) in
f i l e s ' [fh. f id].pts = m ovejpointe-rs(fli,v) A
o s .f i le ', = 'w rite .file (fli, o s . f i l e , v)

e ls e
l e t v = read- f i l e(fh, o s . f i l e p, of f s e t , count) in

f i l e s 'p [fh. f id\ .pts = m ovejpointe-rs(fli,v) A
mems', = w ritejm em (m em sp, buf , v)

f i le _ w a it (req,p) =
l e t Ti o (f h, o f f set, b u f , count, o Tt = f r e q s p
in f r e q s ', = Ti o remove the request

the begin call of a split collective file read operation
f ile_read_allbegin(//i, o f f s e t , buf, count, p) =

f i l eVIite(fh. . f id, read- f i l e(fh, o s . f 1 l e p , o f f s e t , count), p)

f i le _ re a d _ a llend(//f'. buf , p) = the end call of a split collective file read operation
_____________ f i l e end (f h . f i d , p)___________________

l e t v = f rend[fh.fid].data[p\ in
f i l e s 'p[fh.fid].pts = m ove-pointe-rs(fli,v) A
mems', = write jniem(memsp, buf, v)

the begin call of a split collective file write operation
f i le _ w rite _ a llbegin(//i, buf, count, p) =

f i l e „ ite(fh ..fid , re-ad-me-m(memsp, buf, count), p)

f i le _ w rite _ a llend (/^ . buf , p) = the begin call of a split collective file write operation
_____________ f i l eend(f h . f i d , p)___________________

l e t v = f rend[fh.fid].data[p\ in
f i l e s 'p[fh.fid].pts = m ovejpointe-rs(fli,v) A
o s . f i l e ' , = wri te- f i l e(fh, o s . f i l e p ,v)

Figure 17: Modeling I/O operations

• A message can be divided into multiple sub-messages sent separately.

MPI_A(k x n) — MPI_A(n)1 -|----- + M PIJl(n)fc
MPI_A(k x n) — MPI_A(k)1 H----- + MPI_A(k)n

• A collective routine can be replaced by several point-to-point or one-sided routines.

MPI_Bcast(n) ~ MPI_Send(n) + • • • + MPI_Send(n)
M PI.Gather(n) ~ M P I-R ecv^ /p^ + • • • + MPI_Recv(n/p)p

• Communications using MPI.Send, M P I _ R e c v can be implemented by one-sided
communications.

MPI_Win_fence + MPI_Get(n) + MPI_Winjfence ~
M PI_B arrier + MPI _Recv(d) + MPI _Recv(n) + M PI_Barrier,
where d is the address and datatype information

• Process topologies do not affect the results of message passing. Communications
using a communicator that implements a random topology should has the same se
mantics as the communication with a process topology (like a Cartesian topology).

Our specification is shown to meet the correctness requirements by model checking test
cases.

4.12 Discussion

It is important to point out that we have not modeled all the details of the MPI standard.
We list below the details that are omitted and the reasons why we do not model them:

• Implementation details. To the greatest extent possible we have avoided asserting
implementation-specific details in our formal semantics. One obvious example is
that the info object, which is one arguments of some MPI 2.0 functions, is ignored.

• Physical Hardware. The underlying, physical hardware is invisible in our model.
Thus we do not model low-level topology functions such as M P I _ C a r t _ m a p and
MPI_Graph_map.

• Profiling Interface. The MPI profiling interface is to permit the implementation of
profiling tools. It is irrelevant to the semantics of MPI functions.

• Runtime Environment. Since we do not model the operation system to allow for the
dynamic process management (e.g. process creation and cooperative process termi
nation), MPI routines accessing the runtime environment such as M P I _ Comm.spawn
are not modeled. Functions associated with the thread environment are not specified
either.

Often our formal specifications mimic programs written using detailed data structures, i.e.
they are not as “declarative” as possible. We believe that this is in some sense inevitable
when attempting to obtain executable semantics of real world APIs. Even so, TLA+ based
“programs” can be considered superior to executable models created in C: (i) the notation
has a precise semantics, as opposed to C, (ii) another specification in a programming lan
guage can provide complementary details, (iii) in our experience, there are still plenty of
short but tricky MPI programs that can be executed fast in our framework.

