
M i g r a t i n g R e l a t i o n a l D a t a t o a n O O D B :

S t r a t e g i e s a n d L e s s o n s F r o m

A M o l e c u l a r B i o l o g y E x p e r i e n c e

Jon Oler, Gary Lindstrom and Terence Critchlow

U U C S -9 7 -0 0 1

Department o f Computer Science
University o f Utah

Salt Lake City, UT 84112 USA

February, 1997

A b s t r a c t

The growing maturity o f OODB technology is causing many enterprises to consider
migrating relational databases to OODBs. While data remapping is relatively
straightforward, greater challenges lie in economically and non-invasively adapting
legacy application software. We report on a genetics laboratory database migration
experiment, which was facilitated by both organization o f the relational data in object­
like form and a C++ framework designed to insulate application code from relational
artifacts. To our surprise, the framework failed to encapsulate three subtle aspects o f the
relational implementation, thereby “contaminating” application code. We describe the
underlying issues, and offer cautionary guidance to future migrators.

Relational database (RDB) management systems are the dominant database

technology in use today. Initially developed in the 1970’s, RDB technology is mature,

robust, flexible, and broadly applicable. However, in recent years traditional RDBMS’s

have come to be viewed as deficient in data representational power in comparison to

modem application software, which is increasingly object oriented. This RDB

shortcoming has begun to be addressed by extended relational systems (e.g., Postgres

[SK91]) and middleware such as object oriented relational database gateway products

(e.g. Persistence [KJA93]). Such RDBMS extensions have been spurred by competition

from object-oriented database management systems (OODBMS’s), which combine

comprehensive database management functionality and full-fledged 0 0 data modeling

[ABDDMZ89],

Enterprises are understandably cautious in adopting new technology such as an

OODBMS due to risks including lack o f prior experience in effective OODB use,

concerns for vendor stability, slow standardization, disruption o f application software

development, and fear o f failure — with loss o f investment and an embarrassing retreat to

prior technology. Hence a cost effective, reversible, risk mitigating migration strategy

has great appeal. In fortunate cases, the increasing 0 0 sophistication o f the enterprise’s

application software may have steered the enterprise’s relational data design to a de facto

object-based organization. Indeed, the database architects may have had the foresight to

encapsulate RDB representation details in an 0 0 framework, delivering to applications

an OODB-like view on the relational data. Not surprisingly, such frameworks are a great

Introduction

aid to migration, because they embody a ready solution to the first problem one

encounters: data representation conversion.

We report our experience in employing such a framework as a migration vehicle.

In many ways, the framework fulfilled our expectations as a migration aid, especially in

terms o f ease o f data conversion. However, the thrust o f this paper is on unforeseen

semantic and pragmatic issues encountered in the migration, arising from subtle aspects

o f RDB technology “leaking” through the framework and “contaminating” our

application software. After sketching our application setting, framework-based migration

strategy, and lessons learned along the way, we conclude with a list o f symptoms,

diagnoses and remedies that may be instructive to other database developers

contemplating a similar migration path.

T h e U ta h C e n t e r f o r H u m a n G e n o m e R e s e a r c h D a ta b a s e

The Utah Center for Human Genome Research (UCHGR) has developed over six

years a comprehensive data model, database implementation and application suite for

molecular biology laboratory information. The key characteristics o f this database are: (i)

an object-based meta data model comprising five fundamental concepts (objects,

relationships, processes, protocols, and environments), in terms o f which all concrete

entities are expressed; (ii) an implementation o f this model using a commercial RDBMS

(Sybase), and (iii) a framework permitting application software to manipulate database

contents as though it were a collection o f persistent C++ objects, i.e., an OODB

[SFCDML96],

Underlying this database design is a defensive posture with respect to the most

vexing problem the UCHGR database implementers have faced over the years: frequent

but unanticipatible schema evolution. Extensive use is made o f meta information,

guiding access within a “hyper normalized” implementation in which object attributes are

dispersed in individual tuples associated by object identifiers (OIDs) internal to the

database. The result is an exceptionally supple data representation, permitting both (i)

logical data schema evolution by ordinary RDBMS transactions on meta data tables, and

(ii) representational tolerance to data in many schema versions, both current and

historical. Both features are crucial to the rapidly changing, yet archival, nature o f

molecular biological data.

