
Modular Language Processors
As Framework Completions

Guruduth Banavar
Gary Lindstrom

UUCS-93-026

Department o f Computer Science
University o f Utah

Salt Lake City, UT 84112 USA

October 21, 1993

Abstract
The conceptual and specificational power of denotational semantics for programming language

design has been amply demonstrated. We report here on a language implementation method that is
similarly semantically motivated, but is based upon object-oriented design principles, and results in
flexible and evolvable language processors. We apply this technique to the area of object-oriented
(0 -0) languages, in the form of a general metalevel architecture for objects and inheritance that
facilitates the development o f compilers and interpreters for 0 - 0 languages. This development
strategy maintains architectural modularity by mapping conceptual language design decisions to
isolatable parts o f resulting language processors. Our architecture, which is presented as an O-
O framework, is characterized by (i) support for a broad set o f modularity features including
encapsulation and strong typing, and (ii) an “unbundled” view o f inheritance, semantic features
of which are decomposed by means of a set of module combination operations (combinators).
We describe an implementation o f our framework in C + + , and assess its utility by constructing
a compiler for a simple 0 - 0 extension to the programming language C. We further argue the
flexibility of the resulting processor by outlining the incorporation of several significant extensions
to the basic module language. We claim that the use of such a framework for compiler construction
has many advantages, including a systematic language development method, processor software
reuse, language extensibility, and potential for interoperability among languages.1

'This research was sponsored by the Defense Advanced Research Projects Agency (DOD), monitored
by the Department of the Navy, Office of the Chief of Naval Research, under Grant number N00014-91-J-
4046. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the US Government.

1 I n t r o d u c t i o n

The denotational approach to programming language design employs abstraction to specify prop­
erties that a language’s implementation must satisfy. The conceptual and specificational power of
this approach is widely acknowledged [AW82]. However, the direct realization of language proces­
sors embodying a denotational semantic specification in modular and evolvable form remains an
elusive research goal [JS80].

One may ask whether alternative semantic formulations might more effectively bridge this
gap between language design and implementation. Recently, concepts fundamental to object-
oriented programming have been successfully specified in a formal semantic manner [Coo89, Bra92].
Moreover, object-oriented programming and design techniques have matured through extensive
application in a variety of areas. We capitalize upon both of these advances, and propose a metalevel
0 -0 architecture for an object system (i.e. an object model and associated inheritance semantics)
that is suitable for modeling and building processors for a wide range of 0 - 0 languages.

Our architecture does not encompass all aspects of a comprehensive language design — for
example, it does not prescribe control structures, or the base computational value domain. Rather,
we provide key abstractions and semantic structures characteristic of an object system constituting
a starting point for the language developer. We also seek to make our object model “open-ended” , so
that it can used in a variety of situations. This is achieved (i) conceptually by “unbundling” the class
concept and inheritance semantics traditionally found in 0 - 0 languages, and (ii) implementationally

by formulating our model as an 0 - 0 framework [JR91] that uses abstract classes, i.e. incompletely
defined classes that are completed by the framework user. The framework user can either adopt
the default semantics of the object system, or refine it to suit particular language requirements.

The advantages of using such a framework for developing compilers are many, and accrue both as
a result of object-orientation and our specific metalevel architectural design. As a result of object-
orientation, we seek the well-known advantages of (i) software reuse and consequently reduced
development effort, and (ii) design extensibility, i.e. incremental refinability of abstractions. Other
advantages include:

• Language extensibility: the ability to layer object systems on legacy non-object languages;

• Evolvability: the ability to easily model existing forms of inheritance, hence to re-engineer
compilers for existing languages, thus facilitating further evolution, e.g. adaptation of new
advances in type checking [BG93], or combination of inheritance hierarchies [OH92]; and

• Experimentation: the ability to refine and combine the framework abstractions in flexible
ways to create new and interesting object models and to investigate the resulting feature
interactions.

We illustrate these advantages in Section 4, where we describe the construction of a processor
for an 0 - 0 extension to the programming language C as a completion of our framework. A further
advantage of our approach that we are currently investigating is the potential for multi-lingual 0 -0

programming. We expect this to be the result of logical compatibility of objects across independent
extensions of the framework, in the same sense that common calling sequences facilitate function-
level inter-language linking [Har87].

Traditionally, abstraction and reuse in compiler construction have been fruitfully applied to
implementation data structures, e.g. symbol tables, parse trees, etc. It seems natural to extend
these advantages by abstracting concepts in the computational domain of the language being im­
plemented. It is crucial, however, that the identified abstractions be carefully conceived, in order to
maximize their range of applicability. We believe that we have identified such a set of abstractions,
broadly applicable to object-oriented languages and systems.

In formulating our object architecture, we have realized that the notions central to 0 - 0 pro­
gramming, such as the class construct and composition by inheritance, are applicable not only to
0 - 0 languages, but to a range of module manipulation systems as well. For example, object files
produced by a compiler are composed by linking operations. Indeed, we have reused the same
framework abstractions as a basis for a programmable linker/loader [OM92]. Private or shared
system libraries constitute yet another example [See90]. Hence, we have found it advantageous to
address this problem in its most general terms, by abstracting it to a language neutral plane.

It has been recognized in the past that object-oriented languages and systems are themselves
perfectly suitable domains for object-oriented design. The idea is to model notions fundamental to
0 - 0 programming, such as class, themselves as objects. This has been exploited in the design and
construction of 0 - 0 languages and environments, such as Smalltalk [GR83] and the CLOS Meta
Object Protocol [KdRB91]. However, such metalevel architectures are tightly coupled with their
base languages within highly dynamic and reflective environments. While this coupling enhances
application development flexibility, it causes the metalevel architecture to be too restrictive for
full-fledged language and system development. Moreover, it is difficult to untangle these metalevel
architectures from their linguistic environments for separate reuse.