5 Verification Framework

Our modeling framework uses the Microsoft Phoenix [161 Compiler as a front-end for C
programs. Of course other front-end tools such as GCC can also be used. The Phoenix
framework allows developers to insert a compilation phase between existing compiler
phases in the process of lowering a program from language independent MSIL (Microsoft
Intermediate Language) to device specific assembly. We place our phase at the point where
the input program has (i) been simplified into a single static assignment (SSA) form, with
(ii) a homogenized pointer referencing style that is (iii) still device independent.

From Phoenix intermediate representation (IR) we build a state-transition system by con
verting the control flow graph into TLA+ relations and mapping MPI primitives to their
names in TLA+. Specifically, control locations in the program are represented by states,
and program statements are represented using transitions. Assignments are modeled by
their effect on the memory. Jumps have standard transition rules modifying the values of
the program counters. This transition system will completely capture the control skeleton
of the input MPI program.

The architecture of the verification framework is shown in Figure 18. The user may input
a program in any language that can be compiled using the Phoenix back-end — we have
experimented only with C. The program is compiled into an intermediate representation,
the Phoenix IR. We read the Phoenix IR to create a separate intermediate representation,
which is used to produce TLA+ code. The TLC model checker integrated in our framework

 ̂ Microsoft Visual Studio j ̂ Verification Enviromnent |

f Phoenix Compiler J

^ __________ Intermediate Representation_________ J ̂TLA+ MPI Library Model j 't I .A - Program Model j
 ̂ TLC Model Checker j

Figure 18: Architecture of the verification framework. The upper (bottom) one indicates
the flow (hierarchical) relation of the components.

enables us to perform verification on the input C programs. If an error is found, the error
trail is then made available to the verification environment, and can be used by our tool
to drive the Visual Studio debugger to replay the trace to the error. In the following we
describe the simplification, code generation and replay capabilities of our framework.

Simplification. In order to reduce the complexity of model checking, we perform a se
quence of transformations: (i) inline all user defined functions (currently function pointers
and recursion are not supported); (ii) remove operations foreign to the model checking
framework, e.g. p r in t f ; (iii) slice the model with respect to communications and user
assertions: the cone of influence of variables is computed using a chaotic iteration over the
program graph, similar to what is described in [18]; and (iv) eliminate redundant counting
loops.

Code Generation. During the translation from Phoenix IR to TLA+, we build a record
map to store all the variables in the intermediate language. The address of a variable
x is given by the TLA+ expression map.x; and its value at the memory is returned by
mems[map.x\. Before running the TLC, the initial values of all constants and variables are
specified (e.g. in a configuration file). The format of the main transition relation is shown
below, where N is the number of processes, m d p red e f in ed j ix t is the “system” transition
which performs message passing for point-to-point communications, one-sided communi
cations, and so on. In addition, “program” transitions transitiorii, transition^. ■■ ■ are
produced by translating MPI function calls and IR statements. In the examples shown later
we only show the program transition part.

■ y V e r if ic a tio n E n v iro n m e n t I 1=3 1 s i I— £ 3 - 11

F ile T r a n s f o r m A n a ly z e S im u la t e V e r b o s e H e lp

E x tr a c t S im p li fy S to p 5 0 0 0 S ta r t D e b u g g e r S te p In str . S t e p S t a t e S t e p t o E n d

M odel g e n e r a te d . -

S u c essfu Jly transform ed program with t h e follow ing o ptio ns:
Inlined Fu nctions
C lean ed Fu nctio ns
S liced Fu nctio ns
Elim inated Epsilon M o v es
R e m o v e d C ou nting L oops

5

Erinor: An invalid e n d s ta te w a s d is c o v e re d .

S ta te s : 3 7 5 0 4
T ransition s: 3 7 5 0 3
Maximum D ep th : 9 9 9 9
T o ta l tim e: 4 4 .1 s
S p e e d : 8 5 1 transition s p e r s e c o n d

-

S ta te s : 1 6 0 6 9 . T ransition s: 1 6 0 6 8 . S p e e d : 4 8 6 transition s p er s e c o n d 1 1

Figure 19: Two screenshots of the verification framework.

