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Abstract

The Impulse Adaptable Memory System is a new memory system that exposes DRAM access 
patterns not seen in conventional memory systems. Impulse can generate huge number of small 
DRAM accesses, which will not be handled effectively by a conventional cache-line-size-access- 
oriented DRAM backend. In this paper, we describe and evaluate an Impulse DRAM backend 
design that exploits the potential parallelism of the DRAM accesses in an Impulse system and 
reduces the average DRAM access latency using the latest DRAM technologies such as hot row. We 
also study the effects of several important factors in the DRAM backend: interleaving of DRAM 
banks, dynamic reordering of DRAM accesses, hot row policy, and DRAM organization. The 
experimental results of five representative benchmarks running on the execution-driven simulator 
Paint [11] show that different DRAM backend configurations can yield huge impacts, saving up to 
98% on average DRAM access latency, 90% on memory cycles, and 80% on execution time.
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1  I n t r o d u c t i o n

Impulse is a new memory system that adds two important features to a traditional memory system. 
First, Impulse supports application-specific optimizations through configurable physical address 
remapping. By remapping physical addresses at the memory controller, applications control how 
their data are accessed and cached, thereby improving cache performance and bus utilization. 
Second, Impulse supports prefetching at the memory controller, which can hide majority of the 
memory latency. The Impulse memory system exhibits special DRAM access patterns different 
with what a conventional memory system exhibits. For example, the Impulse memory controller 
may gather a 128-byte cache line by generating 16 eight-byte DRAM accesses directed to 16 different 
memory locations. Since a DRAM access in a conventional system always fetches a cache line, the 
conventional DRAM backend is specifically designed to handle cache-line-size access effectively and 
may not work well with smaller DRAM accesses. So it is necessary to evaluate the necessity of 
redesigning the conventional DRAM backend for Impulse.

In order to handle the huge number of small DRAM accesses in the Impulse memory system, the 
DRAM backend for Impulse must be able to exploit the inherent parallelism of those small DRAM 
accesses. The most important factor of the DRAM backend is the DRAM organization which 
includes how the DRAM banks are connected together, how the DRAM backend communicates 
with the memory controller, and how the functionality like access scheduling, bank interleaving, 
and DRAM refreshing, is distributed inside the DRAM backend. Another important factor of a 
DRAM backend is the access scheduling which reorders the DRAM accesses in order to achieve 
the maximum parallelism as closely as possible, therefore reaching the ultimate goal -  reducing the 
memory latency perceived by the processor. Hot row policy is one important factor too. Nowadays’ 
DRAM technology allows quick reference to a hot row. Keeping the hot row open whenever it’s 
needed and closing it whenever it’s not needed may reduce the average DRAM access latency 
dramatically [7]. Hot row policy predicts whether or not the next access is going to hit a hot 
row and then sends a command to the DRAM bank accordingly. Another important factor is 
the interleaving of memory banks. How to number memory banks and under which level they 
are interleaved may affect the performance dramatically because it directly affects the potential 
parallelism that a sequence of DRAM accesses has. For example, assuming we have two banks and 
a sequence of two accesses (0, 128), these two accesses can be served in parallel if the banks are 
interleaved in cache-line-level, but they can only be served serially if the banks are interleaved in 
page-level. In the rest of this paper, we are going to study all these important factors described in 
this paragraph.

The remainder of this paper is organized as follows. Section 2 briefly overviews the basic ar
chitecture of the Impulse memory system, focusing on the master memory controller. Section 3 
provides basic knowledge about DRAM and briefly studies two common types of DRAMs: Syn
chronous DRAM and Direct Rambus DRAM. Section 4 illustrates a DRAM backend design. Sec
tion 5 describes the simulation environment and the benchmarks used in our experiments. The 
performance results and analyses are reported in Section 6. Section 7 discusses future work and 
concludes this paper. . n, ■ : - r

2 Overview of The Im pulse M emory System

The most distinguishable feature of Impulse is the addition of another level of address translation at 
the memory controller. The key insight exploited by this feature is that “unused” physical addresses 
can undergo a translation to “real” physical addresses at the memory controller. For example, in a
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conventional system with 4 gigabytes of physical address space (32-bit physical address) and only 
1 gigabytes of installed DRAMs, there is 3 gigabytes of “unused” physical address space which is 
not directly backed up by DRAMs and will generate errors if presented to a conventional memory 
controller. The “unused” physical addresses are called shadow  addresses , and they constitute a 
shadow  address space. In an Impulse system, applications can reorganize their data structures 
in shadow address space to explicitly control how their data are accessed and cached. When 
the Impulse memory controller receives a shadow address, it will translate the shadow address 
into “real” physical addresses (a.k.a physical DRAM addresses) instead of generating an error as a 
conventional memory controller does. In current Impulse design, the mapping from shadow address 
space to real physical address space can be in any granularity as long as it is a power of two and 
is less than or equal to a page size.

Data items whose virtual addresses are not contiguous can be mapped to contiguous shadow 
addresses, so that sparse data in virtual address space can be compacted into dense cache lines 
in shadow address space before being transferred to the processor. To map elements in these 
compacted cache lines back to physical memory, Impulse must recover their offsets within the 
virtual layout of original data structure. To do this, Impulse first translates shadow  addresses  
to p seu d o -v ir tu a l addresses  which mirrors the virtual address space in its page layout, and then 
translates these p seu d o -v ir tu a l addresses  to physical DRAM addresses. The shadow  —> p se u d o -  
v ir tu a l  —> ph ysica l mappings all take place within the Impulse memory controller. The shadow  —> 
p se u d o -v ir tu a l  mapping involves some simple arithmetic operations and is implemented by ALU 
units. The p se u d o -v ir tu a l  —> ph ysica l mapping involves page table lookups and is implemented by 
a small table lookaside buffer (TLB) at the memory controller.

The second important feature of Impulse is that it supports prefetching — Memory-Controller- 
based prefetching (MC-based prefetching). A small amount of SRAM -  so-called Memory Controller 
cache or MCache -  is integrated at the memory controller to store data prefetched from the DRAMs. 
The MC-based prefetching uses a very simple scheme: sequential prefetching for non-remapped 
data; configurable-stride prefetching for remapped data. All prefetchings are one cache line ahead 
only. A prefetching is issued at two situations: when an access misses on the MCache, fetch the 
requested cache line and prefetch the next one; when an access hits a prefetched cache line, prefetch 
the next one. For non-remapped data, prefetching is useful for reducing the memory latency of 
sequentially-accessed data. For remapped data, prefetching enables the controller to hide the cost 
of remapping: some remapping can require multiple DRAM accesses to fill a single cache line.