Our metalevel architecture, in contrast, focuses on a broader range of of concerns, including
the development and exploration of new 0 - 0 languages as well as providing a basis for object
management system services. In particular, we are strongly motivated by modular construction of
compilers for 0 - 0 languages. In presenting our architecture, we first describe our object model
followed by a framework formulation of it. We then describe the development of an experimental
object-oriented extension to the programming language C using our framework, and assess the
resulting flexibility of our processor by sketching several further extensions to the language. Finally,
we relate our work to similar efforts and summarize our conclusions.

2 T h e O b j e c t M o d e l : M o d u l e s A n d O p e r a t o r s

With the emergence o f complex language mechanisms such as inheritance in 0 - 0 programming,
it no longer suffices to design language processors based solely on a fixed set of implementation-
motivated considerations. Rather, one must secure the design to sound semantic ground. The

concepts outlined in this section provide the semantic basis for the design of our metalevei language
architecture.

The range o f current 0 - 0 languages embody varying notions of the class concept, each of
which differs from others in subtle but important ways. Nevertheless, it is undeniable that the
different notions share a common semantic goal: to facilitate the structuring and combination of
software units with well-defined interfaces. We use the term module to refer to such software
units. Classes traditionally fulfill a variety of roles, including defining modules, defining subtyping
relationships, controlling visibility (e.g. via public/protected/private interfaces), constructing in­
stances of a defined module, modifying and reusing existing program units via single inheritance,
combining program units using multiple inheritance, resolving name conflicts, etc. This realization
motivates the formulation of our central abstraction, module, in such a way that it permits aspects
of the class construct such as inheritance and visibility control to be “unbundled” as operations
generically applicable to modules.

We draw on previous work [BL92, Bra92], which has succeeded in formulating the module notion
and operations on modules as a set of operators in a module manipulation language called Jigsaw.

Jigsaw is unusually powerful in accommodating differing senses of modules. Bracha and Lindstrom
[BL92, Bra92] have given a rigorous formal semantics for Jigsaw’s module abstraction, building
on the work of Cardelli, Cook, Harper, Palsberg, Pierce, and others [HP91, CM89, Coo89, CP89,
BC90]. For our purposes, an informal sketch of the semantics of Jigsaw will suffice.

In Jigsaw, a module is simply a self-referential scope, associating labels (identifiers) with mean­
ings. These meanings can be typed values, bound through definitions, or simply types specified via
declarations (defining a label subsumes declaring it). Declarations are used to create abstract mod­

ules, which can be manipulated but not instantiated. Modules do not contain any free references,
i.e. references to labels that are not associated with any declarations, although nested modules
may contain references to labels declared in statically surrounding modules. Every module has an
associated interface, which comprises the labels and types of all its visible attributes. Types in
Jigsaw are purely structural, i.e. sets of label-type pairs, without order or type name significance.

Modules may be combined with other modules to achieve the effects of single and multiple
inheritance, visibility control, rebindability, and sharability, etc. Such effects are made possible via
a suite of module operators (combinators) designed to fulfill specific isolatable semantic roles. For
concreteness, an example of Jigsaw modules and module combination is given in Figure 1, in which
a generic surface syntax is used. The modeling power of Jigsaw’s module abstraction and module
combination operators is fully investigated in [BL92],

3 J i g s a w i A M o d u l a r i t y F r a m e w o r k

For expository purposes, Jigsaw has been described thus far as a concrete language. The crucial
point, however, is that one may view Jigsaw merely as an abstract module manipulation language.

That is to say, it is possible to formulate Jigsaw in such a way that it does not prescribe the com-

3

Name Sample Module

01 {int x; fun f (int y) = g(g(y)); fun g (int z) = z+x}
o 2 {int x = 13; fun q (real z) = z*z}
o 3 {int y = 15; fun g (int w) = w-y}

Operation Result

0 \ copy f as h {int x; fun f (int y) = g(g(y)); fun g (int z) z+x; fun h (int y) = g(g(y))}
(A definition copy is added)

0 \ freeze g {int x; fun f (int y) = g(g(y)); fun g (int z) '= z+x }
(0 \ is unchanged, but g becomes non-rebindable)

0 \ hide g {int x; fun f (int y) - g’(g’(y)); fun g’ (int z) = z+x}
(Component g is not externally visible)

0 \ merge O 2 {int x = 13; fun f (int y) g(g(y))l fun g (int z) = z+x; fun q (real z) -- z*z}
(Declarations and definitions collected k, matched; conflicts disallowed)

0 \ override O 3 {int x; fun f (int y) = g(g(y)); int y = 15; fun g (int w) = w-y}
(Merge with conflicts resolved in favor o f right operand)

0 \ rename g to h {int x; fun f (int y) = h(h(y)); fun h (int z) = z+x}
(Declaration and all uses consistently renamed)

0 1 restrict g {int x; fun f (int y) = g(g(y)); fun g : int —>■ int}
(Declaration stripped o f its definition)

0 \ show f {int x’; fun f (int y) = g’(g'(y)); fun g’ (int z) = z+x’}
(Complement o f hide — x' and g are hidden)

Figure 1: Jigsaw modules and operators.

putational domain, or the control structures, or even the surface syntax of the concrete language in
which it is used. This formulation is facilitated by the use of 0 - 0 frameworks, where the concept
of abstract classes is central. In this section, we present a framework for module manipulation en­
compassing the module manipulation language semantics presented above. We call this framework
the Jigsaw framework.

In essence, an 0 - 0 framework [JR91] expresses the design of a software system in terms of ob­
jects and interactions between them, typically represented using a general purpose 0 - 0 program­
ming language. Frameworks are intended to capture the essential abstractions in an application
domain, thereby allowing a developer to build applications efficiently by (i) specifying classes that
inherit from classes in the framework and (ii) by configuring2 instances of classes in the framework.
Thus, applications are built by completing a framework in specific dimensions delineated by the
framework designer. Frameworks mostly comprise abstract classes, which are concretized by an
application. As a result, a framework can be thought o f as being parameterized on a completion
that provides call back code — a sort of bi-directional function abstraction. Frameworks thus pro­
mote design and code reuse through 0 - 0 concepts such as inheritance and polymorphism. Several

2Connecting objects constructed from predefined concrete classes [JR91].

