
D e s i g n A D R A M B a c k e n d f o r T h e I m p u l s e M e m o r y

S y s t e m

Lixin Zhang , (,
E-mail: lizhang@cs.utah.edu

UUCS-00-002 . •

Department of Computer Science ' : , 1 1 ■'r
University of Utah ' v < *

Salt Lake City, UT 84112, USA

January, 2000 <• ■ ■' ; ■

Abstract

The Impulse Adaptable Memory System is a new memory system that exposes DRAM access
patterns not seen in conventional memory systems. Impulse can generate huge number of small
DRAM accesses, which will not be handled effectively by a conventional cache-line-size-access-
oriented DRAM backend. In this paper, we describe and evaluate an Impulse DRAM backend
design that exploits the potential parallelism of the DRAM accesses in an Impulse system and
reduces the average DRAM access latency using the latest DRAM technologies such as hot row. We
also study the effects of several important factors in the DRAM backend: interleaving of DRAM
banks, dynamic reordering of DRAM accesses, hot row policy, and DRAM organization. The
experimental results of five representative benchmarks running on the execution-driven simulator
Paint [11] show that different DRAM backend configurations can yield huge impacts, saving up to
98% on average DRAM access latency, 90% on memory cycles, and 80% on execution time.

1

mailto:lizhang@cs.utah.edu

C o n t e n t s

1 Introduction 3

2 Overview of The Impulse M emory System 3
2.1 Hardware... 5
2.2 Remapping Algorithms... 6

3 D R A M Basics 7
3.1 Synchronous D R A M .. 7
3.2 Direct Rambus D R A M ... 7

4 D R A M Backend for The Impulse M emory System 9
4.1 DRAM Dispatcher.. 10
4.2 Slave Memory Controller and DRAM Chip .. 11
4.3 Algorithms in the DRAM Backend.. 12

4.3.1 Hot Row Policy.. 12
4.3.2 Bank Waiting Queue Reordering.. 13
4.3.3 Memory Bank Interleaving .. 14

5 Experim ental Framework 14
5.1 Simulation Environment.. 14
5.2 Benchmarks.. 15
5.3 M ethodology... 16

6 Performance 16
6.1 The Impact of DRAM Organization... 17
6.2 The Impact of Slave B u sse s .. 19
6.3 The Effect of Hot-row Policy ... 21
6.4 The Effect of Bank-queue Reordering Algorithm ... 23
6.5 The Effect of Interleaving Schem es.. 25
6.6 Putting It All Together .. 27

7 Conclusion and Future Work 28

2

1 I n t r o d u c t i o n

Impulse is a new memory system that adds two important features to a traditional memory system.
First, Impulse supports application-specific optimizations through configurable physical address
remapping. By remapping physical addresses at the memory controller, applications control how
their data are accessed and cached, thereby improving cache performance and bus utilization.
Second, Impulse supports prefetching at the memory controller, which can hide majority of the
memory latency. The Impulse memory system exhibits special DRAM access patterns different
with what a conventional memory system exhibits. For example, the Impulse memory controller
may gather a 128-byte cache line by generating 16 eight-byte DRAM accesses directed to 16 different
memory locations. Since a DRAM access in a conventional system always fetches a cache line, the
conventional DRAM backend is specifically designed to handle cache-line-size access effectively and
may not work well with smaller DRAM accesses. So it is necessary to evaluate the necessity of
redesigning the conventional DRAM backend for Impulse.

In order to handle the huge number of small DRAM accesses in the Impulse memory system, the
DRAM backend for Impulse must be able to exploit the inherent parallelism of those small DRAM
accesses. The most important factor of the DRAM backend is the DRAM organization which
includes how the DRAM banks are connected together, how the DRAM backend communicates
with the memory controller, and how the functionality like access scheduling, bank interleaving,
and DRAM refreshing, is distributed inside the DRAM backend. Another important factor of a
DRAM backend is the access scheduling which reorders the DRAM accesses in order to achieve
the maximum parallelism as closely as possible, therefore reaching the ultimate goal - reducing the
memory latency perceived by the processor. Hot row policy is one important factor too. Nowadays’
DRAM technology allows quick reference to a hot row. Keeping the hot row open whenever it’s
needed and closing it whenever it’s not needed may reduce the average DRAM access latency
dramatically [7]. Hot row policy predicts whether or not the next access is going to hit a hot
row and then sends a command to the DRAM bank accordingly. Another important factor is
the interleaving of memory banks. How to number memory banks and under which level they
are interleaved may affect the performance dramatically because it directly affects the potential
parallelism that a sequence of DRAM accesses has. For example, assuming we have two banks and
a sequence of two accesses (0, 128), these two accesses can be served in parallel if the banks are
interleaved in cache-line-level, but they can only be served serially if the banks are interleaved in
page-level. In the rest of this paper, we are going to study all these important factors described in
this paragraph.

The remainder of this paper is organized as follows. Section 2 briefly overviews the basic ar
chitecture of the Impulse memory system, focusing on the master memory controller. Section 3
provides basic knowledge about DRAM and briefly studies two common types of DRAMs: Syn
chronous DRAM and Direct Rambus DRAM. Section 4 illustrates a DRAM backend design. Sec
tion 5 describes the simulation environment and the benchmarks used in our experiments. The
performance results and analyses are reported in Section 6. Section 7 discusses future work and
concludes this paper. . n, ■ : - r

2 Overview of The Im pulse M emory System

The most distinguishable feature of Impulse is the addition of another level of address translation at
the memory controller. The key insight exploited by this feature is that “unused” physical addresses
can undergo a translation to “real” physical addresses at the memory controller. For example, in a

3

conventional system with 4 gigabytes of physical address space (32-bit physical address) and only
1 gigabytes of installed DRAMs, there is 3 gigabytes of “unused” physical address space which is
not directly backed up by DRAMs and will generate errors if presented to a conventional memory
controller. The “unused” physical addresses are called shadow addresses , and they constitute a
shadow address space. In an Impulse system, applications can reorganize their data structures
in shadow address space to explicitly control how their data are accessed and cached. When
the Impulse memory controller receives a shadow address, it will translate the shadow address
into “real” physical addresses (a.k.a physical DRAM addresses) instead of generating an error as a
conventional memory controller does. In current Impulse design, the mapping from shadow address
space to real physical address space can be in any granularity as long as it is a power of two and
is less than or equal to a page size.

Data items whose virtual addresses are not contiguous can be mapped to contiguous shadow
addresses, so that sparse data in virtual address space can be compacted into dense cache lines
in shadow address space before being transferred to the processor. To map elements in these
compacted cache lines back to physical memory, Impulse must recover their offsets within the
virtual layout of original data structure. To do this, Impulse first translates shadow addresses
to p seu d o -v ir tu a l addresses which mirrors the virtual address space in its page layout, and then
translates these p seu d o -v ir tu a l addresses to physical DRAM addresses. The shadow —> p se u d o -
v ir tu a l —> ph ysica l mappings all take place within the Impulse memory controller. The shadow —>
p se u d o -v ir tu a l mapping involves some simple arithmetic operations and is implemented by ALU
units. The p se u d o -v ir tu a l —> ph ysica l mapping involves page table lookups and is implemented by
a small table lookaside buffer (TLB) at the memory controller.

