
Interactive Volume Rendering

of Large Datasets using the

Silicon Graphics Onyx4

Visualization System

Christiaan Gribble, Steven Parker, &

Charles Hansen

UUCS-04-003

School of Computing

University of Utah

Salt Lake City, UT 84112 USA

January 27, 2004

Abstract

Many recent approaches to interactive volume rendering have focused on leveraging the

power of commodity graphics hardware. Though currently limited to relatively small

datasets, these approaches have been overwhelmingly successful. As the size of volumetric

datasets continues to grow at a rapid pace, the need for scalable systems capable of interac-

tively visualizing large datasets has emerged. In an attempt to address this need, SGI, Inc.

has introduced the Silicon Graphics Onyx4 family of visualization systems. We present

the results of our preliminary investigation into the utility of an 8-pipe Onyx4 system for

interactive volume rendering of large datasets. By rendering the image in parallel using

an application called Rhesus, we find that the Onyx4 provides reasonable interactivity for

datasets that consume as much as 512 MB of texture memory.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


■�✁✂✄☎✆✁✝✞✂ ❱♦✟✠✡✂ ❘✂�☛✂✄✝�☞ ♦✌ ▲☎✄☞✂ ❉☎✁☎✍✂✁✍ ✠✍✝�☞ ✁t✂

❙✝✟✝✆♦� ●✄☎✎t✝✆✍ ❖�✏✑✒ ❱✝✍✠☎✟✝✓☎✁✝♦� ❙✏✍✁✂✡

❈✔✕✖✗✘✖✙✙✚ ✛✕✖✜✜✢✣ ✤✘✣✥✣✚ P✙✕r✣✕ ❈✔✙✕✢✣✗ ❍✙✚✗✣✚

✤✦✖✣✚✘✖✧✦ ❈★✩✪✫✘✖✚✬ ✙✚❛ ✭✩✙✬✖✚✬ ✭✚✗✘✖✘✫✘✣✮ ❯✚✖✥✣✕✗✖✘② ★✯ ❯✘✙✔
❢❝✰✱✲✳✳✴✵❥s✶✷✱✸✵✱❥❤✷✹s✵✹❣❅s❝✲✺✻✼✷❤✺✵❞✻

❋✽✾✿❀❁ ❂❃ ❄✽❆✿❇❊✽❏❇❑✽▼◆❆ ▼◗ ❑❚❁ ❑❁❲❳❁❀❇❑✿❀❁ ❇◆❨ ✈❁❊▼❩✽❑❬ ❲❇✾◆✽❑✿❨❁ ❭❁❊❨❆ ◗❀▼❲ ❇ ❚❁❳❑❇◆❁ ❳▼▼❊ ❭❀❁ ❆✽❲✿❊❇❑✽▼◆ ❇❆ ❑❚❁❬ ❁✈▼❊✈❁ ❑❚❀▼✿✾❚
❑✽❲❁❪ ❫❚❁❆❁ ✽❲❇✾❁❆ ✇❁❀❁ ❩❀❁❇❑❁❨ ✿❆✽◆✾ ❑❚❁ ❆❩❇❊❇❀ ✈❇❊✿❁❴ ✾❀❇❨✽❁◆❑❴ ❇◆❨ ❵❁❆❆✽❇◆ ❩▼❲❳▼◆❁◆❑❆ ▼◗ ❑❚❁ ❭❀❁❜❆❳❀❁❇❨ ❨❇❑❇❆❁❑❆❪ ❡❇❩❚
❑✽❲❁❜❆❑❁❳ ❩▼◆❆✿❲❁❆ ✐❂❦ ❧♠ ▼◗ ❑❁♥❑✿❀❁ ❲❁❲▼❀❬ ❇◆❨ ✇❇❆ ❀❁◆❨❁❀❁❨ ✽◆ ❳❇❀❇❊❊❁❊ ❇❑ ♣q✉ ◗❀❇❲❁❆ ❳❁❀ ❆❁❩▼◆❨ ▼◆ ❇◆ ✉❜❳✽❳❁ ①③④⑤⑥ ❆❬❆❑❁❲❪