4

frameworks have been developed, first for user interfaces, and subsequently for many other domains
as well [Deu89, VL89, WGM88, CIJ+91].

In a reflective language environment such as the CLOS MOP, the framework implementing the
metalevel architecture is specified in the language itself.3 However, as mentioned earlier, Jigsaw is
best viewed not as a concrete language, but as an abstract module manipulation language that can
serve as a framework for the metalevel architectures of other 0 - 0 languages. Hence, we are in a
position to distinguish this abstract language from the following two concrete languages: the fram e­

work implementation language L j, which is the language used to implement the Jigsaw framework,
and the client language l c, which is the language for which a processor is to be constructed by
extending (completing) the Jigsaw framework. In traditional compiler writing, these two languages
correspond to the implementation language of a compiler and the language that the compiler is to
implement.

3 .1 T h e A b s tr a c t io n s in th e F ra m ew ork

In Figure 2, we present an overview of the abstractions of the Jigsaw framework. For the framework
implementation language Ly, we adopt a generic 0 -0 language surface syntax that should be fairly
easy to understand. Each box stands for an abstraction, with shaded boxes standing for abstract
classes (i.e. incompletely specified) while non-shaded ones are concrete (i.e. instantiable). The text
within each box is the interface (or protocol) of the corresponding class.

The concrete class Module captures the Jigsaw notion of module in its broadest conception.
Objects of this class represent modules in the client language l c, each with a set of label-binding
pairs initialized via the method make_m odule([Attribute]). Such module objects can be combined
with other module objects using module combination operators which are methods in the interface
of the class Module (cf. Figure 1).

Module objects in l c are instantiated by invoking the method in s ta n t ia te O .4 This method
returns an object of class Instance which represents instances of modules in Lc. The key method
that instance objects respond to is s e le c t (L a b e l), which when supplied a label, returns its binding.
The s e le c t (L abel) method thus corresponds to the notion of sending a message to an instance
in Lc, and encapsulates the functionality of determining the exact binding to return. The latter
can be implemented in several ways, but the important point is that the framework determines a
common logical layout for instances and a mechanism by which to use that layout. This facility
can be capitalized upon to provide interoperability among different client languages. An ability for
introspection (examination of meta-information) is provided for Instance objects via the method
m odule.of() .

For the purposes of typechecking, the interfaces of module objects are captured as objects of

3It is worth noting that the M O P consists entirely of concrete classes; hence it is more like a completion of a
metalevel architectural framework.

4 Jigsaw does not model the notion of object initializers (e.g. constructors in C + - (-) explicitly; instead initializers
are ordinary methods that are called after instantiation.

5

class Attribute class Interface
class Label

class Binding

c

in terface_eq : Interface->Bool
subinterface: Interface->Bool

class Module

class Type

type„fe<l! Typa->Bool
subtype: T y p e B o o l

class Value

ctype„o£;

class Location

store : Value->void
contents_of: void->Value
ty p e_o f: void->Type

class Reference

Imake_fixed: void->Binding J
LEGEND:

Class
[X] List of objects of type X
— Inheritance

make_module:[Attribute] - >Module
merge: Module->Module
override: Module->Module
r e s t r ic t : Label->Module
freeze : Label->Module
hide: Label->Module
show: [Label]->Module
copy_as: Label, Label->Module
rename: Label, Label->Module

In terfa ce_o f: vold ->Interface
Instantiate: vold->Instance

s e lf_ re fe r : Label->Reference
non_local: Label->Blndlng

class Instance
select:L abel->

{Value,Location,Module}
s e lf_ re fe r : Label->

{Value, Locat ion,Module}
module o f : void->Module

Figure 2: Overview of the Jigsaw framework

class Interface. When module objects are combined using module operators, their type compati­
bility is checked by comparing the interface objects corresponding to the modules with the help of
methods in class Interface. The type checking rules incorporated into the Jigsaw framework are
explained in detail in Bracha [Bra92].

As explained earlier, the framework provides a rather generic object model (via the module
abstraction) and nothing more. As a result, the above abstractions are defined relative to the
notions of value, type and even label in a client language, over which Jigsaw abstracts. The client
language must provide its own concept of values, types and labels. These concepts are there­
fore incompletely specified abstractions within the Jigsaw model, and are specified as abstract
classes Value, Type, and Label. Jigsaw requires label objects to supply a notion o f label equality
via the method label_eq(L abel), and value objects to return type objects when queried with
type_of () . Type objects in turn must supply notions of type equality (type_eq(Type)) and sub­
typing (subtype(Type)). A particular client language is implemented by supplying definitions for
these methods in these abstract classes, and possibly by extending the functionality (interface)
of abstractions, or by adding other abstractions. These definitions and extensions constitute an
implementation o f the client language.

Mutable state (i.e. instance variables) is modeled in Jigsaw via the class Location. Location

6

objects hold storable values, the exact definition of which is client dependent. The default definition
of Location comprises value objects and instance objects as storable values, but a particular
client language could refine this to include locations (pointers), types, interfaces, or even modules.
This exemplifies one virtue of the framework approach to language development — isolation and
illumination of the options available to the language designer.

The reader might have noted the correspondence between the above framework abstraction
design and denotational models of programming languages [Gor79]. Denotational semantics applies
functional programming to abstract over language functionality. Here, we apply a denotational
description of modularity in 0 - 0 programming to abstract over language modularity. Furthermore,
the framework approach is intended to provide the language developer a modular means by which
to design and implement a language’s value domain, type system, etc. relatively independently of
each other and independent of abstraction mechanisms in the language. Once the basic elements
of the language are designed, the modularity mechanisms available in the Jigsaw framework are
directly available for incorporation into the language.