These advantages notwithstanding, it rapidly became clear that the generality of

this meta data representation, plus its lack o f conventional 0 0 structure, made it

inappropriate for direct access by application programs. Hence a C++ framework was

developed, o f the kind alluded to in the previous section. This framework, called Gorp

(for Genetic Objects, Relationships and Processes), presents to applications a

reconstructive view o f the database contents, consistent with the current concrete 0 0 data

schema expressed as C++ classes. Historical data, which is needed far less frequently, is

either accessed through a lower level interface, or through Gorp code specially written to

do data evolution on demand. Like all class libraries worthy to be termed frameworks,

Gorp makes extensive use o f abstract classes serving as interfaces to hidden

implementation classes (a com pletion o f the framework). The production database

currently comprises the Gorp framework plus a completion library implementing Gorp

abstract classes in terms o f SQL stored procedures.

M i g r a t i n g th e U C H G R D a ta b a s e to a n O O D B

Beyond its support for schema evolution, the UCHGR database strategy is also

defensive in that it paved the way for ultimate adoption o f OODB technology, while

protecting the developers from the pains o f being an “early adopter” [GRS94], The

advent and commercial success o f well-engineered OODBMS products, such as

ObjectStore [LLOW91], indicate the time is ripe to seriously investigate migration to a

true OODB.

The potential advantages o f OODBs are well known, the most important to

UCHGR being (i) direct storage o f application-pertinent objects, eliminating the run-time

overhead and the software maintenance cost o f representation conversion code; (ii) faster

overall performance, due to direct pointer navigation rather than multi-way joins (an

unfortunate consequence o f UCHGR’s meta data representation); (iii) more seamless

integration with C++ software development tools; (iv) more flexible data structuring

representation possibilities, and (v) a true 0 0 representation upon which application

understanding can guide performance tuning and determine customized consistency and

concurrency control policies. Finally, the migration experiment would provide a litmus

test for Gorp’s representation encapsulation power.

The result was a novel migration strategy exploiting cooperating completions of

the Gorp framework, which we describe in subsequent sections, along with some

surprising pitfalls encountered, and lessons learned. Throughout, we will focus on

effective OODB exploitation by applications accessing current version data. In our

5

concluding section we will make some speculative remarks on how our migration

strategy might be extended to support schema evolution.

F ra m ew ork -B a sed D ata M igra tion

The hypothesis underlying our experiment was simple: that Gorp sufficiently

encapsulated all RDB-specific aspects o f the UCHGR database, such that no application

software changes would be necessary if the RDBMS (Sybase) implementation were

replaced by a genuine OODBMS (ObjectStore). To a first approximation, our hypothesis

was validated.

Our experiment began by building a dual-completion instantiation o f the

framework capable o f operating in several modes. Table 1 summarizes how these modes

might be used. We started with the Read RDB / Write RDB mode already implemented.

Since this code is in production use, we made the baseline assumption that it is correct,

and relied on it as a validation standard for other modes. This mode was also used as a

benchmark for validating the read OODB / write OODB mode.

7

Mode Uses
Read RDB /
Write RDB

Preserves existing working RDB
implementation;
“benchmark” for alternate implementations

Read OODB /
Write OODB

Complete conversion to OODB

Read RDB /
Write OODB

Migrate data from RDB to OODB;
populate OODB using real data in RDB

Read OODB /
Write RDB

Migrate data from OODB to RDB

Read RDB /
Write Both

Access data through RDB, maintain RDB /
OODB consistency

Read OODB /
Write Both

Access data through OODB, maintain RDB /
OODB consistency

Table 1 Gorp Framework Modes o f Operation

The read RDB / write OODB mode was applied on a wholesale basis to transfer

data from the RDB to the OODB. The read OODB / write both mode allowed both

databases to be updated in tandem. Each database could then be read to verify that they

returned the same result. In keeping with our risk mitigating strategy, this dual write

mode constitutes a comforting fallback to the fully robust relational version, after

deploying the OODB version. That is, if the OODB performance lags or other problems

are encountered, it could be pulled from production and the RDB completion could be

quickly redeployed since the RDB database would be a “warm spare” . The other two

modes, read OODB / write RDB and read RDB / write both, were added for

completeness but have not been extensively used.

