Dynamic Program Monitoring and Transformation
Using the OMOS Object Server

Douglas B. Orr, Robert W. Mecklenburg, Peter J. Hoogenboom, and Jay Lepreau
UUCS-92-034

Department of Computer Science
University of Utah
Salt Lake City, UT 84112, USA

September, 1992

Abstract

In traditional monolithic operating systems the constraints of working within the kernel have
limited the sophistication of the schemes used to manage executable program images. By
implementing an executable image loader as a persistent user-space program, we can extend
system program loading capabilities. In this paper we present OMOS, an Object/Meta-
Object Server which provides program loading facilities as a special case of generic object
instantiation. We discuss the architecture of OMOS, the extensible nature of that architec-
ture, and its application to the problem of dynamic program monitoring and optimization.
We present several optimization strategies and the results of applying these strategies.



UUCS-92-034

September, 1992

Dynamic Program Monitoring and Transformation
Using the OMOS Object Server

Douglas B. Orr, Robert W. Mecklenburg, Peter J. Hoogenboom, and Jay Lepreau

Department of Computer Science
University of Utah
Salt Lake City, UT 84112

E-mail: {dbo,mecklen,hoogen,lepreau}@cs.utah.edu

Abstract

In traditional monolithic operaling systems the con-
straints of working within the kernel have limited the
sophistication of the schemes used to manage cxe-
cutlable program images. By implemenling an eze-
cutable image loader as a persisient user-space pro-
gram, we can exiend system program loading capabili-
ties. In this paper we present OMOS, an Object/Meta-
Object Server which provides programn loading facili-
lies as a special case of generic object instaniialion.
We discuss the architecture of OMOS, the eztensible
nature of that archilecture, and ils application to the
problem of dynamic program moniloring and oplimiza-
tion. We present several optimization siralegies and
the resulls of applying these strategies.!

1 Introduction

Traditional program loading facilities, such as those
found in Unix[11], have simple semantics, often be-
cause they are implemented within the framework of
a monolithic kernel where resources tend to be con-
strained. Similarly they tend to use simple external
structures — executable files, libraries, etc. — to re-
duce kernel complexity. One consequence of this sim-
plicity of implementation is that as programs grow
in size and complexity, the simple hinking and load-

YThis research was sponsored by Hewlett-Packard’s Re-
search Grants Program and by the Defense Advanced Research
Projects Agency (DOD), monitored by the Department of the
Navy, Office of the Chief of Naval Research, under Grant num-
ber N00014-91-J-4046. The opinions and conclusions con-
tained in this document arc those of the authors and should
not be interpreted as representing official views or policies, ei-
ther expressed or implied, of the Defense Advanced Research
Projects Agency, the U.S. Government, or Hewlett-Packard.

To appear in identical form in Proc.
on System Sciences, January 1993.

ing algorithms used may produce poor locality of ref-
crence characteristics within the resulting programs.
Program loading and execution facilities tend to be
separate from compilation facilities, making it incon-
venient to perform optimizations based on information
derived at run-time.

In this paper we investigate the use of OMOS,
an Object/Meta-Object Server, to improve locality of
instruction reference by dynamically monitoring and
transforming executable images. We begin by dis-
cussing typical linker technology and the particular
problems of maintaining locality of reference within
large programs. We next provide an overview of
OMOS, its general organization, and its object load-
ing facilities. Subsequently, we describe the usc of
OMOS’ extensible nature to transparently monitor
and transform executables to improve locality of ref-
erence. Finally, we discuss the results of our efforts,
related work, and potential future work.

2 OMOS and Linker Technology

Separate compilation of program sources typically
results in the generation of multiple object files which
contain the generated program code and data. A
linker is the program responsible for combining the
object files and resolving inter-object file references.
The linker manages large-grain code placement within
an executable image. The decisions the linker makes
with respect to code placement, in conjunction with
the granularity of its data, determine whether a proce-
dure is likely to be placed on the same page as the pro-
cedures it references. As program sizes increase, linker
placement policies have an increasing effect on work-
ing set size and virtual memory utilization. In this
paper, we are particularly concerned with the Unix

26th Hawaii International Conference



linker. This linker is widely used, and while some of
its shortcomings are particular to Unix, most of its
problems are present in all linkers.

