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Abstract

This paper describes a hidden curve algorithm specifically designed for sculptured sur­
faces. A technique is described to extract the visible curves for a given scene without the 
need to approximate the surface by polygons. This algorithm produces higher quality results 
than polygon based algorithms, as most of the output set has an exact representation. Sur­
face coherence is used to speed up the process. Although designed for sculptured surfaces, 
this algorithm is also suitable for polygonal data.

C R  Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computa­
tional Geometry and Object Modeling. 1.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism.

Additional Key Words and Phrases: hidden curve removal, curve-curve intersection, 
visibility propagation.

1 Introduction

Hidden line removal is one of the earliest computer graphics problems; yet new algorithms 
appear every year [16,1,8,21,4,15,17,18,20,22,23,25,27]. Usually they are developed for polygonal 
data, so sculptured surfaces must be preprocessed and approximated as large collections of 
polygons. The result displays the polygonized models accurately, but original model information 
is lost [4,18,20] (see figure 1).

In [16,1,8,21,27] the idea of quantitative invisibility and the use of critical points was 
developed. Critical points are intersection points between projected polygon primitives. The
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Figure 1: Left: 1930 polygons, middle: 4215 polygons, right: 2 NURBS surfaces (56 patches).

technique was extended to bi-quadratic patches in [12]. The primitives are subdivided at each 
critical point which guarantees that the interior of each segment has homogeneous visibility. 
A segment’s visibility is then tested by firing a ray from the eye to an interior point of the 
segment.

While the same basic approach is used here, it is extended to apply to arbitrary nonuni­
form rational B-spline (NURBS) surfaces (the primitives). By not using polygonal approxima­
tions, the algorithm eliminates the vast amount of data resulting from the approximation of 
surfaces by polygons. The algorithm presented here has several stages (including extracting 
curves of interest, splitting at critical points, and visibility testing). Surface coherence is used 
extensively to reduce the number of ray tests one needs to perform to detect curve visibility, in 
a similar way to that for polygons[10,l l ] .

The trade-off is a reduced number of primitives in exchange for a higher complexity 
of the operations between them. Driving the output directly from the surface results in high 
quality images (Figure 1). Only silhouette curves need to be approximated, but they can be ap­
proximated at a much higher resolution than with pre-polygonized surfaces. Figure 1 compares 
the two, after adaptive subdivision has been used to obtain the polygonal approximations.

Section 2 defines the required elements for presenting the algorithm and also introduces 
the basic hidden curve algorithm. Section 3 explains how the curves of interest are extracted 
from the surface. Usually four types of curves are useful: the surface boundary curves, curves 
along C 1 discontinuities in the surface (if any), iso-parametric curves, and silhouette curves. 
Section 4 addresses the 2D curve-curve intersection problems specific to this algorithm. Sec­



tion 5 presents issues in visibility testing arising from a surface-ray intersection algorithm. 
Computation of surface-ray intersections is relatively expensive, especially when polygonal ap­
proximations to the surfaces have not been used, so methods to speed the computation are 
described. Section 6 discusses extensions to this algorithm for trimmed surfaces.

All the images/comparison examples shown in this paper, were generated using nonuni­
form, rational B-spline (NUR.B) surfaces as implemented in the Alpha_l system.

2 T h e  Basic A l g o r i t h m

Let the view orientation be normalized so that the view point V  is on the positive z-axis at 
oo and the image is projected onto the plane z =  0 , which will be referred to as the projection 
plane or the screen. All other views can easily be preprocessed into this view.

Definition 2.1

1. A non-self-intersecting surface is called a simple surface.

2. A non-self-intersecting curve is called a simple curve.

3. Let P  be the map to the projection plane, P ( x , y , z )  =  ( x , y , 0 ) .  The subscript 
P  will usually denote the mapped entity, e.g., Cp =  P( C) .

We consider only simple surfaces whose projected curves are simple curves. Also, inter­
section between surfaces are restricted to lie along boundaries. If not, the surfaces should be 
intersected using the appropriate boolean operations, and trimmed surfaces should be created. 
Figure 16 has surfaces which interpenetrate, and so boundaries between them are unknown and 
visibility cannot be always correctly determined.

Suppose surface 5  =  S (u ,v ) E C 1, then N (u ,v ) =  § f  x § §  is normal to the surface S. 
Unless otherwise specified, all surfaces with which we deal are assumed to be C 1 continuous, 
and their parameterizations are assumed to be such that N (u ,v ) /  0. If p is a point on the 
surface 5 , then it is the image of a point in parameter space, so we write p — S(up, vp).

