
D ynam ic Program M onitoring and Transformation
Using the OMOS Object Server

Douglas B. O rr , R o b e r t W . M ecklenburg, P e te r J . H oogenboom , and Jay L epreau

UUCS-92-034 •

D e p a r tm e n t of C o m p u te r Science
U nivers i ty of U ta h '

Salt Lake City, U T 84112, USA

Sep tem ber, 1992

A b s t r a c t
In t ra d i t io n a l m ono li th ic o p e ra t in g system s th e constra in ts of w orking w ith in th e kernel have
l im ited th e soph is t ica tion of the schemes used to m anage execu tab le p ro g ra m images. By
im p lem en tin g an ex ecu tab le im age loader as a pe rs is ten t user-space p rog ram , we can ex te n d
sy s tem p ro g ra m loading capabilit ies . In this p a p e r we p resen t O M O S, an O b je c t /M e ta
O b je c t Server which provides p rog ram loading facilities as a special case of generic ob jec t
in s ta n t ia t io n . We discuss th e a rc h i tec tu re of O M O S, th e ex tensib le n a tu re of th a t a rch i tec
tu re , an d its app lica t ion to th e p rob lem of dynam ic program m on ito ring and op tim iza tion .
We p resen t several op t im iza tion stra teg ies and the results of app ly ing these s tra teg ies.

UU CS-92-034 S e p te m b e r , 1992

D y n a m i c P r o g r a m M o n i t o r i n g a n d T r a n s f o r m a t i o n

U s i n g t h e O M O S O b j e c t S e r v e r

Douglas B. O rr, R o b e r t W . M ecklenburg , P e te r J . H oogenboom , and Ja y Lepreau

D e p a r tm e n t of C o m p u te r Science .
University of U tah

Salt Lake City, U T 84112
E-mail: {dbo,mecklen,hoogen,lepreau}@cs.utah.edu _

A b stract

In tradi t ional mono li th ic operating sys t ems the con
straints o f working wi thin the kernel have l imited the
sophist icat ion o f the schemes used to manage exe
cutable program images. B y implemen t ing an exe
cutable image loader as a persis tent user-space pro
gram, we can extend sy s t e m program loading capabili
ties. In this paper we present OMOS, an Objec t /Meta-
Objcet Server which provides program, loading faci l i
t ies as a special case o f generic object instant iat ion.
We discuss the architecture o f OMO S, the extensible
nature o f that architecture, and its application to the
problem, o f dyna mic program moni tor ing and opt imiza
tion. We present several opt imizat ion strategies and
the results o f applying these strategies.1

1 I n t r o d u c t i o n

Traditional program loading facilities, such as those
found in U nix[11], have sim ple sem antics, often be
cause they are im plem ented within the framework of
a m onolith ic kernel where resources tend to be con
strained. S im ilarly they tend to use sim ple external
structures — executable files, libraries, etc. — to re
duce kernel com plexity. One consequence of this sim
plicity of im plem entation is that as program s grow
in size and com plexity, the sim ple linking and load

1 This research was sponsored by Hewlett-Packard’s Re
search Grants Program and by the Defense Advanced Research
Projects Agency (DOD), monitored by the Department of the
Navy, Office of the Chief of Naval Research, under Grant num
ber N00014—91—J-4U46. The opinions and conclusions con
tained in this document are those of the authors and should
not be interpreted as representing official views or policies, ei
ther expressed or implied, of the Defense Advanced Research
Projects Agency, the U.S. Government, or Hewlett-Packard.

ing algorithm s used m ay produce poor locality o f ref
erence characteristics within the resulting programs.
Program loading and execution facilities tend to be
separate from com pilation facilities, m aking it incon
venient to perform op tim izations based on inform ation
derived at run-tim e.

In this paper we investigate the use of OM OS,
an O b ject/M eta-O bject Server, to im prove locality of
instruction reference by dynam ically m onitoring and
transform ing executable im ages. We begin by dis
cussing typical linker technology and the particular
problem s of m aintain ing locality of reference w ithin
large programs. We next provide an overview of
OM OS, its general organization, and its object load
ing facilities. Subsequently, we describe the use of
O M O S’ extensible nature to transparently m onitor
and transform executables to im prove locality o f ref
erence. Finally, we discuss the results o f our efforts,
related work, and p otentia l future work.

2 O M O S a n d L i n k e r T e c h n o l o g y

Separate com pilation of program sources typically
results in the generation of m ultip le object f iles which
contain the generated program code and data. A
linker is the program responsible for com bining the
object files and resolving inter-object file references.
The linker m anages large-grain code placem ent within
an executable im age. The decisions the linker makes
with respect to code placem ent, in conjunction with
the granularity of its data, determ ine whether a proce
dure is likely to be placed on the sam e page as the pro
cedures it references. As program sizes increase, linker
placem ent policies have an increasing effect on work
ing set size and virtual m em ory u tilization . In this
paper, we are particularly concerned with the Unix

To appear in identical form in Proc. 26th Hawaii International Conference
on System Sciences, J a n u a r y 1993.

linker. T h is linker is w idely used, and while som e of
its shortcom ings are particular to U nix, m ost o f its
problem s are present in all linkers.