V A prcdcfincd-nxt transitions performed by the MSS
A UNCHANGED ({map}}

V 3pid € 0..(N — 1) : execute an enabled transition at a process
V transition^
V transit ion2
v . . .

V Vpid € 0..(N — 1) : eliminate spurious deadlocks
A pc pid = last label
A UNCHANGED alLuaraibles

Error Trail Generation, In the event that the m odel contains an error, an error trail is
produced by the model checker and returned to the verification environm ent. To m ap the
error trail back onto the actual program we observe M PI function calls and the changes
in the error trail to variable values that appear in the program text. For each change on a
variable, we step the Visual Studio debugger until the corresponding value o f the variable
in the debugger m atches. We also observe which process m oves at every step in the error
trail and context switch between processes in the debugger at corresponding points. W hen
the error trail ends, the debugger is within a few steps o f the error with the process that
causes the error scheduled. The screenshots in figure 19 show the debugger interface and
the report o f an error trace.

Examples. A sim ple C program containing only one statem ent “if (rank == 0) MPI_Bcast
(&b, 1, M PUNT, 0, com m l) ” is translated to:

V A pcpid = L i A pc' = [pc EXCEPT l[pid] = L 2]
A m em s ' = [mems EXCEPT \[pid] = [@ EXCEPT l[map.ti] = (mems[pid][map.j-ank] = 0)]]

V A pc[pid] = L 2 A mems[pid][map.ti]
A pc' = [pc EXCEPT \[pid} = L 3]

V A pc[pid] = L 2 A -^(mems[pid][inap.ti})
A pc' = [pc EXCEPT \ [pid) = L h)

V A pc pid = L 3 A pc' = [pc EXCEPT \ [pid) = L,x]
A MPI_BcastAmt(map.Jj. 1. MPIJNT. 0, m ap..com m l.pid)

V A pc pid = L, 1 A pc' = [pc EXCEPT \ [pid) = L h)
A MPI_Bcasl_wail(TOttp._6! 1, MPIJNT. 0, m ap.-com m l,pid)

At label L ls the value o f ra n k —— 0 is assigned to a tem porary variable f ls and the pc
advances to L 2. In the next step, if the value o f ^ is true, then the pc advances to L :i:
otherw ise to the exit label L b. The broadcast is divided into an “in it” phase (where pc
advances from L :i to L 4) and a “w ait” phase (where pc advances from L 4 to L — 5). In
Figure 20 we show a m ore com plicated example.

i n t m a in (i n t a r g c , c h a r* a r g v [])
{

i n t r a n k ;
i n t d a t a ;
M P I_ S ta tu s s t a t u s ;

M P I_ In i t (& a rg c , & a rg v) ;
MPI_Comm_rank(MPI_COMM_WORLD, & ra n k) ;
i f (r a n k == 0) {

d a t a = 1 0 ;
M P I_S end(& d a ta ,1 ,M P I_ IN T ,1 , 0 , MPI_COMM_WORLD);

}
e l s e {

M P I_R ecv(& d a ta ,1 , M P I_IN T ,0 , 0 , MPI_COMM_WORLD, f i s t a t u s) ;
}
M P I_ F in a liz e () ;
r e t u r n 0 ;

}

The TLA+ code generated by the compiler:

V A pc\pid\ = _m ain A pcJ = [pc EXCEPT \ {pid\ = L i]
A MPLlnit(map.-argc, map.-argv,pid)

V A pc[pid] = L r A pc' = [pc EXCEPT l[pid} = Lg\
A m em s' = [mems EXCEPT l[pid} = Update(@, map..data, 10)]
A changed(mems)

V A pc\pid] = L q A pc' = [pc EXCEPT \[pid\ = L 1 4]
A MPLlrec\(map.-data, 1, MPI INT. 0,0, MPI COMM WORLD, m ap.tm prequest^pid)