Definition 2.2

1. A  silhouette point of a surface is a point p on the surface whose normal has a 
zero z-component, i.e. N z(up, v p) =  0.

2. A  silhouette curve of surface S is an ordered set o f silhouette points Q C S 
forming a continuous curve such that V p £ Q, and V f >  0 , 3 q E S such that 
N z(tiq, v q) /  0, and ||p -  <j|| < e.

3. If 3 D C S that is the image of an open disk such that V d E D, N z(ud, vd) — 0, 
we say that S has a silhouette surface and the above definition o f the silhouette 
curve is simply its boundary.
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We will not consider surfaces with silhouette sub-surfaces in them. Surfaces that do 
contain silhouette surfaces may be preprocessed by trimming out the silhouette sub-surfaces 
(see Section 6).

Lem m a 2.1  A surface S can be decomposed into silhouette curves and disjoint 
regions whose boundaries are surface boundaries and/or silhouette curves.

Proof: Consider a point p £ S', N z(up,v p) 7̂  0, and the set of points which can be 
reached from p by continuous paths in the surface that do not cross any silhouette curves. Let 
that set be Rp, and let R q be a similar set for point q £ S,q £  R p, if such a point q exists. 
Clearly Rp fl R q =  0, for if there exists point r £ Rp fl R q, then there exists a continuous path 
from p to r and from r to q, and hence from p to q. But this contradicts the way we picked q. 
Call the collection of path connected regions 7Z.

For our proofs we require that the projection operation be bijective between each R  £ 1Z 
and its projected image.

Surprisingly not all surfaces are well behaved in this, although they are fairly rare. 
Such a surface, as seen in figure 2, must be preprocessed and subdivided. Such surface can be 
detected by noticing its boundary is self intersection:

Lem m a 2.2 Denote by F r (R ) the boundary o f  R  £ 71, if R intersects with some 
ray more than once, then P (F r(R )) is self intersecting, i.e. not simple.

Proof: In order to show that the P (F r(R ))  is self intersecting, it is enough to show 
that there exists a point pb £ F r(R )  and a point px £ In t(R )  such that P(pb) =  P(p'). If K 
intersects R  in at least two points, called pl and pm, find a continuous path p in R from pl to a 
boundary point pb in F r(R ). if P(p) intersects with P (F r(R )), we are done. Otherwise, a ray 
through pb must intersect R  in another place, since the projected path P(p) never crossed the 
boundary.

Lem m a 2.3 Let R  £ 7Z and rl 5r2 £ R. Then, Nz(uT1,v T1)N z(uTi,v ri) >  0, i.e. 
they have the same sign at both r\ and 7*2.

Proof: Since there exists a continuous path from to r2 totally in R, N z along that 
path can have no zeros so N z has the same sign at both and r2.

We define visibility as invisibility count of zero where:

Definition 2.3 The invisibility count of a point p is the number o f intersections of  
the half-open ray ?? from the view point V  to the point p has with sculptured surfaces 
in the scene.

We will concentrate our discussion on determining visibility only (i.e. where the count 
is zero), although one may use our algorithm to detect quantitative invisibility [6].



Figure 2: Single region surface (no silhouettes), which is not bijective.

L em m a  2 .4  Let R  £ IZ, and let 3? be an half open ray to some point p.

1. The projection o f  R  to P (R )  is injective, i.e. every point on R  is mapped to a 
unique point in the x — y plane.

2. R  can modify the invisibility count o f  some point p by at most one.

3. The invisibility count o f  a point p will be increased by the region R  iff P(p)  E 
P (R ) ,  and R  n 3? /  0.

Proof:

1. Follows from the definition o f R  and lemma 2.2.

2. Since R  must be injective, only one point o f it can be mapped to some projection plane 
point. Specifically, given some point p , at most one point of R  can be mapped onto P(p).

3. In order for R  to hide p, there must exist a point in R  that is mapped onto P (p ) .  But p 
can be closer to the viewer and therefore R  will hide p iff P (p)  G P (R )  and R  n 3? /  0.

Tw o types o f curves are dealt with:

D e fin it io n  2 .4

1. Surface boundary curves and surface silhouette curves are defined to be active 
curves.

2. The framework ips  o f  a surface S  is the set o f  all its active curves. Set ipf, =
P(v>5 ).

3. A n y  curve which is not active is defined to be a passive curve. For example, 
an isoparametric curve is passive.
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Figure 3: - silhouette might have cusps in its projection which the curve must be split at

Clearly active curves are those curves at which visibility o f all curves can change when 
crossing them.