The first problem com m only encountered with
linker policies concerns the granularity w ith which
nam es are clustered. In an ideal system , if one were
to reference a sym bol o, the linker would locate and
extract the code associated w ith the sym bol, then iter
atively extract only other sym bols referenced by that
code. T h is ideal is difficult to achieve because m ost
linkers work at the object file level, and extracting
sym bol a m eans including all other sym bols and asso
ciated references found w ithin that object file, includ
ing but not restricted to those required by a.

W ell-organized source files, com piled and carefully
grouped into libraries o f object files, com e close to
achieving the ideal o f allowing a partial ordering of
sym bol references. More typically, the organization of
object files reflects w hat is convenient for the program
mer; the entities found in a relocatable executable are
usually related, but often the relation is at the con
ceptual level, rather than at the sym bol level. Clearly,
if more than one procedure is exported from an object
file, there exists the possib ility o f including code not
exp licitly referenced in the resulting executable (along
with all the code it references). As software changes
over tim e, the chances o f grouping non-interdependent
procedures w ithin a single object file increase.

Another problem is that current linkers rely on the
program m er to tell them w hat to do, and program
mers typically specify noth ing useful in term s o f order
ing. Linkers obey a scries o f program mer com m ands
indicating in w hat order to bind object files. The ob
ject files bound together consist o f either explicitly
specified files, or selections m ade im plicitly from li
braries o f object files. In general, the order in which
plain (non-library) object files are processed by the
linker has no effect on the correctness o f sym bol reso
lution or program construction. Therefore, program
mers usually pay little attention to such ordering.

T he typical im plem entation o f object file libraries
further worsens locality. To save tim e, linkers com
m only process libraries in one pass. T his m eans that
the programm er m ust either arrange to reference all
sym bols that are to be extracted from the library prior
to its processing, or explicitly process the library more
than once. A side effect o f th is sty le o f library process
ing is that library elem ents are extracted breadth-first.
All procedures extracted from a library are processed
and m ade physically adjacent in the resulting exe
cutable before the linker processes subsequent libraries
or object files. As a result, there is very little chance

that a procedure in one library will be physically ad
jacent to any procedures it m ay reference outside the
library. We will see em pirical evidence o f this fact, as
well as the fact that adhering to depth first call-chain
order produces much sm aller working set sizes in large
programs.

Finally, a U nix-specific library problem has to
do w ith the processing o f co m m o n data definitions.
G lobal variables in the C program m ing language are
exam ples o f com m on data item s. C global variables
m ay be defined (e.g ., i n t i o o ;) as often as desired,
as long as they are assigned an in itia l value only once.
S tatic storage is allocated for the variable and all com
mon definitions are m apped to the sam e location when
the program is linked. A pure reference to a global
variable (e.g ., e x te r n in t f o o ;) does not produce a
definition.

Difficulty occurs when a com m on variable definition
is repeated in m ore than one library elem ent. When
the variable is referenced, the linker chooses one of
the definitions — typically the first encountered —
and binds the object file in which it is found into the
program. If a program m er lias defined com m on stor
age for a sym bol in a library header file instead of
declaring pure references, the cffect can easily be that
m any otherwise unrelated elem ents define the com m on
variable. In these cases, a random and com pletely un
related object file, and all other object files it may
reference, m ay be linked into the program .

Clearly, these problem s are not significant when us
ing relatively sm all program s and sm all num bers of
carefully designed libraries. T he issue o f locality of
reference has been given attention in the past, when
system m em ory sizes were sm all and penalties for non
local references were h igh [8, 6, 4]. Even though typ
ical m achine m em ory sizes have been increasing, ap
plications tend to grow to fill available m em ory. For
contem porary applications such as X window system
clients, whose code sizes are an order of m agnitude
greater than those of sim ple applications such as I s ,
the problem of non-local references to procedures is
again significant. In addition, poor locality o f refer
ence puts a burden on other parts o f the m em ory hi
erarchy, such as the TLB and cache. A pplications will
continue to grow in size and levels o f the m em ory hier
archy will becom e further separated in performance.
These ensure the continuing need to strive for good
locality within programs.

The solution to the problem o f poor locality is to
use a procedure ordering that m ore closely serves the
needs of the program , rather than the convenience of
the program developm ent environm ent. For best re

2

suits, the ordering should take advantage of tem poral
inform ation, as well as sim ple dependency inform a
tion. And, the ordering should be done autom atically,
so that it becom es a standard, transparent compiler
optim ization, rather than an inconvenient-to-use sep
arate analysis and transform ation procedure.