The first problem commonly encountered with
linker policies concerns the granularity with which
names are clustered. In an ideal system, if one were
to reference a symbol a, the linker would locate and
extract the code associated with the symbol, then iter-
atively extract only other symbols referenced by that
code. This ideal is difficult to achieve because most
linkers work at the object file level, and extracting
symbol a means including all other symbols and asso-
ciated references found within that object file, includ-
ing but not restricted to those required by a.

Well-organized source files, compiled and carefully
grouped into libraries of object files, come close to
achieving the ideal of allowing a partial ordering of
symbol references. More typically, the organization of
object files reflects what is convenient for the program-
mer; the entities found in a relocatable excecutable are
usually related, but often the relation is at the con-
ceptual level, rather than at the symbol level. Clearly,
if more than one procedure is exported from an object
file, there exists the possibility of including code not
explicitly referenced in the resulting executable (along
with all the code it references). As software changes
over time, the chances of grouping non-interdependent
procedures within a single object file increase.

Another problem is that current linkers rely on the
programmer to tell themm what to do, and program-
mers typically specify nothing useful in terms of order-
ing. Linkers obey a scries of programmer commands
indicating in what order to bind object files. The ob-
Ject files bound together consist of either explicitly
specified files, or selections made implicitly from li-
braries of object files. In general, the order in which
plain (non-library) object files are processed by the
linker has no effect on the correctness of symbol reso-
lution or program construction. Therefore, program-
mers usually pay little attention to such ordering.

The typical implementation of object file libraries
further worsens locality. To save time, linkers com-
monly process libraries in one pass. This means that
the programmer must either arrange to reference all
symbols that are to be extracted from the library prior
to its processing, or explicitly process the library more
than once. A side eflect of this style of library process-
ing is that library elements are extracted breadth-first.
All procedures extracted from a library are processed
and made physically adjacent in the resulting exe-
cutable before the linker processes subsequent libraries
or object files. As a result, there is very little chance

that a procedure in one library will be physically ad-
jacent to any procedures it may reference outside the
library. We will see empirical evidence of this fact, as
well as the fact that adhering to depth first call-chain
order produces much smaller working set sizes in large
programs.

Finally, a Unix-specific library problem has to
do with the processing of common data definitions.
Global variables in the C programming language are
examples of common data items. C global variables
may be defined (e.g., int foo;) as often as desired,
as long as they are assigned an 1nitial value only once.
Static storage is allocated for the variable and all com-
mon definitions are mapped to the same location when
the program is linked. A pure reference to a global
variable (e.g., extern int foo;) does not produce a
definition.

Difliculty occurs when a common variable definition
is repeated in more than one library element. When
the variable is referenced, the linker chooses one of
the definitions — typically the first encountered —
and binds the object file in which it is found into the
program. If a programiner has defined common stor-
age for a symbol in a library header file instead of
declaring pure references, the cffect can casily be that
many otherwise unrelated elements define the cormmmon
variable. In these cases, a random and completely un-
related object file, and all other object files it may
refcrence, may be linked into the program.

Clearly, these problems are not significant when us-
ing relatively small programs and small numbers of
carefully designed libraries. The issue of locality of
reference has been given attention in the past, when
system memory sizes were small and penalties for non-
local references were high{8, 6, 4]. Even though typ-
ical machine memory sizes have been increasing, ap-
plications tend to grow to fill available memory. For
contemporary applications such as X window system
clients, whose code sizes are an order of magnitude
greater than those of stmple applications such as 1s,
the problem of non-local references to procedures is
again significant. In addition, poor locality of refer-
ence puts a burden on other parts of the memory hi-
erarchy, such as the TLB and cache. Applications will
continue to grow in size and levels of the memory hier-
archy will become further separated in performance.
These ensure the continuing need to strive for good
locality within programs.

The solution to the problem of poor locality is to
use a procedure ordering that more closely serves the
needs of the program, rather than the convenience of
the program development environment. For best re-



sults, the ordering should take advantage of temporal
information, as well as simple dependency informa-
tion. And, the ordering should be done automatically,
so that it becomes a standard, transparent compiler
optimization, rather than an inconvenient-to-use sep-
arate analysis and transformation procedure.

These goals are achieved by the OMOS object
server, which provides a rich and flexible framework
for manipulating objects and programs. OMOS con-
structs object instances in user address spaces by fol-
lowing construction instructions encoded in an exe-
cutable graph of operations. This graph is known
as an m-graph. The instructions include compilation,
linking, and symbol manipulation directives. By mod-
ifying the m-graph, OMOS can easily perform pro-
gram transformations.