A framework is meant to implement reusable abstractions. Although the design of the Jig­

saw framework was motivated by purely semantic concerns, it is currently finding applications in
a variety of situations, some of which were unanticipated, e.g. the programmable linker OMOS
[OM92]. Indeed, this framework’s asserted flexibility benefits are currently being demonstrated in
a second generation of OMOS, in which we are incorporating type-safe linkage of object modules.
This application attests to the utility of our framework abstractions — although the framework
will undoubtedly undergo unforeseen changes as its various completions mature. As has often been
observed, repeated reuse enhances and validates the reusability of framework abstractions.

3 .2 E n ca p su la t io n A n d T y p e c h e c k in g

Fundamental in the design of the Jigsaw module model are the related concerns of encapsulation
and type systems. We believe that they are crucial for constructing reliable, readable, and efficient
large-scale software. Our notion of encapsulation essentially distills to (i) separating interface from
implementation, and (ii) allowing external access to an object only via its interface. The hide
operator (and its dual show) enables encapsulation by removing its attribute parameter from the
interface of its module (see Figure 1). The method s e le c t (Label) of class Instance implements
access to externally visible attributes of an instance object (i.e. encapsulated access), while self­
reference within individual objects is accomplished via the method s e lf_ r e fe r (L a b e l) . Jigsaw
models object-level encapsulation5, as opposed to class-level encapsulation as found in languages
such as CLU [LG86] and C + + [ES90], where objects of a class have access to each other’s internals.

A module type system is built into the Jigsaw framework. This default type system is struc­

tural rather than name-based, the latter being found in most current 0 - 0 languages. The no­
tion of module types is represented by the framework class In ter fa ce , and module composi­

5The strongest form of encapsulation, in which encapsulation walls exist around each individual object.

7

tion operators verify type compatibility by calling the methods in te r fa ce _ e q (In te r fa ce) and
su b in te r fa ce (In te r fa ce) of class In ter fa ce , which implement module type equivalence and
subtyping respectively. These methods in turn rely on the client supplied notions of type equiva­
lence and subtyping defined in the methods type_eq(Type) and subtype(Type) of class Type. Such
an architecture makes it fairly straightforward to develop even typeless (i.e. singly-typed) languages
since the entire type system relies on the notions of type equivalence and subtyping supplied by
class Type.

As will be surveyed in Section 4.3, it is possible to design a range of type systems with varying
degrees of expressiveness depending upon client language requirements, such as separate compila­
tion and static typechecking.

3 .3 Im p le m e n ta t io n

The generic nature of our module abstraction ensures that it can be represented easily in essentially
any existing 0 - 0 language. In our prototype implementation of the Jigsaw framework, we have
chosen C + + [ES90] as our framework implementation language Lj. In this section, we comment
on a few aspects o f this implementation.

We have included the following supporting classes in our framework: (i) class Binding, which
is a generalization of all types of entities that can be bound to a label within a module (a value,
a location or a nested module to create a label definition, or a type or interface to create a label
declaration), and (ii) class A ttr ib u te which implements a node in a linked list of label-binding
pairs, with operations to add, remove, find, etc. such pairs.

Nested modules are modules that are bound to labels within other modules. Attributes within
nested modules are permitted to access label definitions in lexically surrounding scopes, i.e. non­

local attributes. Not unexpectedly, such access is implemented in class Module as a private pointer
variable parent that points to an instance of the surrounding module. The functionality o f accessing
a non-local attribute is encapsulated in the method n on _loca l(L abel) in class Module.

Reference to self is an important notion in 0 -0 , and enables dynamic binding, which is typically
implemented via a level of indirection using dispatch tables, e.g. virtual function tables in C + + . A
simple form of dispatch is built into the Jigsaw framework in the implementation o f the methods
s e le c t (L a b e l) and s e l f - r e f er(L a b e l) o f class Instance. Depending on client requirements, the
default can be refined to incorporate alternate dispatch mechanisms [HC92, Cha89].

Interestingly, the Jigsaw module model requires a form of delayed binding occurring not at run­
time (i.e. dynamically) but rather at module combination time. This is because module attributes
are by default rebindable, but can be made non-rebindable at any point by applying the module
operator fr e e z e . The fr e e z e operator makes references to its label argument fixed, or static. In
our implementation, we capture references to rebindable attributes as objects of class Reference,
whose method m ake_fixed() makes an attribute non-rebindable. Class Reference objects that
remain rebindable at instantiation time take part in the creation of a dynamic dispatch table.

Another important implementation issue concerns the provision of methods for parsing the

8

surface syntax of client languages. Ideally, we would have an abstract method in class Module, such
as parse_module: Stream->Module, that produces a module object given a Stream of characters,
as defined by the client. This method would be an abstract method since it would construct a parse
tree for the given stream by calling parse methods of other classes, e.g. parse_value, parse_type,
and parse_label, which are expected to be provided by the client. However, generally available
parser technology (e.g. LALR) is based upon monolithic parser specification and does not yet permit
modular specifications. Therefore, we have chosen to provide a default module surface syntax as a
yacc/lex processable grammar file separate from the Jigsaw framework itself. The semantic actions
of rules in this grammar create and process modules using the framework classes. An alternate idea
under consideration is to incorporate modular recursive descent parsers into each of the framework
classes.

4 J i g C : A M o d u l e E x t e n s i o n t o t h e P r o g r a m m i n g L a n g u a g e C

This concludes our general discussion of the Jigsaw framework. In this section, we outline the design
and implementation of an upwardly compatible module extension of the programming language C
[KR88], called JigC, which is being developed to showcase and further evaluate the Jigsaw module
model. In this experiment, we first retrofitted a module system onto an existing language, and
implemented a processor for it using our framework. We demonstrate the flexibility built into
this language processor by surveying various design extensions to the basic module language, and
outlining their incorporation into the language processor. We hope to show that once the more
difficult task of retrofitting the module system is accomplished, later extensions can be performed
with relative ease.

The objective of this section is to give the reader a flavor of the versatility and (re)usability of
our framework, as well as the flexibility and evolvability of the client language processor. We begin
by delineating generically the steps in realizing l c modules starting from the metalevel architecture.

