
Nemos: A Framework for Axiomatic and Executable
Specifications of Memory Consistency Models*

Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind
School of Computing, University of Utah

{yyang | ganesh | gary | slind}@ cs.utah.edu

A bstract

Conforming to the underlying memory consistency rules is a fundamental require­
ment for implementing shared memory systems and writing multiprocessor programs.
In order to promote understanding and enable automated verification, it is highly desir­
able that a memory model specification be both declarative and executable. We have
developed a specification framework called Nemos (Non-operational yet Executable
Memory Ordering Specifications), which employs a uniform notation based on predi­
cate logic to define shared memory semantics in an axiomatic as well as compositional
style. In this paper, we present this framework and discuss how constraint logic pro­
gramming and SAT solving can be used to make these axiomatic specifications exe­
cutable for memory model analysis, thus supporting precise specification and automatic
execution in the same framework. To illustrate our approach, this paper formalizes a
collection of well known memory models, including sequential consistency, coherence,
PRAM, causal consistency, and processor consistency.

1 I n t r o d u c t i o n

Two emerging trends - the tremendous advances in multiprocessor machines and the in­
tegrated support of threads from programming languages such as Java - have combined to
make concurrent programming a vitally important software engineering domain. A multipro­
cessor program relies on a memory consistency model to determine how memory operations
should appear to execute. In particular, it specifies what values may be returned by read
operations considering various ordering relaxations allowed.

The design of a memory system typically involves a tradeoff between programmability
and efficiency. As a natural extension of the uniprocessor model, sequential consistency
(SC) [1] requires all memory operations to exhibit a common total order that also respects
program order. Since SC is very restrictive, many weaker memory models (see [2] for a
survey) have been proposed to provide higher performance. For example, coherence [3]

*This work was supported in part by Research Grant No. CCR-0081406 (ITR Program) of NSF and SRC
Task 1031.001.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

P1 P2

flagl = true; flag2 = true;
turn = 2; turn = 1;
while(turn == 2 && flag2) while(turn == 1 && flagl)

; ;
< critical section > < critical section >
flagl = false; flag2 = false;

Figure 1: Peterson’s algorithm for mutual exclusion.

(also known as cache consistency) only enforces SC on a per-variable basis. Parallel RAM
(PRAM) [4] allows each observing processor to perceive its own view of memory operation
order. Causal consistency [5] follows a similar policy while enforcing the causal order resulting
from data flow. Processor consistency (PC) [6] (we use Goodman’s version in this paper)
combines coherence and PRAM in a mutually consistent manner. Some shared memory
systems, especially modern ones, are based on hybrid models, meaning programmers can
apply special synchronization operations in addition to data operations such as reads and
writes. Examples of this category include release consistency [7], entry consistency [8], and
location consistency [9].

A memory model impacts design decisions taken by system designers, compiler writers, as
well as application developers by dictating common rules. Therefore, a memory model speci­
fication needs to be clearly understood by all these groups. Programming idioms (commonly
used software patterns or algorithms) developed under one model may not work in another.
Consider, for example, Peterson’s algorithm [10] for mutual exclusion shown in Figure 1. The
correctness of this well known algorithm depends on the assumption that a processor cannot
observe the default value of a flag when checking the loop condition after the flag is set by
the other processor. This crucial requirement, however, is broken by many memory systems
due to optimization needs. Therefore, memory model rules can impact system correctness in
a fundamental way. Unfortunately, specifications of memory ordering rules are notoriously
hard to understand. For example, it is well documented in the literature that even experts
have often misunderstood classical memory models [6]. The problem is exacerbated by the
increasing variety and complexity of new designs proposed for modern computer systems.
We propose a methodology to minimize the chances of such misunderstanding by allowing
specifications to be written axiomatically, organized compositionally (comprised of simpler
ordering rules), and by supporting direct execution.

Memory model specifications typically fall into two categories: operational or axiomatic
(also known as non-operational). An operational specification often forces the reader to
understand memory ordering rules in terms of the behaviors of specific data structures.
Also an operational specification is a “monolith” that cannot be easily decomposed into its
constituent rules. In our experience, and as cited in [11], non-operational descriptions can
allow one to quickly grasp the detailed properties of a design. Therefore, we prefer to use
axiomatic memory model specifications written in predicate logic1.

