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A b stract

In tradi t ional  mono li th ic  operating sys t ems  the con
straints  o f  working wi thin the kernel  have l imited the 
sophist icat ion o f  the schemes  used to manage exe
cutable program images.  B y  implemen t ing  an exe
cutable image loader as a persis tent  user-space pro
gram, we can extend sy s t e m  program loading capabili
ties. In this paper we present  OMOS,  an Objec t /Meta-  
Objcet Server  which provides program, loading faci l i 
t ies as a special case o f  generic object instant iat ion.  
We discuss the architecture o f  OMO S,  the extensible 
nature o f  that architecture,  and its application to the 
problem, o f  dyna mic  program moni tor ing and opt imiza
tion. We present  several  opt imizat ion strategies and  
the results o f  applying these strategies.1

1 I n t r o d u c t i o n

Traditional program loading facilities, such as those 
found in U nix[ 11], have sim ple sem antics, often be
cause they are im plem ented within the framework of 
a m onolith ic kernel where resources tend to be con
strained. S im ilarly they tend to use sim ple external 
structures —  executable files, libraries, etc. —  to re
duce kernel com plexity. One consequence of this sim 
plicity of im plem entation  is that as program s grow  
in size and com plexity, the sim ple linking and load

1 This research was sponsored by Hewlett-Packard’s Re
search Grants Program and by the Defense Advanced Research 
Projects Agency (DOD), monitored by the Department of the 
Navy, Office of the Chief of Naval Research, under Grant num
ber N00014—91—J-4U46. The opinions and conclusions con
tained in this document are those of the authors and should 
not be interpreted as representing official views or policies, ei
ther expressed or implied, of the Defense Advanced Research 
Projects Agency, the U.S. Government, or Hewlett-Packard.

ing algorithm s used m ay produce poor locality  o f ref
erence characteristics within the resulting programs. 
Program  loading and execution facilities tend to be 
separate from com pilation  facilities, m aking it incon
venient to perform op tim izations based on inform ation  
derived at run-tim e.

In this paper we investigate the use of OM OS, 
an O b ject/M eta-O bject Server, to im prove locality  of 
instruction reference by dynam ically m onitoring and 
transform ing executable im ages. We begin by dis
cussing typical linker technology and the particular 
problem s of m aintain ing locality  of reference w ithin  
large programs. We next provide an overview of 
OM OS, its general organization, and its object load
ing facilities. Subsequently, we describe the use of 
O M O S’ extensible nature to transparently m onitor 
and transform  executables to im prove locality o f ref
erence. Finally, we discuss the results o f our efforts, 
related work, and p otentia l future work.

2 O M O S  a n d  L i n k e r  T e c h n o l o g y

Separate com pilation of program sources typically  
results in the generation of m ultip le object f iles  which 
contain the generated program code and data. A 
linker is the program responsible for com bining the 
object files and resolving inter-object file references. 
The linker m anages large-grain code placem ent within  
an executable im age. The decisions the linker makes 
with respect to code placem ent, in conjunction with  
the granularity of its data, determ ine whether a proce
dure is likely to be placed on the sam e page as the pro
cedures it references. As program sizes increase, linker 
placem ent policies have an increasing effect on work
ing set size and virtual m em ory u tilization . In this 
paper, we are particularly concerned with the Unix
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linker. T h is linker is w idely used, and while som e of 
its shortcom ings are particular to U nix, m ost o f its 
problem s are present in all linkers.

The first problem  com m only encountered with  
linker policies concerns the granularity w ith which  
nam es are clustered. In an ideal system , if  one were 
to reference a sym bol o, the linker would locate and 
extract the code associated w ith the sym bol, then iter
atively extract only other sym bols referenced by that 
code. T h is ideal is difficult to achieve because m ost 
linkers work at the object file level, and extracting  
sym bol a m eans including all other sym bols and asso
ciated references found w ithin that object file, includ
ing but not restricted to those required by a.

W ell-organized source files, com piled and carefully 
grouped into libraries o f object files, com e close to 
achieving the ideal o f allowing a partial ordering of 
sym bol references. More typically, the organization of 
object files reflects w hat is convenient for the program 
mer; the entities found in a relocatable executable are 
usually related, but often the relation is at the con
ceptual level, rather than at the sym bol level. Clearly, 
if more than one procedure is exported from an object 
file, there exists the possib ility  o f including code not 
exp licitly  referenced in the resulting executable (along  
with all the code it references). As software changes 
over tim e, the chances o f grouping non-interdependent 
procedures w ithin  a single object file increase.