⑦⑧⑨⑩❶❷❸⑩

Many recent approaches to interactive volume rendering have fo-
cused on leveraging the power of commodity graphics hardware.
Though currently limited to relatively small datasets, these ap-
proaches have been overwhelmingly successful. As the size of vol-
umetric datasets continues to grow at a rapid pace, the need for
scalable systems capable of interactively visualizing large datasets
has emerged. In an attempt to address this need, SGI, Inc. has
introduced the Silicon Graphics Onyx4 family of visualization sys-
tems. We present the results of our preliminary investigation into
the utility of an 8-pipe Onyx4 system for interactive volume render-
ing of large datasets. By rendering the image in parallel using an
application called Rhesus, we find that the Onyx4 provides reason-
able interactivity for datasets that consume as much as 512 MB of
texture memory.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics I.3.7 [Computing Methodologies]:
Computer Graphics—3D Graphics

Keywords: Interactive volume rendering, parallel volume render-
ing, large datasets, visualization systems, Onyx4

❹ ❺❻⑩❶❼❽❾❸⑩❿❼❻

Volume rendering is a visualization technique that maps scalar val-
ues of a volumetric dataset to optical properties, typically color and
opacity, that can be used to render an image. The mapped quan-
tity can be the original data value contained within the scalar field,
or it may be some other value that is derived from the field or
even measured using a neighborhood of sampled values within the
field. Common examples of derived quantities include the gradient
(first-order differential) and the Hessian (second-order differential),
though other quantities are certainly possible.

Unlike isosurfacing and other common visualization techniques,
volume rendering neither requires nor creates an intermediate geo-
metric representation of the dataset for rendering. The scalar val-

ues are resampled, derived, or measured and then mapped to optical
properties via a transfer function as the image is being rendered.

In addition, volume rendering enables the simultaneous visual-
ization of multiple scalar fields, that is, multiple sampled, derived,
or measured values. Multiple data fields effectively place the ranges
of data values representing different features at different locations
in a multi-dimensional data space, allowing better classification of
the data. These classification abilities lead to better visualizations,
which in turn lead to a better understanding of the data.

Many recent approaches to interactive volume rendering have
focused on leveraging the power of commodity graphics process-
ing units (GPUs). The increasing programmability of these chips
means that they are capable of performing more general compu-
tations than the basic 3D graphics operations for which they are
designed. This programmability, when combined with the fast pro-
cessor and memory speeds, makes commodity graphics hardware
useful for a variety of applications, and GPUs can now be used as
general coprocessors.

Implementing volume rendering using GPUs requires extensive
use of the texture mapping operations that these chips provide.
These operations quickly resample a discrete grid of texels to ob-
tain values at locations that do not lie on the original grid. The
hardware alpha blending operations are then used to composite in-
dividual samples to determine the values that will be mapped via
the transfer function.

More specifically, the volumetric dataset is stored in the graph-
ics hardware’s texture memory, either as a single 3D texture or as
a stack of 2D textures. Then locations at which the dataset will be
resampled are determined by rendering a proxy geometry with in-
terpolated coordinates, typically texture-mapped quadrilaterals. Fi-
nally, the resulting texture-mapped geometry is composited from
back to front using alpha blending. Typical results of these texture-
based techniques are shown in Figure 2.

An obvious constraint on the utility of texture-based volume ren-
dering techniques is the size of the GPU’s locally available mem-
ory. Commodity graphics hardware currently features memory
sizes ranging from 64 MB to 256 MB.

Today’s medical, industrial, and scientific datasets already con-



(a) (b)

(c) (d)

Figure 2: Texture-based volume rendering—Visualizations of sev-
eral small datasets: (a) a turbine blade, (b) the Visible Male head,
(c) a human tooth, and (d) the Chapel Hill head CT scan. Each
of these datasets is easily accommodated by the available texture
memory of a single Onyx4 pipe, and can be rendered at up to 8
frames per second.

sume many hundreds of megabytes of storage. As data acquisition
devices are becoming more accurate and as physical simulations are
becoming more complex, these already large volumetric datasets
are growing larger at a rapid pace. Moreover, multi-field visual-
izations require even more texture memory than simple single field
visualizations. Maintaining interactive frame rates when rendering
these large datasets can be quite difficult.