1 Actually our specifications employ a mild extension falling in a limited fragment of higher order logic.

2

Initially, a = b = c = 0
P1 P2
a = 1 ; b = 1 ;
c = 0; c = 2 ;
r1 = b; ;a2r

Result: r1 = r2 = 0

Figure 2: An execution allowed by coherence and PRAM but prohibited by PC.

The central problem we address in this paper is that most traditional axiomatic specifi­
cations are non-executable. The problem gets worse if one wants to exhaustively analyze a
whole class of executions allowed by a memory system. For example, consider the validation
of a litmus test (a concrete execution) as in Figure 2. This litmus test is prohibited by
processor consistency even though it is allowed by both coherence and PRAM. This result
might come as a surprise to many. After all, isn’t processor consistency intended to be a
combination of coherence and PRAM? To reason about this execution, one has to rely on a
hand-proof to argue that the two operations c = 0 and c = 2 cannot be ordered in a consis­
tent way when explaining PRAM and coherence at the same time. While a test program like
this is very useful for clarifying subtle implications, hand-proving multiprocessor program
behaviors is impractical even with a few memory instructions running on a few processors.
Therefore, it is greatly desired that automated analysis be supported. Our use of predicate
logic is motivated by its ability to offer succinct and clear expressions. However, the tra­
ditional reasoning method employed vis-a-vis predicate logic - namely theorem proving - is
too expensive (in terms of human expertise and manual guidance required) for our purposes.
This is where our main innovation lies: we enable automatic analysis based on constraint
logic programming and/or boolean satisfiability (SAT).

To reiterate, our key contributions are as follows. (i) We introduce a generic specification
method that applies predicate logic to define memory models. (ii) We propose two techniques
to make these axiomatic specifications executable: one uses Prolog backtracking search,
augmented with finite-domain constraint solving, and the other targets the powerful SAT
solvers that have recently emerged. (iii) We formalize a collection of well known memory
models using our approach, and show how comparative analysis can be conducted in an
automated fashion. To the best of our knowledge, such a framework that practising engineers
can use2, has not been proposed before.

The rest of the paper is organized as follows. In Section 2, we provide an overview of
our framework. Section 3 describes our specification method. It is followed by a discussion
of how to apply the framework for program verification in Section 4. Section 5 compares
our approach with related work. Section 6 concludes the paper. Formal specifications of five
well known memory models are provided in the Appendix.

2 We have demonstrated our approach at industrial sites, with their engineers being able to use our
prototype tool to exercise their designs.

3

True

(Illegal execution)

Figure 3: The process of making an axiomatic memory model executable.

2 O v e r v i e w o f t h e F r a m e w o r k

2.1 The Specification M ethod
Nemos (Non-operational yet Executable Memory Ordering Specifications) is designed as
a specification framework for creating uniform executable memory model definitions in an
axiomatic style. To specify a memory model, the framework defines a complete set of ordering
constraints imposed on an ordering relation order. This approach mirrors the style adopted
in modern declarative specifications written by the industry, such as [11]. Our notation differs
from traditional formalisms in two ways. First, we employ a slight extension of predicate
logic to higher order logic, i.e. order can be used as a parameter in a constraint definition, so
that new refinements to the ordering requirement can be conveniently added. This allows us
to construct a complex model using simpler components. Second, our specifications are fully
explicit about all ordering properties, including previously “hidden” requirements such as
totality, transitivity, and circuit-freedom, so that our constraints can completely characterize
a memory model. Without explicating such hidden requirements, a specification is not
complete for execution.

2.2 Making Axiom atic Specifications Executable
Now that the shared memory properties are formalized as machine-recognizable constraints,
they can be instantiated over a finite program execution. This process converts the memory
model requirements from higher order logic to propositional logic. Consequently, the legality
of the execution can be automatically checked by solving a satisfiability problem.

T h e A lgorithm : Given a finite execution ops with n operations, there are n 2 ordering
pairs among the operations, constituting an adjacency matrix M , where the element M j
indicates whether operations i and j should be ordered. We go through each ordering rule
in the memory model specification and impose the corresponding propositional constraints
with respect to the elements of M . Then we check the satisfiability of the conjunction of all
ordering requirements. If such an M exists, the trace ops is legal, and a valid interleaving
can be derived from M . Otherwise, ops is not allowed by the memory model.