‘To achieve a better code order within user executa-
bles, we have implemented monitoring and reorder-
ing within the OMOS framework. Because we imple-
ment the Unix program loading facility (exec) using
OMOS primitives, reordering cxtends transparently
and seamlessly to user programs.

3 Server Architecture
3.1 Overview

The OMOS object/meta-object server is a process
which manages a database of objects and meta-objects.
Objects are code fragments, data fragments, or com-
plete programs. These objects may embody familiar
services such as 1s or emacs, or they may be simpler
“building-block” objects such as hash tables or AVL
trees. Meta-objects are templates describing the con-
struction and characteristics of objects. Meta-objects
contain a class description of their target objects.

OMOS permits clients to create their own meta-
objects, or to load instances of meta-objects into their
address space. For cxample, given a meta-object for
1s, OMOS can create an 1ls object for a client. In-
stantiating an object subsumes linking and loading a
program in a more traditional environment. OMOS
is designed to support clients running on a variety
of operating systems, including microkernels such as
Mach[1] or Chorus[12], or traditional monolithic ker-
nels that have remote mapping and 1PC facilities.

Mecta-objects contain a specification, known as a
blueprint, which specifies the rules used to combine
objects and other meta-objects to produce an instance
of the meta-object. These rules map into a graph of
construction operations, the m-graph, with each node
representing one operation.

The nodes in the m-graph define operations used
to generate and modify objects. These operations
include module operations, as defined in Bracha and
Lindstrom([2]. Conceptually, a module is a naming
scope. Module operations operate on and modify the
symbol bindings in modules; module operations take
modules as input and generate modules as output.
The modifications of these bindings define the inher-
itance relationships between the component objects.
Within OMOS, modules are represented as executable
code fragments which are implemented using the na-
tive relocatable executable format (e.g., a.out).

The m-graph may also include some other non-
module operations, such as operations that produce
modules from source input, operations that produce
diagnostic output, group other operations into lists,
etc. The set of graph operations into which a blueprint
may be translated is described in more detail in Sec-
tion 3.2.

In general, when OMOS reccives a request for an
instance of an object it must instantiate the object
from a meta-object. To do this, OMOS compiles the
meta-object into an m-graph. OMOS executes the
m-graph, whose operations may compile source code,
translate symbols, and cormbine and relocate frag-
ments. M-graph operations may take other m-graphs
as operands. Ultimately, the execution of the m-graph
is resolved to a list of nodes which represent a set of
mappable executable segments. These executable seg-
ments are mapped into the requesting client’s address
space.

3.2 Server Classes

OMOS is constructed from a set of classes which
provide basic naming, class construction, and instan-
tiation services. Thus, OMOS is not only a server in
an object-oriented or traditional environment, but is
also composed of objects.

Server objects are stored on disk by a persistent
derived class. Each class requiring persistent storage
defines its own derived class which is capable of saving
the object state on stable storage. Server objects are
mostly organized in trees, with active portions residing
in OMOS memory. Relerences to server objccts are
obtained via a hierarchical name space.

Fragments represent files containing executable
code and data. They are the concrete implementa-
tion of modules. Fragments export and import their
interface through symbol definitions and references.
Symbols in a fragment may already be bound to a
value or they may yet be unresolved.



(hide "_REAL_malloc"
(merge
(restrict "_malloc"
(copy_as "_malloc" "_REAL_malloc"
(merge /ro/bin/ls.o /ro/lib/libc.o)))
/ro/lib/test_malloc.o))

Figure 1: Blueprint Language Example

Meta-objects are central to OMOS. A meta-object
describes the construction process used to instantiate
an object. It is envisioned that meta-objects may also
contain information describing the nature of the ob-
jects they represent, such as a denotational semantics
for the object, a description of exceptional conditions,
robustness constraints, etc. Currently meta-objccts
contain only construction information.

A meta-object supports two primary methods
to create an object: decompose and fix. The
decompose operation recursively builds the m-graph
from blueprint information, while fix executes the
m-graph and constructs a set of mappable fragments
from the result, applying traditional relocations in the
process. The result of the fix operation is cached by
the meta-object for future use — subsequent opera-
tions may avoid constructing and executing the m-
graph if there exists an appropriate cached version.

A blueprint lists the set of operations used to trans-
form a collection of mcta-objccts and fragments into
a set of mappable fragments. Currently the specifica-
tion language used by OMOS has a simple Lisp-like
syntax. The first word in a list is a module operation
(described below) followed by a series of arguments.
Arguments can be the names of server objects, strings,
or other module operations.