L em m a  2.5 Let C  be a curve in the scene. I f  Cpf)(\Jsipp) =  <f>, then all points 
p £ C  have the same invisibility count.

P r o o f :  Since C p  does not intersect with any ipp, it is totally included in or excluded 
from any R p  for all regions. Relative to some region R ,  and based on lemma 2.4, C  is invisible 
iff C p  G R p  and R  is closer to the viewer, and visible otherwise. Since it is true for any R, C  
visibility must be homogeneous.

C o r o l la r y  2.1 Given a curve C , let { C p } denote the collection o f  sub-curves o f  
C p  resulting from subdividing C p  at each o f  its intersection points with Usipp, and 
let C l be each pre-image, i.e., C l C C .  For each C l, all points p 6 C* have the same  
invisibility count, except possibly the two end points.

Corollary 2.1 suggests an algorithmic way o f testing visibility o f curves in a scene. 
Obviously many projected curves will intersect with some projected frameworks, but the number 
o f times they do is finite and usually small. For each o f the subdivided curves, only one point 
in its open interval needs to be tested for its invisibility count. As noted in [2,11], silhouette 
curves can overlap; that is, a silhouette curve can be G l continuous and still have cusps in its 
projection (called a curtain fold [2]). Since the visibility of the silhouette curves may change at 
curtain folds, they must be split at these points. Fig 3 is an example o f such case, in which the 
single silhouette curve has no G l discontinuity (left), while its projection has two cusps (middle 
- at arrows), where the silhouette must be broke at, so we could get the correct hidden curve 
result (right).

Using Corollary 2.1, we can define the basic algorithm:

1. Extract all curves of interest from the given surface(s) in the scene. This results in at least 
the framework o f each surface, but can also include passive curves such as isoparametric 
curves.



C1 Discontinuity
Figure 4: Four curve types in surface display.

Split each passive and active curve C  at each point where its projection C p  intersects 
with any ipp and where •0s is closer to the viewer.

For each curve that results from the previous stage, fire a ray in the view direction through 
an arbitrary interior point and find the invisibility count o f that point.

If the invisibility count o f the point is zero, then curve is shown, otherwise it is hidden.

Based on Corollary 2.1, the evaluation o f the invisibility count picks an arbitrary point p 
in the interior o f curve C ,  and determines the visibility o f  all o f C  using the invisibility count o f 
p. Curves are always split at tangent intersections, since they could potentially change visibility 
at those points. A  technique is used in [16,1,8,21,27] o f splitting a line into segments anytime it 
intersects with any projected polygon boundary to make the segment visibility homogeneous. 
In the next sections, we will describe the different stages for arbitrary sculptured surfaces. This 
algorithm, although conceptually simple, does require accurate computation in non robust 
numerical situations. We discuss our approaches to simplifying the operations and to reducing 
the number o f times these complex operations must be performed.

3 C u r v e  Extraction

The four types o f curves which we display are boundary curves, iso-parametric curves, curves 
along C 1 discontinuities in the surface, and silhouette curves (see Figure 4). All but the last 
type are view independent.

Extraction o f the first three types o f curves is usually extremely simple since these 
curves are isoparametric. For example, Figure 5 shows the same pawn as in Figure 1. We 
assumed the surfaces are C 1 continuous, but if some are not, they must be subdivided at 
the appropriate isoparametric values. This creates a new boundary and two new surfaces on 
which the algorithm is then correct. This splitting stage is only added when tangent plane 
discontinuities are present.

The silhouette curves are not isoparametric curves usually (Figure 5), and in general,

2.

3.

4.



Figure 5: Pawn extracted curves, i n u - u  space.

there is no computationally feasible way to represent them exactly. An approximation technique 
must be used in this case, and a piecewise linear curve is the simplest choice.

One method o f extracting the silhouette curves o f a surface is to subdivide the surface 
up to a given e tolerance and fetch all the surface pieces with silhouettes on them. We seek 
methods using subdivision and spline properties to identify regions with silhouettes. To solve 
this problem we are interested only in the zero set o f the z component o f N ( u ,v ) ,

N z(u ,v )  -
d x (u ,v )  dy(u, v) d y (u ,v )  d x (u ,v )

du dv du dv (1 )

Now if the first term on the right side of equation 1 is positive everywhere and the 
second negative everywhere, N z is positive everywhere.