4.1 Realization of Modules

Our approach to characterizing modules involves four levels of abstraction and concretization:
1. [M od u le ABSTRACTION:] This is class Module, the framework class representing Jigsaw’s

notion of modules. Class Module is concrete, because it includes a generic definition of all
its attributes. However, it remains indirectly abstract, since it relies on abstract auxiliary
classes, as shown in Figure 2.

2. [M od u le in Lc:] The Jigsaw notion of modules tailored to a particular Lc , is defined by
providing concrete definitions of these auxiliary classes, and/or by subclassing class Module in
order to refine or customize it, as appropriate for l c modules. This realization is introduced by
the framework completion, i.e. the implementation of the Lc language processor. For example,

JigC s refined notion of modules presented in Section 4.3 is represented by class Module_jc,
a subclass of class Module.

3. [Individual Lc modules:] Once the Lc notion o f modules is made complete, individual Lc
modules can be created, with specific interfaces, labels and bindings. Lc modules are created
as specified in Lc source programs by the Lc processor by creating Module objects and invoking
the make_module ([A ttr ib u te]) method of class Module.

4. [Lc module instances:] Finally, if the concept is supported by Lf , instances (objects, or
the compile-time representations thereof) derived from particular Lc module definitions are
created as specified in Lc source programs through invocations of the in s ta n t ia te () method
of an individual Lc module.

This four-stage process is the way by which the Jigsaw module model is exploited in an Lc
language processor. It is important for the reader to understand each of the above levels, and to
maintain their conceptual separation.

4 .2 T h e B a s ic JigC M o d u le S y s te m

A language such as JigC that is based on the Jigsaw module model is advantageous over similar
languages (e.g. C + +) for the same reasons that Jigsaw modules are advantageous, namely (i) it
provides a uniform module model with unbundled inheritance operators, (ii) it supports a static
structural (interface-based) module type system, and (iii) it supports nested modules, a powerful
feature (e.g. enabling combination of inheritance hierarchies [OH92]). In addition, implementing
the JigC compiler as a completion of the Jigsaw framework brings with it the important benefit of
evolvability, which is the subject of Section 4.3.

The interactions of the module system with the client language (C, in our case) are numerous,
and sometimes subtle. For example, a requirement in the design of JigC is backward compatibility
with C, which implies that existing C programs can also be viewed as JigC program. From the JigC
point of view, a program file may itself be regarded as a module in which C declarations6 (constant,
variable and function declarations), C function definitions, and JigC declarations/definitions are
module attributes. A complete JigC program is thus a fully concrete module that contains a
function-valued attribute called main. It might not be immediately obvious what it means to
instantiate an ordinary C program file when viewed as a module — in JigC, each execution of
the program is viewed as an instantiation. Furthermore, since location attributes are by default
regarded as per-instance locations in the framework, each instantiation of a module containing
such an attribute will get a new copy of the location — consistent with ordinary models of program
execution.

6The term declaration used in the context of C has a different mecining than that of Jigsaw. In C, a variable
declaration allocates storage, while in Jigsaw, a declaration specifies a type. In this paper, the term declaration is
used in the Jigsaw sense unless noted otherwise.

10

Existing C Syntax JigC Attribute Semantics
int x; Location (of type int) definition
extern int x; Location (of type int) declaration
int x = 0; Location (of type int) definition w/initialization
sta tic int x; Location (of type int) definition subjected to hide
const int x = 0; Value (of type int) definition
extern const int x; Value (of type int) declaration
int foo (f lo a t x) { . . . } (function) Value (of type f loat-> in t) definition
extern struct s { . . . } (aggregate) Value (of type s) declaration

Figure 3: JigC attribute syntax and semantics examples

const int g = 3;
module Point : PointType {

int x = 0;
Boolean atOrigin () { i f (x == 0) return TRUE; else return FALSE; }

} ;
main () { Point p; p.x = g; . . . }

Figure 4: A simple JigC program

If existing ordinary C programs are to be viewed as JigC modules, each top-level C declaration
or definition must correspond to a JigC module attribute. Figure 3 shows such correspondences.
In addition, JigC introduces new keywords related to the module system such as module, merge,
overrid e , etc. Figure 4 shows a simple JigC program in which the outermost module (i.e. the
entire program file, which we will refer to as FILE) contains three attributes: a value definition g of
type in t, a module definition Point of type PointType (which in turn contains two attributes: a
per-instance location definition x of type in t with initial value 0, and a (function) value definition
atO rig in of type void->B oolean), and a (function) value definition main of type vo id -> void .
The modules FILE and Point are both concrete, i.e. all their attributes are defined and not just
declared, and hence they are instantiable.

In implementing a processor for JigC as a completion of the Jigsaw framework, we must first
understand the notion of identifiers in our client language C. We implement this notion as a subclass
of the framework class Label.

Next, we independently describe the value (and corresponding type) domain of C — primitive
data types such as integers, floats, characters, etc.; aggregate types such as structs, and unions;
and function types. The framework class Value is subclassed into several classes to implement
each of the above, and the class Type is subclassed to implement corresponding notions of type.
Since C relies on name-based typing, type equivalence is name equivalence in most cases; the
exceptions are type equivalences defined in the language (e.g. in t is equivalent to short in t) and
types introduced via typedefs. The subtyping relationship surfaces in two situations: (i) type

11

conversion rules defined in the existing language (e.g. C ’s integral promotion: char to in t), and
(ii) a JigC augmentation of C ’s function typing: the contravariant subtyping rule for functions,
which is necessitated by the existence of a subtyping relation on Instance types. The function
subtype of class Type is implemented by taking the above rules into account and also the relations
of reflexivity and transitivity.

In the basic JigC language, class L ocation is subclassed in order to incorporate location objects
as storable values (for modeling C pointers). The default semantics of the framework class Location
includes only value objects and instance objects as storable values.