Current commodity graphics hardware cannot store these large
datasets in their local memories. While texture-swapping (a tech-
nique similar to virtual memory paging in operating systems) can
alleviate this problem, it imposes a significant performance penalty
when more than a few texture swaps are required per frame. The
interactivity provided by the texture-based techniques is therefore
greatly reduced. Hence, there is a need for scalable systems that
can interactively visualize large datasets.

In an attempt to address this need, SGI, Inc. has introduced
the Silicon Graphics Onyx4 family of visualization systems. The
Onyx4 combines the advantages of the SGI NUMAflex architecture,
namely high-bandwidth and scalability, with the power of commod-
ity graphics hardware.

In the pages that follow, we present the results of our prelimi-
nary investigation into the utility of the Onyx4 for parallel volume
rendering. We begin with a high-level description of Rhesus, the
texture-based volume rendering application used in this investiga-
tion. Then, we scrutinize Rhesus’ performance on the Onyx4 and
clearly identify the factors that limit the attainable frame rate. We
conclude by outlining possible optimizations, as well as more gen-
eral research directions, that could be considered for the Silicon
Graphics Onyx4 platform.

✷ P❛r❛��✁� ❱♦�✂✄✁ ❘✁☎✆✁r✝☎✞ ✇✝✟✠ ❘✠✁✡✂✡

One obvious approach to visualizing large datasets interactively in-
volves partitioning the data into several subvolumes and rendering
those chunks in parallel. This approach is taken by Rhesus, the
texture-based volume rendering application used in this investiga-
tion.

Rhesus is derived from a texture-based volume renderer called
Simian, which uses multi-dimensional transfer functions to visu-
alize multi-field datasets. In addition, Simian employs direct ma-
nipulation widgets for defining the transfer function; for probing,
clipping, and classifying the data; and for shading and coloring the
resulting visualization.

Originally, Rhesus was targeted for a cluster of commodity com-
puters equipped with nVidia GeForce FX 5900 graphics hardware;
this cluster is called Nebula. Using the Message Passing Interface
(MPI) standard, the parallel processes load and render a specific
subvolume of the dataset, and then combine the individual results
using the binary-swap compositing algorithm. This process is illus-
trated for two large datasets in Figure 8.

More specifically, the rendering pipeline employed by Rhesus
has five stages: (1) volume rendering, (2) draw order determination,
(3) framebuffer readback, (4) pixel swapping and compositing, and
(5) image display. (Only the display process executes stage 5.) This
pipeline is depicted in Figure 3. In stage 1, each process renders its
subvolume using the basic strategy described in Section 1. Render-
ing is followed by a round of MPI-based communication in stage 2,
which determines the proper draw order (that is, the order in which
regions of pixels will be swapped between nodes and composited
in stage 4). This order is based on the current frame’s viewpoint.
Stage 3 is simply the framebuffer readback: each process obtains
its image from the hardware framebuffer and stores that image in
main memory. Then, in stage 4, regions of pixels are swapped and
composited according to the order determined earlier. This stage in-
vokes (possibly) several rounds of MPI communication, at the end
of which the display process will have the fully composited image
stored in its main memory. Finally, that image is drawn to the hard-
ware framebuffer in stage 5, and the pipeline repeats.

Using the extensions to MPI programs (MPE) library, we are
able to measure the time required by each stage of the Rhesus
pipeline. An example of the results are shown in Figure 4.