L e m m a  3.1  Given a scalar B-spline surface

n —1 m  — 1
°(U,V) = 'y ] ^2 ai,jBi,ku,Tu(u)Bjil%ttTv(v),

then dcr(u,v)
j=0 t=0

> 0 whenever at+ i j  — > 0

P r o o f :  Consider partial derivative o f a with respect to u.

n — 1  m — 2da

du = X >  - !) E  Ql+1J ai,j B i ,k - i (u )B jj (v ) .
fr'o ,tS Ti+k ~ Ti+1
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Figure 6: Adaptive silhouette extraction, in R 3

Object Adaptive Non adaptive
saddle 1 5.7
discont 1 3.6
pawn 1 5.4
queen 1 3.4
rook 1 4.0

knight 1 2.1

Table 1: - adaptive and non adaptive silhouette extraction relative time.

Since the blending functions B  are nonnegative, and the difference r,+ k — t,-+i >  0, if 
« ,+ i j  — a , j  >  0, for all i and j , will be positive everywhere.

Lemma 3.1, and an analogous version for can be used on the x and y  coordinate 
functions to provide a simple test for ruling out the existence o f silhouette curves in a surface. 
Needing only 0 ( m n )  first order differences, it can act as an additional termination condition 
for the subdivision.

This adaptive subdivision reduces the theoretical number o f surfaces resulting from 
O(-V) in the non adaptive case to O ( - ) ,  when again e is used as flatness tolerance! Figure 6 
shows such an adaptive subdivision for a surface with three silhouette curves. Also table 1 
compares the relative times adaptive and non adaptive subdivision techniques consumes.

The reverse o f lemma 3.1 is not true, that is, a surface may have no silhouette curves, 
and yet the differences may not all have the same sign. A  2D counterexample in Figure 7 shows 
a control polygon with 2 silhouette points, but a curve with none.

We can now define the adaptive subdivision to extract silhouette curves. A  combined 
termination condition for this highly recursive algorithm is used. The flatness test o f the surface 
is used with the silhouette existence condition developed above to form a termination test that 
will be referred as T erm in a te(S ) ,  a boolean predicate.
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Figure 7: Curve with no silhouette points but with control polygon with two silhouette points

PROCEDURE ExtractSilhouette( S r f )
BEGIN

S r f i , Sr f2 ;

IF Srf may have silhouette DO 
IF Terminate(Srf) DO

add S r f to silhouette surface list;
END;
ELSE DO

Subdivide S r f into two pieces: Srfi and Srf2 ) 
ExtractSilhouette( Srfi );
ExtractSilhouette( Srf2 );

END;
END;

END;

Figure 8 shows the pawn object with the resulting potential silhouette sub-surfaces from 
another view (left).

Once done, one can trace the silhouette surfaces resulting from the subdivision process 
to form a piecewise linear approximation o f the real continuous silhouette. This solution is 
frequently only a poor approximation, or else the process is time consuming. To avoid these 
problems, our method applies an improvement stage. In this numerical stage, an attempt is 
made to improve each vertex o f the piecewise linear polyline approximation so that it is on the 
real silhouette.

Let po be an approximated silhouette point extracted from the subdivision. Then:
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Figure 8: Sub-surfaces, with silhouette, from different view (left), and improved (right)

1. The approximation point po, is relatively close to the real silhouette.

2. If po —> s,  a point on the silhouette, the exact location o f s on the silhouette is not 
important.

3. A  surface silhouette point, s, is a point where N z(us, v s) =  0.

4. Let e be the accuracy required and |-/VJ'| < e.

Armed with that, the idea is quite simple: “ walk” on the surface parametric domain in 
the direction that maximizes the changes in N z (gradient) to minimize |-/V*|. The direction is 
evaluated only once (to speed the process), since (by 1 above), the direction is not going to be 
changing much, and (by 2 above) the exact location on the silhouette is not important. The 
direction to “walk” , A  is exactly A  =  ( 9JV* ( ^ ’l,Po) ; dNz(igo,vPo)y whjch js evaluated numerically 
(see Figure 9). By doing so, we reduced the dimentionality o f the problem from a 2 D  problem 
in the parametric space, to a I D  problem along the line with direction A .

Given surface S  and the point po, the “walking” algorithm is:

1. Evaluate A  at po, where A  =  ( ( p̂° ’yP0) ; (u™ 'yP0) ) anc[ set the “ walking” direction 
to A .
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Figure 9: The numerically improved silhouette (o f the saddle ob ject) in parametric space

2. Evaluate S at po, where S =  dNz^Jr° ,vP° ̂

3. Let
A  N z(up° , v p°)

Pl = p 0 + r n  ’-- L
||A|| o

Evaluate N z ( uPl, vPl), at pi.