M-graphs are composed of nodes which are graph
operators, meta-objects and fragments. The complete
set of graph operators defined in OMOS is described in
[9]. The graph operators important to this discussion
include:

Merge: binds the symbol definitions found
in one operand to the references found
in another. Multiple definitions of a
symbol constitutes an error.

Override: merges two operands, resolving
conflicting bindings (multiple defini-
tions) in favor of the sccond operand.

Rename: systematically changes names in
the operand symbol table, and works on

either symbol references, symbol defini-
tions, or both.

Restrict: deletes any definition of the sym-
bol and unbinds any existing references
to it.

Copy_as: makes a copy of a symbol under
a new name.

Hide: removes a given set of symbol defi-
nitions from the operand symbol table,
binding any internal references to the
symbol in the process.

List: associates two or more server objects
into a list.

Source: produces a fragment from a source
object.

Most of these operators have modules as opcrands
and return modules as results. Some operators, like
source, generate modules, and others, like 1ist, con-
nect modules. Various module operations can alter
<symbol,value> bindings within a fragment. Some
operators use Unix regular expressions to perform
changes over groups of symbols in a module.

The example in Figure 1 shows a blueprint which
produces a new version of the 1s program. A spe-
cial version of the procedure malloc found in the file
/ro/lib/test malloc.o replaces the version found in
the C library. The new version of malloc may refer-
ence the original version by the name _REAL_malloc.

4 OMOS Program Monitoring

We can use the flexible nature of OMOS’ object
framework to implement a transparent program mon-
itoring and optimization facility. To do this, a user (a
system manager, most likely) specifies a named meta-
object that is to be monitored. When instantiated,
the resulting object includes interposed monitor pro-
cedures. The monitor procedures send an event trace
back to OMOS, which analyzes this information to
derive a desired ordering of procedures within the ex-
ecutable. Then OMOS reorders the base executable;
subsequent instantiations use the new, optimized ver-
sion.

4.1 Monitored Object Setup

The first step in this process involves physically re-
placing the meta-object with a derived monitor class
that overrides certain of the meta-object’s procedures.



The privileged server method monitor takes the path
name of a target meta-object and constructs the de-
rived meta-object whose blueprint is a copy of the
original blueprint. OMOS replaces the target with the
new, monitor meta-object. Subsequent invocations of
the target meta-object will dispatch to methods over-
ridden by the monitor meta-object which will enact
the monitoring and reordering functions.

The monitor meta-object performs the bulk of its
work when the decompose method is first invoked. Re-
call, the decompose method generates the m-graph,
the execution of which ultimately creates a set of map-
pable fragments comprising the code and data that
make up the object. The first time decompose is
invoked on the monitored meta-object, it invokes a
decompose method on its base class to extract an ini-
tial m-graph. It then recurses through the graph, find-
ing all of the fragments contained within. It rebuilds
the graph, prepending a special monitor graph opera-
tion to each fragment.

During execution of the m-graph in the mecta-
object fix method, the monitor operation analyzes
its operand, extracting the name of each procedure
entry point in the module. The monitor operation
generates an assembly source file containing a monitor
stub procedure, or wrapper, for each entry point. Each
wrapper exports an entry point with the same name
as the original procedure. A copy_as operation is ex-
ecuted on the fragment, duplicating each entry point
name as an internal name. This internal name will
be referenced by the wrapper. A restrict opcration
removes the original name from the operand symbol
table and breaks any existing intra-module bindings
to it. The wrappers are compiled and merged (linked)
with the operand, generating a new fragment. A hide
opcration is invoked on the result to eliminate the in-
termediate names produced by the copy_as operation.
Thus, the wrapper is transparently interposed between
the caller of cach procedure and the procedure itself.

Finally, a special version of _exit that knows how
to perform a final clean up on the monitor state is
interposed between the client and the system _exit
routine. This result is linked with a library of monitor
routines containing the support procedures which are
invoked by the wrapper functions.

4.2 Monitored Object Execution

After the fix method has been invoked on the mon-
itored object, the monitor code is in place and ready to
generate log data. Each procedure wrapper logs infor-
mation about entry and exit to the procedure. When
an instance of the derived meta-object is mapped into

a user program, the rest of the monitoring infrastruc-
ture is constructed: a thread is started in the server to
collect log data which are returned from the monitored
program via a communication channel.