The shadow address space is managed by the operating system in a way similar to real physical 
address space. The operating system guarantees any remapped data’s shadow address space image 
to be contiguous even it spans multiple pages. This guarantee not only simplifies the translation at 
the memory controller, but also allows the CPU to use superpage TLB entries to translate remapped 
data, thereby improving the CPU TLB performance. The operating system provides an interface 
for applications to specify optimizations for their particular data structures and configures the 
Impulse memory controller to reinterpret the shadow addresses presented to it. The programmer 
(or the compiler, in the future) inserts directives into the applications codes to configure the Impulse 
memory controller. In order to keep the memory controller simple and fast, Impulse restricts the 
remappings in two ways: first, the size of the data item being remapped must be a power of 
two; second, an application (or compiler/OS) that uses Impulse ensures data consistency through 
appropriate flushing of the caches.
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Figure 1: The Impulse memory architecture. The arrows indicate how data flow within an Impulse memory 
system.

2.1 H ardw are

Figure 1 illustrates the Impulse memory architecture. The Impulse memory controller includes 
following components:

• a small number of Shadow Descriptors (SDescs), each of which contains some registers to 
store remapping information, a small S R A M  buffer to hold remapped data prefetched from 
DRAMs, the logic to assemble sparse data retrieved from DRAMs into dense cache lines, and 
a simple A L U  unit (AddrCalc) to translate shadow addresses to pseudo-virtual addresses;

• a Memory Controller TLB (MTLB), which is backed up by main memory and maps pseudo- 
virtual addresses to physical DRAM addresses, along with a small DRAM buffer to hold 
prefetched page table entries;

• a Memory Controller Cache (MCache), which buffers non-remapped data prefetched from 
DRAMs;

• a D R A M  Scheduler, which contains circuitry that orders and issues accesses to the DRAMs;

• DRAM chips, which constitute the main memory.

The extra level of address translation at the memory controller is optional, so an address 
appearing on the system memory bus may be a real physical or a shadow address (a). A real 
physical address passes untranslated to the MCache/DRAM scheduler (b). A shadow address has
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to go through the matching shadow descriptor (d). The AddrCalc unit in the shadow descriptor 
translates the shadow address into a set of pseudo-virtual addresses using the remapping information 
stored in control registers (e). These pseudo-virtual addresses are translated into real physical 
addresses by the MTLB (f ) .  Then the real physical addresses pass to the DRAM scheduler (g). 
The DRAM scheduler orders and issues the DRAM accesses (h) and sends the data back to the 
matching shadow descriptor (i). Finally, the appropriate shadow descriptor assembles the data into 
a cache line and sends it over the system memory bus (j).

2.2 R em app ing  A lgorith m s ' ;

The key of the Impulse project is finding the remapping schemes which can effectively improve 
applications’ performance. Currently, the address translation at the memory controller can take 
four forms, depending on how Impulse is used to access a particular data structure: direct, strided, 
scatter/gather using an indirection vector, or transpose. Exploration of more efficient remapping 
algorithms is underway.

• Direct mapping maps one contiguous cache line in shadow address space into one contigu
ous cache line in real physical memory. The relationship between a shadow address saddr 
and its pseudo-virtual address pvaddr is (pvaddr =  pvsaddr +  (saddr — ssaddr)), where 
pvsaddr/ssaddr is the starting address (assigned by the OS) of the data structure’s pseudo- 
virtual address space image/shadow address space image. Examples of using this mapping 
include recoloring physical pages without copying [5] and constructing superpages from non
contiguous physical pages without copying [12],

• Strided mapping creates dense cache lines from data items that are not contiguous but strid- 
edly distributed in virtual address space. The mapping function maps the cache line addressed 
by a shadow address saddr to multiple pseudo-virtual addresses: (pvsaddr +  stride x (saddr 
— ssaddr) +  stride x i), where i ranges from 0 to ((size of cache line) /  (size of data item) 
—1). This mapping can be used to create tiles of a dense matrix without copying [5] or to 
compact strided array elements.

• Scatter/gather using an indirection vector packs dense cache lines from array elements ac
cording to an indirection vector. The mapping function first computes the offset of a shadow 
address saddr in shadow address space soffset =  saddr — ssaddr, then uses the indirection 
vector vector to map the cache line addressed by the shadow address saddr to several pseudo- 
virtual addresses (pvsaddr +  vector[soffset +  ?]), where i ranges from 0 to ((size of cache line) 
/  (size of array element) —1). The OS moves the indirection vector into contiguous physical 
memory so that the address translation for the indirection vector is not needed. One example 
of using this mapping is on sparse matrix-vector product algorithm [5].

• Transpose mapping creates the transpose of a two-dimensional matrix by mapping the element 
transposed^matrix\j][i\ of the transposed matrix to the element originaLmatrix[i\[j] of the 
original matrix. This mapping can be used wherever a matrix is accessed in a major different 
with what it is stored [15]. This mapping also can be easily expanded to support higher- 
dimension matrices. For example, taking each vector as an array element allows the same 
mapping to be applied in three-dimensional matrices.

Obviously, in direct mapping, each shadow address generates exactly one DRAM access; in other 
three mappings, each shadow address generates (cache-line-size /  sizeof(data item)) DRAM ac
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cesses if (cache-line-size > sizeof(data item)), or one DRAM access if (cache-line-size < sizeof(data 
item)).

3 D R A M  Basics

To put the analyses in Section 6 in perspective, this section describes the basics of DRAM (Dynamic 
Random Access Memory) and two common types of DRAMs: Synchronous DRAM and Direct 
Rambus DRAM.

DRAM is arranged as a matrix of ’’memory cells” laid out in rows and columns, and thus a data 
access sequence consists of a row access strobe signal (RAS) followed by one or more column access 
strobe signals (CAS). During RAS, data in the storage cells of the decoded row are moved into a 
bank of sense amplifier (a.k.a page buffer or hot row), which serves as a row cache. During CAS, 
the column addresses are decoded and the selected data are read from the page buffer. Consecutive 
accesses to the current page buffer -  called page hits -  only need column addresses, saving the RAS 
signals. However, the hot row must first be closed before another row can be opened. DRAM also 
has to be refreshed hundreds of times each second in order to retain data in its memory cells.

3.1 Synchronous D R A M

SDRAM synchronizes all input and output signals to a system clock, therefore making the memory 
retrieval process much more efficient. In SDRAM, RAS and CAS signals share the same bus. 
SDRAM supports burst transfer to provide a constant flow of data. The programmable burst 
length can be two, four, eight cycles or a full-page. It has both “automatic” and “controlled” 
precharge commands, so a read or a write command can specify whether or not to leave the row 
open.