These goals are achieved by the OM OS object
server, which provides a rich and flexible framework
for m anipulating objects and program s. OMOS con
structs object instances in user address spaces by fol
lowing construction instructions encoded in an exe
cutable graph o f operations. T h is graph is known
as an m-graph. T he instructions include com pilation,
linking, and sym bol m anipulation directives. By m od
ifying the m -graph, OMOS can easily perform pro
gram transform ations.

To achieve a better code order w ithin user executa
bles, we have im plem ented moni tor ing and reorder
ing w ithin the OM OS framework. Because we im ple
m ent the U nix program loading facility (e x e c) using
OMOS prim itives, reordering extends transparently
and seam lessly to user programs.

3 S e r v e r A r c h i t e c t u r e

3.1 O v e rv ie w

T he OM OS ob ject/m eta -ob ject server is a process
which m anages a database o f objects and meta-objects .
O bjects are code fragm ents, data fragm ents, or com
plete program s. These objects m ay em body fam iliar
services such as I s or em acs, or they m ay be sim pler
“building-block” objects such as hash tables or AVL
trees. M eta-objects are tem plates describing the con
struction and characteristics o f objects. M eta-objects
contain a class description of their target objects.

OM OS perm its clients to create their own m eta
objects, or to load instances o f m eta-objects into their
address space. For exam ple, given a m eta-object for
I s , OM OS can create an I s object for a client. In
stantiatin g an object subsum es linking and loading a
program in a m ore traditional environm ent. OMOS
is designed to support clients running on a variety
of operating system s, including m icrokernels such as
M ach[l] or Chorus[12], or traditional m onolith ic ker
nels that have rem ote m apping and IPC facilities.

M eta-objects contain a. specification, known as a
blueprint, which specifies the rules used to com bine
objects and other m eta-objects to produce an instance
of the m eta-object. These rules m ap into a graph of
construction operations, the m -graph, with each node
representing one operation.

The nodes in the m -graph define operations used
to generate and m odify objects. These operations
include module operations, as defined in Bracha and
Lindstrom[2]. C onceptually, a m odule is a nam ing
scope. M odule operations operate on and m odify the
sym bol bindings in m odules; m odule operations take
m odules as input and generate m odules as output.
The m odifications o f these bindings define the inher
itance relationships between the com ponent objects.
W ithin OM OS, m odules are represented as executable
code f r agm ent s which are im plem ented using the na
tive relocatable executable form at (e.g ., a .out).

T he m -graph m ay also include som e other non
m odule operations, such as operations that produce
m odules from source input, operations that produce
diagnostic output, group other operations into lists,
etc. The set o f graph operations into which a blueprint
m ay be translated is described in m ore detail in Sec
tion 3.2.

In general, when OMOS receives a request for an
instance of an object it m ust instantiate the object
from a m eta-object. To do this, OMOS com piles the
m eta-object into an m -graph. OMOS executes the
m -graph, whose operations m ay com pile source code,
translate sym bols, and com bine and relocate frag
m ents. M-graph operations m ay take other m-graphs
as operands. U ltim ately, the execution of the m -graph
is resolved to a list o f nodes which represent a set of
m appable executable segm ents. These executable seg
m ents are m apped into the requesting clien t’s address
space.

3.2 S e r v e r C la sses

OMOS is constructed from a set of classes which
provide basic nam ing, class construction, and instan
tiation services. Thus, OMOS is not only a server in
an object-oriented or traditional environm ent, but is
also com posed of objects.

Server objects are stored on disk by a persistent
derived class. Each class requiring persistent storage
defines its own derived class which is capable of saving
the object sta te on stable storage. Server objects are
m ostly organized in trees, w ith active portions residing
in OMOS memory. References to server objects are
obtained via a hierarchical nam e space.

Fragments represent files containing executable
code and data. They are the concrete im plem enta
tion o f m odules. Fragm ents export and im port their
interface through sym bol definitions and references.
Sym bols in a fragm ent m ay already be bound to a
value or they m ay yet be unresolved.

3

(h id e "_REAL_malloc"
(m erge

(r e s t r i c t "_m alloc"
(c o p y _ a s " _m alloc" "_REAL_malloc"

(m erge / r o / b i n / l s . o / r o / l i b / l i b c . o)))
/ r o / l i b / t e s t _ m a l l o c . o))

Figure 1: Blueprint Language Exam ple

M eta-objects are central to OM OS. A m eta-object
describes the construction process used to instantiate
an object. It is envisioned that m eta-objects m ay also
contain inform ation describing the nature o f the ob
jects they represent, such as a denotational sem antics
for the object, a description o f exceptional conditions,
robustness constraints, etc. Currently m eta-objccts
contain only construction inform ation.