On each invocation of a monitored procedure in
the target process, the wrapper makes an entry in a
log buffer local to that process. In order to preserve
a valid stack frame, the wrapper replaces the return
address on the stack with the address of an internal
wrapper exit sequence. The wrapper saves the real re-
turn address on a private stack and transfers control
to the monitored procedure. On exit from the moni-
tored procedure, control is passed to the wrapper exit
sequence; an entry is made in the log buffer, the real
return address is retrieved from the internal stack, and
control is returned to the caller.

When the log buffer is full, its contents are written
over the communication channel. The monitor thread
within OMOS collects and stores the contents in a file.
The monitor version of the procedure _exit flushes
any remaining log information, signals a logical end
of file to the server, shuts down the communication
channel in the target process, and invokes the system
_exit procedure to terminate the program.

4.3 Event Data Analysis

Once log data have been collected, OMOS runs an
external analysis program to construct a dynamic call
graph of the program from the event log file. The
event data are of three basic types:

Declare: associates a textual procedure
name and the address of the procedure
with an ordinal procedure index. The
procedure index is unique and used in
subsequent references to the procedure.

Entry: indicates entry to a procedure.
Exit: indicates exit from a procedure.?

The dynamic call graph constructed by the analysis
program has a node for each instance of a procedure
that is called, and an arc from the caller to the callee.
The outgoing arcs are ordered temporally. Recursion
is detected and converted to a cyclic arc.

A number of different reordering strategies can be
applied to the log data. The analysis techniques pro-
duce an ordered list of procedure names. The ordering
represents the order in which the procedures should be
placed in physical memory to improve inter-procedure

2Currently, exits must be matched with their corresponding
entries. There is no provision for the use of nonlocal gotos.



locality of reference. After an order has been gener-
ated via analysis, OMOS uses the list to reorder the
fragments, as described in Section 6. The reordered
version of the program will be used on subsequent in-
vocations.

5 Reordering Strategies

The goal of the reordering strategies is to improve
locality of reference. In general, the strategies we fol-
low adhere to call graph order at the granularity of a
procedure, rather than at the granularity of a relocat-
able executable file which the standard linker uses.

The first approach we take is to reorder based on
a static call graph analysis. Static analysis has the
drawbacks that it may be difficult to do a proper call
graph analysis if procedures are passed as arguments,
and that there i1s no notion of how often or in what
order procedures are called. Using profiling informa-
tion to derive a call graph would provide a better idea
of call frequency, but still lacks ordering information.
In the following analysis techniques we use dynamic
trace information to genecrate call graphs.

The first dynamic reordering strategy we apply first
involves separating out singlelons — procedures that
are only called once. This strategy divides the world
into the set of commonly called procedures and the set
of procedures that are used only once (and thus, will
not be responsible for repeated page faults). We then
order the remaining procedures using the dynamic call
graph order. This strategy tends to split out initial-
1zation procedures.

The second dynamic strategy involves having the
user explicitly specify which procedure constitutes the
beginning of the central processing loop. This specifi-
cation separates the program into two distinct phases:
an initialization phase and a main processing phase.
The main loop is grouped in call graph order, followed
by the set of initialization procedures. This results in
procedures common to both the main loop and the
initialization procedures being grouped with the main
loop, where, over time, they will tend to be called more
often.

The third dynamic strategy involves using a call-
chain order, but first splitting out habituals — pro-
cedures called frequently from a number of places —
into a separate set of pages. The problem with habit-
uals, such as bcopy or the string procedures, is that
they may be called often, from a number of different
sources. Placing them with any one call chain may
unfairly make resident the rest of the procedures in

that chain. To solve this, we cluster a number of the
most frequently referenced procedures in the program
by selecting a percentage of the total number of pro-
cedures. These procedures would also be prime candi-
dates for cloning[5], which is an enhancement we plan
to investigate in the future.

The fourth dynamic strategy involves ordering the
call chain by frequency of reference, rather than in a
simple first-called, depth-first fashion. This strategy
has the advantage that it will place together proce-
dures in the most heavily traveled paths. The diffi-
culty with this strategy is that the out degree of any
given node (the count of other nodes that node ref-
erences) may not be a fair measure of the activity on
that path; a node with a small out degree may still rep-
resent the best choice, because a large amount of ac-
tivity i1s found beneath it. Among other factors, a call
to a given procedure will result in touching the page of
the callee on invocation and touching the page of the
caller on return. Procedures that make many invo-
cations may be as heavily “used” as procedures that
are invoked many times. To take advantage of this
knowledge, we perform weighting, whercin the weight
of a node is calculated as a function of the number of
times it is called and the weights of its children.