For this evaluation, we have ported Rhesus to an 8-pipe Onyx4
system. In contrast to the Nebula cluster, the Onyx4 is a shared
memory multiprocessor. Moreover, the new system employs ATI
Fire GL X1 graphics hardware. (Further details of the Onyx4’s
hardware and software environment are listed in Table 1.) To pro-
mote portability between Nebula and the Onyx4, we chose not to
utilize the globally available shared memory; Rhesus is still im-
plemented using MPI (in particular, SGI’s native implementation).
This choice is justified in Section 3, where it is shown that MPI
communication is not a limiting factor in Rhesus’ performance on
the Onyx4. In order to utilize the capabilities of the ATI graphics
hardware, however, changes to the volume rendering code were re-
quired. Specifically, ATI fragment programs are now used to render
the volume, rather than nVidia register combiners.

Figure 3: Rhesus rendering pipeline—The rendering pipeline has
five stages: volume rendering, draw order determination, frame-
buffer readback, pixel swapping and compositing, and image dis-
play.



Figure 4: Pipeline stage timings—A close-up view of the distribu-
tion of time spent rendering a typical frame using 8 Rhesus pro-
cesses. Here, the green events correspond to stages 1 and 2 of the
rendering pipeline; the blue to stage 3; the red, yellow, and orange
to stage 4; and, finally, the purple to stage 5.

Component or
Subsystem Characteristics

CPU 16 600 MHz IP35 processors
32 KB L1 I-cache (per processor)
32 KB L1 D-cache (per processor)
4 MB unified L2 cache (per processor)
MIPS R16000 processor chip revision 2.1
MIPS R16010 FP chip revision 2.1

Main memory 8192 MB, shared
ccNUMA interconnect

3D Graphics 8 ATI Fire GL X1 graphics accelerators
128 MB memory (each pipe)
ATI FireGL drivers
OpenGL version 1.3 Irix 6.5
GLX version 1.3 Irix 6.5
GLU version 1.3 Irix 6.5

Table 1: The Onyx4 visualization system—The Onyx4 combines
the SGI NUMAflex architecture and commodity graphics hardware.
Here, we list the most pertinent hardware and software characteris-
tics of the Onyx4 system used in this evaluation.

Rhesus is currently a work-in-progress. While it does not yet
support all of the features of Simian, Rhesus is nevertheless a valu-
able research tool for interactively navigating and exploring large
datasets. In the remaining sections, we characterize its performance
on the 8-pipe Onyx4 system described above.

✸ ❘�✁✂✄☎✁

To understand the performance of the Onyx4 when rendering large
datasets, we began by exploring the scalability characteristics of the
system using synthetic datasets. The results for 512x512 images are
shown in Figure 5. As the total size of the dataset increases from
64 MB (one pipe) to 512 MB (eight pipes), the volume rendering
time consumed by each pipe remains nearly constant. However,
the time required to complete the pixel composition stage increases

significantly and begins to dominate the other stages of the binary-
swap algorithm.

We have also used Rhesus to visualize several large VGH
datasets, including those shown in Figures 1, 6, and 8. In particular,
we report the performance characteristics observed when visual-
izing the Visible Woman head dataset depicted in Figure 6. This
dataset consumes 512 MB of texture memory and must be parti-
tioned into eight 64 MB chunks. The subvolumes are rendered in
parallel using eight Rhesus processes.

Figure 7a depicts the pipeline timings obtained with MPE when
rendering 256x256 images of the Visible Woman head dataset.
Here, too, the rendering stage consumes the majority of the image
generation time and is nearly identical across all 8 pipes.

The timing results depicted in Figure 7a led to a more care-
ful examination of the time consumed by the rendering, readback,
and pixel compositing stages. Using a technique we term “peel-
ing the onion”, we measured the impact of each stage of the Rhe-
sus pipeline on the overall frame rate achieved for 256x256 and
512x512 images. Limiting the number of pipeline stages that are
completed exposes the marginal impact of each stage on the attain-
able frame rate.

The results of peeling the onion are depicted in Figure 7b. Again,
the compositing stage appears to be a good candidate for further
optimization.

Finally, we measured the speedup achieved by removing indi-
vidual calls from the Rhesus pipeline. In particular, we simply re-
moved the volume rendering call first, then the readback call, and
finally, the pixel compositing call, leaving the rest of the Rhesus
pipeline intact and allowing it to run to completion. The results of
this experiment are given in Table 2. Rendering the data clearly has
the most significant impact, but these results also suggest that opti-
mizing the compositing stage will result in improved frame rates.