The second important feature of Impulse is that it supports prefetching — Memory-Controller-
based prefetching (MC-based prefetching). A small amount of SRAM - so-called Memory Controller
cache or MCache - is integrated at the memory controller to store data prefetched from the DRAMs.
The MC-based prefetching uses a very simple scheme: sequential prefetching for non-remapped
data; configurable-stride prefetching for remapped data. All prefetchings are one cache line ahead
only. A prefetching is issued at two situations: when an access misses on the MCache, fetch the
requested cache line and prefetch the next one; when an access hits a prefetched cache line, prefetch
the next one. For non-remapped data, prefetching is useful for reducing the memory latency of
sequentially-accessed data. For remapped data, prefetching enables the controller to hide the cost
of remapping: some remapping can require multiple DRAM accesses to fill a single cache line.

The shadow address space is managed by the operating system in a way similar to real physical
address space. The operating system guarantees any remapped data’s shadow address space image
to be contiguous even it spans multiple pages. This guarantee not only simplifies the translation at
the memory controller, but also allows the CPU to use superpage TLB entries to translate remapped
data, thereby improving the CPU TLB performance. The operating system provides an interface
for applications to specify optimizations for their particular data structures and configures the
Impulse memory controller to reinterpret the shadow addresses presented to it. The programmer
(or the compiler, in the future) inserts directives into the applications codes to configure the Impulse
memory controller. In order to keep the memory controller simple and fast, Impulse restricts the
remappings in two ways: first, the size of the data item being remapped must be a power of
two; second, an application (or compiler/OS) that uses Impulse ensures data consistency through
appropriate flushing of the caches.

4

CPU L1
MMU

(/)

_Q

a

Impulse memory controller

O 2!
b

I

SDescs

Registers
Buffer

v e
AddrCalc

u I l f I

f
—3»-

PQ
J
H

MCache

I
g

- U ,
.1

1
DRAM Scheduler

~h yh"
-------- --------

DRAM DRAM -T

DRAM backend

Figure 1: The Impulse memory architecture. The arrows indicate how data flow within an Impulse memory
system.

2.1 H ardw are

Figure 1 illustrates the Impulse memory architecture. The Impulse memory controller includes
following components:

• a small number of Shadow Descriptors (SDescs), each of which contains some registers to
store remapping information, a small S R A M buffer to hold remapped data prefetched from
DRAMs, the logic to assemble sparse data retrieved from DRAMs into dense cache lines, and
a simple A L U unit (AddrCalc) to translate shadow addresses to pseudo-virtual addresses;

• a Memory Controller TLB (MTLB), which is backed up by main memory and maps pseudo-
virtual addresses to physical DRAM addresses, along with a small DRAM buffer to hold
prefetched page table entries;

• a Memory Controller Cache (MCache), which buffers non-remapped data prefetched from
DRAMs;

• a D R A M Scheduler, which contains circuitry that orders and issues accesses to the DRAMs;

• DRAM chips, which constitute the main memory.

The extra level of address translation at the memory controller is optional, so an address
appearing on the system memory bus may be a real physical or a shadow address (a). A real
physical address passes untranslated to the MCache/DRAM scheduler (b). A shadow address has

V

to go through the matching shadow descriptor (d). The AddrCalc unit in the shadow descriptor
translates the shadow address into a set of pseudo-virtual addresses using the remapping information
stored in control registers (e). These pseudo-virtual addresses are translated into real physical
addresses by the MTLB (f) . Then the real physical addresses pass to the DRAM scheduler (g).
The DRAM scheduler orders and issues the DRAM accesses (h) and sends the data back to the
matching shadow descriptor (i). Finally, the appropriate shadow descriptor assembles the data into
a cache line and sends it over the system memory bus (j).

2.2 R em app ing A lgorith m s ' ;

The key of the Impulse project is finding the remapping schemes which can effectively improve
applications’ performance. Currently, the address translation at the memory controller can take
four forms, depending on how Impulse is used to access a particular data structure: direct, strided,
scatter/gather using an indirection vector, or transpose. Exploration of more efficient remapping
algorithms is underway.

• Direct mapping maps one contiguous cache line in shadow address space into one contigu
ous cache line in real physical memory. The relationship between a shadow address saddr
and its pseudo-virtual address pvaddr is (pvaddr = pvsaddr + (saddr — ssaddr)), where
pvsaddr/ssaddr is the starting address (assigned by the OS) of the data structure’s pseudo-
virtual address space image/shadow address space image. Examples of using this mapping
include recoloring physical pages without copying [5] and constructing superpages from non
contiguous physical pages without copying [12],

• Strided mapping creates dense cache lines from data items that are not contiguous but strid-
edly distributed in virtual address space. The mapping function maps the cache line addressed
by a shadow address saddr to multiple pseudo-virtual addresses: (pvsaddr + stride x (saddr
— ssaddr) + stride x i), where i ranges from 0 to ((size of cache line) / (size of data item)
—1). This mapping can be used to create tiles of a dense matrix without copying [5] or to
compact strided array elements.

• Scatter/gather using an indirection vector packs dense cache lines from array elements ac
cording to an indirection vector. The mapping function first computes the offset of a shadow
address saddr in shadow address space soffset = saddr — ssaddr, then uses the indirection
vector vector to map the cache line addressed by the shadow address saddr to several pseudo-
virtual addresses (pvsaddr + vector[soffset + ?]), where i ranges from 0 to ((size of cache line)
/ (size of array element) —1). The OS moves the indirection vector into contiguous physical
memory so that the address translation for the indirection vector is not needed. One example
of using this mapping is on sparse matrix-vector product algorithm [5].

• Transpose mapping creates the transpose of a two-dimensional matrix by mapping the element
transposed^matrix\j][i\ of the transposed matrix to the element originaLmatrix[i\[j] of the
original matrix. This mapping can be used wherever a matrix is accessed in a major different
with what it is stored [15]. This mapping also can be easily expanded to support higher-
dimension matrices. For example, taking each vector as an array element allows the same
mapping to be applied in three-dimensional matrices.

Obviously, in direct mapping, each shadow address generates exactly one DRAM access; in other
three mappings, each shadow address generates (cache-line-size / sizeof(data item)) DRAM ac

6

cesses if (cache-line-size > sizeof(data item)), or one DRAM access if (cache-line-size < sizeof(data
item)).

3 D R A M Basics

To put the analyses in Section 6 in perspective, this section describes the basics of DRAM (Dynamic
Random Access Memory) and two common types of DRAMs: Synchronous DRAM and Direct
Rambus DRAM.

DRAM is arranged as a matrix of ’’memory cells” laid out in rows and columns, and thus a data
access sequence consists of a row access strobe signal (RAS) followed by one or more column access
strobe signals (CAS). During RAS, data in the storage cells of the decoded row are moved into a
bank of sense amplifier (a.k.a page buffer or hot row), which serves as a row cache. During CAS,
the column addresses are decoded and the selected data are read from the page buffer. Consecutive
accesses to the current page buffer - called page hits - only need column addresses, saving the RAS
signals. However, the hot row must first be closed before another row can be opened. DRAM also
has to be refreshed hundreds of times each second in order to retain data in its memory cells.

3.1 Synchronous D R A M

SDRAM synchronizes all input and output signals to a system clock, therefore making the memory
retrieval process much more efficient. In SDRAM, RAS and CAS signals share the same bus.
SDRAM supports burst transfer to provide a constant flow of data. The programmable burst
length can be two, four, eight cycles or a full-page. It has both “automatic” and “controlled”
precharge commands, so a read or a write command can specify whether or not to leave the row
open.