A m eta-object supports two primary m ethods
to create an object: decom pose and f i x . The
decom pose operation recursively builds the m-graph
from blueprint inform ation, while f i x executes the
m -graph and constructs a set, o f m appable fragm ents
from the result, applying traditional relocations in the
process. T he result o f the f i x operation is cached by
the m eta-object for future use — subsequent opera
tions may avoid constructing and executing the m-
graph if there exists an appropriate cached version.

A blueprint lists the set o f operations used to trans
form a collection o f m cta-objccts and fragm ents into
a set o f m appable fragm ents. Currently the specifica
tion language used by OMOS has a sim ple Lisp-like
syntax. T he first word in a list is a m odule operation
(described below) followed by a series o f argum ents.
A rgum ents can be the nam es of server objects, strings,
or other m odule operations.

M-graphs are com posed of nodes which are graph
operators, m eta-objects and fragm ents. The com plete
set o f graph operators defi ned in OM OS is described in
[9]. T he graph operators im portant to this discussion
include:

M e r g e : binds the sym bol definitions found
in one operand to the references found
in another. M ultiple definitions of a
sym bol constitutes an error.

O v e r r id e : m erges two operands, resolving
conflicting bindings (m ultip le defini
tions) in favor o f the second operand.

R e n a m e : system atica lly changes nam es in
the operand sym bol table, and works on

either sym bol references, sym bol defini
tions, or both.

R e s t r ic t : deletes any definition o f the sym
bol and unbinds any existing references
to it.

C op y_as: m akes a copy of a sym bol under
a new nam e.

H id e : rem oves a given set o f sym bol defi
n itions from the operand sym bol table,
binding any internal references to the
sym bol in the process.

L ist: associates two or m ore server objects
in to a list.

S o u r c e : produces a fragm ent from a source
object.

M ost of these operators have m odules as operands
and return m odules as results. Som e operators, like
so u r c e , generate m odules, and others, like l i s t , con
nect m odules. Various m odule operations can alter
<sym bol,value> bindings w ithin a fragm ent. Som e
operators use Unix regular expressions to perform
changes over groups o f sym bols in a m odule.

The exam ple in Figure 1 shows a blueprint which
produces a new version o f the I s program . A spe
cial version o f the procedure _m alloc found in the file
/ r o / l i b / t e s t _ m a l l o c . o replaces the version found in
the C library. T he new version o f _m alloc m ay refer
ence the original version by the nam e _REAL_malloc.

4 O M O S P r o g r a m M o n i t o r i n g

We can use the flexible nature of O M O S’ object
framework to im plem ent a transparent program m on
itoring and optim ization facility. To do this, a user (a
system m anager, m ost likely) specifies a named m eta
object that is to be m onitored. W hen instantiated ,
the resulting object includes interposed m onitor pro
cedures. The m onitor procedures send an event trace
back to OM OS, which analyzes this inform ation to
derive a desired ordering o f procedures w ithin the ex
ecutable. Then OMOS reorders the base executable;
subsequent instantiations use the new, optim ized ver
sion.

4.1 M o n i t o r e d O b je c t S e tu p

T he first step in this process involves physically re
placing the m eta-object with a derived m onitor class
that overrides certain of the m eta-ob ject’s procedures.

The privileged server m ethod m o n ito r takes the path
nam e of a target m eta-object, and constructs the de
rived m eta-object whose blueprint is a copy of the
original blueprint. OM OS replaces the target with the
new, m onitor m eta-object. Subsequent invocations of
the target m eta-object will dispatch to m ethods over
ridden by the m onitor m eta-object which will enact
the m onitoring and reordering functions.

T he m onitor m eta-object performs the bulk o f its
work when the decom pose m ethod is first invoked. Re
call, the decom pose m ethod generates the m -graph,
the execution o f which u ltim ately creates a set o f rriap-
pable fragm ents com prising the code and data that
m ake up the object. T he first tim e decom pose is
invoked on the m onitored m eta-object, it invokes a
decom pose m ethod on its base class to extract an ini
tial m -graph. It, then recurses through the graph, find
ing all o f the fragm ents contained w ithin . It rebuilds
the graph, prepending a special m o n i t o r graph opera
tion to each fragm ent.

During execution o f the m -graph in the m eta
object f i x m ethod, the m o n ito r operation analyzes
its operand, extracting the nam e of each procedure
entry point in the m odule. T he m o n ito r operation
generates an assem bly sourcc file containing a m onitor
stub procedure, or wrapper , for each entry point. Each
wrapper exports an entry point w ith the sam e nam e
as the original procedure. A copy_as operation is ex
ecuted on the fragm ent, duplicating each entry point
nam e as an internal nam e. T his internal nam e will
be referenced by the wrapper. A r e s t r i c t operation
removes the original nam e from the operand sym bol
table and breaks any existing intra-m odule bindings
to it. T he wrappers are com piled and m erged (linked)
with the operand, generating a new fragm ent. A h id e
operation is invoked on the result to elim inate the in
term ediate nam es produced by the copy_as operation.
Thus, the wrapper is transparently interposed between
the caller of each procedure and the procedure itself.