V A pc\pid\ = L i A pc' = [pc EXCEPT \[pid\ = L ‘2\
A MPLComm_rank(MPl_COMM_WORLD, m ap-rank , pid)

V A pc[pi(i] = L 2 A pc' = [pc EXCEPT ![pi<i] = L 5\
A m em s’ = [mems EXCEPT ![pi(i] =

Update(@, m ap.t‘2,7 7 , mems[pid}[map.-rank} = 0)]
A changed(mems)

V A pc[pi(i] = L 5 A pc' = [pc EXCEPT ![pi<i] = Lr\
A mems[pid}[map.t277}

V A pc\pid\ = 1 5 A pc' = [pc EXCEPT \[pid] = Lg]
A -■(mems[pid}[map.t277])

V A pc[pid] = L g A pc' = [pc EXCEPT l[pid\ = L 1 3]
A MPLisend(map.data, 1, MPIJNT, 1,0, MPI COMM WORLD. map.tm prequest0,pid)

V A pc[pid] = L n A pc’ = [pc EXCEPT l[pid\ = L 12\
A MPLFinalize(pi(i)

V A pc[pid] = L 1 3 A pc' = [pc EXCEPT ![pi<i] = L n]
A MPl-Wmt(map.tmprequesto, map.tm pstatuso,pid)

V A pc\pid\ = /. 1 1 A pc' = [pc EXCEPT \[pid\ = L n]
A M Pl-W mt(map.tmprequesti, m a p .s ta tu s ,p id)

The source C program:

Figure 20: An example C program and its corresponding TLA+ code.

When we run the TLC to demonstrate the absence of deadlocks for 2 processes, 51 distinct
states are visited, and the depth of the complete state graph search is 17. The verification
time is less than 0.1 second on a 3GHz processor with 1GB of memory. However, although
it suffices in general to perform the test on a small number of processes, increasing the
number of processes will increase the verification time exponentially. Thus we are imple
menting efficient methods such as partial order reduction algorithms [261 [361 to reduce the
state space.

6 Conclusion

To help reason about programs that use MPI for communication, we have developed a
formal TLA+ semantic definition of MPI 2.0 operations to augment the existing stan
dard. We described this formal specification, as well as our framework to extract models
from SPMD-style C programs. We discuss how the framework incorporates high level for
mal specifications, and yet allows designers to experiment with these specifications, using
model checking, in a familiar debugging environment. Our effort has helped identify a few
omissions and ambiguities in the original MPI reference standard document. The expe
rience gained so far suggests that a formal semantic definition and exploration approach
as described here must accompany every future effort in creating parallel and distributed
programming libraries.

In future, we hope to write general theorems (inspired by our litmus tests), and establish
them using the Isabelle theorem prover that has a tight TLA+ integration.

References

[11 Martin Abadi, Leslie Lamport, and Stephan Merz, A tla solution to the rpc-memory
specification problem., Formal Systems Specification, 1994, pp. 21-66.

[21 Steven Barrus, Ganesh Gopalakrishnan, Robert M. Kirby, and Robert Palmer, Verifi
cation o f MPI programs using SPIN, Tech. Report UUCS-04-008, The University of
Utah, 2004.

[31 Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, and
Keith Wansbrough, Rigorous specification and conformance testing techniques for
network protocols, as applied to tcp, udp, and sockets, SIGCOMM, 2005, pp. 265
276.

[4] , Engineering with logic: Hoi specification and symbolic-evaluation testing
for tcp implementations, Symposium on the Principles of Programming Languages
(POPL), 2006, pp. 55-66.

[5] Anthony Danalis, Ki-Yong Kim, Lori Pollock, and Martin Swany, Transformations
to parallel codes for communication-computation overlap, SC ’05: Proceedings of
the 2005 ACM/IEEE conference on Supercomputing (Washington, DC, USA), IEEE
Computer Society, 2005, p. 58.

[6] P. Van Eijk and Michel Diaz (eds,), Formal description technique lotos: Results o f the
esprit sedosproject, Elsevier Science Inc., New York, NY, USA, 1989.