Figure 2 shows the sequences of some SDRAM transactions, assuming all transactions access
the same bank. Part 1 of Figure 2 displays the interleaving of two read transactions directed to
the same row without automatic precharge commands. The second read hits on the hot row, so
it does not need RAS signals. Part 2 of Figure 2 shows the interleaving of two read transactions
directed to two different rows without automatic precharge commands. Since the second read needs
a different row, the previous hot row has to be closed (i.e., a precharge command must be done)
before the second read can open a new row. Part 3 of Figure 2 shows two read transactions with
automatic precharge commands (i.e., the row is automatically closed at the end of an access). When
the automatic precharge is enabled, the sequence of two read transactions will be same no matter
whether they access the same row or not. Part 4 of Figure 2 displays a write transaction followed
by a read transaction which accesses a new row. An explicit precharge command must be inserted
before the second transaction starts. Two restrictions are introduced by the write transaction:
first, a delay (tD P L) must be satisfied from the start of the last write cycle until the precharge
command can be issued; second, the delay between the precharge command and the next activate
command (RAS) must be greater than or equal to the precharge time (tR P). Figure 2 also shows
the key timing parameters of the SDRAM [3]. Their meanings and typical values in SDRAM clock
cycles are described in Table 1. Assume SDRAM’s clock rate is 147 MHz.

3.2 D irect R am bu s D R A M

The Direct Rambus DRAM is a high speed DRAM developed by Rambus, Inc [6]. The RDRAM
has independent pins for row address, column address, and data. Each bank can be independently
opened, accessed, and precharged. Data and control information is transferred to and from the

7

tRCD

RASA

-tCCI>>

CASA ~

=- tAA -=

CAS B

DOUTA DOUT A DOUTB DOUT B

Part 1: two reads to the same row, without automatic precharge

Part 2: two reads to two different rows, without automatic precharge

Begin auto precharge Begin auto precharge

Part 3: two read transactions, with automatic precharge

Part 4: A write followed by a read to a different row, without automatic precharge

Figure 2: Examples of the sequences of some SDRAM transactions

Symbol Meaning Value
tR A S minimum bank active time 7
tR C D R A S to C A S delay time 3
tA A C A S latency 3
tC C D C A S to C A S delay time 1
tR P precharge time 3
tD P L data in to precharge time 2
tD A L data in to active/refresh time (equals to t R P + t D P L) 5

Table 1: Important timing parameters of Synchronous DRAM.

RDRAM in a packet-oriented protocol. Each of the packets consists of a burst of eight bits over
the corresponding signal lines of the channel.

Figure 3 shows the basic operations of some RDRAM transactions, assuming all the transactions
access the same chip. The first part of Figure 3 shows a read transaction with a precharge command,
followed by another transaction to the same bank. The second part of Figure 3 shows the effective
overlapping between two read transactions directed to the same row. The third part of Figure 3
shows a read transaction without precharge command followed by a transaction to a different row.

8

ROW

COL

DQ

ROW

COL

DQ

ROW

COL

DQ

ACTa
tRC

PRER
tRAS-

RD al RDa2
-6 tCC 3-e-----fOFFP ------

ACTb

Q(al) Q(a2)
- tCAC -

Part 1: A read transaction with precharge followed by another read.

— ACTa

RDal RDa2 RDbl RD b2

Q (a l) Q(a2) Q (b l) Q(b2)

Part 2: Two read transactions to the same row.

ACTa PRER ACTb
* -----tRP -------

RDal RDa2

Q(al) Q(a2)
Part 3: A read transaction without precharge followed by an explicit precharge command

Part 4: Ideal interleaving of transactions directed to non-adjacent banks

Figure 3: Examples of RDRAM operations

Just as with SDRAM, the hot row has to be explicitly precharged before the second transaction.
The fourth part of Figure 3 displays an ideal steady-state sequence of dual-data read transactions
directed to non-adjacent banks of a single RDRAM chip. The key timing parameters of RDRAM [2]
and their typical values in RDRAM clock cycles are presented in Table 2. Assume RDRAM’s clock
rate is 400 MHz. .

4 D R A M Backend for The Impulse M em ory System

The Impulse DRAM backend1 is constructed from three major components: the DRAM Dispatcher,
Slave Memory Controller (SMC), and plug in memory modules — DRAM chips. The DRAM dis
patcher, SMCs, and the connecting wires between them - RAM Address bus (RA bus) - constitute
the DRAM scheduler shown in Figure 1. A DRAM backend contains one DRAM dispatcher, but

1 Since the Impulse memory system was modeled based on the HP Kitt-Hawk memory system [1], this paper
follows the terminology of Kitt-Hawk memory system.

9

Symbol Meaning Value
tR C the minimum delay from the first ACT command to the second ACT command 28
tR A S the minimum delay from an ACT command to a PRER command 20
tR C D delay from an ACT command to its first RD command 7
tR P the minimum delay from a PRER command to an ACT command 8
tC A C delay from a RD command to its associated data out 8
t c c delay from a RD command to next RD command 4
tO F F P the minimum delay from the last RD command to a PRER command 3
tB U B l bubble between a RD and WR command 4
tB U B 2 bubble between a WR and RD command to the same device 8

Table 2: Important timing parameters of Rambus DRAM.

can have multiple SMCs, multiple RA busses, and multiple plug in memory modules. Figure 4
shows a simple configuration with four SMCs, four DRAM chips (each of them has two banks), and
two RA busses. Bear in mind that the DRAM dispatcher and SMCs don’t have to be in different
chips. Figure 4 just shows them in a way easy to understand. Whether or not to implement the
DRAM scheduler in a single chip is an open question.

The Master Memory Controller [14] (MMC) is the core of the Impulse memory system. It
communicates with the processors and I/O adapters over the system memory bus, translates shadow
addresses into physical DRAM addresses, and generates DRAM accesses. A DRAM access can be
either a shadow access or a non-shadow access. The MMC sends requests to the DRAM backend
via Slave Address busses (SA bus) and passes data from or to the DRAM backend via Slave Data
busses (SD bus). In our experimental model, the number of SA busses/SD busses can vary from
one to one plus the number of total shadow descriptors. If there is only one SA bus or SD bus, both
non-shadow accesses and shadow accesses will share it. If there are two SA busses or SD busses,
non-shadow accesses will use one exclusively and shadow accesses will use the other one exclusively.
If there are more than two SA busses or SD busses, one will be exclusively used by non-shadow
accesses and each of the rest will be used by a subset of the shadow descriptors. The contention
on SA busses is resolved by the MMC and the contention on SD busses is resolved by the DRAM
dispatcher. One goal of this project is to find out how many SA busses/SD buses are needed to
avoid heavy contention on them. Later experimental results will show that more than one SA bus
or SD bus won’t give significant benefit over single SA bus or SD bus.