✹ ❋✂☎✂✉� ❲♦✉r

Overlapping Rhesus’ rendering and binary-swap compositing
phases using separate processes or threads is the most obvious
application-level optimization. The benefits of this optimization in-
clude improved performance and better utilization of the Onyx4’s
16-way architecture.

Additional performance gains may be possible by taking advan-
tage of the system’s global shared memory. However, two factors
must be considered before expending the effort to modify Rhesus’

Figure 5: Rhesus scalability—Time consumed by the various stages
of the rendering pipeline when testing the scalability of the system.
As the total size of the dataset increases, the time required to com-
plete the pixel compositing stage (yellow) begins to dominate the
other binary-swap stages.



Figure 6: Rendering large datasets—A visualization of the Visible
Woman head dataset. This VGH dataset consumes 512 MB of tex-
ture memory and must be rendered in parallel using all 8 pipes of
the Onyx4.

design: First, the current performance bottleneck is volume ren-
dering, not MPI communication; and second, the portability of the
application between the Onyx4 and the Nebula cluster would be
greatly reduced. The current MPI-based implementation offers a
highly-portable application with reasonable performance, so any
further pursuit of this optimization would first require a shift in
the limiting stage of the application from volume rendering to MPI
communication.

More generally, theOnyx4 is an excellent platform for examining
the the utility of GPUs for general computation. Traditional desktop
and workstation platforms are not currently equipped with multiple
graphics accelerators, so a parallel application requires moving to
a cluster. Unfortunately, clusters can introduce new barriers to cre-
ating high-speed GPU-parallel applications, such as the increased
latency between communicating threads or processes. The architec-
ture of the Onyx4 may be able to overcome many of these barriers.
In addition, the global shared memory and high-speed interconnect
of the Onyx4 present a unique opportunity for solving large prob-
lems in parallel using hybrid CPU/GPU approaches.

Image Removed Frame Rate
Size Call (fps) Speedup

256x256 none 7.47 -
render 50.9 6.82

composite 9.0 1.21
readback 8.56 1.15

512x512 none 3.03 -
render 15.07 4.97

composite 3.9 1.29
readback 3.74 1.23

Table 2: Relative speedup—Results of removing various function
calls from the Rhesus pipeline when visualizing the Visible Woman
head dataset. Aside from the noted modifications, the remainder of
the pipeline remains intact and runs to completion.

(a)

(b)

Figure 7: Parallel pipeline timings—These images depict (a) the
time consumed by various stages of the Rhesus pipeline when ren-
dering a 256x256 image of the Visible Woman head dataset and (b)
the results of peeling the onion for 256x256 and 512x512 visualiza-
tions of the same dataset.

❆�✁✂✄✇☎✆✝✞✟✆✂✠✡

We would like to thank SGI, Inc. for making the Onyx4 system
available to us: Richard Grossen was instrumental in securing the
machine for our use, and Mike Matheson provided invaluable tech-
nical assistance along the way.

Several members of the SCI Institute also deserve thanks: Greg
Jones was helpful as a liaison to SGI, and Joe Kniss and Milan Ikits
offered much appreciated guidance during the effort to port Rhesus
to the Onyx4.

This work was funded by grants from the Department of
Energy (VIEWS 0F00584), the National Science Foundation
(ASC 8920219, MRI 9977218, ACR 9978099), and the Na-
tional Institutes of Health National Center for Research Resources
(1P41RR12553-2).



(a) Front subvolumes

(b) Back subvolumes

(c) Composited results

Figure 8: Parallel volume rendering with Rhesus—These images show the eight subvolumes of both the Visible Woman head (left column)
and heptane pool fire (right column) datasets, as well as the resulting visualizations. The subvolumes in (a) are closer to the current viewpoint,
while those in (b) are farther away. The final visualizations in (c) were created by applying the binary-swap compositing algorithm to the
eight images in (a) and (b).