Clearly, diflerent strategies are applicable for differ-
ent programs or even different runs of the same pro-
gram. Use of shared libraries increases the complexity
of reordering by increasing the number of disparate
uses of a given procedure. In general, there is no op-
timal strategy for reordering all programs. We find,
however, that usage information can provide order-
ings that are superior to those arrived through static
mechanisms. We demonstrate some of the particular
strengths and weaknesses of these different techniques
in Section 7, whlere we exarnine actual reordering re-
sults.

6 Fragment Reordering

The reordering transformation of a fragment must
result In a new executable that is equivalent in func-
tion to the original. In principle, the transformation
1s simnple:

1. Find the starting and ending offsets of all proce-
dures in the exccutable code.

2. For each of the procedures in step 1, find all the
relocations that are applicable to the procedure
and all symbols that are defined within the pro-
cedure offset range.



3. For each of the procedures in step 1, move the pro-
cedure contents, adjust the symbol values of sym-
bols defined within the procedure offset range,
and adjust the offsets of the relocations applicable
to the procedure.

In practice, optimizations performed by the com-
piler, linker, and assembler complicate the transforma-
tion. For example, a common compiler optimization
puts constant data (e.g., strings) in the same segment
with executable code. This makes location of the end
of a procedure more complicated. If the constant data
are moved with the procedure, other procedures refer-
encing the constant data no longer reference the cor-
rect addresses. Furthermore, if the constant data are
referenced via a small pc-relative displacement, and
the constant data are moved, after the move the dis-
placement is wrong in all instructions accessing the
constant data. Worse, the new displacement could
exceed the reach of the instruction.

Another problem results from the assembler and
linker performing optimizations to reduce the number
of relocations that neced to be performed during later
steps. For example, references to defined symbols can
be relocated by the assembler or linker. If the relo-
cation is performed and the procedure is later moved,
the original relocation becomes invalid. To allow ob-
ject file reordering, no relocations may be performed
until the reordering has been accomplished. We have
modified versions of the GNU assembler and linker
which inhibit these troublesome behaviors.

7 The Results

We tested the OMOS reordering facilities using a
version of OMOS which runs under the Mach 3.0 op-
erating system, using a single server implementation
of BSD 4.3 Unix. The machine was an 25 M1z In-
tel 80386 with 32 MB of cache and 16 MB RAM. We
used the X program xmh as a test case, since it is con-
structed using layers of modules taken from several dif-
ferent libraries. The binary is 405K of text and 551K
total. In order to produce consistent results, we made
special versions of the procedures that an X applica-
tion uses to receive X input events. These can either
make a record of the incoming events in a file, or re-
trieve events from a file and simulate their occurrence.
The retrieval mode allows us to “play back” an earlier
session with an X application. We also made a version
of the procedure _exit which would report the number
of page faults a program generated during its execu-
tion, since the Mach Unix server does not provide that

information to the time utility. We interposed these
procedures in the application using OMOS facilities,
recorded a 10 minutc xmh session, then replayed that
session on a quiescent system under a number of dif-
ferent conditions to obtain our performance figures in
multiple runs.

We tested six different strategies: a control with no
optimization, a test of static call graph analysis, and
the four dynamic strategies described in section 5. We
changed the amount of memory available to the sys-
tem by wiring down free pages and observed the effect
this had on the application’s execution time. Figures 2
and 3 show the increase in execution time as available
memory decreases. A graph of page faults versus avail-
able memory traces out a near-identical set of curves,
demonstrating the incrcasing domination of page fault
time as the amount of available memory decreases.

We notice from the numbers in Table 1 that re-
ordering produces a small compaction in the appli-
cation, resulting in fewer page faults even when the
application is given as much memory as it can use.
We also notice that static reordering produces a sig-
nificant improvement in paging behavior, and that the
more subtle improvements found in the more cormplex
strategies prove to be significant as memory becomes
scarce.

Finally, we notice that the strategics of intermedi-
ate sophistication, such as strategies 2 and 3, actually
do a little worse than the simpler policy of strategy
1, for somec intermediate values of available memory.
"This decline indicates that there is a cost to separat-
ing frequently called procedures from their callers; by
putting them on a separate page, the working sct is
effectively increased by some near-constant amount.
This expenditure becomes effective as the rate of page
faults increase and the value of accurate prediction of
which pages are likely to be faulted on increases. This
anomaly reinforces the need to investigate the use of
code duplication for frequently used procedures.