Figure 2 shows the sequences of some SDRAM transactions, assuming all transactions access 
the same bank. Part 1 of Figure 2 displays the interleaving of two read transactions directed to 
the same row without automatic precharge commands. The second read hits on the hot row, so 
it does not need RAS signals. Part 2 of Figure 2 shows the interleaving of two read transactions 
directed to two different rows without automatic precharge commands. Since the second read needs 
a different row, the previous hot row has to be closed (i.e., a precharge command must be done) 
before the second read can open a new row. Part 3 of Figure 2 shows two read transactions with 
automatic precharge commands (i.e., the row is automatically closed at the end of an access). When 
the automatic precharge is enabled, the sequence of two read transactions will be same no matter 
whether they access the same row or not. Part 4 of Figure 2 displays a write transaction followed 
by a read transaction which accesses a new row. An explicit precharge command must be inserted 
before the second transaction starts. Two restrictions are introduced by the write transaction: 
first, a delay ( tD P L )  must be satisfied from the start of the last write cycle until the precharge 
command can be issued; second, the delay between the precharge command and the next activate 
command (RAS) must be greater than or equal to the precharge time ( tR P).  Figure 2 also shows 
the key timing parameters of the SDRAM [3]. Their meanings and typical values in SDRAM clock 
cycles are described in Table 1. Assume SDRAM’s clock rate is 147 MHz.

3.2 D irect R am bu s D R A M

The Direct Rambus DRAM is a high speed DRAM developed by Rambus, Inc [6]. The RDRAM 
has independent pins for row address, column address, and data. Each bank can be independently 
opened, accessed, and precharged. Data and control information is transferred to and from the
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Part 3: two read transactions, with automatic precharge

Part 4: A write followed by a read to a different row, without automatic precharge

Figure 2: Examples of the sequences of some SDRAM transactions

Symbol Meaning Value
tR A S minimum bank active time 7
tR C D R A S  to C A S  delay time 3
tA A C A S  latency 3
tC C D C A S  to C A S  delay time 1
tR P precharge time 3
tD P L data in to precharge time 2
tD A L data in to active/refresh time (equals to t R P  +  t D P L ) 5

Table 1: Important timing parameters of Synchronous DRAM.

RDRAM in a packet-oriented protocol. Each of the packets consists of a burst of eight bits over 
the corresponding signal lines of the channel.

Figure 3 shows the basic operations of some RDRAM transactions, assuming all the transactions 
access the same chip. The first part of Figure 3 shows a read transaction with a precharge command, 
followed by another transaction to the same bank. The second part of Figure 3 shows the effective 
overlapping between two read transactions directed to the same row. The third part of Figure 3 
shows a read transaction without precharge command followed by a transaction to a different row.
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Part 3: A read transaction without precharge followed by an explicit precharge command

Part 4: Ideal interleaving of transactions directed to non-adjacent banks 

Figure 3: Examples of RDRAM operations

Just as with SDRAM, the hot row has to be explicitly precharged before the second transaction. 
The fourth part of Figure 3 displays an ideal steady-state sequence of dual-data read transactions 
directed to non-adjacent banks of a single RDRAM chip. The key timing parameters of RDRAM [2] 
and their typical values in RDRAM clock cycles are presented in Table 2. Assume RDRAM’s clock 
rate is 400 MHz. .

4 D R A M  Backend for The Impulse M em ory System

The Impulse DRAM backend1 is constructed from three major components: the DRAM Dispatcher, 
Slave Memory Controller (SMC), and plug in memory modules — DRAM chips. The DRAM dis
patcher, SMCs, and the connecting wires between them -  RAM Address bus (RA bus) -  constitute 
the DRAM scheduler shown in Figure 1. A DRAM backend contains one DRAM dispatcher, but

1 Since the Impulse memory system was modeled based on the HP Kitt-Hawk memory system [1], this paper 
follows the terminology of Kitt-Hawk memory system.
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Symbol Meaning Value
tR C the minimum delay from the first ACT command to the second ACT command 28
tR A S the minimum delay from an ACT command to a PRER command 20
tR C D delay from an ACT command to its first RD command 7
tR P the minimum delay from a PRER command to an ACT command 8
tC A C delay from a RD command to its associated data out 8
t c c delay from a RD command to next RD command 4
tO F F P the minimum delay from the last RD command to a PRER command 3
tB U B l bubble between a RD and WR command 4
tB U B 2 bubble between a WR and RD command to the same device 8

Table 2: Important timing parameters of Rambus DRAM.

can have multiple SMCs, multiple RA busses, and multiple plug in memory modules. Figure 4 
shows a simple configuration with four SMCs, four DRAM chips (each of them has two banks), and 
two RA busses. Bear in mind that the DRAM dispatcher and SMCs don’t have to be in different 
chips. Figure 4 just shows them in a way easy to understand. Whether or not to implement the 
DRAM scheduler in a single chip is an open question.

The Master Memory Controller [14] (MMC) is the core of the Impulse memory system. It 
communicates with the processors and I/O adapters over the system memory bus, translates shadow 
addresses into physical DRAM addresses, and generates DRAM accesses. A DRAM access can be 
either a shadow access or a non-shadow access. The MMC sends requests to the DRAM backend 
via Slave Address busses (SA bus) and passes data from or to the DRAM backend via Slave Data 
busses (SD bus). In our experimental model, the number of SA busses/SD busses can vary from 
one to one plus the number of total shadow descriptors. If there is only one SA bus or SD bus, both 
non-shadow accesses and shadow accesses will share it. If there are two SA busses or SD busses, 
non-shadow accesses will use one exclusively and shadow accesses will use the other one exclusively. 
If there are more than two SA busses or SD busses, one will be exclusively used by non-shadow 
accesses and each of the rest will be used by a subset of the shadow descriptors. The contention 
on SA busses is resolved by the MMC and the contention on SD busses is resolved by the DRAM 
dispatcher. One goal of this project is to find out how many SA busses/SD buses are needed to 
avoid heavy contention on them. Later experimental results will show that more than one SA bus 
or SD bus won’t give significant benefit over single SA bus or SD bus.