Another problem  is that current linkers rely on the 
program m er to tell them  w hat to do, and program 
mers typically  specify noth ing useful in term s o f order
ing. Linkers obey a scries o f program mer com m ands 
indicating in w hat order to bind object files. The ob
ject files bound together consist o f either explicitly  
specified files, or selections m ade im plicitly  from li
braries o f object files. In general, the order in which 
plain (non-library) object files are processed by the 
linker has no effect on the correctness o f sym bol reso
lution or program  construction. Therefore, program 
mers usually pay little  attention  to such ordering.

T he typical im plem entation  o f object file libraries 
further worsens locality. To save tim e, linkers com 
m only process libraries in one pass. T his m eans that 
the programm er m ust either arrange to reference all 
sym bols that are to be extracted from the library prior 
to its processing, or explicitly  process the library more 
than once. A side effect o f th is sty le o f library process
ing is that library elem ents are extracted breadth-first.  
All procedures extracted from a library are processed 
and m ade physically adjacent in the resulting exe
cutable before the linker processes subsequent libraries 
or object files. As a result, there is very little  chance

that a procedure in one library will be physically ad
jacent to any procedures it m ay reference outside the 
library. We will see em pirical evidence o f this fact, as 
well as the fact that adhering to depth first call-chain  
order produces much sm aller working set sizes in large 
programs.

Finally, a U nix-specific library problem  has to 
do w ith  the processing o f co m m o n  data definitions. 
G lobal variables in the C program m ing language are 
exam ples o f com m on data  item s. C global variables 
m ay be defined (e.g ., i n t  i o o ; )  as often as desired, 
as long as they are assigned an in itia l value only once. 
S tatic storage is allocated for the variable and all com 
mon definitions are m apped to the sam e location when 
the program is linked. A pure reference to a global 
variable (e.g ., e x te r n  in t  f o o ; )  does not produce a 
definition.

Difficulty occurs when a com m on variable definition  
is repeated in m ore than one library elem ent. When 
the variable is referenced, the linker chooses one of 
the definitions —  typically  the first encountered —  
and binds the object file in which it is found into the 
program. If a program m er lias defined com m on stor
age for a sym bol in a library header file instead of  
declaring pure references, the cffect can easily be that 
m any otherwise unrelated elem ents define the com m on  
variable. In these cases, a random and com pletely un
related object file, and all other object files it may 
reference, m ay be linked into the program .

Clearly, these problem s are not significant when us
ing relatively sm all program s and sm all num bers of 
carefully designed libraries. T he issue o f locality  of 
reference has been given attention  in the past, when 
system  m em ory sizes were sm all and penalties for non
local references were h igh [8, 6, 4]. Even though typ
ical m achine m em ory sizes have been increasing, ap
plications tend to grow to fill available m em ory. For 
contem porary applications such as X window system  
clients, whose code sizes are an order of m agnitude  
greater than those of sim ple applications such as I s ,  
the problem  of non-local references to procedures is 
again significant. In addition, poor locality  o f refer
ence puts a burden on other parts o f the m em ory hi
erarchy, such as the TLB and cache. A pplications will 
continue to grow in size and levels o f the m em ory hier
archy will becom e further separated in performance. 
These ensure the continuing need to strive for good  
locality within programs.

The solution to the problem  o f poor locality is to 
use a procedure ordering that m ore closely serves the 
needs of the program , rather than the convenience of 
the program  developm ent environm ent. For best re
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suits, the ordering should take advantage of tem poral 
inform ation, as well as sim ple dependency inform a
tion. And, the ordering should be done autom atically, 
so that it becom es a standard, transparent compiler 
optim ization, rather than  an inconvenient-to-use sep
arate analysis and transform ation procedure.

These goals are achieved by the OM OS object 
server, which provides a rich and flexible framework 
for m anipulating objects and program s. OMOS con
structs object instances in user address spaces by fol
lowing construction instructions encoded in an exe
cutable graph o f operations. T h is graph is known 
as an m-graph.  T he instructions include com pilation, 
linking, and sym bol m anipulation directives. By m od
ifying the m -graph, OMOS can easily perform pro
gram  transform ations.

To achieve a better code order w ithin  user executa
bles, we have im plem ented moni tor ing  and reorder
ing w ithin the OM OS framework. Because we im ple
m ent the U nix program  loading facility (e x e c )  using  
OMOS prim itives, reordering extends transparently  
and seam lessly to user programs.