8 Related Work

A variety of work has been donec on the prob-
lem of automatically improving locality of reference
within programs in overlay systems and early paging
systems[3, 8, 6, 4]. Some of this work concentrates
on instruction reference locality; other concentrates
on data reference locality. More recent work focuses
on the related problem of locality of reference within
a cache[7]. Hartley[5] used procedure replication as
a way to bound the locality of reference for a given
point in the program. Pettis and Hansen[10] did work



1200 T T T T T T
None
Static ordering
Strategy 1

Strategy 2 -B--
1000 |- ¢ Strategy 3
% Strategy 4

—-—-
g

x--
i

Q
E
e
[
0 1 1 1 3 1 L
100 200 300 400 500 600 700 800
Available memory (4K pages)
Figure 2: Time (seconds) versus available memory
350 T T T T T T T T
None ——
Static ordering -e—-
Strategy 1 -+ -
Strategy 2 -B--
300 F Strategy 3 -X-- 9
Strategy 4 —4--
250 |
aQ
8 200 F
&
150 |
100 |
50 1 1 1 1 1 1 1 1
240 260 280 300 320 340 360 380 400 420

Available memory (4K pages)

Figure 3: Blowup of time versus available memory



Table 1: xmh Program Performance Data (

elapsed time in 3econd3)
page faults

Strategy

Available Memory

11

oo

[ 147 [ 185 ]| 258 || 321 [ 417 ] 675 || 800

None oo |[ 1052 673 305 249 183 96 43

oo || 8755 || 4680 || 1623 || 1056 597 160 120

Static ordering || 1001 626 361 190 132 87 69 35

8209 || 5309 || 3024 975 608 |[ 225 121 120

Strategy 1 927 533 375 172 119 87 64 36
8008 || 4578 || 2456 841 403 211 119 113
Strategy 2 854 525 372 161 120 87 67 37
7334 || 1374 2310 768 540 234 125 113
Strategy 3 943 530 335 151 102 78 67 36
8241 || 4190 [ 2071 686 447 241 124 113
Strategy 4 707 357 319 143 94 89 61 33

5979 || 2711 1926 674 318 247 116 113

both to improve ordering of procedures and ordering
of basic blocks; they concentrated more heavily on re-
ordering basic blocks and used a single, straightfor-
ward algorithm for ordering procedures. They found
8-10% performance increases from better cache and
TLB use, and their work is incorporated in Hewlett-
Packard’s current linker and fdp programs.

All of the schemes we have seen are designed to
be used in response to borderline conditions — ap-
plications which use the hmit of available memory
space or bandwidth. The popularity of these schemes
rises and falls over time with changes in the costs of
memory, memory access techniques, application com-
plexity, hardware domain, and other factors. Changes
in the limits of technology may alter the relative imn-
portance of this class of optimization, but its validity
does not change. By automating locality of reference
optimizations, we remove them from the category of
special optimizations performed (and reinvented) only
when applications reach the limits of technology. The
relative benefit of these optimizations may rise and
fall over time, but their general utility remains.

A user-space loader is no longer unusual. Many op-
erating systems, even those with monolithic kernels,
now use an external process to do prograin loading in-
volving shared libraries, and therefore linking. How-
ever, the loader/dynamic linker is typically instanti-
ated anew for each prograin, making it too costly for
it to support more general functionality such as in
OMOS. Also, these loaders are not constructed in an
extensible manmner.

9 Future Work

Many interesting problems remain to be addressed
by OMOS. There is work to be done in the area of
monitoring policy. We currently use the results of one
run to determine what constitutes “typical use” of a
program — the assumption being that the run will be
specially tailored to be representative of typical use.
We plan to look into the policy issues of collecting
and interpreting larger samples of data. We plan on
investigating the merit of duplicating the code of fre-
quently uscd procedures, rather than trying to deter-
mine the best match for a procedure used heavily in
several places. We will also look into the issues in-
volved in reconciling diverse uses of a common piece
of code, as in the case of shared libraries, where a
single execution profile can not accurately represent
the typical use of a set of procedures. And, we plan
to develop policies whereby several instantiations of
an OMOS meta-object — cach tuned for a different
use — can be made available to client applications.