4.1 D R A M  D isp atch er

The DRAM dispatcher is responsible for sending memory accesses coming from SA busses to the 
relevant SMC via RA busses and passing data between SD busses and RAM Data busses (RD bus). 
If there is more than one SA bus, contention on RA bus occurs when two accesses from two different 
SA busses simultaneously need the same RA bus. For the same reason, contention on SD busses 
or RD busses will occur if there is more than one RD bus or more than one SD bus. The DRAM 
dispatcher resolves all the contentions by picking a winner according to a designated algorithm 
and queuing the others. If a waiting queues becomes critically full, the DRAM dispatcher will 
stop the sender (either MMC or SMC) from sending more requests. No sophisticated scheduling 
algorithms have been applied on the waiting queues. All waiting queues work in First-Come- 
First-Serve (FSFC) order. Normally, most waiting transactions are on RD busses, so the DRAM
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Figure 4: Impulse DRAM Backend Block Diagram

dispatcher holds a configurable number of waiting queues (called SD bus queue2) for transactions 
coming off RD busses. The SD bus queue has two uses: to buffer transactions coming from RD 
busses so that the RD busses can be freed up for other transactions; to resolve contention on SD 
busses by queuing all other contenders except the winner. Each SD bus queue is connected to an 
exclusive subset of RD busses. Later results will show one SD bus queue is enough to make itself 
not be the bottleneck in the DRAM backend. . . . ,

4 .2  Slave M em ory  C ontroller and D R A M  C hip

Each Slave Memory Controller controls one RD bus and several DRAM chips sharing that RD 
bus. The SMC has independent control signals for each DRAM chip. The basic unit of memory

2 Conception ally, SD bus queue equals to the Jetway in old technical reports.
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is a memory bank. Each memory bank has its own page buffer and can be accessed independently 
from all other banks. Some RDRAM chips let each page buffer to be shared between two adjacent 
banks, which introduces the restriction that adjacent banks may not be simultaneously accessed. 
We approximately model this type of RDRAM by making the effective independent banks be half 
of its physical number of banks. How many banks each DRAM chip has depends on the DRAM 
type. Typically, each SDRAM chip contains two to four banks and each RDRAM chip contains 
eight to 16 banks.

SMC is responsible for several important tasks. First, SMC keeps track of each memory bank’s 
page buffer and decides whether or not to leave page buffer open after an access. Second, SMC 
controls an independent waiting queue for each bank and schedules the transactions in the wait
ing queue with the intention of reducing the average memory latency. Third, SMC manages the 
interleaving of memory banks. When an access is broadcasted on a RA bus, all SMCs on the RA 
bus will see it, but only the SMC which controls the memory to which that the access goes will 
respond. The interleaving scheme determines which SMC should respond to a specified physical 
address. Fourth, SMC is responsible for DRAM timing and refreshing DRAM chips periodically.

4 .3  A lgor ith m s in th e  D R A M  B ackend

This section illustrates several algorithms implemented in our DRAM backend: hot row policy  
which decides whether or not to leave a hot row open at the end of an access; bank queue 
reordering algorithm which reorders the transactions in order to minimize the average memory 
latency perceived by the processor; interleaving scheme which determines how the physical 
DRAM addresses are distributed among DRAM banks.

4.3.1 H ot Row Policy

In order to save the RAS signals, the Impulse DRAM backend allows hot rows to remain active 
after being accessed. The size and number of the hot rows vary with the type of DRAM chips 
and the number of memory banks. The collection of hot rows can be regarded as a cache. Proper 
management is necessary to make this “cache” profitable. The benefit to leave a row open is that 
the DRAM access latency is reduced due to eliminating the RAS signals if a DRAM access hits 
the open row. However, a DRAM access has to pay the penalty of closing the open row if it misses 
the open row. Three precharge policies were tested in our experiment: close-page policy, where 
the active row is always closed after an access; open-page policy, where the active row is always 
left open after an access; use-predictor policy, where predictors are used to guess whether the next 
access to an open row will be a hit or a miss.

The use-predictor policy was initially designed by R.C. Schumann [10]. In this policy, a separate 
predictor is used for each potential open row. Each predictor records the hit/miss results for the 
previous several accesses to the associated memory bank. If an access to the bank goes to the same 
row as the previous access to the same bank, it is recorded as a hit no matter whether the row 
was kept open or not. Otherwise, it is recorded as a miss. The predictor then uses the multiple-bit 
history to predict whether the next access will be a hit or a miss. If the previous recorded accesses 
are all hits, it predicts a hit. If the previous recorded accesses are all misses, it predicts a miss. 
Since the optimum policy is not obvious for the other cases, a software-controlled precharge policy 
register is provided to define the policy for each of all the possible cases. Application can set this 
register to specify the desired policy or can disable the hot row scheme altogether by setting the 
register to zeros. In our experiment, the precharge policy register is set “open” when there are 
more hits than misses in the history and “close” when there are more misses than hits or the same
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number of misses as hits in the history. For example, if the history has four-bit, the precharge policy 
register is set to be 1110 1000 1000 0000 upon initialization, which keeps the row open whenever 
three of the preceding four accesses are page hits.

We expanded the original use-predictor policy with one more feature: when the bank waiting 
queue is not empty, use the first transaction in the waiting queue instead of the predictor to make 
decision. If next transaction goes to the same row as current transaction does, the row is left open 
after current transaction. Otherwise, the row is closed.

4.3.2 Bank W aiting Queue Reordering ,

There are many different types of DRAM accesses that the MMC can send to the DRAM backend. 
Figure 1 shows flows to the DRAM backend from different units. Based on the issuer and the 
nature of a DRAM access, each DRAM access is classified as one of following four types.

• Direct access is generated by real physical address directly coming off from system memory 
bus (arrow b in Figure 1). Since each normal memory request is for a cache line, each direct 
access requests a cache line from the DRAM backend.

• Indirection vector access is generated by the shadow descriptors to fetch the indirection vector 
during the translation for scatter/gather using an indirection vector (k). Each indirection 
vector access is for a cache line and the return data are sent back to the relevant shadow 
descriptor. . . ■ ; . . , .

• M TLB access is generated by the MTLB to fetch page table entries from DRAMs into the 
MTLB buffers (1). To reduce the number of MTLB accesses, each MTLB access requests a 
whole cache line, not just a single entry.