Generic database functions such as opening and closing the database, and

beginning, committing and aborting transactions, were already expressed in the Gorp

framework and implemented in the RDB completion. The interfaces to these functions

required no substantial changes to support the OODB completion. Their

implementations, o f course, were modified to perform the operations on the RDB,

OODB, or both, depending upon the mode o f operation. The lower-level database

interface code o f the Gorp framework was extended to provide OODBMS-specific

functionality such as the creation and deletion o f class extent sets, object clustering, query

facilities, and the creation/deletion o f indexes. In all material respects, the Gorp

framework design proved adequate to encapsulate these DBMS-specific features, and

hide them from applications.

We next considered Gorp object allocation and deletion. The OODB completion

invokes ObjectStore’ s rebindings o f the C++ new and delete operators, which create and

destroy objects in persistent storage. Every persistent class in the Gorp framework has at

least one static create function allocating class instances on the application’ s transient

heap, e.g., for containing the results o f a database query. We modified these create

functions to use the persistent versions o f new to allocate objects on persistent storage.

Persistence-awareness also dictated that classes in the Gorp framework be adapted

to allocate their internal data structures on persistent store. Examples o f these are some

container classes (lists, bags, etc.) and a string class. These implementation classes are,

o f course, part o f the framework completion, rather than the Gorp application interface.

These modifications were easily accomplished. For example, the string class was

implemented using an array o f characters. It had to be modified to determine whether a

string object is persistently or transiently allocated (which is easily done using

9

objects := db.all objects // Retrieve all objects
relationships := db.all_relationships // Retrieve all relationship objects
foreach object in objects

object.get relationships // Associate each object with its relationships
foreach relationship in relationships

relationship.get_objects // Associate each relationship with related
objects

Figure 1: Pseudo-code for retrieving all Gorp objects and relationships

ObjectStore’ s os_database::of or os_segment::of operators), so that each time it is

resized, its character array is allocated on persistent or transient memory as appropriate.

Fortunately, object deletion is encapsulated via destroy methods in Gorp interface

classes; consequently, applications do not directly invoke the C++ delete operator.

Typically, applications (all initially written for the RDB completion o f Gorp) use the

delete operator to free the transient memory occupied by Gorp objects. This fortuitous

encapsulation o f memory recycling enabled us to reimplement the delete operator o f each

Gorp class to be operative only if the object resides on the transient heap or the stack. If

the object was persistently allocated, no action is taken.

The bulk o f the work in implementing the OODB Gorp completion involved

modifying the query and update functions to access an OODB rather than an RDB. As

explained earlier, the relational database employs a meta data representation which

requires reconstructive querying to deliver concrete objects. In the RDB completion, this

service is provided by SQL stored procedures, which laboriously apply meta data

querying and component-wise accesses to reconstruct Gorp objects for application

presentation. However, because the OODB queries directly access Gorp objects in their

persistent C++ form , they are much simpler than these RDB stored procedures.

The OODB was populated by a transfer program using the Gorp interface to

traverse all objects in the database using the read RDB / write OODB mode. As each

object is retrieved, a check is performed to see if an object with the same Gorp OID has

already been retrieved. If the object not is not yet present, it is persistently allocated in

the ObjectStore database. Once each object has been instantiated in the OODB,

relationships between the objects can be established, again by querying the RDB, as

shown in simplified in Figure 1. Due to the simplicity o f the underlying data model, less

than 500 lines o f C++ code to perform this migration.

Issues

We now examine three areas in which the migration did not proceed as smoothly

as expected. In some cases, the causes can be attributed to inadequate foresight in Gorp

framework design. In others, more fundamental semantic disparities emerge between

RDBs and OODBs, and the application software architectures they commonly engender.

Issue 1: Object Mapping
Four basic operations on Gorp database objects are exported to application

programs by the Gorp framework: create, delete, retrieve, and update. As observed

above, OODBMS’s eliminate object copying between

application memory and the supporting database; indeed, this constitutes one o f the most

compelling OODB virtues. Nevertheless, this benefit required adaptation o f Gorp object

creation and deletion operations. We now consider object retrieval and updating, which

exposed additional, more subtle differences between the semantics o f these operations in

the RDB and OODB completions o f the Gorp framework.

The relational completion o f the Gorp framework was implemented by

experienced developers with extensive experience in both relational database

development and object-oriented frameworks. We believe that their approach is typical

o f many projects exploiting an object-oriented interface to a relational database.