3 S e r v e r  A r c h i t e c t u r e

3.1 O v e rv ie w

T he OM OS ob ject/m eta -ob ject server is a process 
which m anages a database o f objects and meta-objects .  
O bjects are code fragm ents, data fragm ents, or com 
plete program s. These objects m ay em body fam iliar 
services such as I s  or em acs, or they m ay be sim pler 
“building-block” objects such as hash tables or AVL 
trees. M eta-objects are tem plates describing the con
struction and characteristics o f objects. M eta-objects 
contain a class description of their target objects.

OM OS perm its clients to create their own m eta
objects, or to load instances o f m eta-objects into their 
address space. For exam ple, given a m eta-object for 
I s ,  OM OS can create an I s  object for a client. In
stantiatin g  an object subsum es linking and loading a 
program in a m ore traditional environm ent. OMOS 
is designed to support clients running on a variety 
of operating system s, including m icrokernels such as 
M ach[l] or Chorus[12], or traditional m onolith ic ker
nels that have rem ote m apping and IPC facilities.

M eta-objects contain a. specification, known as a 
blueprint,  which specifies the rules used to com bine 
objects and other m eta-objects to produce an instance 
of the m eta-object. These rules m ap into a graph of 
construction operations, the m -graph, with each node 
representing one operation.

The nodes in the m -graph define operations used 
to generate and m odify objects. These operations 
include module operations,  as defined in Bracha and 
Lindstrom[2]. C onceptually, a m odule is a nam ing  
scope. M odule operations operate on and m odify the 
sym bol bindings in m odules; m odule operations take 
m odules as input and generate m odules as output. 
The m odifications o f these bindings define the inher
itance relationships between the com ponent objects. 
W ithin  OM OS, m odules are represented as executable  
code f r agm ent s  which are im plem ented using the na
tive relocatable executable form at (e.g ., a .out).

T he m -graph m ay also include som e other non
m odule operations, such as operations that produce 
m odules from  source input, operations that produce 
diagnostic output, group other operations into lists, 
etc. The set o f graph operations into which a blueprint 
m ay be translated is described in m ore detail in Sec
tion  3.2.

In general, when OMOS receives a request for an 
instance of an object it m ust instantiate the object 
from a m eta-object. To do this, OMOS com piles the 
m eta-object into an m -graph. OMOS executes the 
m -graph, whose operations m ay com pile source code, 
translate sym bols, and com bine and relocate frag
m ents. M-graph operations m ay take other m-graphs 
as operands. U ltim ately, the execution of the m -graph  
is resolved to a list o f nodes which represent a set of 
m appable executable segm ents. These executable seg
m ents are m apped into the requesting clien t’s address 
space.

3.2 S e r v e r  C la sses

OMOS is constructed from a set of classes which 
provide basic nam ing, class construction, and instan
tiation  services. Thus, OMOS is not only a server in 
an object-oriented or traditional environm ent, but is 
also com posed of objects.

Server objects are stored on disk by a persistent 
derived class. Each class requiring persistent storage 
defines its own derived class which is capable of saving  
the object sta te on stable storage. Server objects are 
m ostly  organized in trees, w ith active portions residing 
in OMOS memory. References to server objects are 
obtained via a hierarchical nam e space.

Fragments represent files containing executable  
code and data. They are the concrete im plem enta
tion o f m odules. Fragm ents export and im port their 
interface through sym bol definitions and references. 
Sym bols in a fragm ent m ay already be bound to a 
value or they m ay yet be unresolved.
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(h id e  "_REAL_malloc"
(m erge

( r e s t r i c t  "_m alloc"
(c o p y _ a s  " _m alloc"  "_REAL_malloc"

(m erge / r o / b i n / l s . o  / r o / l i b / l i b c . o ) ) )  
/ r o / l i b / t e s t _ m a l l o c . o ) )

Figure 1: Blueprint Language Exam ple

M eta-objects are central to  OM OS. A  m eta-object 
describes the construction process used to instantiate  
an object. It is envisioned that m eta-objects m ay also 
contain inform ation describing the nature o f the ob
jects they represent, such as a denotational sem antics 
for the object, a description o f exceptional conditions, 
robustness constraints, etc. Currently m eta-objccts 
contain only construction inform ation.