4.1 D R A M D isp atch er

The DRAM dispatcher is responsible for sending memory accesses coming from SA busses to the
relevant SMC via RA busses and passing data between SD busses and RAM Data busses (RD bus).
If there is more than one SA bus, contention on RA bus occurs when two accesses from two different
SA busses simultaneously need the same RA bus. For the same reason, contention on SD busses
or RD busses will occur if there is more than one RD bus or more than one SD bus. The DRAM
dispatcher resolves all the contentions by picking a winner according to a designated algorithm
and queuing the others. If a waiting queues becomes critically full, the DRAM dispatcher will
stop the sender (either MMC or SMC) from sending more requests. No sophisticated scheduling
algorithms have been applied on the waiting queues. All waiting queues work in First-Come-
First-Serve (FSFC) order. Normally, most waiting transactions are on RD busses, so the DRAM

10

1 1 i S y s t e m M e m o r y B u s

Figure 4: Impulse DRAM Backend Block Diagram

dispatcher holds a configurable number of waiting queues (called SD bus queue2) for transactions
coming off RD busses. The SD bus queue has two uses: to buffer transactions coming from RD
busses so that the RD busses can be freed up for other transactions; to resolve contention on SD
busses by queuing all other contenders except the winner. Each SD bus queue is connected to an
exclusive subset of RD busses. Later results will show one SD bus queue is enough to make itself
not be the bottleneck in the DRAM backend. . . . ,

4 .2 Slave M em ory C ontroller and D R A M C hip

Each Slave Memory Controller controls one RD bus and several DRAM chips sharing that RD
bus. The SMC has independent control signals for each DRAM chip. The basic unit of memory

2 Conception ally, SD bus queue equals to the Jetway in old technical reports.

11

V

is a memory bank. Each memory bank has its own page buffer and can be accessed independently
from all other banks. Some RDRAM chips let each page buffer to be shared between two adjacent
banks, which introduces the restriction that adjacent banks may not be simultaneously accessed.
We approximately model this type of RDRAM by making the effective independent banks be half
of its physical number of banks. How many banks each DRAM chip has depends on the DRAM
type. Typically, each SDRAM chip contains two to four banks and each RDRAM chip contains
eight to 16 banks.

SMC is responsible for several important tasks. First, SMC keeps track of each memory bank’s
page buffer and decides whether or not to leave page buffer open after an access. Second, SMC
controls an independent waiting queue for each bank and schedules the transactions in the wait
ing queue with the intention of reducing the average memory latency. Third, SMC manages the
interleaving of memory banks. When an access is broadcasted on a RA bus, all SMCs on the RA
bus will see it, but only the SMC which controls the memory to which that the access goes will
respond. The interleaving scheme determines which SMC should respond to a specified physical
address. Fourth, SMC is responsible for DRAM timing and refreshing DRAM chips periodically.

4 .3 A lgor ith m s in th e D R A M B ackend

This section illustrates several algorithms implemented in our DRAM backend: hot row policy
which decides whether or not to leave a hot row open at the end of an access; bank queue
reordering algorithm which reorders the transactions in order to minimize the average memory
latency perceived by the processor; interleaving scheme which determines how the physical
DRAM addresses are distributed among DRAM banks.

4.3.1 H ot Row Policy

In order to save the RAS signals, the Impulse DRAM backend allows hot rows to remain active
after being accessed. The size and number of the hot rows vary with the type of DRAM chips
and the number of memory banks. The collection of hot rows can be regarded as a cache. Proper
management is necessary to make this “cache” profitable. The benefit to leave a row open is that
the DRAM access latency is reduced due to eliminating the RAS signals if a DRAM access hits
the open row. However, a DRAM access has to pay the penalty of closing the open row if it misses
the open row. Three precharge policies were tested in our experiment: close-page policy, where
the active row is always closed after an access; open-page policy, where the active row is always
left open after an access; use-predictor policy, where predictors are used to guess whether the next
access to an open row will be a hit or a miss.

The use-predictor policy was initially designed by R.C. Schumann [10]. In this policy, a separate
predictor is used for each potential open row. Each predictor records the hit/miss results for the
previous several accesses to the associated memory bank. If an access to the bank goes to the same
row as the previous access to the same bank, it is recorded as a hit no matter whether the row
was kept open or not. Otherwise, it is recorded as a miss. The predictor then uses the multiple-bit
history to predict whether the next access will be a hit or a miss. If the previous recorded accesses
are all hits, it predicts a hit. If the previous recorded accesses are all misses, it predicts a miss.
Since the optimum policy is not obvious for the other cases, a software-controlled precharge policy
register is provided to define the policy for each of all the possible cases. Application can set this
register to specify the desired policy or can disable the hot row scheme altogether by setting the
register to zeros. In our experiment, the precharge policy register is set “open” when there are
more hits than misses in the history and “close” when there are more misses than hits or the same

12

number of misses as hits in the history. For example, if the history has four-bit, the precharge policy
register is set to be 1110 1000 1000 0000 upon initialization, which keeps the row open whenever
three of the preceding four accesses are page hits.

We expanded the original use-predictor policy with one more feature: when the bank waiting
queue is not empty, use the first transaction in the waiting queue instead of the predictor to make
decision. If next transaction goes to the same row as current transaction does, the row is left open
after current transaction. Otherwise, the row is closed.

4.3.2 Bank W aiting Queue Reordering ,

There are many different types of DRAM accesses that the MMC can send to the DRAM backend.
Figure 1 shows flows to the DRAM backend from different units. Based on the issuer and the
nature of a DRAM access, each DRAM access is classified as one of following four types.

• Direct access is generated by real physical address directly coming off from system memory
bus (arrow b in Figure 1). Since each normal memory request is for a cache line, each direct
access requests a cache line from the DRAM backend.

• Indirection vector access is generated by the shadow descriptors to fetch the indirection vector
during the translation for scatter/gather using an indirection vector (k). Each indirection
vector access is for a cache line and the return data are sent back to the relevant shadow
descriptor. . . ■ ; . . , .

• M TLB access is generated by the MTLB to fetch page table entries from DRAMs into the
MTLB buffers (1). To reduce the number of MTLB accesses, each MTLB access requests a
whole cache line, not just a single entry.

• Shadow access is any DRAM access generated by the Impulse memory controller to fetch
remapped data (g). The size of each shadow access varies with application-specific map
pings. The data of shadow accesses are returned back to the remapping controller for further
processing. ■ - ' ■ - : - ■

This paper also uses another definition - non-shadow access, which includes direct access, in
direction vector access, and MTLB access. Normally, most of DRAM accesses are either direct
accesses or shadow accesses, with a few or none being MTLB accesses and indirection vector ac
cesses. Intuitively, different types of DRAM access should be treated differently in order to reduce
the average memory latency. For example, an indirection vector access is depended on by a bunch
of shadow accesses and its waiting cycles directly contribute to the latency of the associated mem
ory request, so it had better be taken care of as early as possible. Any delay on a prefetching
access will not likely increase the average memory latency as long as the data are prefetched early
enough, which is easy to accomplish in most situations, so a prefetching access does not have to
complete as early as possible and it can give away its memory bank to more important accesses
like indirection vector accesses and MTLB accesses. After having taken consider of those facts, we
propose a reordering algorithm with following rules. „

1. Ensure the consistency. Make sure no violation of data dependencies — read after write,
write after read, and write after write. ,

2. Once an access is used to make decision that whether or not to leave a row open at the
end of the preceding access (see Section 4.3.1), no other accesses can get ahead of it and it’s
guaranteed to access the relevant memory bank right after the preceding one.

13

3. Give normal (non-prefetching) access higher priority over prefetching access. .

4. Give MTLB access and indirection vector access the highest priority so that these accesses
can be finished as early as possible, therefore releasing their dependent shadow accesses as

, early as possible.

5. It’s hard to determine by imagination whether the direct access or the shadow access should
be given higher priority over each other. For experimental purpose, this rule has two opposite
choices: giving direct access higher priority over shadow access; or giving shadow access higher
priority over direct access. i' •' ! t

6. Increase each access’ priority along with its increasing waiting time. This rule guarantees no
access would stay in a bank waiting queue “forever”. We make this rule optional so that we
can find out if it’s useful and if there are cases that some accesses stay in waiting queues for
a very very long time.