A pictorial representation of our methodology is shown in Figure 3. Tw o techniques have

4

been explored to implement the algorithm: one applies a constraint solver from FD-Prolog3
and the other exploits a SAT solver.

A pply ing C o n s tra in t Logic P rog ram m ing : Logic programming differs from conven­
tional programming in that it describes the logical structure of the problems rather than
prescribing the detailed steps of solving them. This naturally reflects the philosophy of the
axiomatic specification style. As a result, our formal specifications can be easily encoded
using Prolog. Memory ordering constraints can be solved through a conjunction of two mech­
anisms that FD-Prolog readily provides. One applies backtracking search for all constraints
expressed by logical variables, and the other uses non-backtracking constraint solving based
on arc consistency [12] for FD variables, which is potentially more efficient and certainly
more complete (especially under the presence of negation) than with logical variables. This
works by adding constraints in a monotonically increasing manner to a constraint store, with
the built-in constraint propagation rules of FD-Prolog helping refine the variable ranges (or
concluding that the constraints are not satisfiable) when constraints are asserted to the con­
straint store.

A pply ing B oolean S atisfiab ility Techniques: The goal of a boolean satisfiability prob­
lem is to determine a satisfying variable assignment for a boolean formula or to conclude
that no such assignment exists. A slight variant of the Prolog code can let us benefit from
SAT solving techniques. Instead of solving constraints using a FD solver, we can let Prolog
emit SAT instances through symbolic execution. The resultant formula is then sent to a
SAT solver to find out if the litmus test is legal under the memory model.

3 F o r m a l i z i n g M e m o r y M o d e l s

This section explains how to specify memory models using Nemos. Examples of some m ath­
ematical definitions are elaborated to demonstrate how rigorous specifications can be lucid
as well. Five commonly cited memory models are formally defined in the Appendix, with ad­
ditional information available at h ttp ://w w w .cs .u tah .ed u /fo rm al_ v erifica tio n /N em o s.
We first describe some terminology that is used throughout this paper.

M em ory O p era tio n A memory operation i is represented by a tuple (p ,c ,o ,v , d, s, g),
where

proc i = p : issuing processor (p e P\J{pinit})
pc i = c : program counter
op i = o : instruction type (o e {Read, W rite})
var i = v : shared variable (v e V)
d a ta i = d : data value
source i = s : the source for a read, represented by the ID
id i = g : global ID of the operation

3FD-Prolog refers to Prolog with a finite domain (FD) constraint solver. For example, SICStus Prolog
and GNU Prolog have this feature.

5

http://www.cs.utah.edu/formal_verification/Nemos

In itia l W rite For each variable v, there is an initial write issued by a special processor pinit
with the default value of v.

E xecu tion An execution, also known as an execution trace, contains all memory operations
generated by a program, including the initial writes for every variable.

3.1 Defining M emory Consistency Properties
Since Nemos composes a memory model as a set of ordering rules, a modular definition
is naturally supported, where common axioms can be easily shared and reused. Hence, it
is possible to develop a “library” of memory consistency properties. This is illustrated by
Appendix A.1, where a collection of common memory requirements are formally defined.

G enera l O rd erin g R ules (A p p en d ix A .1.1) As mentioned earlier, general ordering
rules are often implicitly required by previous models. In contrast, we capture these key
requirements mathematically. As a concrete example, consider the formal definition of
requireW eakTotalOrder, which takes order as a parameter and refines its constraint by
asserting that every two different operations must be ordered in some way.

requireW eakTotalO rder ops order = V i, j € ops.
id i = id j ^ (order i j V order j i)

Translating a formal specification to Prolog is fairly straightforward. However, most
Prolog systems do not directly support quantifiers. While existential quantification can be
realized via Prolog’s backtracking mechanism, we need to implement universal quantification
by enumerating the related finite domain. For instance, requireW eakTotalOrder is encoded
as follows, where forEachElement is recursively defined to call elementProgam for every
element in the adjacency matrix Order4.

requireW eakTotalO rder(O ps, O rd er):-
leng th (O ps,N),
f orEachElem ent(Order, N, doW eakTotalOrder).

elementProgram(doW eakTotalOrder, O rd e r ,N ,I ,J) :-
m atrix_elem (O rder,N ,I, J , O ij) ,
m a trix _ e lem (O rd e r,N ,J ,I ,O ji) ,
(I #\= J #=> Oij # \ / O ji) .