Finally, a special version o f _ e x i t that knows how
to perform a final clean up on the m onitor sta te is
interposed between the client and the system _ e x it
routine. T his result is linked with a library o f m onitor
routines containing the support procedures which are
invoked by the wrapper functions.

4.2 M o n i t o r e d O b je c t E x e c u t io n

After the f i x m ethod has been invoked on the m on
itored object, the m onitor code is in place and ready to
generate log data. Each procedure wrapper logs infor
m ation about entry and exit to the procedure. When
an instance of the derived m eta-object is m apped into

a user program, the rest o f the m onitoring infrastruc
ture is constructed: a thread is started in the server to
collect log data which are returned from the m onitored
program via a com m unication channel.

On each invocation o f a m onitored procedure in
the target process, the wrapper m akes an entry in a
log buffer local to that process. In order to preserve
a valid stack fram e, the wrapper replaces the return
address on the stack w ith the address o f an internal
wrapper exit sequence. T he wrapper saves the real re
turn address on a private stack and transfers control
to the m onitored procedure. On exit from the m oni
tored procedure, control is passed to the wrapper exit
sequence; an entry is m ade in the log buffer, the real
return address is retrieved from the internal stack, and
control is returned to the caller.

W hen the log buffer is full, its contents are written
over the com m unication channel. T he m onitor thread
w ithin OM OS collects and stores the contents in a file.
The m onitor version o f the procedure _ e x i t flushes
any rem aining log inform ation, signals a logical end
of file to the server, shuts down the com m unication
channel in the target process, and invokes the system
_ e x it procedure to term inate the program.

4.3 E v e n t D a t a A n a ly s is

Once log data have been collected, OM OS runs an
external analysis program to construct a dynam ic call
graph of the program from the event log file. The
event data are of three basic types:

D e c la r e : associates a textual procedure
nam e and the address of the procedure
with an ordinal procedure index. The
procedure index is unique and used in
subsequent references to the procedure.

E n tr y : indicates entry to a procedure.

E x it: indicates exit from a procedure.2

T he dynam ic call graph constructed by the analysis
program lias a node for each instance of a procedure
that is called, and an arc from the caller to the callee.
The outgoing arcs are ordered tem porally. Recursion
is detected and converted to a cyclic arc.

A number of different, reordering strategies can be
applied to the log data. The analysis techniques pro
duce an ordered list o f procedure names. The ordering
represents the order in which the procedures should be
placed in physical m em ory to im prove inter-procedure

2Currently, exits must be matched with their corresponding
entries. There is no provision for the use of nonlocal gotos.

5

locality o f reference. After an order has been gener
ated via analysis, OM OS uses the list to reorder the
fragm ents, as described in Section 6. The reordered
version of the program will be used on subsequent in
vocations.

5 R e o r d e r i n g S t r a t e g i e s

T he goal o f the reordering strategies is to improve
locality o f reference. In general, the strategies we fol
low adhere to call graph order at the granularity of a
procedure, rather than at the granularity of a relocat
able executable file which the standard linker uses.

T he first approach we take is to reorder based on
a static call graph analysis. S tatic analysis has the
drawbacks that it m ay be difficult to do a proper call
graph analysis if procedures are passed as argum ents,
and that there is no notion of how often or in what
order procedures are called. Using profiling inform a
tion to derive a call graph would provide a better idea
of call frequency, but still lacks ordering inform ation.
In the following analysis techniques we use dynam ic
trace inform ation to generate call graphs.

The first dynam ic reordering strategy we apply first
involves separating out s ingleions — procedures that
are only called once. T his strategy divides the world
into the set o f com m only called procedures and the set
of procedures that are used only once (and thus, will
not be responsible for repeated page faults). We then
order the rem aining procedures using the dynam ic call
graph order. T h is strategy tends to sp lit out in itia l
ization procedures.

The second dynam ic strategy involves having the
user exp licitly specify which procedure constitutes the
beginning of the central processing loop. T his specifi
cation separates the program into two distinct phases:
an in itialization phase and a m ain processing phase.
The m ain loop is grouped in call graph order, followed
by the set o f in itia lization procedures. T h is results in
procedures com m on to both the m ain loop and the
in itialization procedures being grouped w ith the m ain
loop, where, over tim e, they will tend to be called more
o ften .

T he third dynam ic strategy involves using a call-
chain order, but first sp litting out hahituals — pro
cedures called frequently from a number of places —
into a separate set o f pages. The problem with habit-
uals, such as bcopy or the string procedures, is that
they m ay be called often, from a number of different
sources. P lacing them with any one call chain m ay
unfairly m ake resident the rest o f the procedures in

that chain. To solve this, we cluster a num ber of the
m ost frequently referenced procedures in the program
by selecting a percentage o f the tota l num ber of pro
cedures. These procedures would also be prim e candi
dates for cloning[5], which is an enhancem ent we plan
to investigate in the future.