The above specializations of the abstract framework classes together with the default semantics
provided by the Jigsaw framework accounts for a large portion of our language implementation.
The rest of the language, primarily control structures, can be dealt with using traditional tech­
niques. We have chosen to translate JigC programs to C programs (as a result, our translator is
essentially a pre-processor to the C compiler). Although we did not have to specialize the semantic
notion of modules, we do find the need to refine the functionality of modules in two areas due to
compilation requirements. First, the notion of instantiation is refined in order to perform layout and
initialization for runtime instances, and correspondingly, the methods of class Instance are refined.
Second, methods named tran slate_to_C () are added to each of the framework abstractions.

The final task is to reverse-engineer the existing C language grammar to incorporate the module
system, and add semantic actions that utilize the framework classes and their refinements. The
architecture of our JigC implementation is shown in Figure 5.

^ Jigsaw Framework (C++) J

completes
(" - ^ uses (^
^ JigC completion (C++) J * ------------^JigC parser (yacc/lex) J

yacc/lex processing +
C ++ compilation

JigC source program -------------- JigC preprocessor C program C compiler) ^ a.out

Figure 5: JigC implementation architecture

4.3 Extensions for Advanced M odularity Features

The central purpose in our developing a module extension to a legacy language was to experiment
with advanced modularity concepts. Therefore, it is extremely important to us that the design
and implementation o f our experimentation vehicle be highly extensible. Our framework approach
to language implementation has enabled us to isolate the parts of our language processor that
need to change as the design of the language evolves, and specify these parts in an evolvable man­
ner. To illustrate, consider the incorporation of recent advances in static type checking, involving
programmer access to self and its type.

12

By default, Jigsaw models implicit access to self, i.e. module attributes refer to siblings by label.
A more expressive static type system would demand explicit programmer access to self and its type.
Incorporation of explicit access to self is quite straightforward, but type checking the type of self
is more problematic.

Using our framework, the type of self, which is an instance type7, can be designed as a dis­
tinguished object of class In ter fa ce . Furthermore, if function parameters of self type are to be
permitted in a client, as described extensively in recent literature [Bru93, Bru92], two major refine­
ments to the default type system would be required. Firstly, in the default formulation of Jigsaw,
the hide operator permits removing an attribute from a module’s public interface after the fact, i.e.
module interfaces can evolve non-monotonically. As a result, usages of incoming function parame­
ters that are declared to be of the type of self cannot be type checked at module definition time,
since the type of self could arbitrarily change under inheritance and as a result, no assumptions can
be made regarding the type of self. In order to alleviate this situation, class A ttrib u te must be
subclassed to model public attributes, i.e. methods that cannot be hidden. Secondly, there would
be a need for type checking inherited type£ — this can be done by subclassing class In te r fa ce
and class Type. Language design issues such as these are discussed in detail in the literature
[HC90, Bru93, Bra93] — the key point is that a wide range of type systems can be accommodated
as refinements of the basic formulation of the Jigsaw framework.

In its current form, a function defined within a JigC module has access to the instance that it
is executing within via the keyword s e l f . In addition, the type of s e l f can be denoted using the
keyword s e lfty p e 9. As described above, attributes that cannot be hidden are specified by prefixing
them with the keyword p u b lic . A static type error results if an attempt to h ide a p u b lic attribute
is made. An example program with these typing features is shown in Figure 6.

In the rest of this section, we enumerate several other design extensions to the basic JigC module
system, and outline their flexible incorporation into the language processor. Some of the following
extensions have been incorporated into JigC, while others are still under development.

• Per-module shared locations. Consider the incorporation of per-module locations, i.e. locations
that are shared by all instances of the containing module (as in s t a t i c members in C + -(-).
This requires (i) syntactically, incorporation of a new keyword (such as shared) into the
grammar, (ii) class L ocation to be subclassed to class sharedLocation, and (iii) refinement
o f the in s ta n tia te method of class Module to share objects of class sharedLocation.

• Name-based typing. If it is necessary to design a name-based type system for a particular client
language, this can be achieved by incorporating the concept o f brands [Nel91, BG93] into a
subclass bran ded ln terface of class In te r fa ce , and refining the corresponding constructor
and equivalence methods.

7Although instance types are generally regarded as distinct from module types (i.e. interfaces), they can be
modeled as In te r fa c e objects.

8Types that are not subtypes but share a similar recursive nature[CCH089].
9 This corresponds to the bound variable My Type in [Bru92]

13

9

• Bundled inheritance semantics. If a client requires retention of particular compound inher­
itance semantics, such features can be modeled using Jigsaw operators. For example, one
might desire to reconstruct an existing language such as C + + using the Jigsaw approach so
that future evolution, such as an enhanced type system or inheritance semantics, is possible.

• A language fo r linking. As mentioned in Section 3.1, Jigsaw has another embodiment in
OMOS, which offers programmable combination of compiler-emitted object files. In addition
to supporting the module combinators illustrated in Figure 1, OMOS extends the Jigsaw
framework in several respects, including (i) address space mapping constraints, and (ii) con­
structed module caching, reuse and sharing. The result is a greatly enlarged conception
o f object file (module) manipulation and management, cast as a pervasive system service,
under which many value added features are deliverable, including portable shared libraries
[OBLM93], function interposition [BCL093], and dynamic program monitoring and reorga­
nization [OMHL93].

• Concurrent 0 - 0 programming. It is increasingly evident that the relationships between se­
quential and concurrent conceptions of 0 - 0 programming are inadequately understood. In
particular, several researchers have reported that inheritance, as commonly understood for
sequential 0 - 0 languages, gives rise to semantic anomalies and violations o f encapsulation
when applied to concurrent 0 - 0 languages. Various remedies have been proposed (e.g.
[L93, Mes93]), but none directly addresses the issue of migrating existing sequential 0 - 0
code to concurrent settings. We conjecture that the Jigsaw framework, enhanced to support
asynchronous message dispatch via synchronization condition predicates managed as rebind-
able module attributes, will provide a more general and satisfying solution. We plan to test
this conjecture by porting JigC to the pseudo concurrent environment provided by Cthreads
[CD88].