[7] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.
Woodall, Open MPI: Goals, concept, and design o f a next generation MPI imple
mentation, Proceedings, 11th European PVM/MPI Users’ Group Meeting (Budapest,
Hungary), September 2004, pp. 97-104.

[8] Philippe Georgelin, Laurence Pierre, and Tin Nguyen, A formal specification o f the
MPI primitives and communication mechanisms, Tech. report, LIM, 1999.

[9] William Gropp, Ewing L. Lusk, Nathan E. Doss, and Anthony Skjellum, A high-
performance, portable implementation o f the mpi message passing interface standard,
Parallel Computing 22 (1996), no. 6 , 789-828.

[10] John Harrison, Formal verification o f square root algorithms, Formal Methods in
System Design 22 (2003), no. 2, 143-154, Guest Editors: Ganesh Gopalakrishnan
and Warren Hunt, Jr.

[11] G. Holzmann, The model checker SPIN, IEEE Transactions on Software Engineering
23 (1997), no. 5, 279-295.

[12] IEEE, IEEE Standard for Radix-independent Floating-point Arithmetic, ANSI/IEEE
Std 854-1987, 1987.

[13] Daniel Jackson, Alloy: A new technology for software modeling, TACAS ’02, LNCS,
vol. 2280, Springer, 2002, p. 20.

[14] Daniel Jackson, Ian Schechter, and Hya Shlyahter, Alcoa: the alloy constraint ana
lyzer, ICSE ’00: Proceedings of the 22nd international conference on Software engi
neering (New York, NY, USA), ACM Press, 2000, pp. 730-733.

[15] Guodong Li, Michael DeLisi, Ganesh Gopalakrishnan, and Robert M. Kirby, Formal
specification o f the MPI-2.0 standard in TLA+, Principles and Practices of Parallel
Programming (PPoPP), 2008.

[16] Microsoft, Phoenix academic program, http://research.microsoft.com/phoenix, 2007.

[17] http://www.cs.utah.edu/formal_verification/mpitla/.

[18] Flemming Nielson, Hanne R. Nielson, and Chris Hankin, Principles o f program anal
ysis, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[19] Michael Norrish, Cformalised in HOL, Ph.D. thesis, University of Cambridge, 1998.

[20] Michael Norrish and Konrad Slind, HOL-4 manuals, 1998-2006, Available at
h t t p :/ / h o i .s o u r c e f o r g e .n e t / .

[21] Robert Palmer, Steven Barrus, Yu Yang, Ganesh Gopalakrishnan, and Robert M.
Kirby, Gauss: A framework for verifying scientific computing software., SoftMC:
Workshop on Software Model Checking, ENTCS, no. 953, August 2005.

[22] Robert Palmer, Michael Delisi, Ganesh Gopalakrishnan, and Robert M. Kirby, An
approach to formalization and analysis o f message passing libraries, Formal Methods
for Industry Critical Systems (FMICS) (Berlin), 2007, Best Paper Award.

[23] Robert Palmer, Ganesh Gopalakrishnan, and Robert M. Kirby, The communication
semantics o f the message passing interface, Tech. Report UUCS-06-012, The Univer
sity of Utah, October 2006.

[24] , Semantics Driven Dynamic Partial-order Reduction o f MPl-based Parallel
Programs, PADTAD ’07, 2007.

[25] Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev Thakur, and
William Gropp, Formal verification o f programs that use MPI one-sided communi
cation, Recent Advances in Parallel Virtual Machine and Message Passing Interface
(Berlin/Heidelberg), LNCS, vol. 4192/2006, Springer, 2006, pp. 30-39.

[26] Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev Thakur, and
William Gropp, Formal verification o f programs that use MPI one-sided communi
cation, Recent Advances in Parallel Virtual Machine and Message Passing Interface
(EuroPVM/MPI), LNCS 4192, 2006, Outstanding Paper, pp. 30-39.

[27] http://sal.csl.sri.com/.