7. If there is a conflict among some rules, always use the rule which is the earliest in above
sequence among those conflicting rules.

4.3.3 M emory Bank Interleaving

The interleaving of memory banks controls the mapping from physical DRAM addresses to memory
banks. Figure 4 shows two interleaving schemes. The first one numbers the physically-adjacent
memory banks as separately as possible. Its mapping function from the memory banks to the SMCs
is (SMC-id = bank-id MOD number of SMCs). The second one numbers the physically-adjacent
memory banks with consecutive numbers. Its mapping function is (SMC-id = bank-id / banks-per-
chip). We call the first one modulo-interleaving and the second one sequential-interleaving. Each
scheme can be either page-level or cache-line-level. So there are total four interleaving schemes
modeled in our simulator: page-level modulo-interleaving, page-level sequential-interleaving, cache-
line-level modulo-interleaving, and cache-line-level sequential-interleaving. In the simulator, page
size is the size of page buffer in each bank and the cache-line size equals to the size of a second
level cache line. When we say the banks are interleaved at the page-level, it means bank 0 has all
pages whose address modulo page-size is 0, bank 1 has all pages whose address modulo page-size
is 1, and so on.

5 Experim ental Framework ,

5.1 S im ulation E nvironm ent

The executive-driven simulator Paint [11, 13] was extended to model the Impulse memory controller
and the proposed DRAM backend. Paint models a variation of a single-issue HP PA-RISC 1.1
processor running a BSD-based micro-kernel and an HP Runway bus. The 32K LI data cache is
non-blocking, single-cycle, write-around, write-through, virtually indexed, physically tagged, and
direct mapped with 32-byte lines. The 256K L2 data cache is non-blocking, write-allocate, write
back, physically indexed and tagged, 2-way set-associative, and has 128-byte lines. Instruction
caching is assumed to be perfect. The TLB is unified I/D, single-cycle, and fully associative, uses
a not-recently-used replacement policy, and has 120 entries.

The simulated Impulse memory controller is deprived from the HP memory controller [8] used in
servers and high-end workstations. We model seven shadow descriptors, each of which is associated
with a 512-byte SRAM buffer. The controller prefetches the corresponding shadow data into these

1 4

fully associative buffers of four 128-byte lines. A 4K-byte SRAM holds non-shadow data prefetched
from DRAMs. The MTLB has an independent bank for each shadow descriptor. Each MTLB bank
is direct-mapped, has 32 eight-byte entries (the same size as the entries in the kernel’s page table),
and includes two 128-byte buffers used to store consecutive lines of page table entries prefetched
on an MTLB miss.

Even though Paint’s PA-RISC processor is single-issue, we model a pseudo-quad-issue super
scalar machine by issuing four instructions each cycle without checking structural hazards. While
this model is unrealistic for gathering processor micro-architecture statistics, it stresses the memory
system in a manner similar to a real superscalar processor.

5.2 B enchm arks

Following benchmarks are selected to test the performance of proposed Impulse DRAM backend.

• CG [4] from NPB2.3 uses conjugate gradient method to compute an approximation to the
smallest eigenvalue of a large, sparse, symmetric positive definite matrix. The kernel of CG
is a sparse matrix vector product (SMVP) operation. Two Impulse optimizations can be
applied on this benchmark independently: scatter/gather through an indirection vector (call
it CG.iv in following discussion) and direct mapping. Assume it computes A x P , where
A is the sparse matrix and P is the vector. Scatter/gather through an indirection vector
remaps the vector P to improve its cache performance. Direct mapping implements no-copy
page-coloring which maps P to the first half of L2 cache and other data structures to the
second half of L2 cache. There are two versions of page-coloring: one remaps only the three
most important data structures in CG (call it CG.pc3); another one remaps all the seven
major data structures in CG (call it CG.pc7).

• Spark98 [9] performs a sequence of sparse matrix vector product operations using matrices
that are derived from a family of three-dimensional finite element earthquake applications. It
uses scatter/gather through indirection vector to remap the vector used in SMVP operations.
In Spark98, each vector element is a 3 x 1 sub-vector. In order to meet the Impulse restriction
that the size of remapped data item must be a power of two, the sub-vector is padded to be
4 x 1 .

• TM M P is an Impulse-version implementation of the tiled dense matrix-matrix product al
gorithm. Impulse remaps a tile of each matrix into a contiguous space in shadow address
space using strided mapping. Assume it computes C = A x B. Impulse divides the LI cache
into three segments. Each segment keeps a tile: the current output tile from C ; the input
tiles from A and B. In addition, since the same row of matrix A is used multiple times to
compute a row of matrix C, it is kept in the L2 cache during the computation of relevant row
of matrix C.

• R otation rotates an image by performing three one-dimensional shears. The second shear
operation (the one along the y axis, assuming the image array is stored along x axis.) walks
along the column of the image matrix, which gives poor memory performance for large images.
Impulse can transpose matrices without copying it. So walking along column in the image
is replaced by walking along row in a transposed matrix. Each shear operation involves one
input image and one output image. Both input image matrix and output image matrix are
remapped using transpose remapping during the second shear operation.

1 5

• ADI implements the naive “Alternating Direction Implicit” integration algorithm. The ADI
integration algorithm contains two phases: sweeping along row and sweeping along column.
Impulse transposes the matrices in the second phase so that sweeping along column in the
original matrices is replaced by sweeping along row in the transposed matrices. The algorithm
involves three matrices. All of them are remapped using transpose remapping during the
second phase.

All of these benchmarks gain decent performance benefits from the Impulse remapping opti
mizations. Where the benefit comes from and how much benefit each benchmark achieves is beyond
this paper. Instead, this paper focuses on how the DRAM backend impacts the performance. These
benchmarks represent some different ways to use the Impulse remapping functionality. Table 3 lists
the problem size and the Impulse-related resources that each benchmark uses. “Remapping” means
the remapping algorithm that this benchmark uses. “Descriptor” represents the total number of
shadow descriptors used by this benchmark. “DRAM Accesses” indicates the total number of
DRAM accesses needed to compact a cache line in shadow address space, provided 128-byte second
level cache line.

Benchmarks Problem Size Remapping Descriptors DRAM Accesses
CG.iv Class A scat ter/gather 1 16
CG.pc Class A direct 3 1
CG.pc7 Class A direct 7 1
spark98 sf.5.1 scat ter/gat her 4 4
TMMP 512x512(double) strided 3 16

Rotation 1024xl024(char) transpose 2 128
ADI 1024xl024(double) transpose 3 16

Table 3: The problem size, the remapping scheme, and the number of shadow descriptors used by each
benchmark; and the number of DRAM accesses generated for a shadow address.

5.3 M eth od o logy

The factors that we care about includes the interleaving scheme, the waiting queue reordering
algorithm, the hot row policy, the number of DRAM banks, the number of RD busses (or slave
memory controllers), the number of SA busses, the number of SD busses, the number of SD bus
queues, and the DRAM type (SDRAM or RDRAM?). Each factor can have multiple levels. It’s
infeasible to use the full factorial design. So we have to pick up a practicable subset of all factors
at a time to find out their relative impacts.

In our experiment, we first set up a baseline and then vary one or a few factors at a time.
The baseline uses cache-line-level modulo-interleaving, no waiting queue reordering algorithm, and
close-page hot row policy, and has four DRAM chips, eight banks (for SDRAM) or 32 banks (for
RDRAM), four RD busses, two SD bus queues, one SA bus, and one SD bus.