Figure 2 gives pseudo-code for a typical interaction between an application and

the Gorp framework. Invoking get_unprocessed_microtitre_dishes() in the RDB

version causes the Gorp framework to issue an SQL query which returns a set o f tuples

representing unprocessed microtitre dishes. The Gorp framework maps each microtitre

dish tuple returned to a transiently allocated C++ microtitre dish object. The process()

member function o f class microtitre_dish modifies the microtitre dish as a C++ object.

Note, however, that the persistent representation o f the microtitre dish is not affected until

the microtitre dish save() operation is invoked. The save() operation performs an SQL

update synchronizing the transient C++ microtitre dish representation with its persistent

representation in the RDB. Thus the Gorp framework, and consequently the application

software it supports, fundamentally embodies a copy in, copy out view o f persistent data

(the “ client / server” viewpoint).

By contrast, the OODB completion o f Gorp handles the interaction o f Figure 2

transaction.begin();
microtitre_dishes = gorp.get_unprocessed_microtitre_dishes();
foreach microtitre_dish in microtitre_dishes

microtitre_dish.process(); //microtitre dish object is
mutated

microtitre_dish.save();
transaction.commit();

Figure 2: Example Gorp framework operation

quite differently. The method invocation get_unprocessed_microtitre_dishes() queries

the database as before, but no mapping code is required to convert the database

representation o f a microtitre dish to the C++ representation. Although a transient C++

replica o f each unprocessed microtitre dish object is still created (by the ObjectStore

OODBMS, in the application’ s address space, operating as a database cache), this

replication is transparent to the Gorp framework and application code. In effect,

modifications made to microtitre dish objects by invoking process() are made to the

transient copies as before. However, unlike in the RDB Gorp completion, the save()

operation is an empty function in the OODB Gorp completion. This is because the

modifications made to the microtitre dish objects are automatically updated in the

persistent store by the OODB when the surrounding transaction commits. Just as no code

is required to map the object from persistent memory to transient memory, no code is

required to map the object from transient memory to persistent memory.

As described above, we redefined Gorp class delete operators to deallocate an

object only if allocated in transient memory. This relieved us from the burden o f

modifying applications to only deallocate transient objects, and allowed us to use the

same application code in either RDB or OODB mode. However, finessing this issue has

the side effect that useless delete operations remain in the code, potentially confusing

future maintenance programmers. It should be noted that this problem could be averted

altogether by using garbage collection.

With some OODBMS products, such as the Java version o f ObjectStore, object

persistence may be determined at transaction commit if the object is reachable from a

13

Original Implementation Modified Implementation

transaction.begin();

DNA_fragment * frag =
new DNA_fragment;

frag-> operation 1 ();
frag->operation2 ();
frag-> save(); //Inefficient
with

// OOBMS

transaction.commit();

transaction.begin();

// Make persistent when
created
// with OODB
DNA fragment * frag =

DNA_fragment::create(
persist);

frag-> operation 1 ();
frag->operation2 ();
frag->save(); //No-op with

//OODB

transaction.commit();

Figure 3: Modifications to Gorp for object creation

persistent root; alternatively, objects may be explicitly migrated from transient to

persistent memory. With the C++ version o f ObjectStore, however, persistent objects

must be explicitly allocated in persistent memory when the object is created.

Unfortunately, the relational completion o f Gorp allows applications to first transiently

create a new Gorp object by invoking a class constructor, then later confer persistence on

the object by calling the object’ s save() operation. This is problematic because it is

complex, costly, and perhaps ill-advised to move an object from transient to persistent

memory in ObjectStore, particularly if an entire graph o f objects was created in transient

memory because a deep copy o f this graph must occur when save() is invoked on a

transient object.

Since all existing Gorp applications know at object creation time whether an

object will persist or not, we decided against implementing object migration from

transient memory to the OODB in the Gorp framework. Instead, we changed the

semantics o f the class constructors for Gorp objects in the framework: persistent objects

must be created exclusively with a call to the static create() function provided by each

Gorp class. Temporary objects may be created either through this create() function or

through a class constructor. This allows temporary objects to still be efficiently allocated

and deallocated on either the stack or the heap, and prevents applications from having to

use DBMS-specific calls to persistent new. The difference between the two methods is

demonstrated in Figure 3. This experience indicates that creation time determination o f

object transience or persistence should be a mandatory consideration in future Gorp

application development.