• Shadow access is any DRAM access generated by the Impulse memory controller to fetch 
remapped data (g). The size of each shadow access varies with application-specific map
pings. The data of shadow accesses are returned back to the remapping controller for further 
processing. ■ - ' ■ - : - ■

This paper also uses another definition -  non-shadow access, which includes direct access, in
direction vector access, and MTLB access. Normally, most of DRAM accesses are either direct 
accesses or shadow accesses, with a few or none being MTLB accesses and indirection vector ac
cesses. Intuitively, different types of DRAM access should be treated differently in order to reduce 
the average memory latency. For example, an indirection vector access is depended on by a bunch 
of shadow accesses and its waiting cycles directly contribute to the latency of the associated mem
ory request, so it had better be taken care of as early as possible. Any delay on a prefetching 
access will not likely increase the average memory latency as long as the data are prefetched early 
enough, which is easy to accomplish in most situations, so a prefetching access does not have to 
complete as early as possible and it can give away its memory bank to more important accesses 
like indirection vector accesses and MTLB accesses. After having taken consider of those facts, we 
propose a reordering algorithm with following rules. „

1. Ensure the consistency. Make sure no violation of data dependencies — read after write, 
write after read, and write after write. ,

2. Once an access is used to make decision that whether or not to leave a row open at the 
end of the preceding access (see Section 4.3.1), no other accesses can get ahead of it and it’s 
guaranteed to access the relevant memory bank right after the preceding one.
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3. Give normal (non-prefetching) access higher priority over prefetching access. .

4. Give MTLB access and indirection vector access the highest priority so that these accesses 
can be finished as early as possible, therefore releasing their dependent shadow accesses as

, early as possible.

5. It’s hard to determine by imagination whether the direct access or the shadow access should 
be given higher priority over each other. For experimental purpose, this rule has two opposite 
choices: giving direct access higher priority over shadow access; or giving shadow access higher 
priority over direct access. i' •' ! t

6. Increase each access’ priority along with its increasing waiting time. This rule guarantees no 
access would stay in a bank waiting queue “forever”. We make this rule optional so that we 
can find out if it’s useful and if there are cases that some accesses stay in waiting queues for 
a very very long time.

7. If there is a conflict among some rules, always use the rule which is the earliest in above 
sequence among those conflicting rules.

4.3.3 M emory Bank Interleaving

The interleaving of memory banks controls the mapping from physical DRAM addresses to memory 
banks. Figure 4 shows two interleaving schemes. The first one numbers the physically-adjacent 
memory banks as separately as possible. Its mapping function from the memory banks to the SMCs 
is (SMC-id =  bank-id MOD number of SMCs). The second one numbers the physically-adjacent 
memory banks with consecutive numbers. Its mapping function is (SMC-id =  bank-id /  banks-per- 
chip). We call the first one modulo-interleaving and the second one sequential-interleaving. Each 
scheme can be either page-level or cache-line-level. So there are total four interleaving schemes 
modeled in our simulator: page-level modulo-interleaving, page-level sequential-interleaving, cache- 
line-level modulo-interleaving, and cache-line-level sequential-interleaving. In the simulator, page 
size is the size of page buffer in each bank and the cache-line size equals to the size of a second 
level cache line. When we say the banks are interleaved at the page-level, it means bank 0 has all 
pages whose address modulo page-size is 0, bank 1 has all pages whose address modulo page-size 
is 1, and so on.

5 Experim ental Framework ,

5.1 S im ulation  E nvironm ent

The executive-driven simulator Paint [11, 13] was extended to model the Impulse memory controller 
and the proposed DRAM backend. Paint models a variation of a single-issue HP PA-RISC 1.1 
processor running a BSD-based micro-kernel and an HP Runway bus. The 32K LI data cache is 
non-blocking, single-cycle, write-around, write-through, virtually indexed, physically tagged, and 
direct mapped with 32-byte lines. The 256K L2 data cache is non-blocking, write-allocate, write
back, physically indexed and tagged, 2-way set-associative, and has 128-byte lines. Instruction 
caching is assumed to be perfect. The TLB is unified I/D, single-cycle, and fully associative, uses 
a not-recently-used replacement policy, and has 120 entries.

The simulated Impulse memory controller is deprived from the HP memory controller [8] used in 
servers and high-end workstations. We model seven shadow descriptors, each of which is associated 
with a 512-byte SRAM buffer. The controller prefetches the corresponding shadow data into these
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fully associative buffers of four 128-byte lines. A 4K-byte SRAM holds non-shadow data prefetched 
from DRAMs. The MTLB has an independent bank for each shadow descriptor. Each MTLB bank 
is direct-mapped, has 32 eight-byte entries (the same size as the entries in the kernel’s page table), 
and includes two 128-byte buffers used to store consecutive lines of page table entries prefetched 
on an MTLB miss.

Even though Paint’s PA-RISC processor is single-issue, we model a pseudo-quad-issue super
scalar machine by issuing four instructions each cycle without checking structural hazards. While 
this model is unrealistic for gathering processor micro-architecture statistics, it stresses the memory 
system in a manner similar to a real superscalar processor.

5.2 B enchm arks

Following benchmarks are selected to test the performance of proposed Impulse DRAM backend.

• CG [4] from NPB2.3 uses conjugate gradient method to compute an approximation to the 
smallest eigenvalue of a large, sparse, symmetric positive definite matrix. The kernel of CG 
is a sparse matrix vector product (SMVP) operation. Two Impulse optimizations can be 
applied on this benchmark independently: scatter/gather through an indirection vector (call 
it CG.iv in following discussion) and direct mapping. Assume it computes A x P ,  where 
A  is the sparse matrix and P  is the vector. Scatter/gather through an indirection vector 
remaps the vector P  to improve its cache performance. Direct mapping implements no-copy 
page-coloring which maps P  to the first half of L2 cache and other data structures to the 
second half of L2 cache. There are two versions of page-coloring: one remaps only the three 
most important data structures in CG (call it CG.pc3); another one remaps all the seven 
major data structures in CG (call it CG.pc7).

• Spark98 [9] performs a sequence of sparse matrix vector product operations using matrices 
that are derived from a family of three-dimensional finite element earthquake applications. It 
uses scatter/gather through indirection vector to remap the vector used in SMVP operations. 
In Spark98, each vector element is a 3 x 1 sub-vector. In order to meet the Impulse restriction 
that the size of remapped data item must be a power of two, the sub-vector is padded to be 
4 x 1 .

• TM M P is an Impulse-version implementation of the tiled dense matrix-matrix product al
gorithm. Impulse remaps a tile of each matrix into a contiguous space in shadow address 
space using strided mapping. Assume it computes C  =  A  x B. Impulse divides the LI cache 
into three segments. Each segment keeps a tile: the current output tile from C ; the input 
tiles from A  and B. In addition, since the same row of matrix A is used multiple times to 
compute a row of matrix C, it is kept in the L2 cache during the computation of relevant row 
of matrix C.