[28] Stephen F. Siegel, Model Checking Nonblocking MPI Programs, VMCAI07 (B. Cook
and A. Podelski, eds.), LNCS, no. 4349, Springer-Verlag, 2007, pp. 44-58.

http://research.microsoft.com/phoenix
http://www.cs.utah.edu/formal_verification/mpitla/
http://hoi.sourceforge.net/
http://sal.csl.sri.com/

[29] Stephen F. Siegel and George Avrunin, Analysis o f mpi programs, Tech. Report
UM-CS-2003-036, Department of Computer Science, University of Massachusetts
Amherst, 2003.

[30] Stephen F. Siegel and George S. Avrunin, Modeling wildcard-free MPI programs for
verification, ACM SIGPLAN Symposium on Principles and Practices of Parallel Pro
gramming (Chicago), June 2005, pp. 95-106.

[31] Jeffrey M. Squyres and Andrew Lumsdaine, A Component Architecture for LAM/MPI,
Proceedings, 10th European PVM/MPI Users’ Group Meeting (Venice, Italy), Lec
ture Notes in Computer Science, no. 2840, Springer-Verlag, September / October
2003, pp. 379-387.

[32] The Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
http://www. mpi-forum. org/docs/mpi-ll-html/mpi-report. html., 1995.

[33] Leslie Lamport, research.microsoft.com/users/lamport/tla/tla.html.

[34] Leslie Lamport, The Win32 Threads API Specification.
research.microsoft.com/users/lamport/tla/threads/threads.html.

[35] Sarvani Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby, Dynamic verifi
cation o f MPI programs with reductions in presence o f split operations and relaxed or
derings, 20th International Conference on Computer Aided Verification (CAV), 2008.

[36] Sarvani Vakkalanka, Subodh V. Sharma, Ganesh Gopalakrishnan, and Robert M.
Kirby, Isp: A tool for model checking mpi programs, Principles and Practices of Par
allel Programming (PPoPP), 2008.

A Soundness Proof with Formal Semantics

The main problem of model checking MPI programs is the state space explosion prob
lem. This problem may be mitigated by using partial order reduction techniques. A sound
partial-order reduction guarantees that if there is a property violation in the full state space,
that violation will be discovered by the model checker while enumerating a subset of the
state space.

We have developed several partial order reduction (DPOR) algorithms [24, 26, 35] to model
check MPI programs. For instance, the ISP checker [35] exploits the out of order com
pletion semantics of MPI by issuing MPI calls according to match-sets which are ample

http://www

‘big-step’ moves. The core of a DPOR algorithm is to base on an dependence analysis to
determine when it is safe to execute only a subset of the enabled calls. Such dependence
information is computed based on the semantics of MPI calls. In this section we show how
to justify the definition of dependence in our DPOR algorithms according to the formal
semantics of MPI calls.

Our goal is to prove the soundness of the complete-before relation -< defined in [35]. Re
lation -< specifies the order enforced on the completion of MPI calls. An MPI immediate
send S’i_j(k, (i, j) , . . .), where k is the process targeted, i, j is the request handle used to
track the processes of this send, completes when it matches a receive (e.g. by the MPI
System Scheduler). An MPI immediate receive where k is the process
from which the message is sourced (k = * means a ‘wildcard receive’), completes when
it receives the message. A barrier operation B itj completes when all participants exit the
synchronization. A wait operation completes when the corresponding send (re
ceive) operation completes and the data has been sent out (copied into the target process’s
memory).

The formal definition of the completes-before relation is given below as eight rules.

(Css-kk) V i j i, j 2, k : j t < j 2 => Skh (k, . . .) - < Sijj2 (k , . . .)
(Crr-kk) Vi j 1: j 2, k : j x < j 2 => R;.J: (k. . . .) - < R . . .)
(Crr-*k) Vi j i , j 2, k : j i < j 2 =» Riih (*, . . .) -< Ri,j2 (k, . . .)
(Crr.**) Vi j u j 2, k : j x < j 2 => Ri;jl (*, . . .) ^ R i;j2

(Csw) Vi, j 1; j 2: k : j t < j 2 SLjl(k, (i j t)) -< Wi j 2 ((i , j i))
(Crw) Vi j i , j 2, k : j t < j 2 R-,_r (k. (i . j ^) -< Wi j 2 ((i , j i))
(Cb) V i j u j 2, k : j x < j 2 Bi_h < anyij2(. ..)
(Cw) Vi j 1: j 2, k : j! < j 2 Wi;jl(. ..) ^ anyitj2(. ..)