In contrast to the issues surrounding persistent object creation, mechanisms for

removing objects from persistent store have the same semantics in both the RDB and

OODB completions o f the Gorp framework.

Issue 2: Transactions and Swizzled References
The Gorp framework includes basic operations for starting, committing, and

aborting transactions. However, the copy in /m odify / copy out paradigm o f the RDB

version, plus ambivalence concerning the appropriateness o f strict serialization o f Gorp

applications as long running transactions, resulted in a laissez faire utilization o f these

features. Although database consistency issues were recognized clearly to be a concern,

we encountered a different, rather subtle issue as a consequence. This concerns the

lifetime o f object references, and their relationship to transaction semantics and duration.

Although this problem manifests in various ways among OODBMS products, we believe

them to be endemic to OODB technology.

Currently, and into the foreseeable future, real databases must be able to grow

larger than the address space o f the machines that access them. Unfortunately, this poses

obstacles in making a programming language fully integrate persistent data, i.e., become

an OODB data manipulation language. If persistent objects are to be accessed in the

same way as transient objects, then applications must be able to access them through

references native to the programming language, i.e. in swizzled form [EM92]. These

references are bound to a block o f memory into which the persistent object is mapped in

the address space o f the application process. However, if a process references a working

set o f persistent objects that exceed the size o f its address space, some objects need to be

removed to make way for new objects. For this reason, OODBMS products implicitly

manage the lifetime o f swizzled references, according to certain protocols.

This requirement is benign if the evicted objects are not referenced again;

however, it is difficult to determine at runtime which objects can still be accessed and

which can be safely evicted. Hence it is often necessary to maintain valid swizzled

references to persistent objects, even if they may have been invalidated and evicted from

an application’ s address space. The API o f most OODBMS products provide a “ long

pointer” data structure constituting a universally valid persistent object reference. This

provides a reliable way for an object to be recovered and remapped into a process’

address space in the event it has been evicted between references. Indeed, some

OODBMS’s require persistent objects to be referenced only through long, unswizzled,

15

pointers — but this typically entails encapsulated and slower access. Other OODBMS

products, like ObjectStore, allow both swizzled and unswizzled references.

The ObjectStore OODBMS unmaps all persistent objects from an application’ s

address space at transaction commit time. The result is that all swizzled pointers in an

application become invalid once a transaction commits. However, our applications

written with the RDB completion o f Gorp expect that pointers to persistent objects

remain valid across transaction boundaries — which is reasonable because the application

is operating on transient copies rather than the genuine, persistent objects. There were

several options available to us to overcome this problem.

First, we could simulate the RDB version o f Gorp by making transient copies o f

each object read from the OODB. References to these transiently allocated objects would

not be invalidated across transaction boundaries. This option was quickly rejected as

OODB heresy.

A second option was to have longer duration transactions where transactions are

not committed until it is no longer necessary to reference an object within the application.

This amounted to making each application a long duration transaction, which was

rejected due to poor throughput. Long transactions are also undesirable because they may

become so long that the amount o f data accessed exceeds an application’ s address space.

In this case ObjectStore would abort the transaction. In anticipation o f this difficulty,

ObjectStore supports the option o f maintaining pointer validity across transactions. This

is unrealistic for our project, however, since we have applications that will exhaust

application address space unless regions are reclaimed from time to time.

1 6

The final and most general solution is to use the long pointers supplied by

ObjectStore (class os_reference). The disadvantage here is that application source code

must be modified to use long pointers for references to persistent objects that must be

maintained across transaction boundaries. Another way to do this would be to have the

Gorp framework encapsulate long pointers in a GorpPointer class and modify all Gorp

functions to return GorpPointer references to objects rather than C++ pointers. This

method was rejected because it introduces another level o f indirection, and significant

overhead, for every pointer dereference. The prospect o f changing all applications to use

GorpPointer references was daunting, as well.

The approach we adopted was a hybrid o f these approaches. We modified the

application code to use long pointers between transactions where necessary, but also

extended transaction boundaries to encompass multiple object references.

Issue 3: Object Identity
As mentioned briefly in an earlier section, the Gorp framework defines unique

object identifiers for all objects in the database which may be accessed by applications.