T he fourth dynam ic strategy involves ordering the
call chain by frequency o f reference, rather than in a
sim ple first-called, depth-first fashion. T his strategy
has the advantage that it will place together proce
dures in the m ost heavily traveled paths. T he diffi
culty with this strategy is that the out degree of any
given node (the count of other nodes that node ref
erences) m ay not be a fair m easure of the activ ity on
that path; a node w ith a sm all out degree m ay still rep
resent the best choice, because a large am ount of ac
tiv ity is found beneath it. A m ong other factors, a call
to a given procedure will result in touching the page of
the callee on invocation and touching the page of the
caller on return. Procedures that m ake many invo
cations m ay be as heavily “used” as procedures that
are invoked m any tim es. To take advantage of this
knowledge, we perform weighting, wherein the weight
of a node is calculated as a function of the number of
tim es it is callcd and the weights o f its children.

Clearly, different strategies are applicable for differ
ent programs or even different runs o f the sam e pro
gram . Use o f shared libraries increases the com plexity
of reordering by increasing the number of disparate
uses o f a given procedure. In general, there is no op
tim al strategy for reordering all program s. We find,
however, that usage inform ation can provide order
ings that are superior to those arrived through static
m echanism s. We dem onstrate som e of the particular
strengths and weaknesses of these different techniques
in Section 7, where we exam ine actual reordering re
sults.

6 F r a g m e n t R e o r d e r i n g

The reordering transform ation of a fragm ent m ust
result in a new executable that is equivalent in func
tion to the original. In principle, the transform ation
is simple:

1. Find the starting and ending offsets of all proce
dures in the executable code.

2. For each o f the procedures in step 1, find all the
relocations that are applicable to the procedure
and all sym bols that are defined w ithin the pro
cedure offset range.

6

3. For each o f the procedures in step 1, m ove the pro
cedure contents, adjust the sym bol values of sym
bols defined w ithin the procedure ofTset range,
and adjust the offsets of the relocations applicable
to the procedure.

In practice, op tim izations performed by the com
piler, linker, and assem bler com plicate the transform a
tion. For exam ple, a com m on com piler optim ization
puts constant data (e.g ., strings) in the sam e segm ent
with executable code. T h is m akes location o f the end
o f a procedure m ore com plicated. If the constant data
are m oved w ith the procedure, other procedures refer
encing the constant data no longer reference the cor
rect addresses. Furtherm ore, if the constant data are
referenced via a sm all pc-relative displacem ent, and
the constant data are m oved, after the m ove the dis
placem ent is wrong in all instructions accessing the
constant data. Worse, the new displacem ent could
exceed the reach o f the instruction.

A nother problem results from the assembler and
linker perform ing optim izations to reduce the number
of relocations that need to be performed during later
steps. For exam ple, references to defined sym bols can
be relocated by the assembler or linker. If the relo
cation is performed and the procedure is later m oved,
the original relocation becom es invalid. To allow ob
ject file reordering, no relocations m ay be performed
until the reordering has been accom plished. We have
m odified versions of the GNU assembler and linker
which inhibit these troublesom e behaviors.

7 T h e R e s u l t s

We tested the OM OS reordering facilities using a
version o f OM OS which runs under the Mach 3.0 op
erating system , using a single server im plem entation
of BSD 4.3 U nix. The m achine was an 25 M llz In
tel 80386 with 32 MB of cache and 16 MB RAM. We
used the X program xmh as a test case, since it is con
structed using layers of m odules taken from several dif
ferent libraries. T he binary is 405K o f text and 551K
total. In order to produce consistent results, we m ade
special versions o f the procedures that an X applica
tion uses to receive X input events. These can either
m ake a rccord o f the incom ing events in a file, or re
trieve events from a file and sim ulate their occurrence.
T he retrieval m ode allows us to “play back” an earlier
session with an X application. We also m ade a version
of the procedure _ e x i t which would report the number
o f page fault,s a program generated during its execu
tion, since the Mach Unix server does not provide that

inform ation to the t ime u tility . We interposed these
procedures in the application using OM OS facilities,
recorded a 10 m inute xmh session, then replayed that
session on a quiescent system under a num ber of dif
ferent conditions to obtain our performance figures in
m ultip le runs.

We tested six different strategies: a control with no
optim ization , a test o f static call graph analysis, and
the four dynam ic strategies described in section 5. We
changed the am ount o f m em ory available to the sys
tem by wiring down free pages and observed the effect
this had on the ap plication ’s execution tim e. Figures 2
and 3 show the increase in execution tim e as available
m em ory decreases. A graph o f page faults versus a vail
able m em ory traces out a near-identical set o f curves,
dem onstrating the increasing dom ination of page fault
tim e as the am ount of available m em ory decreases.