A m eta-object supports two primary m ethods 
to create an object: decom pose and f i x .  The  
decom pose operation recursively builds the m-graph  
from blueprint inform ation, while f i x  executes the 
m -graph and constructs a set, o f m appable fragm ents 
from the result, applying traditional relocations in the 
process. T he result o f the f i x  operation is cached by 
the m eta-object for future use —  subsequent opera
tions may avoid constructing and executing the m- 
graph if there exists an appropriate cached version.

A blueprint lists the set o f operations used to trans
form a collection o f m cta-objccts and fragm ents into  
a set o f m appable fragm ents. Currently the specifica
tion language used by OMOS has a sim ple Lisp-like 
syntax. T he first word in a list is a m odule operation  
(described below ) followed by a series o f argum ents. 
A rgum ents can be the nam es of server objects, strings, 
or other m odule operations.

M-graphs are com posed of nodes which are graph 
operators, m eta-objects and fragm ents. The com plete 
set o f graph operators defi ned in OM OS is described in
[9]. T he graph operators im portant to this discussion  
include:

M e r g e :  binds the sym bol definitions found 
in one operand to the references found 
in another. M ultiple definitions of a 
sym bol constitutes an error.

O v e r r id e :  m erges two operands, resolving  
conflicting bindings (m ultip le defini
tions) in favor o f the second operand.

R e n a m e :  system atica lly  changes nam es in 
the operand sym bol table, and works on

either sym bol references, sym bol defini
tions, or both.

R e s t r ic t :  deletes any definition o f the sym 
bol and unbinds any existing references 
to it.

C op y_as: m akes a copy of a sym bol under 
a new nam e.

H id e : rem oves a given set o f sym bol defi
n itions from  the operand sym bol table, 
binding any internal references to the 
sym bol in the process.

L ist:  associates two or m ore server objects 
in to a list.

S o u r c e :  produces a fragm ent from a source 
object.

M ost of these operators have m odules as operands 
and return m odules as results. Som e operators, like 
so u r c e , generate m odules, and others, like l i s t ,  con
nect m odules. Various m odule operations can alter 
<sym bol,value> bindings w ithin a fragm ent. Som e 
operators use Unix regular expressions to perform  
changes over groups o f sym bols in a m odule.

The exam ple in Figure 1 shows a blueprint which 
produces a new version o f the I s  program . A spe
cial version o f the procedure _m alloc found in the file 
/ r o / l i b / t e s t _ m a l l o c  . o replaces the version found in 
the C library. T he new version o f _m alloc  m ay refer
ence the original version by the nam e _REAL_malloc.

4 O M O S  P r o g r a m  M o n i t o r i n g

We can use the flexible nature of O M O S’ object 
framework to im plem ent a transparent program m on
itoring and optim ization  facility. To do this, a user (a  
system  m anager, m ost likely) specifies a named m eta
object that is to be m onitored. W hen instantiated , 
the resulting object includes interposed m onitor pro
cedures. The m onitor procedures send an event trace 
back to OM OS, which analyzes this inform ation to 
derive a desired ordering o f procedures w ithin the ex
ecutable. Then OMOS reorders the base executable; 
subsequent instantiations use the new, optim ized ver
sion.

4.1 M o n i t o r e d  O b je c t  S e tu p

T he first step in this process involves physically re
placing the m eta-object with a derived m onitor class 
that overrides certain of the m eta-ob ject’s procedures.



The privileged server m ethod m o n ito r  takes the path  
nam e of a target m eta-object, and constructs the de
rived m eta-object whose blueprint is a copy of the 
original blueprint. OM OS replaces the target with the 
new, m onitor m eta-object. Subsequent invocations of 
the target m eta-object will dispatch to m ethods over
ridden by the m onitor m eta-object which will enact 
the m onitoring and reordering functions.

T he m onitor m eta-object performs the bulk o f its 
work when the decom pose m ethod  is first invoked. Re
call, the decom pose m ethod generates the m -graph, 
the execution o f which u ltim ately  creates a set o f rriap- 
pable fragm ents com prising the code and data that 
m ake up the object. T he first tim e decom pose is 
invoked on the m onitored m eta-object, it invokes a 
decom pose m ethod on its base class to extract an ini
tial m -graph. It, then recurses through the graph, find
ing all o f the fragm ents contained w ithin . It rebuilds 
the graph, prepending a special m o n i t o r  graph opera
tion to each fragm ent.