• R otation rotates an image by performing three one-dimensional shears. The second shear 
operation (the one along the y  axis, assuming the image array is stored along x axis.) walks 
along the column of the image matrix, which gives poor memory performance for large images. 
Impulse can transpose matrices without copying it. So walking along column in the image 
is replaced by walking along row in a transposed matrix. Each shear operation involves one 
input image and one output image. Both input image matrix and output image matrix are 
remapped using transpose remapping during the second shear operation.
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• ADI implements the naive “Alternating Direction Implicit” integration algorithm. The ADI 
integration algorithm contains two phases: sweeping along row and sweeping along column. 
Impulse transposes the matrices in the second phase so that sweeping along column in the 
original matrices is replaced by sweeping along row in the transposed matrices. The algorithm 
involves three matrices. All of them are remapped using transpose remapping during the 
second phase.

All of these benchmarks gain decent performance benefits from the Impulse remapping opti
mizations. Where the benefit comes from and how much benefit each benchmark achieves is beyond 
this paper. Instead, this paper focuses on how the DRAM backend impacts the performance. These 
benchmarks represent some different ways to use the Impulse remapping functionality. Table 3 lists 
the problem size and the Impulse-related resources that each benchmark uses. “Remapping” means 
the remapping algorithm that this benchmark uses. “Descriptor” represents the total number of 
shadow descriptors used by this benchmark. “DRAM Accesses” indicates the total number of 
DRAM accesses needed to compact a cache line in shadow address space, provided 128-byte second 
level cache line.

Benchmarks Problem Size Remapping Descriptors DRAM Accesses
CG.iv Class A scat ter/gather 1 16
CG.pc Class A direct 3 1
CG.pc7 Class A direct 7 1
spark98 sf.5.1 scat ter/gat her 4 4
TMMP 512x512(double) strided 3 16

Rotation 1024xl024(char) transpose 2 128
ADI 1024xl024(double) transpose 3 16

Table 3: The problem size, the remapping scheme, and the number of shadow descriptors used by each 
benchmark; and the number of DRAM accesses generated for a shadow address.

5.3 M eth od o logy

The factors that we care about includes the interleaving scheme, the waiting queue reordering 
algorithm, the hot row policy, the number of DRAM banks, the number of RD busses (or slave 
memory controllers), the number of SA busses, the number of SD busses, the number of SD bus 
queues, and the DRAM type (SDRAM or RDRAM?). Each factor can have multiple levels. It’s 
infeasible to use the full factorial design. So we have to pick up a practicable subset of all factors 
at a time to find out their relative impacts.

In our experiment, we first set up a baseline and then vary one or a few factors at a time. 
The baseline uses cache-line-level modulo-interleaving, no waiting queue reordering algorithm, and 
close-page hot row policy, and has four DRAM chips, eight banks (for SDRAM) or 32 banks (for 
RDRAM), four RD busses, two SD bus queues, one SA bus, and one SD bus.

6 Performance

In our simulations, the CPU clock rate is 400 MHz. The SDRAM works at 147 MHz. Each SDRAM 
chip contains two banks, each of which has a 16K-byte page-buffer. The RDRAM works at 400
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MHz. Each RDRAM chip contains 8 banks, each of which has an 8k-byte page-buffer. The DRAM 
width is 16bytes, so are the RD busses and SD busses. An SA bus can transfer a request per cycle.

A DRAM access latency, defined to be the interval between the time that the MMC generates 
the DRAM access and the time the MMC receives the return data from the DRAM backend, is 
broken down into five pieces:

• SA cycles -  cycles spent on SA bus, including waiting time and transferring time;

• SD cycles -  cycles spent on SD bus, including waiting time and transferring time;

• RD waiting cycles -  cycles waiting for RD bus;

• Bank waiting cycles -  cycles spent on bank waiting queue;

• Bank access cycles -  time actually accessing a memory bank.

The data transferring cycles on SA/SD/RD busses are inevitable and can never be changed. 
The bank access cycles are inevitable too, but they can be reduced by an appropriate hot row 
policy. The cycles waiting for SA/SD/RD bus or DRAM bank are absolutely unnecessary and 
should be avoided as much as possible. Reducing the waiting cycles is the main goal of our DRAM 
backend.

6.1 T h e Im pact o f  D R A M  O rganization
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Figure 5: Breakdown of the average RDRAM access latency at 6 different DRAM organizations (in the 
sequence of memory bank, RD bus, SD bus queue): 1 -  32/2/1; 2 -  32/4/2; 3 -  64/4/2; 4 -  128/8/4; 5 -  
256/8/4; 6 -  256/16/8.

The memory bank, RD bus, and SD bus queue are tightly related to one another. So we consider 
them together as one compound factor — DRAM organization. Apparently, they can affect the 
bank waiting cycles, RD waiting cycles, and SD cycles, but will not affect the SA cycles and bank 
access cycles. Intuitively, increasing the number of memory banks should decrease the bank waiting 
cycles, increasing the number of RD busses should decrease the RD waiting cycles, and increasing 
the number of SD bus queues should decrease the SD cycles.

Figure 5 shows the breakdown of the average DRAM access latency for each benchmark at six 
different DRAM organizations based upon RDRAM. Figure 6 shows the same results for SDRAM.
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Figure 8: Breakdown of the average SDRAM access latency at different DRAM organizations. Each 
configuration is labeled as ABC, where A represents the number of memory banks: 0 -  8, 1 -  16, 2 -  32; B 
represents the number of RD busses: 0 - 2 ,  1 -  4, 2 -  8, 3 -  16; C represents the number of SD bus queues: 
0 - 1 ,  1 - 2 ,  2 - 4 ,  3 - 8 .

The ratio among the number of memory banks, RD busses, and SD bus queues has to be in a 
certain range in order to keep the DRAM backend balanced. When the ratio is beyond that range, 
increasing the number of one component will not increase the performance. More specifically, each 
RD bus or SD bus queue can serve only a certain number of memory banks. Letting it serve 
too few banks is wasting resource, and letting it serve too many banks will offset the benefits 
obtained from the increased number of memory banks. Figure 8 shows the performance of CG.iv 
and Rotation, two DRAM organization-sensitive benchmarks, under variant DRAM organizations 
based on SDRAM. The results for RDRAM are not shown here because they are very similar with 
SDRAM’s. Two interesting facts can be found in Figure 8. First, whenever the ratio between the 
number of memory banks and the number of RD busses drops from higher value such as 8:1 or 4:1 
to 2:1 (e.g. from 000 to 010, 100 to 120, or 210 to 230 in Figure 8), there is a big drop in the average 
DRAM access latency. This fact implies that the best ratio between the number of memory banks 
and the number of RD busses is 2:1. Since each SDRAM chip contains two banks, we also can put 
it in another way: in order to avoid significant contention on RD busses, one RD bus can only be 
used by one SDRAM chip. Second, increasing the number of SD bus queues (010 to 011, 120 to 
122, and 230 to 233) does not increase performance noticeably. This fact implies that one SD bus 
queue can match up with at least 16 RD busses. Based on those two facts, we can easily reach a 
conclusion: a cost-effective, balanced DRAM backend has one RD bus for each DRAM chip and 
has very few number of SD bus queues.