We notice from the num bers in Table 1 that re
ordering produces a sm all com paction in the appli
cation, resulting in fewer page faults even when the
application is given as much m em ory as it can use.
We also notice that static reordering produces a sig
nificant im provem ent in paging behavior, and that the
more subtle im provem ents found in the more com plex
strategies prove to be significant, as m em ory becom es
scarce.

Finally, we notice that the strategics of interm edi
ate sophistication, such as strategies 2 and 3, actually
do a little worse than the sim pler policy of strategy
1, for som e interm ediate values of available memory.
This decline indicates that there is a cost to separat
ing frequently called procedures from their callers; by
putting them on a separate page, the working set is
effectively increased by som e near-constant am ount.
T his expenditure becom es effective as the rate o f page
faults increase and the value o f accurate prediction of
which pages are likely to be faulted on increases. This
anom aly reinforces the need to investigate the use of
code duplication for frequently used procedures.

8 R e l a t e d W o r k

A variety o f work has been done on the prob
lem of autom atically im proving locality of reference
within program s in overlay system s and early paging
system s[3, 8, 6, 4]. Som e o f this work concentrates
on instruction reference locality; other concent,rates
on data reference locality. More recent work focuses
on the related problem o f locality of reference within
a cac.he[7], Hartley[5] used procedure replication as
a way to bound the locality of reference for a given
point in the program . P ettis and IIansen[10] did work

7

100 200 300 400 500 600 700 800Available memory (4K pages)

Figure 2: T im e (seconds) versus available m em ory

Available memory (4K pages)

Figure 3: Blowup of time versus available memory

8

Table 1: xmh Program Performance D ata (elapsed time in seconds \ ° ' page faults '

Strategy A vailable M emory
118 147 185 258 321 417 675 800

None oo 1052 673 305 249 183 96 43
oo 8755 4680 1623 1056 597 160 120

Static ordering 1001 626 361 190 132 87 69 35
8209 5309 3024 975 608 225 121 120

Strategy 1 927 533 375 172 119 87 64 36
8008 4578 2456 841 403 211 119 113

Strategy 2 854 525 372 161 120 87 67 37
7334 4374 2310 768 540 234 125 113

Strategy 3 943 530 335 151 102 78 67 36
8241 4190 2071 686 447 241 124 113

Strategy 4 707 357 319 143 94 89 61 33
5979 2741 1926 674 318 247 116 113

both to im prove ordering of procedures and ordering
o f basic blocks; they concentrated m ore heavily on re
ordering basic blocks and used a single, straightfor
ward algorithm for ordering procedures. They found
8-10% perform ance increases from better cache and
TLB use, and their work is incorporated in H ewlett-
Packard’s current linker and fd p program s.

All o f the schcrncs we have seen are designed to
be used in response to borderline conditions — ap
plications which use the lim it o f available m em ory
space or bandw idth. The popularity o f these schem es
rises and falls over tim e w ith changes in the costs of
m em ory, m em ory access techniques, application com
plexity, hardware dom ain, and other factors. Changes
in the lim its o f technology m ay alter the relative im
portance o f this class o f optim ization, but its validity
does not change. By autom ating locality of reference
optim izations, we remove them from the category of
special op tim izations performed (and reinvented) only
when applications reach the lim its o f technology. The
relative benefit o f these optim izations m ay rise and
fall over tim e, but their general u tility rem ains.

A user-space loader is no longer unusual. M any op
erating system s, even those w ith m onolith ic kernels,
now use an external process to do program loading in
volving shared libraries, and therefore linking. How
ever, the load er/dyn am ic linker is typically instanti
ated anew for each program, m aking it too costly for
it to support m ore general functionality such as in
OM OS. A lso, these loaders are not constructed in an
extensible m anner.

9 F u t u r e W o r k

Many interesting problems rem ain to be addressed
by OM OS. There is work to be done in the area of
m onitoring policy. We currently use the results o f one
run to determ ine w hat constitutes “typical use” o f a
program — the assum ption being that the run will be
specially tailored to be representative of typical use.
We plan to look into the policy issues o f collecting
and interpreting larger sam ples of data. W e plan on
investigating the m erit o f duplicating the code of fre
quently used procedures, rather than trying to deter
m ine the best m atch for a procedure used heavily in
several places. We will also look into the issues in
volved in reconciling diverse uses of a com m on piece
of code, as in the case of shared libraries, where a
single execution profile can not accurately represent
the typical use of a set o f procedures. And, we plan
to develop policies whereby several instantiations of
an OMOS m eta-object — each tuned for a different
use — can be m ade available to client applications.

Locality of data reference is arguably m ore im por
tant than code locality, but is a less tractable problem ,
due to the difficulty o f m onitoring data references and
due to the existence of dynam ically allocated data.
However, m any num eric applications make heavy use
of large arrays of static data. We plan on analyzing a
set o f such program s to assess the worth of reordering
static data.