4. Let i be 1.

5. If \Nz(uPi, v Vl )| <  € stop: pi is the improved point.

6. Using Ar2(uPl- 1, vp'~1) and N z(uPi, vp' ) linearly interpolate (extrapolate) i and pi to
form p!+ i such that N z =  0 at p,-+i, and evaluate the new N z(uPi+1, vPi+1):

Let t be the solution for

7V2(up,_1 , vPi- 1 )t +  N z(uPi, vPi )(1 — t) =  0

and let
pi+1 =  p i - i t  +  pi( 1 -  t)

7. i =  i +  1,

8. G oto 5.

Stages 5 - 8 are exactly the secant method. Because the surface is relatively flat from 
flatness testing during the subdivisions, the accuracy is improved by almost a magnitude on 
each iteration. The method usually converges to sufficient accuracy within 3 to 4 iterations. 
The result is a piecewise linear interpolant to the real silhouette. One can adaptively add and 
improve points, until the distance between the unimproved and the improved point is less than 
given tolerance.

F ig u r e  8 a lso  s h o w s  th e  sa m e  p a w n , th is  t im e  w ith  th e  im p r o v e d  s i lh o u e t te  ( r ig h t ) .
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4 C u r v e - C u r v e  Intersection

Curve-curve intersection is not a problem specific to hidden curve removal algorithms. The 
solution to the curve-curve intersection problem is generally not available in analytic form, 
and some kind of subdivision or iterative technique is used to determine those points [5,19,30]. 
We do not want to be restricted to a specific curve type or order, but would like as general a 
solution as possible. While the subdivision process guarantees convergence to all intersections, 
it is slow, and so effort is invested in finding methods to eliminate unnecessary subdivisions.

Like any other divide and conquer method, one needs to define a termination condition 
for the subdivision algorithm. For example one might use curve flatness tests and approximate it 
as a line for the intersection purposes. Alternatively curve length smaller than a given tolerance 
might be used. Again, this termination test will be referred as T erm inate(C) boolean predicate. 
The generic algorithm to solve the problem is therefore:

PROCEDURE CurveCurveIntersection( C \ , C 2 )
BEGIN

C a r^ b  r^ b  ,
1 > > ^2 > ° 2  »

IF Terminate(Ci) and Terminate(C2) DO 
IF Ci bbox intersects C2 bbox DO

Add intersection point to solution point list,
END;

END;
ELSEIF Ci bbox intersects 

Subdivide Ci into two 
Subdivide C 2 into two 
CurveCurveIntersection( C “, C£ ) 
CurveCurveIntersection( C “, C 2 ) 
CurveCurveIntersection( C\, Cl ) 
CurveCurveIntersection( C\, C 26 )

C 2 bbox DO 
b.r'a r-'b , '-'I > '-'j 1

r ao 2 , C h • '-'2 »

END;
END;

However, this generic algorithm is very expensive. Subdivision is exponential in nature, 
and the key operation is a fast and tight (see below) test checking whether the two curves 
intersect. Few ways to achieve that are known, and most of them depend on the fact the 
Bezier/NURB curves are bounded by the control polygon convex hull. The simplest test bounds 
each curve by an axes parallel box found using the curve control polygons (bounding box as it 
called) and uses them for the intersection test. Since the bounding boxes might intersect even 
when the curves do not, this type of bounding is not tight. A better bound can be achieved, 
but usually this makes the bounding box intersection comparison more complex and slow. The
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Figure 10: 4 stages o f the curve/curve intersection subdivision using strip bounding boxes.

convex hull o f the control polygon might be used, but generating and testing with them are 
neither simple nor fast. Strips, or rotated boxes, allows bounding diagonal curve as tight as 
horizontal or vertical ones. A better bound (but again more com plex) is the fat arc [29], As 
Bezier and NURB curves tend to converge to a constant radius curves when they are subdivided, 
this type will bound them extremely well (for comparison also see [29]). The strip was selected 
in our case for its simplicity, and yet its much tighter than axes parallel bound. Figure 10 shows 
few stages o f the subdivision using strips.