6.2 T h e Im p act o f  Slave B u sses

Three possible settings about slave busses have been modeled. The results are shown in Figure 9, 
10, and 11. The first setting is one SA bus and one SD bus only. The second setting has two SA 
busses and two SD busses. The third one uses the maximum setting -  eight SA busses and eight 
SD busses. In the second setting, shadow access uses one SA/SD bus and non-shadow access uses 
the another one. In the third setting, each of the seven shadow descriptors uses one SA/SD bus 
and non-shadow access uses the remaining one. . ,

Surprisingly, none of those benchmarks wastes significant amount of time waiting for slave
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Figure 10: Breakdown of the average SDRAM access latency for different number of slave busses: 1 - 1  SA 
bus, 1 SD bus; 2 - 2  SA busses, 2 SD busses; 8 - 8  SA busses, 8 SD busses.

CG.iv CG.pc3 CG.pc7 Spark ADI TMMP Rotation
cycles(RDRAM) 1.1/4.5 1.0/2.6 1.0/2.6 1.1/4.0 2.8/5.3 1.0/1.6 1.3/2.8
cycles(SDRAM) 1.1/2.6 1.0/2.6 1.0/2.6 1.0/3.7 2.7/4.1 1.0/1.6 1.9/2.2

Table 4: The average cycles of each SA/SD wait in the baseline execution.

busses. Table 4 lists the average waiting cycles of an SA or SD wait in the baseline execution of 
each benchmark. Compared to the average DRAM access latency, the average SA/SD waiting cycles 
are negligible. Though the average waiting time may go up to 5.3 cycles (ADI with RDRAM), it
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penalty is t R P  =  8 cycles. For SDRAM, the hit benefit is tC C D  +  tR C D  =  3 cycles; and the miss 
penalty is the minimum of tR P  and the CAS count of previous transaction.

Theoretically, the impact of a hot row policy on a special run is “closely” proportional to

(total-hits x average-hit-benefit — total-misses x average-miss-penalty). (1)

We say it is “closely” because the hit benefit and miss penalty may change when the time interval 
between two consecutive transactions varies. In order to achieve positive impact, equation 1 has to 
be larger than 0, i.e., the ratio between total hits and total misses has to be larger than (average- 
miss-penalty /  average-hit-benefit). This ratio between total hits and total misses is probably the 
best leverage to measure a hot row policy’s performance.

The theoretical results obtained using equation 1 match with the experimental results almost 
perfectly. We are not going to check the matches one by one because most of them are obvious. 
Instead, we are going to look at a couple of non-obvious cases. Look at the open-page policy 
in Table 5 and Figure 12, you can find CG.iv and CG.pc7 have the same hit/miss ratio, but 
different average DRAM access latency. It’s resulted from their different ratios between reads and 
writes. In CG.iv, more than 98.3% of DRAM accesses are reads. In CG.pc7, only 83% of DRAM 
accesses are reads. Whenever a write transaction is involved in RDRAM, the hit benefit will be 
decreased from 14 cycles to 10 or 6 cycles. So though CG.pc7 has the same hot row hit/miss ratio 
as C G .iv’s, it’s still outperformed by CG.iv because its higher percentage of write transactions 
introduces a smaller average hit benefit. Another weird example, occurred when SDRAM is used, is 
on Rotation, which has different miss ratios but the same performance for the open-page policy and 
the use-predictor policy. Most of the DRAM accesses in Rotation are shadow accesses requesting 
a eight-byte double word, so the average miss penalty (equals to MIN(£i?P, CAS count of previous 
transaction)) is close to the average CAS count — 1. With 1-cycle miss penalty and 3-cycle hit 
benefit, the 11% difference on the miss ratio can not make big difference. (The actual difference on 
execution time is 0.14% that is too small to show.)

The use-predictor policy always stays between the close-page policy and open-page policy. 
Wherever the open-page policy is helpful, the use-predictor policy will be helpful too, but with 
smaller benefit. Wherever the open-page policy hurts the performance, the use-predictor policy 
will hurt the performance too, but with a much smaller degree. Though both policies may degrade 
the performance by up to 4%, they can improve the performance by up to 44%. In addition, they 
gain positive impact most of the time. The results implies that both the open-page policy and 
use-predictor policy are fine choices for the hot row policy in the Impulse DRAM backend. We 
suggest the use-predictor policy because it’s stabler than the open-page policy.

6 .4 T h e E ffect o f  B ank-queue R eord erin g  A lgorith m

Total 6 different bank-queue reordering algorithms have been used in our experiment. The first 
one is no reordering, or say it’s FCFS (number it as No.l). The other 5 are the alternatives of 
the algorithm described in section 4.3.2. No.2 is giving direct access priority over shadow access, 
but without priority updating -  step 6 in the original algorithm. No.3 is giving shadow access 
priority over direct access, without priority updating. No.4 is giving shadow access and direct 
access the same priority, without priority updating. No.5 is the same as No.2 except it allows 
priority updating, i.e., increasing priority with increased waiting time. No.6 is the same as No.3 
except it allows priority updating. . . . ; .

The highest priority in our simulation is 15. The priority vector, indexed by the sequence of 
MTLB access, indirection vector access, direct access, and shadow access followed by their prefetch
ing versions in the same order, is: {15,15,11, 9, 7, 7, 3,1} for No.2 and No.6; {15,15, 9,11, 7, 7,1, 3}
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Figure 15: Breakdown of the average RDRAM access latency on different bank-queue reordering algorithms.
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Figure 16: Breakdown of the average SDRAM access latency on different bank-queue reordering algorithms.
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Figure 17: small Execution time on different bank-queue reordering algorithms.

for No.3 and No.5; {15,15,10,10,7,7,2,2} for No.4. The updating policy increases an access’s 
priority by 1 whenever it’s overtaken by another access. For example, in No.2, one non-prefetching 
shadow access with initial priority being 9 may be overtaken by accesses with higher priority for at 
most 6 times. Once it has given away its position for 6 times, it will have the highest priority and 
no accesses after it can get ahead of it.