During execution o f the m -graph in the m eta
object f i x  m ethod, the m o n ito r  operation analyzes 
its operand, extracting the nam e of each procedure 
entry point in the m odule. T he m o n ito r  operation  
generates an assem bly sourcc file containing a m onitor 
stub procedure, or wrapper , for each entry point. Each 
wrapper exports an entry point w ith the sam e nam e 
as the original procedure. A copy_as operation is ex
ecuted on the fragm ent, duplicating each entry point 
nam e as an internal nam e. T his internal nam e will 
be referenced by the wrapper. A r e s t r i c t  operation  
removes the original nam e from the operand sym bol 
table and breaks any existing intra-m odule bindings 
to it. T he wrappers are com piled and m erged (linked) 
with the operand, generating a new fragm ent. A h id e  
operation is invoked on the result to elim inate the in
term ediate nam es produced by the copy_as operation. 
Thus, the wrapper is transparently interposed between 
the caller of each procedure and the procedure itself.

Finally, a special version o f _ e x i t  that knows how 
to perform a final clean up on the m onitor sta te is 
interposed between the client and the system  _ e x it  
routine. T his result is linked with a library o f m onitor 
routines containing the support procedures which are 
invoked by the wrapper functions.

4.2  M o n i t o r e d  O b je c t  E x e c u t io n

After the f i x  m ethod  has been invoked on the m on
itored object, the m onitor code is in place and ready to 
generate log data. Each procedure wrapper logs infor
m ation about entry and exit to the procedure. When 
an instance of the derived m eta-object is m apped into

a user program, the rest o f the m onitoring infrastruc
ture is constructed: a thread is started  in the server to 
collect log data which are returned from  the m onitored  
program via a com m unication channel.

On each invocation  o f a m onitored procedure in 
the target process, the wrapper m akes an entry in a 
log buffer local to that process. In order to preserve 
a valid stack fram e, the wrapper replaces the return 
address on the stack w ith the address o f an internal 
wrapper exit sequence. T he wrapper saves the real re
turn address on a private stack and transfers control 
to the m onitored procedure. On exit from the m oni
tored procedure, control is passed to the wrapper exit 
sequence; an entry is m ade in the log buffer, the real 
return address is retrieved from the internal stack, and 
control is returned to the caller.

W hen the log buffer is full, its contents are written  
over the com m unication channel. T he m onitor thread 
w ithin OM OS collects and stores the contents in a file. 
The m onitor version o f the procedure _ e x i t  flushes 
any rem aining log inform ation, signals a logical end 
of file to the server, shuts down the com m unication  
channel in the target process, and invokes the system  
_ e x it  procedure to term inate the program.

4.3  E v e n t  D a t a  A n a ly s is

Once log data have been collected, OM OS runs an 
external analysis program  to construct a dynam ic call 
graph of the program from the event log file. The 
event data are of three basic types:

D e c la r e :  associates a textual procedure 
nam e and the address of the procedure 
with an ordinal procedure index. The 
procedure index is unique and used in 
subsequent references to the procedure.

E n tr y :  indicates entry to a procedure.

E x it:  indicates exit from a procedure.2

T he dynam ic call graph constructed by the analysis 
program lias a node for each instance of a procedure 
that is called, and an arc from the caller to the callee. 
The outgoing arcs are ordered tem porally. Recursion 
is detected and converted to a cyclic arc.

A number of different, reordering strategies can be 
applied to the log data. The analysis techniques pro
duce an ordered list o f procedure names. The ordering 
represents the order in which the procedures should be 
placed in physical m em ory to im prove inter-procedure

2Currently, exits must be matched with their corresponding 
entries. There is no provision for the use of nonlocal gotos.
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locality o f reference. After an order has been gener
ated via analysis, OM OS uses the list to reorder the 
fragm ents, as described in Section 6. The reordered 
version of the program  will be used on subsequent in
vocations.

5 R e o r d e r i n g  S t r a t e g i e s

T he goal o f the reordering strategies is to improve 
locality  o f reference. In general, the strategies we fol
low adhere to call graph order at the granularity of a 
procedure, rather than at the granularity of a relocat
able executable file which the standard linker uses.

T he first approach we take is to  reorder based on 
a static call graph analysis. S tatic analysis has the 
drawbacks that it m ay be difficult to do a proper call 
graph analysis if procedures are passed as argum ents, 
and that there is no notion of how often or in what 
order procedures are called. Using profiling inform a
tion to derive a call graph would provide a better idea 
of call frequency, but still lacks ordering inform ation. 
In the following analysis techniques we use dynam ic 
trace inform ation to generate call graphs.