6 Performance

In our simulations, the CPU clock rate is 400 MHz. The SDRAM works at 147 MHz. Each SDRAM
chip contains two banks, each of which has a 16K-byte page-buffer. The RDRAM works at 400

1 6

MHz. Each RDRAM chip contains 8 banks, each of which has an 8k-byte page-buffer. The DRAM
width is 16bytes, so are the RD busses and SD busses. An SA bus can transfer a request per cycle.

A DRAM access latency, defined to be the interval between the time that the MMC generates
the DRAM access and the time the MMC receives the return data from the DRAM backend, is
broken down into five pieces:

• SA cycles - cycles spent on SA bus, including waiting time and transferring time;

• SD cycles - cycles spent on SD bus, including waiting time and transferring time;

• RD waiting cycles - cycles waiting for RD bus;

• Bank waiting cycles - cycles spent on bank waiting queue;

• Bank access cycles - time actually accessing a memory bank.

The data transferring cycles on SA/SD/RD busses are inevitable and can never be changed.
The bank access cycles are inevitable too, but they can be reduced by an appropriate hot row
policy. The cycles waiting for SA/SD/RD bus or DRAM bank are absolutely unnecessary and
should be avoided as much as possible. Reducing the waiting cycles is the main goal of our DRAM
backend.

6.1 T h e Im pact o f D R A M O rganization

U
a<U

©*0■a
2u
pa

150
140 H
130
120 H
110
100
90
80
70
60
50
40
30
20
10 H
0

RDRAM ■ SA cycles
n SD cycles
□ RD waiting cycles
□ Bank waiting cycles
■ Bank access cycles

as

SBB I B
1 2 3 4 5 6
CG(iv)

1 2 3 4 5 6
CG(pc3)

1 2 3 4 5 6
CG(pc7)

1 2 3 4 5 6
S park

2 3 4 5 6
ADI

1 2 3 4 5 6
TM M P

1 2 3 4 5 6
Rotation

Figure 5: Breakdown of the average RDRAM access latency at 6 different DRAM organizations (in the
sequence of memory bank, RD bus, SD bus queue): 1 - 32/2/1; 2 - 32/4/2; 3 - 64/4/2; 4 - 128/8/4; 5 -
256/8/4; 6 - 256/16/8.

The memory bank, RD bus, and SD bus queue are tightly related to one another. So we consider
them together as one compound factor — DRAM organization. Apparently, they can affect the
bank waiting cycles, RD waiting cycles, and SD cycles, but will not affect the SA cycles and bank
access cycles. Intuitively, increasing the number of memory banks should decrease the bank waiting
cycles, increasing the number of RD busses should decrease the RD waiting cycles, and increasing
the number of SD bus queues should decrease the SD cycles.

Figure 5 shows the breakdown of the average DRAM access latency for each benchmark at six
different DRAM organizations based upon RDRAM. Figure 6 shows the same results for SDRAM.

1 7

izi SD cycles
□ RD waiting cycles
K3 Bank waiting cycles

tm SA cycles
SDRAM

Bank access cycles

& 70-
Q 6 0
° 50-
| 40-

-§ 30-
« 20-

000 010 Oil 100 HO 120 121 122 210 220 230 231 233

CG(iv)
000 010 Oil 100 110 120 121 122 210 220 230 231 233

Rotation

Figure 8: Breakdown of the average SDRAM access latency at different DRAM organizations. Each
configuration is labeled as ABC, where A represents the number of memory banks: 0 - 8, 1 - 16, 2 - 32; B
represents the number of RD busses: 0 - 2 , 1 - 4, 2 - 8, 3 - 16; C represents the number of SD bus queues:
0 - 1 , 1 - 2 , 2 - 4 , 3 - 8 .

The ratio among the number of memory banks, RD busses, and SD bus queues has to be in a
certain range in order to keep the DRAM backend balanced. When the ratio is beyond that range,
increasing the number of one component will not increase the performance. More specifically, each
RD bus or SD bus queue can serve only a certain number of memory banks. Letting it serve
too few banks is wasting resource, and letting it serve too many banks will offset the benefits
obtained from the increased number of memory banks. Figure 8 shows the performance of CG.iv
and Rotation, two DRAM organization-sensitive benchmarks, under variant DRAM organizations
based on SDRAM. The results for RDRAM are not shown here because they are very similar with
SDRAM’s. Two interesting facts can be found in Figure 8. First, whenever the ratio between the
number of memory banks and the number of RD busses drops from higher value such as 8:1 or 4:1
to 2:1 (e.g. from 000 to 010, 100 to 120, or 210 to 230 in Figure 8), there is a big drop in the average
DRAM access latency. This fact implies that the best ratio between the number of memory banks
and the number of RD busses is 2:1. Since each SDRAM chip contains two banks, we also can put
it in another way: in order to avoid significant contention on RD busses, one RD bus can only be
used by one SDRAM chip. Second, increasing the number of SD bus queues (010 to 011, 120 to
122, and 230 to 233) does not increase performance noticeably. This fact implies that one SD bus
queue can match up with at least 16 RD busses. Based on those two facts, we can easily reach a
conclusion: a cost-effective, balanced DRAM backend has one RD bus for each DRAM chip and
has very few number of SD bus queues.

6.2 T h e Im p act o f Slave B u sses

Three possible settings about slave busses have been modeled. The results are shown in Figure 9,
10, and 11. The first setting is one SA bus and one SD bus only. The second setting has two SA
busses and two SD busses. The third one uses the maximum setting - eight SA busses and eight
SD busses. In the second setting, shadow access uses one SA/SD bus and non-shadow access uses
the another one. In the third setting, each of the seven shadow descriptors uses one SA/SD bus
and non-shadow access uses the remaining one. . ,

Surprisingly, none of those benchmarks wastes significant amount of time waiting for slave

19

Q
Cm©

©

aub
m

150
140
130 -
120
110 -
100
9 0
8 0
7 0
6 0
5 0
4 0
3 0
2 0
10
0

RDRAM

i

l l l l l
1 2 8
CG(iv)

P I\

tm SA cycles
I® SD cycles
1=1 RD waiting cycles
D Bank waiting cycles
m Bank access cycles

0

11111
1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8

CG(pc3) CG(pc7) Spark ADI TMMP Rotation

Figure 9: Breakdown of the average RDRAM access latency for different number of slave busses: 1 - 1 SA
bus, 1 SD bus; 2 - 2 SA busses, 2 SD busses; 8 - 8 SA busses, 8 SD busses.

150
140

^ 130

B 120
3 n o
« 100

^ 90
80
70
60
50
40
30
20
10
0

Q
Cm©

©

aub
CQ

SDRAM

I

1 I
1 2 8 1 2 8 1 2 8
CG(iv) CG(pc3) CG(pc7)

I

1 2 i
ADI

H SA cycles
k i SD cycles
1=1 RD waiting cycles
K3 Bank waiting cycles
m Bank access cycles

Im

1 2 8
TMMP

1 2 8
Rotation

Figure 10: Breakdown of the average SDRAM access latency for different number of slave busses: 1 - 1 SA
bus, 1 SD bus; 2 - 2 SA busses, 2 SD busses; 8 - 8 SA busses, 8 SD busses.