24



The reordering algorithm will reduce the bank access cycles by using the first transaction on the 
waiting queue to make always-right decision about whether or not to leave a hot row open after an 
access. But it will never directly change other parts of a DRAM access latency. The preliminary 
premise to make the reordering useful is that the waiting queues reach a certain length. If the 
waiting queues are always short, like only 0 or 1 transaction in a queue most of the time, the 
reordering can not do anything because there is nothing to be scheduled. Table 6 lists the average 
queue length in the baseline execution of each benchmark. It shows only ADI and Rotation  
have long waiting queues. Consequently, they are the only benchmarks noticeably impacted by the 
reordering algorithm (from -7% to 11% on execution time).

CG.iv CG.pc3 CG.pc7 Spark ADI TMMP Rotation
RDRAM 0.04 0.01 0.01 0.01 19.36 0.00 0.73
SDRAM 0.77 0.02 0.09 0.10 19.92 0.01 12.18

Table 6: The average bank queue length.

The performance numbers about reordering algorithm are in Figure 12, 13, and 14. The first 
fact to be noticed from the results is that No.2, No.3, and No.4 always perform closely. Taking a 
closer look at DRAM access patterns, we found either most of DRAM accesses are direct accesses 
or most of DRAM accesses are shadow accesses at a short period of time in the DRAM backend, 
which results in every few exchanges between direct accesses and shadow accesses. This means we 
can just give direct access and shadow access the same priority to simplify the reordering algorithm. 
Another fact displayed by the results is that the updating rule is not helping. It does give a tiny 
benefit for ADI on RDRAM (3% on average DRAM access latency), but it significantly slows 
R otation down (-19% on average DRAM access latency). The reason it slows Rotation down is 
that when the updating rule decreases the average DRAM access latency of a prefetching shadow 
access from 1350 cycles to 1173 cycles, it increases the average DRAM access cycles of a non
prefetching shadow access from 338 cycles to 596 cycles. This fact suggests that the updating rule 
has to be either dropped or modified in the final design. A natural modification will be no priority 
updating on prefetching accesses. That is part of future work.

6.5 T he E ffect o f  In terleav in g  Schem es

All of the four interleaving schemes mentioned in section 4.3.3 are compared here. Figure 18 and 
19 show the DRAM access latency breakdown. Figure 20 shows their execution times. How well 
an interleaving scheme can perform heavily depends on applications’ access patterns. There is 
no optimum scheme working for all benchmarks. Generally, for applications sequentially access
ing data, the cache-line-level interleaving is better; for applications page-stridedly accessing data, 
the page-level interleaving is better. Also modulo-interleaving is always better than sequential- 
interleaving. Sequential-interleaving is bad because it conflicts with the spatial locality exhibited 
by most applications. It hurts performance by directing consecutive accesses for data with good 
spatial locality to the same chip, which limits the inherent parallelism of DRAM accesses. Spatial 
locality also requires the cache-line-level interleaving to ensure consecutive requests go to different 
memory banks. That’s why the page-level interleaving can not work well with applications with 
good spatial locality. For example, Spark tends to put non-zero elements in a row close to one 
another, so the four DRAM accesses generated by a gather operation at the memory controller 
are likely directed to the same page. The page-level interleaving makes all four DRAM accesses 
go to the same bank and be served serially instead of in parallel, therefore dramatically increasing
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RDRAM and 91% on SDRAM.
When ADI walks along a column of a 1024x1024 double array, it generates access sequence 

x, x +  8K ,  x +  2 x 8K ,  . . . ,  x +  1023 x 8K .  Note that in our model, the cache line is 128-byte, 
the number of banks is 8 for SDRAM and 32 for RDRAM, and the page size is 16K for RDRAM 
and 8K for RDRAM. If the interleaving is in cache-line-level, all the accesses will go to the same 
bank. If the interleaving is in page-level, the ith access (x +  i x 8K )  will go to bank (i % 32) if 
RDRAM is used, or bank ((i /2) % 8) if SDRAM is used. Specifically speaking, all accesses go to 
the same bank in the cache-line-level interleaving while they are uniformly distributed among all 
banks in the page-level interleaving. That clearly proves why the page-level interleaving performs 
a lot better than the cache-line-level interleaving for ADI -  about 30% saving on execution time.

R otation operates on a 1024x1024 gray-scale image. Walking along a column of the image 
generates access sequence x, x +  I K,  x +  2 x I K,  . . . ,  x +  1023 x I K.  When SDRAM is used, 
all those accesses go to the same bank if the cache-line-level interleaving is used, or the first 16 
accesses go to bank 0, the next 16 go to bank 1, . . . ,  and so on if the page-level interleaving is 
used. That explains why the page-level interleaving is better than the cache-line-level interleaving 
for R otation when SDRAM is used. When RDRAM is used, the ith access goes to bank (i % 4) 
in the cache-line-level interleaving, or the first 8 accesses go to bank 0, the next 8 go to bank 1,
. . . ,  and so on in the page-level interleaving. Though the page-level interleaving better distributes 
accesses among banks, the cache-line-level achieves better performance because it puts consecutive 
accesses into different banks, which is much better than putting consecutive accesses into the same 
bank like what the page-level interleaving does.

6.6 P u tt in g  It A ll T ogether

Based on the experimental results and the analyses presented above, we suggest our DRAM backend 
with following configuration: as many memory banks as possible, one RD bus for each DRAM chip, 
one SA bus, one SD bus, one SD bus queue, use-predictor hot row policy, No.4 accesses reordering 
algorithm, and cache-line-level modulo-interleaving. Since the cache-line-level interleaving may 
significantly slow down applications page-stridedly accessing its major data structures (such as 
ADI), the software (compiler or OS) pads each stride in those applications to an appropriate size 
(such as 4096 —» (4096+128) in ADI) to avoid severe unbalanced loading in memory banks.

220-, ■  SA cycles 
I■  SD cycles
D  RD waiting cycles 
a  Bank waiting cycles
■  Bank access cycles

CG(iv) CG(pc3) CG(pc7)
o w _
ADI TMMP

o w b r 
Rotation

Figure 21: The average RDRAM access latency on four different DRAM backends: o -  original baseline; 
w -  worst; b -  best; r -  recommended.
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the transactions accessing the same row together to avoid RAS signals might be very helpful and 
will make the interaction between reordering according to priority and reordering according to row 
address be a very interesting topic. As to the interleaving of memory banks, more schemes, like 
double-word level or combinations of modulo and sequential interleaving might be interesting to 
exploit for the experimental purpose. The use-predictor policy also needs further exploitation: how 
many bits in history are enough? what’s the best value for precharge policy register? Also, the 
paper doesn’t specifically compare the RDRAM with the SDRAM, though there are enough data to 
make comparisons. Another very important feature missed by this paper is the interaction among 
all the factors of the DRAM backend. All the questions here are left to be answered in the future.
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