The first dynam ic reordering strategy we apply first 
involves separating out s ingleions  —  procedures that 
are only called once. T his strategy divides the world 
into the set o f com m only called procedures and the set 
of procedures that are used only once (and thus, will 
not be responsible for repeated page faults). We then 
order the rem aining procedures using the dynam ic call 
graph order. T h is strategy tends to sp lit out in itia l
ization procedures.

The second dynam ic strategy involves having the 
user exp licitly  specify which procedure constitutes the 
beginning of the central processing loop. T his specifi
cation separates the program  into two distinct phases: 
an in itialization  phase and a m ain processing phase. 
The m ain loop is grouped in call graph order, followed  
by the set o f in itia lization  procedures. T h is results in 
procedures com m on to both the m ain loop and the 
in itialization  procedures being grouped w ith the m ain  
loop, where, over tim e, they will tend to be called more 
o ften .

T he third dynam ic strategy involves using a call- 
chain order, but first sp litting  out hahituals  —  pro
cedures called frequently from a number of places —  
into a separate set o f pages. The problem  with habit- 
uals, such as bcopy or the string procedures, is that 
they m ay be called often, from a number of different 
sources. P lacing them  with any one call chain m ay  
unfairly m ake resident the rest o f the procedures in

that chain. To solve this, we cluster a num ber of the 
m ost frequently referenced procedures in the program  
by selecting a percentage o f the tota l num ber of pro
cedures. These procedures would also be prim e candi
dates for cloning[5], which is an enhancem ent we plan 
to  investigate in the future.

T he fourth dynam ic strategy involves ordering the 
call chain by frequency o f reference, rather than in a 
sim ple first-called, depth-first fashion. T his strategy  
has the advantage that it will place together proce
dures in the m ost heavily traveled paths. T he diffi
culty with this strategy is that the out degree of any 
given node (the count of other nodes that node ref
erences) m ay not be a fair m easure of the activ ity  on 
that path; a node w ith  a sm all out degree m ay still rep
resent the best choice, because a large am ount of ac
tiv ity  is found beneath it. A m ong other factors, a call 
to a given procedure will result in touching the page of 
the callee on invocation and touching the page of the 
caller on return. Procedures that m ake many invo
cations m ay be as heavily “used” as procedures that 
are invoked m any tim es. To take advantage of this 
knowledge, we perform weighting, wherein the weight 
of a node is calculated as a function of the number of 
tim es it is callcd and  the weights o f its children.

Clearly, different strategies are applicable for differ
ent programs or even different runs o f the sam e pro
gram . Use o f shared libraries increases the com plexity  
of reordering by increasing the number of disparate 
uses o f a given procedure. In general, there is no op
tim al strategy for reordering all program s. We find, 
however, that usage inform ation can provide order
ings that are superior to those arrived through static  
m echanism s. We dem onstrate som e of the particular 
strengths and weaknesses of these different techniques 
in Section 7, where we exam ine actual reordering re
sults.

6 F r a g m e n t  R e o r d e r i n g

The reordering transform ation of a fragm ent m ust 
result in a new executable that is equivalent in func
tion to the original. In principle, the transform ation  
is simple:

1. Find the starting and ending offsets of all proce
dures in the executable code.

2. For each o f the procedures in step 1, find all the 
relocations that are applicable to the procedure 
and all sym bols that are defined w ithin the pro
cedure offset range.
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3. For each o f the procedures in step 1, m ove the pro
cedure contents, adjust the sym bol values of sym 
bols defined w ithin  the procedure ofTset range, 
and adjust the offsets of the relocations applicable 
to the procedure.

In practice, op tim izations performed by the com 
piler, linker, and assem bler com plicate the transform a
tion. For exam ple, a com m on com piler optim ization  
puts constant data  (e.g ., strings) in the sam e segm ent 
with executable code. T h is m akes location  o f the end  
o f a procedure m ore com plicated. If the constant data  
are m oved w ith  the procedure, other procedures refer
encing the constant data no longer reference the cor
rect addresses. Furtherm ore, if  the constant data are 
referenced via a sm all pc-relative displacem ent, and 
the constant data are m oved, after the m ove the dis
placem ent is wrong in all instructions accessing the 
constant data. Worse, the new displacem ent could  
exceed the reach o f the instruction.