Locality of data reference is arguably more impor-
tant than code locality, but is a less tractable problem,
due to the difficulty of monitoring data references and
due to the existence of dynamically allocated data.
However, many numeric applications make heavy use
of large arrays of static data. We plan on analyzing a
set of such programs to assess the worth of reordering
static data.

The extensible nature of OMOS, and its knowl-
edge of everything from source file to execution traces,



make 1t applicable to other kinds of optimizations re-
quiring run-time data. OMOS could transparently im-
plement the type of monitoring done by MIPS’ pixie
system, to optimize branch prediction{7]. Another
direction is suggested by OMOS’ natural connection
with program development. OMOS could easily be
used as the basis of a CASE tool, where its ability
to feed back data from program execution, would be
useful for both debugging and optimization.

There are a host of engineering issues to be ad-
dressed in OMOS: protection, consolidating OMOS
servers in a network, implementing a virtual file sys-
tem interface, and perhaps most important, policies
for managing main memory and backing store.

10 Conclusion

Most current linking technology makes poor use of
virtual memory by ignoring problems of locality of ref-
erence In large programs. This has adverse effects
on total system throughput. OMOS, an extensible
object/meta-object server, provides a framework for
automatically improving the performance of programs
through improved locality of reference. OMOS can
transparently insert performance monitoring code in
applications and gather data about a program’s run-
time behavior. Using this data, OMOS can derive
an improved program layout and reorder executable
code fragments to increase locality of reference. The
most effective strategies for determining better frag-
ment ordering are based on data available only from a
run-time monitoring scheme. Significant performance
improvements were gained from this approach.

Acknowledgements

We thank Robert Kessler and Gary Lindstrom for
the time they have spent reviewing this work, Jeflrey
Law for helping us make the Mach BSD Server do
new and interesting things, and Bob Baron and Daniel
Julin for providing key scrvices and insights in times
of need.

References

(1] Mike Accetta, Robert Baron, William Bolosky,
David Golub, Richard Rashid, Avadis Tevanian,
and Michael Young. Mach: A new kernel foun-
dation for UNIX development. In Proceedings of

10

2]

[3]

[4]

[5]

[6]

[7]

s

(10]

[11]

[12]

the Summer 1986 USENIX Conference, pages 93—
112, Atlanta, GA, June 9-13, 1986. Usenix Asso-
clation.

Gilad Bracha and Gary Lindstrom. Modularity
meets inheritance. In Proc. International Con-
ference on Computer Languages, pages 282290,
San Francisco, CA, April 20-23 1992. IEEE Com-
puter Society.

L. W. Comeau. A study of the effect. of user pro-
gram optimization in a paging system. In Pro-
ceedings of the ACM Symposium on Operaling
Systems Principles, Gatlinburg, Tenn., October
1967, ‘

Domenico Ferrari. Improving locality by criti-
cal working sets. Communications of the ACM,
17(1):614-620, November 1974.

S. J. Hartley. Compile-time program restruc-
turing in multiprogrammed virtual memory sys-
tems. IEEE Trans on Software Engineering, SE-
14(11):1640-1644, 1988.

D. J. Hatfield and J. Gerald. Program restruc-
turing for virtual memory. IBM Systems Journal,

10(3):168-192, 1971.

J. L. Hennessy and Thomas R. Gross. Post-
pass code optimization of pipeline constraints.
ACM Transactions on Programming Languages
and Systems, 5(3):342, July 1983.

T. C. Lowe.
program structures based on connectivity and
processor timing. Communications of the ACM,

13(1):3-9, January 1970.
D. Orr and R. Mecklenburg. OMOS — an ob-

ject server for program cxecution. In Proc. Sec-
ond International Workshop on Object Orienta-
tion in Operating Sysiems, Paris, France, Septein-

ber 1992. IEEE Computer Socicty.

K. Pettis and R. C. Hansen. Profile guided
code positioning. SIGPLAN Notices, 25(6):16—
27, June 1990.

D. M. Ritchie and K. Thompson. The UNIX
time-sharing system. The Bell System Technical
Journal, 57(6):1905-1930, July/August 1978.

M. Rozier, V. Abrossimov, F. Armand, I. Boule,
M. Gien, M. Guillemont, F. Herrmann, C. Kaiser,
S. Langlois, P. Léonard, and W. Neuhauser. The
Chorus distributed operating system. Compuling
Systems, 1(4):287-338, December 1989.

Automatic segmentation of cyclic