• Nested Modules. Thorough incorporation of nested modules in a language opens up new
semantic avenues, e.g. sharing, and several software engineering possibilities, e.g. combination
of inheritance hierarchies. While the Jigsaw module model provides the capability for defining
and using nested modules, this has not yet been taken advantage of in the current JigC
language, and is being investigated in a continuing effort.

• Persistence. Jigsaw arose within the context of the Mach Shared Objects project, which
is building an persistent store for C + + and CLOS objects. Pefsistence raises many new
requirements, including (i) metalevel object information (e.g. class objects, or “dossiers”), and
(ii) resolution o f semantic issues such as whether persistence should be accorded to shared
module attributes. The Jigsaw framework directly provides a basis for dealing with issue (i),
in that modules (classes) already exist as tangible objects in our metalevel architecture. One
option in dealing with issue (ii) is to regard such an attribute as a persistent attribute, since
each execution of the program file is regarded as an instantiation of the F IL E module. This

14

module Point : PointType {
p u b lic :

extern int x;
selftype moveOne () { s e lf .x = s e l f .x + i ; return s e lf ; } ;

} ;
module NewPoint : NewPointType =

Point override { ■
p u b lic :

int x = 0;
Boolean eq (se lftype p) { return (s e l f .x == p .x); } ;

} ; ‘
main 0 {

NewPoint p i, p2;
p l.x = 13;
prin tf ('"/,d", pi.moveOne() .x) ;
while (!p l.e q (p 2)) . . .

} " *

Figure 6: An extended JigC program using s e l f type

involves the creation of a subclass of class sharedLocation, say class p ers isten tL oca tion ,
and add corresponding persistence semantics to it and the in s ta n tia te O method.

We are encouraged by our initial findings about the utility of our metalevel language architec­
ture, and we envisage future work in the directions indicated above. We also intend to evolve JigC
into genuinely useful language (hence a competitor to related languages like C + +), believing that
the principles upon which it is based (e.g. structural typing with brands) are more advantageous.
We also foresee the exploration of fundamental issues concerning encapsulation, polymorphism and
type checking in 0 - 0 programming using this framework.

5 J i g s a w a n d R e f l e c t i v e S y s t e m s

The Jigsaw framework approach to building language processors has a relation to reflective systems,
and is somewhat similar to languages with meta-object facilities such as the CLOS MetaObject Pro­
tocol (M OP), and Smalltalk-80 metaclasses. The CLOS MOP supports user-redefinable protocols
for meta-objects such as class, instance, generic function, method, etc. CLOS MOP provides the
basis for the development of a “space of languages with the default language being a distinguished
point in the space.” Smalltalk-80 provides a highly intertwined collection of meta-classes.

Nevertheless, there are important differences between our approach and previous ones. Our
notion of modules is motivated by a desire to uniformly treat the semantics of inheritance. In
addition, encapsulation is an important semantic requirement in Jigsaw, since we believe that it is
crucial for software development in the large. Static typing is another important consideration in

15

Jigsaw. Furthermore, the Jigsaw class interfaces are derived from a rigorous semantic foundation,
rather than from the requirements of diverse language designs already in existence. As already
mentioned, the Jigsaw framework was specifically designed to facilitate the construction o f modular
language processors and systems, and finds applications in the interoperability among languages,
linkers and libraries. However, the Jigsaw framework can be used for many purposes that the CLOS
MOP has been put to use, notably persistent objects [Pae88, Lee92]. '

6 C o n c l u s i o n s .

A framework-based approach to language processor design and implementation has been described.
This approach, called Jigsaw, relies on an abstract conception of software modules, refineable in
several dimensions to characterize a large space of specific module formulations. A central prop­
erty of this framework is its exploitation of this module conception on two levels: within its own
organization, and within the language systems definable through it. Like traditional denotational
semantics, which uses functional programming to describe language functionality, Jigsaw uses mod­
ular programming to describe language modularity. Because frameworks are conveniently realizable
in today’s 0 - 0 languages, the Jigsaw approach directly lends itself to experimentation. We have
constructed a prototype of the Jigsaw framework in C + + , which we have extended to JigC, an ex­
tensible compiler for C-based 0 - 0 programming languages. Our initial experience has encouraged
us to apply the Jigsaw approach to more diverse aspects o f module combination and management,
including programmable linkers, persistent object stores, and concurrent object systems.

Acknowledgements

We are indebted to Gilad Bracha for his fundamental work in conceiving Jigsaw, his generosity
in permitting us to build on one of his unpublished working drafts, and his detailed comments on a
later draft o f the paper. The insights and support of Charles Clark, Douglas B. Orr, and all other
Mach Shared Objects project participants are also gratefully acknowledged.

R e f e r e n c e s

[AW82] E. A. Ashcroft and W. W. Wadge. Prescription for semantics. A C M Transactions on Program­
ming Languages and Systems, 4(2), April, 1982.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Proc. OOPSLA Conference,
Ottawa, October 1990. ACM.

[BCL093] Gilad Bracha, Charles F. Clark, Gary Lindstrom, and Douglas B. Orr. Module management as
a system service. Unpublished paper, July 1993.

[BG93] Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a production envi­
ronment. In Proc. OOPSLA Conference, Washington D.C., September 1993. ACM.

[BL92] Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In Proc. International Con­
ference on Computer Languages, pages 282-290, San Francisco, CA, April 20-23 1992. IEEE
Computer Society. Also available as Technical Report UUCS-91-017.

16

[Bra93]

[Bru92]

[Bru93]

[CCH089]

[CD88]

[Cha89]

[CIJ+91]

[CM89]

[Coo89]

[CP89]

[Deu89]

[ES90]

[Gor79]

[GE83]

[Har87]

[HC90]

[HC92]

[Bra92]

[HP91]

Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance.
PhD thesis, University of Utah, March 1992. Technical report UUCS-92-007; 143 pp.