The extensible nature of OM OS, and its knowl
edge of everything from source file to execution traces,

m ake it applicable to other kinds o f optim izations re
quiring run-tim e data. OM OS could transparently im
plem ent the type o f m onitoring done by M IPS’ p i x i e
system , to optim ize branch prediction[7]. Another
direction is suggested by O M O S’ natural connection
w ith program developm ent. OM OS could easily be
used as the basis o f a C ASE tool, where its ability
to feed back data from program execution, would be
useful for b oth debugging and optim ization .

There are a host o f engineering issues to be ad
dressed in OMOS: protection, consolidating OMOS
servers in a network, im plem enting a virtual file sys
tem interface, and perhaps m ost im portant, policies
for m anaging m ain m em ory and backing store.

10 C o n c l u s i o n

M ost current linking technology m akes poor use of
virtual m em ory by ignoring problem s o f locality of ref
erence in large program s. T his has adverse effects
on tota l system throughput. OM OS, an extensible
ob ject/m eta -ob ject server, provides a framework for
autom atically im proving the performance o f programs
through im proved locality of reference. OMOS can
transparently insert perform ance m onitoring code in
applications and gather data about a program ’s run
tim e behavior. Using this data, OMOS can derive
an im proved program layout and reorder executable
code fragm ents to increase locality o f reference. The
m ost effective strategies for determ ining better frag
m ent ordering are based on data available only from a
run-tim e m onitoring schem e. Significant performance
im provem ents were gained from this approach.

A c k n o w l e d g e m e n t s

We thank Robert Kessler and Gary Lindstrom for
the tim e they have spent reviewing this work, Jeffrey
Law for helping us m ake the Mach BSD Server do
new and interesting things, and Bob Baron and Daniel
Julin for providing key services and insights in tim es
o f need.

R e f e r e n c e s

[1] Mike A ccetta, Robert Baron, W illiam Bolosky,
David G olub, Richard Rashid, Avadis Tevanian,
and M ichael Young. Mach: A new kernel foun
dation for UNIX developm ent. In Proceedings o f

the S u m m e r 1986 U S E N I X Conference, pages 93
112, A tlanta, GA, June 9 -1 3 , 1986. U senix Asso
ciation.

[2] G ilad Bracha and Gary Lindstrom . M odularity
m eets inheritance. In Proc. In te rna t iona l Con
ference on C o m p u te r Languages, pages 282-290 ,
San Francisco, CA, April 20-23 1992. IEEE C om
puter Society.

[3] L. W . C om eau. A study o f the effect o f user pro
gram op tim ization in a paging system . In Pro
ceedings o f the A C M S ym p o s i u m on Operat ing
Sy s te m s Principles, Gatlinburg, Tenn., October
1967. '

[4] D om enico Ferrari. Im proving locality by criti
cal working sets. C om m uni ca t io ns o f the A C M ,
1 7 (l):6 1 4 -6 2 0 , Novem ber 1974.

[5] S. J. Hartley. C om pile-tim e program restruc
turing in m ultiprogram m ed virtual m em ory sys
tem s. I E E E Trans on Sof tware Engineering, SE-
14(11): 1640—1644, 1988.

[6] D. J. Hatfield and J. Gerald. Program restruc
turing for virtual m em ory. I B M S ys tem s Journal,
10(3): 168—192, 1971.

[7] J. L. Hennessy and T hom as R. Gross. Post
pass code optim ization o f pipeline constraints.
A C M Transact ions on Programming Languages
and Sys tems , 5(3):342, July 1983.

[8] T. C. Lowe. A utom atic segm entation o f cyclic
program structures based on connectivity and
processor tim ing. C om m uni ca t io ns o f the A C M ,
13(1):3—9, January 1970.

[9] D. Orr and R. Mecklenburg. OM OS — an ob
ject server for program execution. In Proc. Sec
ond Interna t ional Workshop on Object Or ien ta
t ion in Operat ing Sys tems, Paris, France, Septem
ber 1992. IEEE C om puter Socicty.

[10] K. P ettis and R. C. Ilansen. Profile guided
code positioning. S I G P L A N Notices, 25(6): 16
27, June 1990.

[11] D. M. Ritchie and K. T hom pson. The UNIX
tim e-sharing system . The Bel l S ys tem Technical
Journal, 57(6): 1905—1930, Ju ly /A u gu st 1978.

[12] M. Rozier, V. Abrossim ov, F. Arrnand, I. Boule,
M. Gien, M. G uillem ont, F. Herrmann, C. Kaiser,
S. Langlois, P. Leonard, and W . Neuhauser. The
Chorus distributed operating system . Comput ing
Sys tems , 1 (4) :287—338, Decem ber 1989.

10