Now we proceed to prove the correctness of these rules with respect to our formal seman
tics. As in [35], We abstract away such fields as communicator ID, tag, prematch, value
and flags. First of all, rule C s w and rule C r w are valid because a blocking send or receive
operation is modeled by a non-blocking operation followed by a wait operation. As indi
cated in the semantics, a non-blocking operation sets the active flag of the request, and the
corresponding wait operation can return only if this flag is set. Hence these two operations
cannot execute out of order.

A.0.1 Send and Receive.

Now consider the C s s - k k rule, which specifies the order of two immediate sends from
process i to process A. Assume that the request queue at process i contains two active send
requests S Lj. (/>-.. . .) and S',:.y2(A,. . .):

(k , .. ,) $ nd o (k , .. ,)%nd

Suppose for contradiction that request j 2 may complete before request j In order for j 2 to
complete, there must exist a receive request (buf, i . .. at process k that matches this
send request, and the following condition specified in the t r a n s f e r rule must hold (note
that the first request (k , . . is in P',):

$ (k , .. G T* : (i, k , . . . , rn) = (i, k , . . . , n)

However, if rn equals to j i, then this condition is false immediately because request j i
matches the receive request. This contradiction implies the correctness of rule Cs s - kk .
Rule C r r - k k can be proved in a similar way.

Let us look at rule C r r - * k and rule C r r - * *, where the first receive is a wildcard receive.
Assume that the request queue at process i contains two active receive requests R.Ljl (* ,. . .)
and Ri'j2 (A:*,...). In the second receive either A* = A {i.e. the source is process A) or A* = *
{i.e. it is a wildcard receive):

(b u h ,* , . . .)% cv o (b u h ,k * , . . .) r;2cv

If request j 2 completes before request j i, then there must exist a send request (i ..
at a process p (which may be A) that matches this receive request, and the FIFO condition
specified in the t r a n s f e r rule must hold. In other words, we have

(p , n) = < f c * , . , j 2) A
$(buf, q , .. : (p, L . . . ,n) = (q, L . . . , rn)

Let rn equal to j i , then the second condition requires us to prove that (p, i n) =
(*, i j i) is false. Using the definition of — (where the prematch fields are empty),

((p, d s t , . . . , kp) = (src, q , . . . , kq)) =
q = dst A src € {p, *} the source and target must match

after simplification we have

fc* G {p,*} A -■(* G {p,*}),

which is obviously false. Thus request j 2 cannot complete before j i, which implies the
correctness of these two rules.

On the other hand, the rule Vj, ji, j 2, k : ji < j 2 =4> / i , . r . . .) ~< Ri.j2{*,...) is invalid.
If we perform the same contradiction proof as shown above, then finally we will get a
predicate not leading to a contradiction: * e {/>. *} A -(/,• e {p. *}). This predicate is true
when A =f- p, i.e. a process other than A sends the message.

A.0.2 Barrier.

Rule C b specifies that any MPI call starting after a barrier operation will complete after the
barrier. This rule is valid because the barrier function has blocking semantics: the “wait”
phase of a barrier operation at process i will be blocked until i leaves the synchronizing
communication. Thus only after B ^ returns will a subsequent MPI call anyij2 start and
then complete. Similarly, rule C w is valid because W a i t also has blocking semantics.

On the other hand, the rule {Vi. j i , j2; k : j\ < ./•_> f.. .) -< 1 is invalid. This
can be explained easily with the formal semantics. Recall that />’,./2 is implemented as
/>’, /2 init followed by Bi j 2 jwait. Suppose a n y ^ is a send operation, as the barrier and
send operate on different MPI objects (i.e. r e n d and r e q s respectively), the B ij2_wait
needs not to wait for the completion of the send. Hence the following sequence is possible,
implying that sendi^ (. . .) -< />’,./2 is false.

sen d ij j starts < B ^ j2J,nit < Bi_j,2jwait < sendi,ji completes