A nother problem  results from  the assembler and 
linker perform ing optim izations to reduce the number 
of relocations that need to be performed during later 
steps. For exam ple, references to defined sym bols can 
be relocated by the assembler or linker. If the relo
cation is performed and the procedure is later m oved, 
the original relocation becom es invalid. To allow ob
ject file reordering, no relocations m ay be performed 
until the reordering has been accom plished. We have 
m odified versions of the GNU assembler and linker 
which inhibit these troublesom e behaviors.

7 T h e  R e s u l t s

We tested  the OM OS reordering facilities using a 
version o f OM OS which runs under the Mach 3.0 op
erating system , using a single server im plem entation  
of BSD 4.3 U nix. The m achine was an 25 M llz In
tel 80386 with 32 MB of cache and 16 MB RAM. We 
used the X program xmh as a test case, since it is con
structed using layers of m odules taken from  several dif
ferent libraries. T he binary is 405K o f text and 551K  
total. In order to produce consistent results, we m ade 
special versions o f the procedures that an X applica
tion uses to receive X input events. These can either 
m ake a rccord o f the incom ing events in a file, or re
trieve events from a file and sim ulate their occurrence. 
T he retrieval m ode allows us to “play back” an earlier 
session with an X application. We also m ade a version 
of the procedure _ e x i t  which would report the number 
o f page fault,s a program generated during its execu
tion, since the Mach Unix server does not provide that

inform ation to the t ime  u tility . We interposed these 
procedures in the application using OM OS facilities, 
recorded a 10 m inute xmh session, then replayed that 
session on a quiescent system  under a num ber of dif
ferent conditions to obtain  our performance figures in 
m ultip le runs.

We tested six  different strategies: a control with no 
optim ization , a test o f static  call graph analysis, and 
the four dynam ic strategies described in section 5. We 
changed the am ount o f m em ory available to the sys
tem  by wiring down free pages and observed the effect 
this had on the ap plication ’s execution  tim e. Figures 2 
and 3 show the increase in execution  tim e as available 
m em ory decreases. A graph o f page faults versus a vail
able m em ory traces out a near-identical set o f curves, 
dem onstrating the increasing dom ination of page fault 
tim e as the am ount of available m em ory decreases.

We notice from the num bers in Table 1 that re
ordering produces a sm all com paction  in the appli
cation, resulting in fewer page faults even when the 
application is given as much m em ory as it can use. 
We also notice that static reordering produces a sig
nificant im provem ent in paging behavior, and that the 
more subtle im provem ents found in the more com plex  
strategies prove to be significant, as m em ory becom es 
scarce.

Finally, we notice that the strategics of interm edi
ate sophistication, such as strategies 2 and 3, actually  
do a little  worse than the sim pler policy of strategy
1, for som e interm ediate values of available memory. 
This decline indicates that there is a cost to separat
ing frequently called procedures from their callers; by 
putting them  on a separate page, the working set is 
effectively increased by som e near-constant am ount. 
T his expenditure becom es effective as the rate o f page 
faults increase and the value o f accurate prediction of 
which pages are likely to be faulted on increases. This 
anom aly reinforces the need to investigate the use of 
code duplication for frequently used procedures.

8 R e l a t e d  W o r k

A variety o f work has been done on the prob
lem  of autom atically  im proving locality  of reference 
within program s in overlay system s and early paging  
system s[3, 8, 6, 4]. Som e o f this work concentrates 
on instruction reference locality; other concent,rates 
on data reference locality. More recent work focuses 
on the related problem o f locality  of reference within  
a cac.he[7], Hartley[5] used procedure replication as 
a way to bound the locality of reference for a given 
point in the program . P ettis and IIansen[10] did work

7
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Figure 2: T im e (seconds) versus available m em ory

Available memory (4K pages)

Figure 3: Blowup of time versus available memory
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Table 1: xmh Program Performance D ata ( elapsed time in seconds \ °  ' page faults '

Strategy A vailable M emory
118 147 185 258 321 417 675 800

None oo 1052 673 305 249 183 96 43
oo 8755 4680 1623 1056 597 160 120

Static ordering 1001 626 361 190 132 87 69 35
8209 5309 3024 975 608 225 121 120

Strategy 1 927 533 375 172 119 87 64 36
8008 4578 2456 841 403 211 119 113

Strategy 2 854 525 372 161 120 87 67 37
7334 4374 2310 768 540 234 125 113

Strategy 3 943 530 335 151 102 78 67 36
8241 4190 2071 686 447 241 124 113

Strategy 4 707 357 319 143 94 89 61 33
5979 2741 1926 674 318 247 116 113

both to im prove ordering of procedures and ordering 
o f basic blocks; they concentrated m ore heavily on re
ordering basic blocks and used a single, straightfor
ward algorithm  for ordering procedures. They found 
8-10%  perform ance increases from better cache and 
TLB use, and their work is incorporated in H ewlett- 
Packard’s current linker and fd p  program s.