R ead V alue R u le (A p p en d ix A .1.2) Memory consistency is essentially defined by observ­
able read values. This is generically captured by predicate requireReadValue. Intuitively,
it requires that the value observed by a read must be provided by the “latest” write on the
same variable. The constraints imposed on order precisely defines how the latest write can
be determined.

4In Prolog, variable names s ta rt w ith a capital letter.

6

S eria liza tion (A p p en d ix A .1.3) We define the notion of serialization, a commonly used
requirement in memory model definitions, in predicate re q u ire S e r ia l iz a t io n . It requires
a circuit-free weak total order among a set of memory operations such that the read value
rule is also respected.

O rd erin g R ela tio n s (A p p en d ix A .1.4) Ordering relations among memory operations
can be induced under certain conditions. Predicate requireProgram O rder defines the con­
dition of program order. Predicate requ ireW rite ln toO rder establishes an order between a
write and a read according to data flow, which is needed to define causal consistency.

A uxiliary P red ic a te s (A p p en d ix A .1.5) Sometimes the serialization requirement only
needs to be enforced on a subset of an execution. Several predicates are provided for filtering
operations based on various conditions. In addition, ordering constraints can be separately
applied to different executions. Predicate m apConstraints is defined to ensure that these
separate sets of constraints are consistent with each other. This technique is further demon­
strated in the definition of processor consistency. In m apConstraints, orderl and order2
are the respective adjacency matrices of opsl and ops2 , with ops2 being a subset of o p s l .

3.2 Defining M emory M odels
Appendix A.2 provides formal definitions of five classical memory models based on the prim­
itive ordering properties defined in Appendix A.1. In a separate report [13], we have applied
the same method to formalize the Intel Itanium Memory Model [11], demonstrating the
scalability of our approach for complex industrial designs.

S equen tia l C o nsistency (A p p en d ix A .2.1) Sequential consistency requires a common
total order among all operations, in which program order is also respected.

C oherence (A p p en d ix A .2.2) For each variable, coherence requires a serialization among
all memory operations involving that variable.

P R A M (A p p en d ix A .2.3) PRAM requires that for each observing processor p , there
must exist an individual serialization among all memory operations of p and all writes from
other processors.

C au sa l C o nsistency (A p p en d ix A .2.4) In causal consistency, two operations are ordered
if (i) they follow program order; (ii) one operation observes the value provided the other op­
eration; or (iii) they are transitively ordered via a third operation. After these orders are
established, serialization is formed on a per-processor basis similar to PRAM.

P ro cesso r C onsistency (A p p en d ix A .2.5) Our specification of Goodman’s processor
consistency is based on the interpretation from [6]. As in PRAM, each processor must
observe an individual serialization (as captured by order2). Similar to coherence, all writes
to the same variable must exhibit the same order across all these serializations (as captured
by the total order imposed on orderl). In addition, these requirements must be satisfied at

7

P in it P1 P2

(1) w r i te (a ,0) ; (4) w r ite (a , 1); (7) w r i te (b ,1);
(2) w r i te (b ,0) ; (5) w r i t e (c , 0); (8) w r i t e (c , 2) ;
(3) w r i t e (c , 0) ; (6) r ead (b , 0) ; (9) r ea d (a , 0) ;

Figure 4: The operations constituting the execution of the litmus test in Fig. 2.

the same time in a mutually consistent manner. This critical requirement, which may be
easily overlooked, is clearly spelled out by m apConstraints.

4 V a l i d a t i n g C o n c u r r e n t P r o g r a m s

A tool named NemosFinder has been developed in SICStus Prolog [14] to enable memory
model analysis. The current prototype supports the memory models defined in the Appendix
and the Itanium Memory Model. NemosFinder is written in a modular fashion and is highly
configurable. Memory models are defined as sets of predicates, and litmus tests are contained
in a separate test file. When a memory model is chosen and a test number is selected, the
FD constraint solver attempts all possible orders till it can find an instantiation that satisfies
all constraints.