CG.iv CG.pc3 CG.pc7 Spark ADI TMMP Rotation
cycles(RDRAM) 1.1/4.5 1.0/2.6 1.0/2.6 1.1/4.0 2.8/5.3 1.0/1.6 1.3/2.8
cycles(SDRAM) 1.1/2.6 1.0/2.6 1.0/2.6 1.0/3.7 2.7/4.1 1.0/1.6 1.9/2.2

Table 4: The average cycles of each SA/SD wait in the baseline execution.

busses. Table 4 lists the average waiting cycles of an SA or SD wait in the baseline execution of
each benchmark. Compared to the average DRAM access latency, the average SA/SD waiting cycles
are negligible. Though the average waiting time may go up to 5.3 cycles (ADI with RDRAM), it

2 0

penalty is t R P = 8 cycles. For SDRAM, the hit benefit is tC C D + tR C D = 3 cycles; and the miss
penalty is the minimum of tR P and the CAS count of previous transaction.

Theoretically, the impact of a hot row policy on a special run is “closely” proportional to

(total-hits x average-hit-benefit — total-misses x average-miss-penalty). (1)

We say it is “closely” because the hit benefit and miss penalty may change when the time interval
between two consecutive transactions varies. In order to achieve positive impact, equation 1 has to
be larger than 0, i.e., the ratio between total hits and total misses has to be larger than (average-
miss-penalty / average-hit-benefit). This ratio between total hits and total misses is probably the
best leverage to measure a hot row policy’s performance.

The theoretical results obtained using equation 1 match with the experimental results almost
perfectly. We are not going to check the matches one by one because most of them are obvious.
Instead, we are going to look at a couple of non-obvious cases. Look at the open-page policy
in Table 5 and Figure 12, you can find CG.iv and CG.pc7 have the same hit/miss ratio, but
different average DRAM access latency. It’s resulted from their different ratios between reads and
writes. In CG.iv, more than 98.3% of DRAM accesses are reads. In CG.pc7, only 83% of DRAM
accesses are reads. Whenever a write transaction is involved in RDRAM, the hit benefit will be
decreased from 14 cycles to 10 or 6 cycles. So though CG.pc7 has the same hot row hit/miss ratio
as C G .iv’s, it’s still outperformed by CG.iv because its higher percentage of write transactions
introduces a smaller average hit benefit. Another weird example, occurred when SDRAM is used, is
on Rotation, which has different miss ratios but the same performance for the open-page policy and
the use-predictor policy. Most of the DRAM accesses in Rotation are shadow accesses requesting
a eight-byte double word, so the average miss penalty (equals to MIN(£i?P, CAS count of previous
transaction)) is close to the average CAS count — 1. With 1-cycle miss penalty and 3-cycle hit
benefit, the 11% difference on the miss ratio can not make big difference. (The actual difference on
execution time is 0.14% that is too small to show.)

The use-predictor policy always stays between the close-page policy and open-page policy.
Wherever the open-page policy is helpful, the use-predictor policy will be helpful too, but with
smaller benefit. Wherever the open-page policy hurts the performance, the use-predictor policy
will hurt the performance too, but with a much smaller degree. Though both policies may degrade
the performance by up to 4%, they can improve the performance by up to 44%. In addition, they
gain positive impact most of the time. The results implies that both the open-page policy and
use-predictor policy are fine choices for the hot row policy in the Impulse DRAM backend. We
suggest the use-predictor policy because it’s stabler than the open-page policy.

6 .4 T h e E ffect o f B ank-queue R eord erin g A lgorith m

Total 6 different bank-queue reordering algorithms have been used in our experiment. The first
one is no reordering, or say it’s FCFS (number it as No.l). The other 5 are the alternatives of
the algorithm described in section 4.3.2. No.2 is giving direct access priority over shadow access,
but without priority updating - step 6 in the original algorithm. No.3 is giving shadow access
priority over direct access, without priority updating. No.4 is giving shadow access and direct
access the same priority, without priority updating. No.5 is the same as No.2 except it allows
priority updating, i.e., increasing priority with increased waiting time. No.6 is the same as No.3
except it allows priority updating. . . . ; .

The highest priority in our simulation is 15. The priority vector, indexed by the sequence of
MTLB access, indirection vector access, direct access, and shadow access followed by their prefetch
ing versions in the same order, is: {15,15,11, 9, 7, 7, 3,1} for No.2 and No.6; {15,15, 9,11, 7, 7,1, 3}

23

RDRAM ■ SA cycles
n SD cycles
□ RD waiting cycles
□ Bank waiting cycles

Bank access cycles

1 2 3 4 5 6
CG(iv)

1 2 3 4 5 6
CG(pc3)

12 3 4 5 6
CG(pc7)

1 2 3 4 5 6
Spark

2 3 4 5 6
ADI

1 2 3 4 5 6
TMMP

1 2 3 4 5 6
Rotation

Figure 15: Breakdown of the average RDRAM access latency on different bank-queue reordering algorithms.

150-,
SDRAM ■ SA cycles

ra SD cycles
□ RD waiting cycles
a Bank waiting cycles

1 2 3 4 5 6
CG(iv)

1 2 3 4 5 6
CG(pc3)

1 2 3 4 5 6
CG(pc7)

1 2 3 4 5 6
Spark

2 3 4 5 6
ADI

1 2 3 4 5 6
TMMP

1 2 3 4 5 6
Rotation

Figure 16: Breakdown of the average SDRAM access latency on different bank-queue reordering algorithms.

CG(iv) CG(pc3) CG(pc7) Spark ADI TMMP Rotation , CG(iv) CG(pc3) CG(pc7) Spark ADI TMMP Rotation

Figure 17: small Execution time on different bank-queue reordering algorithms.

for No.3 and No.5; {15,15,10,10,7,7,2,2} for No.4. The updating policy increases an access’s
priority by 1 whenever it’s overtaken by another access. For example, in No.2, one non-prefetching
shadow access with initial priority being 9 may be overtaken by accesses with higher priority for at
most 6 times. Once it has given away its position for 6 times, it will have the highest priority and
no accesses after it can get ahead of it.

24

The reordering algorithm will reduce the bank access cycles by using the first transaction on the
waiting queue to make always-right decision about whether or not to leave a hot row open after an
access. But it will never directly change other parts of a DRAM access latency. The preliminary
premise to make the reordering useful is that the waiting queues reach a certain length. If the
waiting queues are always short, like only 0 or 1 transaction in a queue most of the time, the
reordering can not do anything because there is nothing to be scheduled. Table 6 lists the average
queue length in the baseline execution of each benchmark. It shows only ADI and Rotation
have long waiting queues. Consequently, they are the only benchmarks noticeably impacted by the
reordering algorithm (from -7% to 11% on execution time).

CG.iv CG.pc3 CG.pc7 Spark ADI TMMP Rotation
RDRAM 0.04 0.01 0.01 0.01 19.36 0.00 0.73
SDRAM 0.77 0.02 0.09 0.10 19.92 0.01 12.18

Table 6: The average bank queue length.