In the original specifications o f the RDB version o f the Gorp framework, Gorp OIDs

were defined to be opaque data types with only one valid operation, a test for equality.

The RDB completion o f Gorp implements OIDs as integers. Unfortunately, in the rush to

push applications into production, application developers were allowed to rely on the

implementation o f OIDs as integers. They took advantage o f OID stability and external

significance, e.g., a user could retrieve an OID, jot it down in a lab notebook, and later

initiate a Gorp object retrieval using it as a key.

Hence in the OODB completion o f Gorp, it is not appropriate to maintain a separate,

Gorp specific notion o f OID. Had OIDs originally been implemented correctly as opaque

data types, we could have easily changed the implementation o f Gorp OIDs to use the

OODB OID. Although there is never any reason for an application to do anything but

compare two OIDs for equality, application programmers have used the integer

representation o f OIDs in their code in so many ways that it is infeasible to correct their

code. Consequently we are reluctantly maintaining both forms o f OID in the OODB

version o f the framework for backwards compatibility with older applications.

Final Remarks on Portability
When the RDB version o f Gorp was conceived, it was designed to accommodate

an OODB port OODB with relative ease. Ideally, no application code would need to be

modified. For the most part, this has proved true. With the exception o f adding

transaction boundaries and the use o f some long pointers as well as Gorp OIDs, we have

not modified any application code. In short, encapsulating all data accesses to persistent

objects within a framework like Gorp has enabled us to port many applications with very

little modification o f source code between two very different OODBMS products.

It would also be desirable to port the framework itself between different DBMS

products with minimal effort. We believe that the Gorp design sufficiently abstracted the

notion o f a relational database to make porting it from one RDBMS to another a fairly

painless task requiring very few changes to the framework.

1 8

I n c o n t r a s t , O I D s a r e a h i d d e n i m p l e m e n t a t i o n a r t i fa c t in m o s t O O D B M S ’ s .

On the other hand, considerably more work would be required to port the current

OODB version o f Gorp from ObjectStore to another OODBMS. All the queries within

the Gorp framework would have to be converted from ObjectStore’ s proprietary query

facilities to another proprietary API. Current work by ODMG on OQL [C96] and

ANSI/ISO on SQL3 [SQL3] may make such queries much more portable in the future.

R elated w o rk '

The complexity o f representing genomic data has been recognized by many other

researchers [F91] [GRS94b]. MapBase, and its successor, LabBase, are genomic

information systems developed at the Whitehead Institute similar in scope to that

developed at the UCHGR [GRS94a] [RSG95] [G94]. However, both MapBase and

LabBase were implemented using an ODBMS (ObjectStore) from the beginning. The

fact that both the Whitehead Institute and the UCHGR have independently chosen to use

an ODBMS is evidence o f the difficulty in representing complex genomic data in a

relational format.

2 0

Symptom Diagnosis Remedy
Application code relies on low
level access to database
representations.

Lack o f a framework providing encapsulated
database access will require significant source
code changes to each application.

Create a framework.

Creation o f transient
representation o f database objects.

1. Updates to persistent objects are synchronized
with the database at different times.

2. Deallocating memory associated with an object
is no longer the responsibility o f the
application.

3. Depending upon the OODBMS chosen, object
creation model may be difficult to maintain.

In framework and application code,
distinguish between object replication (same
identity) and copying (new identity).
Perform copying only when coherence
between copies is not expected or
appropriate

Reliance upon object copying to
implement a relaxed consistency
protocol.

1. Retaining this will require many small
transactions.

2. Might be desirable to take advantage o f
OODBMS transaction facilities to clean up the
consistency protocol.

Determine appropriate consistency and
concurrency control model for application
domain.
Implement as generalized transaction
concept.

Amount o f data accessed by
applications exceeds the address
space.

Application code will have to be modified to use
long pointers.

Careful design o f database segments, within
which swizzled pointers are stable

OID’s are manipulated by
applications as a concrete
datatype.

1. New implementation o f OIDs is likely desired.
If so, application code must be modified.

2. OIDS may represent additional semantics, for
example relative ordering

OIDs should be opaque data types.

Porting the framework from one
OODBMS to another OODBMS.

Proprietary query languages make this difficult.
ODBC doesn’t work well with OODBMS’s.