Recall the test program discussed earlier in Figure 2. Its execution trace is displayed in
Figure 4. When running under coherence, NemosFinder quickly concludes that the execution
is legal, with an output displaying possible adjacency matrices and interleavings shown in
Figure 5. A value of 1 for element M ij in the matrix indicates that the two operations
i and j are ordered. The result of interest is also legal for PRAM, which is illustrated in
Figure 6. If processor consistency is selected, NemosFinder answers that the execution is
illegal, indicating that there does not exist an order that can satisfy coherence and PRAM
at the same time. The user can play with a memory model and ask “what if” queries by
selectively enabling/disabling certain ordering rules. For example, if the user comments out
the m apConstraints requirement in processor consistency and runs the test again, the result
would become legal. This incremental and interactive test environment can help one to study
a model piece by piece and identify the “root cause” of a certain program behavior.

1 4 9 2 6 7 3 5 8
1 0 1 1 2 0 1 1 3 0 1 1
4 0 0 0 6 0 0 1 5 0 0 0
9 0 1 0 7 0 0 0 8 0 1 0

(a) Interleaving for a: 1 9 4 (b) Interleaving for b: 2 6 7 (c) Interleaving for c: 3 8 5

Figure 5: Adjacency matrices for the execution shown in Fig. 4 under coherence.

8

1 2 3 4 5 6 7 8 1 2 3 4 5 7 8 9
1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1
2 1 0 0 1 1 1 1 1 2 1 0 0 1 1 1 1 1
3 1 1 0 1 1 1 1 1 3 1 1 0 1 1 1 1 1
4 0 0 0 0 1 1 1 1 4 0 0 0 0 1 0 0 0
5 0 0 0 0 0 1 1 1 5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 1 7 0 0 0 1 1 0 1 1
7 0 0 0 0 0 0 0 1 8 0 0 0 1 1 0 0 1
8 0 0 0 0 0 0 0 0 9 0 0 0 1 1 0 0 0

(a) Interleaving for Process 1: (b) Interleaving for Process 2:
3 2 14 5 6 7 8 3 2 1 7 8 9 4 5

Figure 6: Adjacency matrices for the execution shown in Fig. 4 under PRAM.

4.1 The SAT Approach
As an alternative method, we can convert all memory model constraints to a boolean formula
and apply a SAT solver to determine the result. Currently sequential consistency and the
Itanium Memory Model have been implemented to support this approach. Our prototype
uses the Prolog program as a driver to emit propositional formulae through symbolic execu­
tion. After being converted to the DIMACS format, the final formula is sent to a SAT solver,
such as ZChaff [15] or berkmin [16]. Although the clause generation phase can be detached
from the logic programming approach, the ability to have it coexist with FD-Prolog might
be advantageous since it allows the two methods to share the same specification base. With
the tremendous improvement in SAT solving techniques, this approach offers a promising
direction for enhancing scalability.

4.2 Performance Statistics
Although satisfiability problems are NP-complete, the performance in practice has been very
good with the support of efficient solvers. The following table summarizes the results for
the test program in Figure 2. Performance is measured on a Pentium 366 MHz PC with 128
MB of RAM running Windows 2000. SICStus Prolog is run under compiled mode.

Memory Model SC Coherence PRAM Causal Consistency PC
Result illegal legal legal legal illegal

Time (ms) 180 30 240 390 280

5 R e l a t e d W o r k

Formalizing memory consistency models has been a topic of extensive research in the past
decade. Collier [17] developed a formal theory of memory ordering rules. Using methods
similar to Collier’s, Gharachorloo [3] described a generic framework for specifying the im­
plementation conditions of different memory models. Adve [18] proposed a methodology to

9

categorize memory models as various data-race-free classes. Mosberger [19] surveyed and
classified several common models. Kohli et al. [20] proposed a formalism for capturing
memory consistency rules and identified parameters that could be varied to produce new
models. Raynal et al. [21] provided formal definitions for the underlying consistency models
for Distributed Shared Memory (DSM) systems. Bernabu-Aubn et al. [22] and Higham
et al. [23] proposed different specification frameworks to facilitate memory model compari­
son. Magalhes et al. [24] formalized a set of memory models, including several hybrid ones.
Although these previous efforts have tremendously enhanced the clarity of many memory
models, they all suffer from the problem mentioned earlier: it is hard to experiment with
these specifications since they are passive objects and do not support automated verification.