The performance numbers about reordering algorithm are in Figure 12, 13, and 14. The first
fact to be noticed from the results is that No.2, No.3, and No.4 always perform closely. Taking a
closer look at DRAM access patterns, we found either most of DRAM accesses are direct accesses
or most of DRAM accesses are shadow accesses at a short period of time in the DRAM backend,
which results in every few exchanges between direct accesses and shadow accesses. This means we
can just give direct access and shadow access the same priority to simplify the reordering algorithm.
Another fact displayed by the results is that the updating rule is not helping. It does give a tiny
benefit for ADI on RDRAM (3% on average DRAM access latency), but it significantly slows
R otation down (-19% on average DRAM access latency). The reason it slows Rotation down is
that when the updating rule decreases the average DRAM access latency of a prefetching shadow
access from 1350 cycles to 1173 cycles, it increases the average DRAM access cycles of a non
prefetching shadow access from 338 cycles to 596 cycles. This fact suggests that the updating rule
has to be either dropped or modified in the final design. A natural modification will be no priority
updating on prefetching accesses. That is part of future work.

6.5 T he E ffect o f In terleav in g Schem es

All of the four interleaving schemes mentioned in section 4.3.3 are compared here. Figure 18 and
19 show the DRAM access latency breakdown. Figure 20 shows their execution times. How well
an interleaving scheme can perform heavily depends on applications’ access patterns. There is
no optimum scheme working for all benchmarks. Generally, for applications sequentially access
ing data, the cache-line-level interleaving is better; for applications page-stridedly accessing data,
the page-level interleaving is better. Also modulo-interleaving is always better than sequential-
interleaving. Sequential-interleaving is bad because it conflicts with the spatial locality exhibited
by most applications. It hurts performance by directing consecutive accesses for data with good
spatial locality to the same chip, which limits the inherent parallelism of DRAM accesses. Spatial
locality also requires the cache-line-level interleaving to ensure consecutive requests go to different
memory banks. That’s why the page-level interleaving can not work well with applications with
good spatial locality. For example, Spark tends to put non-zero elements in a row close to one
another, so the four DRAM accesses generated by a gather operation at the memory controller
are likely directed to the same page. The page-level interleaving makes all four DRAM accesses
go to the same bank and be served serially instead of in parallel, therefore dramatically increasing

25

RDRAM and 91% on SDRAM.
When ADI walks along a column of a 1024x1024 double array, it generates access sequence

x, x + 8K , x + 2 x 8K , . . . , x + 1023 x 8K . Note that in our model, the cache line is 128-byte,
the number of banks is 8 for SDRAM and 32 for RDRAM, and the page size is 16K for RDRAM
and 8K for RDRAM. If the interleaving is in cache-line-level, all the accesses will go to the same
bank. If the interleaving is in page-level, the ith access (x + i x 8K) will go to bank (i % 32) if
RDRAM is used, or bank ((i /2) % 8) if SDRAM is used. Specifically speaking, all accesses go to
the same bank in the cache-line-level interleaving while they are uniformly distributed among all
banks in the page-level interleaving. That clearly proves why the page-level interleaving performs
a lot better than the cache-line-level interleaving for ADI - about 30% saving on execution time.

R otation operates on a 1024x1024 gray-scale image. Walking along a column of the image
generates access sequence x, x + I K, x + 2 x I K, . . . , x + 1023 x I K. When SDRAM is used,
all those accesses go to the same bank if the cache-line-level interleaving is used, or the first 16
accesses go to bank 0, the next 16 go to bank 1, . . . , and so on if the page-level interleaving is
used. That explains why the page-level interleaving is better than the cache-line-level interleaving
for R otation when SDRAM is used. When RDRAM is used, the ith access goes to bank (i % 4)
in the cache-line-level interleaving, or the first 8 accesses go to bank 0, the next 8 go to bank 1,
. . . , and so on in the page-level interleaving. Though the page-level interleaving better distributes
accesses among banks, the cache-line-level achieves better performance because it puts consecutive
accesses into different banks, which is much better than putting consecutive accesses into the same
bank like what the page-level interleaving does.

6.6 P u tt in g It A ll T ogether

Based on the experimental results and the analyses presented above, we suggest our DRAM backend
with following configuration: as many memory banks as possible, one RD bus for each DRAM chip,
one SA bus, one SD bus, one SD bus queue, use-predictor hot row policy, No.4 accesses reordering
algorithm, and cache-line-level modulo-interleaving. Since the cache-line-level interleaving may
significantly slow down applications page-stridedly accessing its major data structures (such as
ADI), the software (compiler or OS) pads each stride in those applications to an appropriate size
(such as 4096 —» (4096+128) in ADI) to avoid severe unbalanced loading in memory banks.

220-, ■ SA cycles
I■ SD cycles
D RD waiting cycles
a Bank waiting cycles
■ Bank access cycles

CG(iv) CG(pc3) CG(pc7)
o w _
ADI TMMP

o w b r
Rotation

Figure 21: The average RDRAM access latency on four different DRAM backends: o - original baseline;
w - worst; b - best; r - recommended.

2 7

the transactions accessing the same row together to avoid RAS signals might be very helpful and
will make the interaction between reordering according to priority and reordering according to row
address be a very interesting topic. As to the interleaving of memory banks, more schemes, like
double-word level or combinations of modulo and sequential interleaving might be interesting to
exploit for the experimental purpose. The use-predictor policy also needs further exploitation: how
many bits in history are enough? what’s the best value for precharge policy register? Also, the
paper doesn’t specifically compare the RDRAM with the SDRAM, though there are enough data to
make comparisons. Another very important feature missed by this paper is the interaction among
all the factors of the DRAM backend. All the questions here are left to be answered in the future.

References

[1] Kitt Hawk Memory System, External Reference Specification, Revision B, May 1995.

[2] IBM Advanced 64Mb Direct Rambus DRAM, November 1997.

[3] IBM Advanced 256Mb Synchronous DRAM - Die Revision A, August 1998.

[4] D. Bailey, E. Barszca, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, and H. Simon. The NAS parallel benchmarks.
Technical Report RNR-94-007, NASA Ames Research Center, March 1994.

[5] J. B. Carter, W. C. Hsieh, L. B. Stoller, M. R. Swanson, L. Zhang, E. L. Brunvand, A. Davis,
C.-C. Kuo, R. Kuramkote, M. A. Parker, L. Schaelicke, and T. Tateyama. Impulse: Building a
smarter memory controller. In Proceedings of the Fifth IEEE Symposium on High Performance
Computer Architecture, pages 70-79, Orlando, Florida, January 1999.

[6] R. Crisp. Direct RAMBUS technology: The new main memory standard. IEEE Micro, pages
18-29, November 1997.

[7] S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. H. Aylor, and W. A. Wulf. Access
order and effective bandwidth for streams on a Direct Rambus memory. In Proceedings of the
Fifth IEEE Symposium on High Performance Computer Architecture, pages 80-89, Orlando,
Florida, January 1999.

[8] T. R. Hotchkiss, N. D. Marschke, and R. M. McClosky. A new memory system design for com
mercial and technical computing products. Hewlett-Packard Journal, 47(1):44-51, February
1996.

[9] D. R. O’Hallaron. Spark98: Sparse matrix kernels for shared memory and message passing
systems. Technical Report CMU-CS-97-178, School of Computer Science, Carnegie Mellon
University, October 1997.

[10] R. Schumann. Design of the 21174 memory controller for digital personal workstations. Digital
Technical Journal, 9(2), November 1997.

[11] L. Stoller, M. Swanson, and R. Kuramkot. Paint: PA instruction set interpreter. Technical
Report UUCS-96-009, University of Utah, September 1996.

[12] M. Swanson, L. Stoller, and J. Carter. Increasing TLB reach using superpages backed by
shadow memory. In Proceedings of the 25th International Symposium on Computer Architec
ture, pages 204-213, Barcelona, Spain, June 1998.

2 9