Investigate industry joint or standard efforts
such as OMDG’s OQL or SQL3

Table 2 A “clinical” analysis o f porting a relational database to an OODB

2 1

The creators o f Intermedia, a hypermedia framework developed at the Institute for

Research in Information and Scholarship, considered porting their framework from an

RDBMS to an experimental ODBMS [SZ87]. Although ODBMS technology was in its

infancy at the time, the Intermedia researchers were mainly interested in overcoming the

need to make transient copies o f persistent objects stored in the RDBMS as well as the

impedance mismatch between an object’s representation in an RDBMS and an object-

oriented programming language. The port was never completed.

A comparison o f performance for various pointer swizzling and non-swizzling

schemes is described in [M92], The Texas [SKW92] persistent store implemented

pointer swizzling mechanisms very similar to that used by ObjectStore. The developers

o f Texas also recognized the problem o f address space consumption and made some

novel suggestions o f how to address this problem besides invalidating all references to

persistent objects at transaction boundaries [WK92].

As described above, the original version o f the Gorp framework had an ill-defined

form o f relaxed consistency due to the creation and manipulation o f transient copies of

database objects. This problem can be generalized in terms o f a cache consistency

problem [F96]. Efficient protocols for allowing appropriate degrees o f consistency in a

distributed computing environment with long running, interactive transactions remain an

open research question.

We summarize the lessons learned from our migration experience in Table 2, relying on a

clinical metaphor. In the words o f Waverly Root, “Every virtue is accompanied by its

inseparable vices’’’’ [W66, p. 14]. For OODBs, the virtue is direct manipulation o f

persistent objects by application software. The inseparable vices are the semantic and

operational burdens attending such direct manipulation. Perhaps it is too much to ask for

an application framework to support deft and natural manipulation o f objects in both off

line (RDB) and on line (OODB) form. In any case, we offer the humble opinion that

data representation issues — the subject o f much research in the academic database

community — are not wherein the difficult problems lie. Instead, they lie in areas long

recognized to be among the most vexing o f persistent data:object identity (copying vs.

replication), transaction semantics (nature and lifetime o f data ownership), and naming

(OID significance and binding).

Despite the cautionary tone o f this paper, we are pleased with the relative success

o f this experiment, and are encouraged to pursue several promising directions for future

work. From a practical standpoint, UCHGR developers remain enthusiastic concerning

the original goal o f achieving a risk mitigating RDB to OODB migration strategy.

Consequently a full-fledged port and performance comparison is underway. The project

staff is particularly keen on exploiting the OODB version to explore relaxed concurrency

control mechanisms appropriate for molecular biology applications, in which database

modifications are mostly monotonic, and some degree o f data inconsistency is part o f

daily life [BK91].

2 2

C o n c lu s io n s a n d F u t u r e W o r k

On a research level, we continue to be intrigued by the question o f data evolution

within this dual database environment. As remarked early on, among the many services

provided by Gorp framework is meta to concrete data representation conversion. The

question thus arises: if the OODB port is a complete success, and the RDB is retired,

how will data evolution be accommodated? We speculate that this dual database

approach constitutes a “best o f both worlds” solution: the OODB provides direct, fast,

application-pertinent object access, and the RDB provides a generalized evolution-

tolerant representation.

The long term solution thus may be a hybrid system, in which the OODB manages the

live data, which is flushed to the RDB when data evolution is required. The Gorp is then

updated to present the new concrete data model, recompiled (along with applications, as

necessary) and live data is loaded (or faulted in) as production resumes. The upshot is an

ironic denouement o f our plot: the RDB is now the cache.

Acknowledgments'. The authors are indebted to the designers and implementers o f the

UCHGR database and Gorp framework: Peter Cartwright, David Fuhrman, Rob Sargent,

Robert Mecklenburg, Tony Di Sera, and Chunwei Wang.

24

[ABDDMZ89] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S.
Zdonik. The Object-Oriented Database System Manifesto. In Proceedings o f the First
International Conference on Deductive and Object-Oriented Databases, pages 223-40,
Kyoto, Japan, December, 1989.

[BK91] Naser S. Barghouti and Gail E. Kaiser, Concurrency Control in Advanced
Database Applications, Computing Surveys, vol. 23, no. 3, September 1991.

[C96] R.G.G. Cattell, editor. The Object Database Standard: ODMG-93. 1996. Morgan
Kaufmann Publishers, Inc.