Steinke et al. developed a framework that captures the relationship among several exist­
ing models based on the idea of orthogonal consistency properties. Although theoretically
elegant, their work does not provide direct support for program analysis through execution.
In our experience, without the ability to execute specifications, serious bugs can lurk in them,
which are hard for human minds to discover. The ability to carry out exhaustive execution
based analysis, albeit on small finite executions, greatly helps debug a specification.

Melo et al. [25] described a visual tool for displaying legal execution histories for SC
and PRAM. Permitted executions are selected from a tree resulted from an enumeration
of all possible interleavings. Memory model properties are checked through a depth first
search. Their work did not address memory model specification techniques, hence only
simple memory model constraints can be checked. They also rely on a straightforward search
strategy. In contrast, our method allows us to take advantage of the latest development in
backtracking and state pruning techniques.

Lamport and colleagues have specified the Alpha and Itanium memory models in TLA+
[26, 27]. These specifications build visibility orders inductively and support the execution
of litmus tests. While their approach also precisely specifies the ordering requirement, the
manner in which such inductive definitions are constructed will vary from memory model
to memory model, making comparisons among them harder. Our method instead relies on
primitive relations and directly describes the components to make up a full memory model.
This makes our specification easier to understand, and more importantly, to compare against
other memory models. This also means we can enable or disable some ordering rules quite
reliably without affecting the other primitive ordering rules - a danger in a style which
merges all the ordering concerns in a monolithic manner.

Applying formal methods for memory model analysis has been pursued for operational
specifications. Park and Dill [28] proposed a method for model checking the specifications of
the Sparc memory architectures. This approach has been extended to language level mem­
ory models, such as the Java Memory Model, for verifying common programming idioms
[29, 30, 31]. In our previous work [32], we have developed the UMM (Uniform Memory
Model) framework, a generic specification system for operational memory models that pro­
vides built-in model checking capability. This paper, on the other hand, is intended to
develop verification techniques for non-operational memory models. Our formalization of
the Itanium Memory Model [13] demonstrated the potential payoff of our approach for in­
dustrial chip design and verification.

10

6 C o n c l u s i o n s

We have presented a formal framework for specifying and analyzing non-operational memory
consistency models, which offers several unique benefits to designers and programmers.

• Nemos is designed with a special emphasis to support verification, allowing one to plug
in existing constraint or SAT solvers for exercising parallel programs with respect to
the underlying memory model. With our framework, one can avoid the error-prone
paper-and-pencil approach when reasoning about program behaviors. An executable
specification can even be treated as a “black box” whereby the users are not necessarily
required to understand all the details of the model to benefit from the specification.

• The compositional specification style makes it possible to develop reusable definitions
for memory consistency properties. One can even imagine having a memory model
API (Application Programming Interface), which can be called by a user for selectively
assembling different executable models. Since memory ordering rules are isolated as
“facets” , one can analyze a model piece by piece. The modular approach also makes
the Nemos framework scalable, a requirement for defining complex industrial models.

• Nemos provides a flexible and uniform notation that can be used to cover a wide
collection of memory models, which makes comparative analysis easier. Even though
this paper is by no means an effort to comprehensively cover existing proposals, other
models (e.g. the hybrid models defined in [24]) can be adapted easily.

There are many exciting directions for future work. As a proof-of-concept, we have en­
coded the memory models in the HOL theorem prover [33]. Such rigorous specifications will
allow us to prove generic shared memory properties using theorem proving. To minimize the
gap between the formal specifications and the tools that execute them, we plan to apply a
Quantified Boolean Formulae (QBF) solver that directly accepts formulae with quantifiers.
Also, the structural information of the ordering constraints can potentially be exploited for
developing more efficient SAT solving algorithms. Last but not least, a machine-recognizable
memory model enables precise semantic analysis for multiprocessor programs. For example,
it is possible to formulate important problems such as race conditions as constraint satisfac­
tion problems, which can be exhaustively and automatically investigated.