Gilad Bracha. Private communication. Electronic mail, January 28, 1993.

Kim B. Bruce. A paradigmatic object-oriented programming language: Design static typing and
semantics. Technical Report CS-92-01, Williams College, January 31, 1992.

Kim B. Bruce. Safe type checking in a statically typed object-oriented programming language.
In Susan Graham, editor, Proc. Symposium on Principles of Programming Languages, 1993.

P. Canning, W . Cook, W. Hill, and W. Olthoff. Interfaces for strongly-typed object-oriented
programming. In Norman Meyrowitz, editor, Proceedings of the A C M Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 457-467, 1989.

Eric C. Cooper and Richard P. Draves. C threads. Draft report, Mach Project, Carnegie-Mellon
Univ., 8 March 1988.

Craig Chambers. Customization: Optimizing compiler technology for self, a dynamically typed
object-oriented programming language. In SIGPLAN ’89 Conference on Programming Language
Design and Implementation, Jun 21 - 23, 1989.

Roy H. Campbell, Nayeem Islam, Ralph Johnson, Panos Kougiouris, and Peter Madany. Choices,
frameworks and refinement. In Object Orientation in Operating Systems, pages 9-15, Palo Alto,
CA, October 1991. IEEE Computer Society.

Luca Cardelli and John C. Mitchell. Operations on records. Technical Report 48, Digital Equip­
ment Corporation Systems Research Center, August 1989.

William Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown University, 1989.

William Cook and Jen Palsberg. A denotational semantics of inheritance and its correctness.
In Proc. A C M Conf. on Object-Oriented Programming: Systems, Languages and Applications,
pages 433-444, 1989.

L. Peter Deutsch. Design reuse and frameworks in the Smalltalk-80 programming system. In
Ted J. Biggerstaff and Alan J. Perlis, editors, Software Reusability, volume 2, pages 55-71. ACM
Press, 1989.

Margaret A. Ellis and Bjarne Stroustrup. The Annotated C + + Reference Manual. Addison-
Wesley, Reading, MA, 1990.

Michael J. C. Gordon. The Denotational Description of Programming Languages. Springer-
Verlag, 1979.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

W. Harrison. RPDE3: A framework for integrating tool fragments. IEEE Software, 4:46-56,
November 1987.

Jin Ho Hur and Kilnam Chon. Self and selftype. Information Processing Letters, 36:225-230,
1990.

Shih-Kun Huang and Deng-Jyi Chen. Efficient algorithms for method dispatch in object-oriented
programming systems. Journal of Object-Oriented Programming, September 1992.

Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation. In
Proc. of the A C M Symp. on Principles of Programming Languages, pages 131-142, January 1991.

17

[JS80]

[KdRB91]

[KR88]

[L93]

[Lee92]

[LG86]

[Mes93]

[Nel91]

[OBLM93]

[OH92]

[OM92]

[OMHL93]

[Pae88]

[See90]

[VL89]

[JR91]

[WGM88]

Ralph E. Johnson and Vincent F. Russo. Reusing object-oriented designs. Technical Report
UIUCDCS 91-1696, University of Illinois at Urbana-Champagne, May 1991.

N. D. Jones and D. A. Schmidt. Compiler generation from denotational semantics. In N. D.
Jones, editor, Semantics-Directed Compiler Generation, pages 70-93. Springer-Verlag, Berlin,
1980. Lecture Notes In Computer Science Number 94.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject Protocol.
The MIT Press, Cambridge, MA, 1991.

Brian W . Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cliffs, NJ, 1988. ,

Klaus-Peter Lohr. Concurrency annotations for reusable software. Communications of the ACM,
36(9):81—89, September 1993.

Arthur H. Lee. The Persistent Object System MetaStore: Persistence Via Metaprogramming.
PhD thesis, University of Utah, June 1992. Technical report UUCS-92-027; 171 pp.

Barbara Liskov and John Guttag. Abstraction and Specification in Program Development. The
MIT Press, Cambridge, MA, 1986.

Jose Meseguer. Solving the inheritance anomaly in concurrent object-oriented programming. In
Proceedings ECOOP ’93, LNCS, Kauserlautern, Germany, July 1993. Springer-Verlag.

Ed. Greg Nelson. Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs, NJ,
1991.

Douglas Orr, John Bonn, Jay Lepreau, and Robert Mecklenburg. Fast and flexible shared
libraries. In Proc. USENIX Summer Conference, pages 237-251, Cincinnati, June 1993.

Harold Ossher and William Harrison. Combination of inheritance hierarchies. In OOPSLA
Proceedings, pages 25-40, October 1992.

Douglas B. Orr and Robert W . Mecklenburg. OMOS — an object server for program execution.
In Proc. International Workshop on Object Oriented Operating Systems, pages 200-209, Paris,
September 1992. IEEE Computer Society. Also available as technical report UUCS-92-033.

Douglas B. Orr, Robert W . Mecklenburg, Peter J. Hoogenboom, and Jay Lepreau. Dynamic
program monitoring and transformation using the OMOS object server. In Proceedings of the
26th Hawaii International Conference on System Sciences, pages 232-241, January 1993. Also
available as technical report UUCS-92-034.

Andreas Paepcke. PCLOS: A flexible implementation of CLOS persistence. In S. Gjessing and
K. Nygaard, editors, Proceedings of the European Conference on Object-Oriented Programming,
Lecture Notes in Computer Science, Berlin, 1988. Springer-Verlag.

Donn Seeley. Shared libraries as objects. In Proc. USENIX Summer Conference, Anaheim, CA,
June 1990.

John M. Vlissides and Mark A. Linton. Unidraw: a framework for building domain-specific
graphical editors. In Proceedings of the A C M User Interface Software and Technologies ’89
Conference, pages 81-94, November 1989.

A. Weinand, E. Gamma, and R. Marty. E T + + : an object-oriented application framework in
C + + . In Proceedings of OOPSLA ’88, pages 46-57. ACM, November 1988.

Last revised October 21, 1993

18