If it can be shown that two curves have exactly one intersection, and the numerical 
solution will converge to it, it usually will converge much faster to the root than using only 
subdivision. Uniqueness o f the solution can be determined, using the cone test [28] by comparing 
the possible tangent directions o f the two curves and requiring them not to overlap. Finding a 
condition to guarantee convergence is harder task, and heuristic approach is used: if the strip 
width/length ratio is small, the curve is almost a straight line, and 2D Newton Raphson is 
likely to converge. This numerical method is therefore applied any time the two curves have 
at most one solution and both strip bounding boxes are elongated enough. If successful, the 
algorithm can stop, otherwise the subdivision is continued. This numerical stage is initialized 
with the tw'o subdivided curves, and with their middle parametric point as initial guess.

Figure 11 shows one stage o f Newton Raphson process: the initial guesses are P § , Pq for 
curves a  and f3, respectively. Using the evaluated tangents at these points, linear interpolation 
is evaluated for both , to find the next point, which is mapped back to the curves parametric 
domain as P °  and P -f.

The subdivided curves (and not the original given curves) are used to make sure the
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Figure 11: Newton Raphson method is applied whenever its possible

solution, if found, will be bounded to the right range. The process is iterated until successful 
or until one o f the failing conditions becomes true.

The main problems in this iteration process are that the parameterization is usually 
nonlinear, and so once the solution o f the current iteration is found, it must be mapped back 
to the parametric space. Fortunately, the curves are the result o f subdivision and small, and 
therefore their parameterization is fairly linear.

The improved curve/curve intersection is therefore:

PROCEDURE CurveCurveIntersection( C-y, C2 )
BEGIN

Ca r-'b /"’a nb .1 9 '-'i » ^ 2 » ^2 ’

IF TerminateCC!) and Terminate(C2) DO 
IF Ci bbox intersects C 2 bbox DO

Add intersection point to solution point list.
END;

END;
ELSEIF Ci and C 2 have at most one intersection, 

and both are ‘‘elongated’’ enough DO 
IF Ci and C 2 have common end point DO 

Ignore intersection point.
END;
ELSEIF Attempt to apply Newton Raphson succeeded DO 

Add point to solution point list.
END;
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Axes Para. B B O X Strips B B O X Strips +  NR
Example Subdiv Time Subdiv Time Subdiv Time

1 138 22.5 104 22.4 0 1
2 98 3.3 75 3.95 4 1
3 1091 2.14 449 1.29 174 1
4 98 7.85 36 4.5 4 1

Table 2: - curve/curve intersection - relative time comparison, and number of subdivisions 
required.

ELSEIF Ci bbox intersects C2 bbox DO
Subdivide Ci into two: Ca c} ;
Subdivide C 2 into two: Ca *-'2 > C 26;
CurveCurvelntersectionC Ca 1 > C 2“ )
CurveCurvelntersectionC ° 1  > Cb2 )
CurveCurvelntersectionC Cb ° 1 » C 2“ )
CurveCurvelntersectionC Cb ° 1  > Cb2 )

END;
END;
ELSEIF Ci bbox intersects C 2 bbox DO

Subdivide Ci into two: Ca f'b .
Subdivide C 2 into two: c a C 2;
CurveCurvelntersectionC c a '-'1 > C2“ )
CurveCurvelntersectionC c a 1 > c 26 )
CurveCurvelntersectionC c\, C 2a )
CurveCurvelntersectionC c l c b2 )

END;
END;

In other word, the subdivision technique, and the Newton Raphson method are inter­
leaved until success is reached. The subdivisions presented by the bounding boxes of Figure 10, 
were the only ones required After four subdivision stages the Newton Raphson method has 
been applied successfully.

A  test is performed, to make sure that the two curves have an interior point as their 
only intersection point. If not, a trivial comparison of the two end point will detect that and 
will reduce the cost of applying the numerical method to an end condition where it is likely to 
fail.

This process is much faster than using only axes parallel bounding boxes, and is also 
faster than using only strips based subdivision. Table 2 and Figure 12, compare 4 examples, 3 
of which are drawn in Figure 12, while the first is simply intersection of X  axis with Y  axis.

It is required that we find the intersections between curves which are tangent to each
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Figure 12: 3 examples o f curve/curve intersections (see Table)

Figure 13: Tangent CCI.

other. Many intersections between iso-parametric curves and silhouettes are o f this kind. For 
example, figure 13 is an enlargement o f one such problem region in figure 1. If two curves 
have the same tangent line at their intersection point, the e selected as the error measure for 
the computation method affects the results. If it is too small, then the method may miss the 
intersection; if it is too big, several (approxim ated) intersection points may result close to each 
other, where only one actually exists. When surfaces have been approximated by polygons 
exactly the same problem occurs. However, crossing o f active curves in the projection plane 
must be detected since the visibility may change at such intersections (Lemma 2.5).