R e f e r e n c e s

[1] Leslie Lamport. How to make a multiprocessor computer that correctly executes mul­
tiprocess programs. IEEE Transactions on Computers, C-28(9):690-691, 1979.

[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. IEEE
Computer, 29(12):66-76, 1996.

[3] Kourosh Gharachorloo. Memory consistency models for shared-memory multiprocessors.
Technical report, CSL-TR-95-685.

11

[4] R. J. Lipton and J. S. Sandberg. PRAM: A scalable shared memory. Technical Report
CS-TR-180-88, 1988.

[5] Mustaque Ahamad, Gil Neigher, James Burns, Prince Kohli, and Philip Hutto. Causal
memory: Definitions, implementation and programming. Technical report, GIT-CC-
93/55, Georgia Institute of Technology, July 1994.

[6] Mustaque Ahamad, Rida Bazzi, Ranjit John, Prince Kohli, and Gil Neiger. The power
of processor consistency. In 5th Annual AC M Symposium on Parallel Algorithms and
Architectures (SPAA 93), 1993.

[7] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip B. Gibbons, Anoop
Gupta, and John L. Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In 25 Years ISCA: Retrospectives and Reprints, pages
376-387, 1998.

[8] Brian N. Bershad and Matthew J. Zekauskas. Midway: Shared memory parallel pro­
gramming with entry consistency for distributed memory multiprocessors. Technical
Report CMU-CS-91-170, Pittsburgh, PA (USA), 1991.

[9] Guang Gao and Vivek Sarkar. Location consistency - a new memory model and cache
consistency protocol. Technical report, 16, CAPSL, University of Delaware, 1998.

10] G. L. Peterson. Myths about the mutual exclusion problem. In Information Processing
Letters, volume 12, June 1981.

11] A formal specification of Intel Itanium processor family memory ordering. Application
Note, Document Number: 251429-001, October, 2002.

12] J. Jaffar and J-L. Lassez. Constraint logic programming. In Principles O f Programming
Languages, Munich, Germany, January 1987.

13] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind. Analyzing the
Intel Itanium memory ordering rules using logic programming and SAT. In CHARM E
2003, October 2003.

14] Sicstus prolog. http://www.sics.se/sicstus.

15] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient sat solver. In 39th Design Automation Conference, Las Vegas, June 2001.

16] E. Goldberg and Y. Novikov. Berkmin: a fast and robust sat-solver. In Design, A u­
tomation and Test in Europe Conference and Exhibition, Paris, France, 2002.

17] William W. Collier. Reasoning about Parallel Architectures. Prentice-Hall, 1992.

18] S. V. Adve and M. D. Hill. A unified formalization of four shared-memory models.
IEEE Trans. on Parallel and Distributed Systems, 4(6):613-624, 1993.

12

http://www.sics.se/sicstus

[19] David Mosberger. Memory consistency models. Operating Systems Review, 27(1):18-26,
1993.

[20] Prince Kohli, Git Neiger, and Mustaque Ahamad. A characterization of scalable shared
memories. In Proceedings of the 1993 International Conference on Parallel Processing,
volume I - Architecture, pages I-332-I-335, Boca Raton, FL, 1993. CRC Press.

[21] M. Raynal and A. Schiper. A suite of formal definitions for consistency criteria in
distributed shared memories. In Proceedings In t Conf on Parallel and Distributed Com­
puting (PD CS’96), pages 125-130, Dijon, France, 1996.

[22] Jos M. Bernabu-Aubn and Vicente Cholvi-Juan. Formalizing memory coherency models.
Journal of Computing and Information, May 1994.

[23] Lisa Higham, Jalal Kawash, and Nathaly Verwaal. Defining and comparing memory
consistency models. In Proceedings of the International Conference on Parallel and
Distributed Computing Systems (PDCS), pages 349-356, 1997.

[24] Alba Cristina Magalhes and Alves de Melo. Defining uniform and hybrid memory
consistency models on a unified framework.

[25] Alba Cristina Melo and Simone Cintra Chagas. Visual-MCM: Visualising execution
histories on multiple memory consistency models. Lecture Notes in Computer Science,
1557:500-509, 1999.