[CMFRAD94] Judy Cushing, D. Maier, D. Feller, M. Rao, D. Abel, and M. DeVaney.
Computational Proxies: Modeling Scientific Applications in Object Database, In
Proceedings o f the Seventh International Working Conference on Scientific and
Statistical Database Management, p. 196-206, Portland, Oregon, September, 1994. (I
really don’t know if this needs to be referenced in the paper).

[EM92] J. Eliot and B. Moss. Working with Persistent Objects: To Swizzle or Not to
Swizzle. IEEE Transactions on Software Engineering. Volume 18, Number 8, August,
1992. (pages 657-673)

[F91] Karen A. Frenkel. The Human Genome Project and Informatics. Communications
o f the ACM , Vol. 34, Number 11. (pages 41 - 51)

[F96] Michael J. Franklin. Client Data Caching: A Foundation for High Performance
Object Database Systems. 1996. Kluwer Academic Publishers.

[G94] Nathan Goodman. An Object Oriented DBMS War Story: Developing a Genome
Mapping Database in C++. In Kim, W., editor, Modern Database Management: Object-
Oriented and Multidatabase Technologies. ACM Press.

[GRS94a] Nathan Goodman, Steve Rozen, Lincoln Stein. Building a Laboratory
Information System around a C++-Based Object-Oriented DBMS. Proceedings o f the
2()th VLDB Conference, Santiago, Chile, 1994.

[GRS94b] Nathan Goodman, Steve Rozen, Lincoln Stein. A Glimpse at the DBMS
Challenges Posed by the Human Genome Project. Available via anonymous ftp from
genome.wi.mit.edu as file /pub/papers/Y1994/challenges.ps.Z.

[KJA93] Arthur M. Keller, Richard Jensen, and Shailesh Agarwal. Persistence software:
bridging object-oriented programming and relational databases. Proceedings o f the A C M

R e fe re n c e s

25

SIGMOD International Conference on Management o f Data, Washington DC, 1993, pp.
523-528.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database
system. Communications o f the ACM . Volume 34, Number 10, October, 1991. (pages 50­
63)

[ODI96] Object Design, Inc., 25 Burlington Mall Rd., Burlington, MA 01803-4194,
USA. Manual Set for ObjectStore Release 4.0, March, 1996. •

[RSG95] Steve Rozen, Lincoln Stein, and Nathan Goodman. LabBase: Managing Lab
Data in a Large-Scale Genome-Mapping Project. IEEE Engineering in Medicine and
Biology, Volume 14, Number 6, p. 702 - 709.

[RSG94] Steve Rozen, Lincoln Stein, and Nathan Goodman. Constructing a Domain-
Specific DBMS using a Persistent Object System. Sixth International Workshop on
Persistent Object Systems. Available via anonymous ftp from genome.wi.mit.edu as file
/pub/papers/Y 1994/labbase-design.ps.Z.

[SFCDML96] Rob Sargent, Dave Fuhrman, Terence Critchlow, Tony Di Sera, Robert
Mecklenburg, Gary Lindstrom, and Peter Cartwright. The Design and Implementation of
a Database for Human Genome Research. In Proceedings o f the Eighth International
Conference on Scientific and Statistical Database Systems, p. 220-225, Stockholm,
Sweden, June, 1996.

[SK91] Michael Stonebraker and Greg Kemnitz. The Postgres Next Generation Database
Management System. Communications o f the ACM . Volume 34, Number 10, October,
1991. (pages 78-92)

[SKW92] Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson. Texas: An Efficient,
Portable Persistent Store. Proceedings o f the Fifth International Workshop on Persistent
Object Systems, San Miniato, Italy, September, 1992.

[SZ87] Karen E. Smith and Stanley B. Zdonik. Intermedia: A Case Study o f the
Differences Between Relational and Object-Oriented Database Systems. OOPSLA ’87,
Orlando, Florida, October, 1987.

[SQL3] ISO and SQL3 working draft, available via anonymous ftp from
speckle.ncsl.nist.gov in directory /isowg3.

[W66] Waverly Root. The Food o f France. Vintage Books, 1966.

[WK92] Paul R. Wilson and Sheetal V. Kakkad. Pointer Swizzling at Page Fault Time:
Efficiently and Compatibly Supporting Huge Address Spaces on Standard Hardware.