In this specific case most o f the tangential curve intersection can be considered in a sim­
pler framework. Consider two parametric space curves that map onto curves in R 3 intersecting 
at simultaneous tangencies. In most cases (see Figure 13) one o f the curves is a silhouette curve 
and the other is isoparametric. Hence considering the intersection in parametric space reduces 
it to the problem of intersecting a planar curve with a straight line.
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Figure 14: Monotone curves have multiple intersection

Another numerical instability may arise when dealing with curves whose projections are 
identical or have identical subcurves. If the curves are exactly the same, one can be eliminated. 
If two distinct curves project onto the same curve in the image space, but have different orders, 
knot vectors, or parametric continuity, there is currently no stable, computationally feasible 
method for analytically determining that the two curves are identical. Instead a heuristic 
threshold on the maximum number of valid intersections is used. This solution causes some 
overhead which might be reduced by analytical detection of such cases.

Given a curve-curve intersector, finding all the intersections among N curves the straight­
forward way of intersecting each curves against all the others is 0 ( N 2), which is the worst case 
possible. Usually one can do much better. Sweep algorithms to sort and improve this order have 
been developed, mainly for straight line segments [15,9,22,25]. They improve the average case 
order to O(NlogN) ,  but have the same worst case behavior of 0 ( N 2). Extending this notion to 
an arbitrary curve type environment is complex since curves, unlike lines, may intersect more 
than once. In fact, two spline curves can be continuous and have no zeros in their first and 
second derivatives, but can intersect multiple times, as Figure 14 demonstrates.

Although the current implementation of this algorithm uses a simplified bounding box 
sweep, research in this axea is in progress. More on this can be found in [3].

5 Surface-ray intersection

Finding intersections of rays with surfaces occur frequently in graphics and geometry problems, 
in particular in the ray-tracing rendering technique[26,33]. Usually freeform surfaces are first 
approximated into polygons or preprocessed into small simplified pieces. Both strategies require 
a relatively large amount of memory. Since only a partial invisibility count is needed, we need 
not solve for the exact intersection point.
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L em m a  5.1  Let S be a path connected continuous surface with no silhouette curves.
If P(ips ) is a simple curve, then S is visible relative to itself, and therefore, all curves 
belonging to S are totally visible relative to it.

P ro o f: Since S has no silhouette curves, ifts  (definition 2.4) consists only of S boundary 
curves, and 7Z has exactly one element. Since P(V’5 ) is a simple curve, P is bijective on the 
interior of its whole domain.

By making use of this lemma we can reduce significantly the number of subdivisions 
required to solve the surface-ray intersection. When resolving the visibility of a given point 
p often one can use lemma 5.1, and decide on p-visibility much sooner than using only a 
subdivision technique. This decision can be made even if the exact intersection point of the 
ray from V  to p with the surface S is unknown. Using curve visibility propagation and surface 
coherence, the number of rays that need to be fired can be reduced.

D efin ition  5.1 For a curve j5, Touching{(3) is the set of all curves, other than f3, 
that have one endpoint o f  their projections lying on j3p.

If a curve a is split into Qi and a 2 at the parametric value where P (a ) intersected 
with P (P), such that a j has a lower parametric range than a 2, then:

1. a 2 is the next curve of a\, and will be denoted as a 2 =  N ext(a\).

2. 01 is the previous curve of 02 , and will be denoted as c*i =  P rev (a 2).

3. a \ ,a 2 G Touching(P).

To use this coherence, the curve adjacencies of definition 5.1 must be determined and 
kept during the curve-curve intersection stage. Each time a curve is split, all the information on 
the splitting and split curves must be kept, in addition to the 2 level ordering relation between 
them. Although, this might look time consuming, it is not. Each time a curve is split (a 
relatively complex operation), a constant number of adjacency pointers is updated. By doing 
so, one can derive a set of rules by which the visibility is propagated so fewer rays need be fired. 
The following corollary is only a subset of such rules and which will be sufficient to demonstrate 
its power:

C oro llary  5 .1  If rj is an active curve, <f) £ Touching^rj), and 7 is split into 71 
and 72 such that 71,72 E Touching(r]), 71 =  P rev{72) then (see Figure 15 for all 
references)

1. If rj is a silhouette curve o f the surface a, and a has only one silhouette, then 
rj is visible relative to a. See h.

2. If rj is a visible silhouette curve, at least one o f  71, 72 is visible. See a, b and 
c. If  7 is a passive curve or the scene has only closed models, then exactly one 
of 71 , 72 is visible. See c.