[26] Tla+. http://research.m icrosoft.com /users/lam port/tla/tla.htm l.

[27] Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran, Mark Tuttle, and Yuan
Yu. Checking cache-coherence protocols with tla+ . In Formal Methods in System
Design, number 2, pages 125-131, March 2003.

[28] Seungjoon Park and David L. Dill. An executable specification and verifier for Relaxed
Memory Order. IE EE Transactions on Computers, 48(2):227-235, 1999.

[29] Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom. Analyzing the CRF Java
Memory Model. In the 8th Asia-Pacific Software Engineering Conference, 2001.

[30] Abhik Roychoudhury and Tulika Mitra. Specifying multithreaded Java semantics for
program verification. In International Conference on Software Engineering, 2002.

[31] Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom. Specifying Java thread seman­
tics using a uniform memory model. In Joint AC M Java Grande - ISCO PE Conference,
2002.

[32] Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom. A generic operational memory
model specification framework for multithreaded program verification. Technical report,
UUCS-03-015, University of Utah, 2003.

[33] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem proving environ­
ment for higher order logic. Cambridge University Press, 1993.

13

http://research.microsoft.com/users/lamport/tla/tla.html

A p p e n d i x : F o r m a l M e m o r y M o d e l S p e c i f i c a t i o n s

A.1 Common M emory Consistency Properties
A .1.1 G eneral O rd erin g R ules

requireW eakTotalO rder ops order = V i, j € ops.
id i = id j ^ (order i j V order j i)

requireTransitiveO rder ops order = V i , j , k € ops.
(order i j A order j k) ^ order i k

requireA sym m etricO rder ops order = V i, j € ops.
order i j ^ —(order j i)

A .1.2 R ead V alue R ule

requireReadValue ops order = Vk € ops. op k = Read ^
(Eli € ops. op i = W rite A var i = var k A
data k = da ta i A source k = id i A —(order k i) A
(Vj € ops. —(op j = W rite A var j = var k A order i j A order j k)))

A .1.3 S eria liza tion

requireSerialization ops order =
requireW eakTotalO rder ops order A
requireTransitiveO rder ops order A
requireA sym m etricO rder ops order A
requireReadValue ops order

A .1.4 O rd erin g R elations

requireProgram O rder ops order = V i, j € ops.
((proc i = proc j A pc i < pc j) V (proc i = p ^ A proc j = pinit)) ^ order i j

requireW riteIntoO rder ops order = V i, j € ops.
(op i = Write A op j = Read A da ta j = data i A source j = id i) ^ order i j

A .1.5 A uxiliary P red ic a te s

restrictV ar ops v = {i € ops | var i = v}

restrictV arW r ops v = {i € ops | var i = v A op i = Write}

restric tP roc ops p = {i € ops | proc i = p V (proc i = p A op i = Read)}

m apC onstraints ops1 order1 ops2 order2 = V i, j € ops1.
(i € ops2 A j € ops2) ^ (order1 i j = order2 i j)

14

A.2 Five Well Known M emory M odels
A .2.1 S equen tia l C onsistency

legal ops = 3 order.
requireProgram O rder ops order A
requireSerialization ops order

A .2.2 C oherence

legal ops = V v € V. (3 order.
requireProgram O rder (restrictV ar ops v) order A
requireSerialization (restrictV ar ops v) order)

A .2.3 P R A M

legal ops = V p € P. (3 order.
requireProgram O rder (restrictP roc ops p) order A
requireSerialization (restrictP roc ops p) order)

A .2.4 C ausal C onsistency

legal ops = V p € P. (3 order.
requireProgram O rder ops order A
requireW riteIntoO rder ops order A
requireTransitiveO rder ops order A
requireReadValue (restrictP roc ops p) order A
requireW eakTotalO rder (restrictP roc ops p) order A
requireA sym m etricO rder (restrictP roc ops p) order)

A .2.5 P ro cesso r C onsistency

legal ops = 3 order1.
(V v € V. requireW eakTotalO rder (restrictV arW r ops v) order1) A
(V p € P. 3 order2.

requireProgram O rder (restrictP roc ops p) order2 A
requireSerialization (restrictP roc ops p) order2 A
m apC onstraints ops order1 (restrictP roc ops p) order2)

15