All o f the schcrncs we have seen are designed to 
be used in response to borderline conditions —  ap
plications which use the lim it o f available m em ory  
space or bandw idth. The popularity o f these schem es 
rises and falls over tim e w ith changes in the costs of 
m em ory, m em ory access techniques, application com 
plexity, hardware dom ain, and other factors. Changes 
in the lim its o f technology m ay alter the relative im 
portance o f this class o f optim ization, but its validity  
does not change. By autom ating locality  of reference 
optim izations, we remove them  from the category of 
special op tim izations performed (and reinvented) only  
when applications reach the lim its o f technology. The 
relative benefit o f these optim izations m ay rise and 
fall over tim e, but their general u tility  rem ains.

A user-space loader is no longer unusual. M any op
erating system s, even those w ith m onolith ic kernels, 
now use an external process to do program  loading in
volving shared libraries, and therefore linking. How
ever, the load er/dyn am ic linker is typically instanti
ated anew for each program, m aking it too costly for 
it to support m ore general functionality  such as in 
OM OS. A lso, these loaders are not constructed in an 
extensible m anner.

9 F u t u r e  W o r k

Many interesting problems rem ain to be addressed 
by OM OS. There is work to be done in the area of 
m onitoring policy. We currently use the results o f one 
run to determ ine w hat constitutes “typical use” o f a 
program —  the assum ption being that the run will be 
specially tailored to be representative of typical use. 
We plan to look into the policy issues o f collecting  
and interpreting larger sam ples of data. W e plan on 
investigating the m erit o f duplicating the code of fre
quently used procedures, rather than trying to deter
m ine the best m atch for a procedure used heavily in 
several places. We will also look into the issues in
volved in reconciling diverse uses of a com m on piece 
of code, as in the case of shared libraries, where a 
single execution profile can not accurately represent 
the typical use of a set o f procedures. And, we plan  
to develop policies whereby several instantiations of 
an OMOS m eta-object —  each tuned for a different 
use —  can be m ade available to client applications.

Locality of data  reference is arguably m ore im por
tant than code locality, but is a less tractable problem , 
due to the difficulty o f m onitoring data references and 
due to the existence of dynam ically  allocated data. 
However, m any num eric applications make heavy use 
of large arrays of static data. We plan on analyzing a 
set o f such program s to assess the worth of reordering 
static data.

The extensible nature of OM OS, and its knowl
edge of everything from  source file to execution traces,



m ake it applicable to other kinds o f optim izations re
quiring run-tim e data. OM OS could transparently im 
plem ent the type o f m onitoring done by M IPS’ p i x i e  
system , to  optim ize branch prediction[7]. Another 
direction is suggested by O M O S’ natural connection  
w ith program  developm ent. OM OS could easily be 
used as the basis o f a C ASE tool, where its  ability  
to feed back data from program  execution, would be 
useful for b oth  debugging and optim ization .

There are a host o f  engineering issues to be ad
dressed in OMOS: protection, consolidating OMOS 
servers in a network, im plem enting a virtual file sys
tem  interface, and perhaps m ost im portant, policies 
for m anaging m ain m em ory and backing store.

10 C o n c l u s i o n

M ost current linking technology m akes poor use of  
virtual m em ory by ignoring problem s o f locality  of ref
erence in large program s. T his has adverse effects 
on tota l system  throughput. OM OS, an extensible  
ob ject/m eta -ob ject server, provides a framework for 
autom atically  im proving the performance o f programs 
through im proved locality  of reference. OMOS can 
transparently insert perform ance m onitoring code in 
applications and gather data about a program ’s run
tim e behavior. Using this data, OMOS can derive 
an im proved program layout and reorder executable  
code fragm ents to increase locality  o f reference. The 
m ost effective strategies for determ ining better frag
m ent ordering are based on data available only from a 
run-tim e m onitoring schem e. Significant performance 
im provem ents were gained from this approach.
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