3. If r] is visible but not a silhouette curve, then exactly one o f 71, 72 is visible.
See i.



4- If <f> is passive curve and T] is a boundary curve (but not a silhouette), and both 
have the same z at the touching point, then <f> has the same visibility as rj. See 
}■

5. If T) 6 Touching(<f>), both are boundary curves, and both t] and <f> have the same 
z at their touching point, then 77 and <f> have the same visibility. See g.

P ro o f: All the above conclusions result directly from lemma 2.5.

Each of these cases is simple by itself, but in combination they form powerful visibility 
propagation tools. Corollary 5.1- 2 is unique, in that one needs more information so the visibility 
of the adjacent curve can be resolved. A visible silhouette on closed objects must bound two 
regions, exactly one of which is visible, so only a single adjacent curve should be tested for 
visibility to classify the regions. For open objects, if a silhouette curve splits a boundary curve, 
both subcurves may be visible (see a, Figure 15).

We shall use Figure 15 to demonstrate the propagation ability. Assume the framework 
curves are given in in the following order: the silhouette curve following by boundary curves 1,
4, 2, 3.

The visibility of each curve in the framework is checked first. Using Corollary 5.1, since 
only one silhouette curves exists, by result 1, it is visible. As this object is open, no propagation 
to the boundary curves is allowed. A ray is fired to test the visibility of boundary curve 1, and 
it is found to be visible. Using result 5.1-5, curves 2.1 (through i ,  Figure 15) and 4.1 (through 
2) are found to be visible. The next framework curve with unknown visibility is 4 which has 
been split into two, 4.1 and 4.2. The first half (4.1) visibility is already known, so only one 
ray for the second half (4.2) is fired, and which find it to be visible as well. Using result 5.1-5 
curve 4.2 (through 3) sets curve 3.2 to be visible, which in turn sets 3.1 (through 4), using 
result 5.1-3, to be invisible. Since 3.1 touches curve 2.2 (at 5), at its end, 2.2 is also set, using 
result 5.1-5, to be invisible.

Instead of firing 8 rays, for the 8 active curves in the saddle surface (1, 2.1, 2.2, 3.1, 3.2, 
4.1, 4.2 boundary curves, and one silhouette), only 2 were fired. The question on the optimal 
way to order these curves is still open. But the improvement in this specific case in much 
greater. Using result 5.1-4, since all the iso-parametric curves touch boundary curves at the 
same 2 value, they inherit their visibility from that of the boundary. Using result 5.1-3, the 
visibility of the boundary curves is propagated to the interior iso-parametric pieces, so no ray 
need to be fired for any iso-parametric curve.

In addition to all the above, if the number of surfaces is small, a cache of the subdivided 
surfaces can be handled. If a surface was subdivided once for given ray, all but the last few 
steps will be identical for nearby rays. The main problem with this approach is the amount of 
memory it may require, and so it may be useful only if the scene consists of a small number of 
surfaces.

Table 3 compares this propagation in terms of number of rays fired for active and passive 
curve and relative time to test the visibility of all the curves. Note the relation between the 
two is not linear mainly because of the cache used.
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Figure 15: The curves visibility is propagated - firing 2 rays is enough for all curves

Propagation No propagation
act.
rays

pas.
rays

rel.
time

act.
rays

pas.
rays

discont 9 14 5.5 19 96
saddle 2 2 8 8 54
wiggle 11 7 4.5 21 95
pawn 12 68 1.9 17 152

Table 3: Visibility propagation comparison

6  T r i m m e d  Surfaces

An important issue to address is the support o f trimmed surfaces. A  careful look in the teapot 
(Figure 16) uncovers a problem with the design near its handle/body joint. The model was 
originally done by juxtaposing the surface descriptions for the handle and body without trim­
ming the surfaces, so the handle and the body surfaces interpenetrate. Curves which should be 
hidden at the joint are visible, since this algorithm cannot detect such cases.

Using trimmed surfaces in the model and in the algorithm eliminates this difficulty. The 
modifications necessary in our algorithm to support trimmed surfaces were small and occurred 
in two stages o f the algorithm.

1. The curve extraction stage needs to trim the extracted curves against the trimming curves 
in the parametric space.
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Figure 16: A hidden curve view o f the teapot

2. The surface-ray intersection stage should test if the point on surface S  that hides the tested 
point is in a trimmed part o f S. The trimming curves should be propagated through in 
the subdivision process, and a totally trimmed out surface can be another termination 
condition for the subdivision.

Figure 17 shows the results o f the modified algorithm.
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