
H i d d e n C u r v e R e m o v a l

for

F r e e F o r m Surfaces*

Gershon Elber and Elaine Cohen
UUCS-89-019

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA
May 1989

Abstract

This paper describes a hidden curve algorithm specifically designed for sculptured sur­
faces. A technique is described to extract the visible curves for a given scene without the
need to approximate the surface by polygons. This algorithm produces higher quality results
than polygon based algorithms, as most of the output set has an exact representation. Sur­
face coherence is used to speed up the process. Although designed for sculptured surfaces,
this algorithm is also suitable for polygonal data.

C R Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computa­
tional Geometry and Object Modeling. 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism.

Additional Key Words and Phrases: hidden curve removal, curve-curve intersection,
visibility propagation.

1 Introduction

Hidden line removal is one of the earliest computer graphics problems; yet new algorithms
appear every year [16,1,8,21,4,15,17,18,20,22,23,25,27]. Usually they are developed for polygonal
data, so sculptured surfaces must be preprocessed and approximated as large collections of
polygons. The result displays the polygonized models accurately, but original model information
is lost [4,18,20] (see figure 1).

In [16,1,8,21,27] the idea of quantitative invisibility and the use of critical points was
developed. Critical points are intersection points between projected polygon primitives. The

*This work was supported in pait by DARPA (N00014-88-K-0689). All opinions, findings, conclusions or
recommendations expressed in this document are those of the author and do not necessarily reflect the views of
the sponsoring agencies.

Hidden Curve Rem oval G. Elber and E. Cohen 2

Figure 1: Left: 1930 polygons, middle: 4215 polygons, right: 2 NURBS surfaces (56 patches).

technique was extended to bi-quadratic patches in [12]. The primitives are subdivided at each
critical point which guarantees that the interior of each segment has homogeneous visibility.
A segment’s visibility is then tested by firing a ray from the eye to an interior point of the
segment.

While the same basic approach is used here, it is extended to apply to arbitrary nonuni­
form rational B-spline (NURBS) surfaces (the primitives). By not using polygonal approxima­
tions, the algorithm eliminates the vast amount of data resulting from the approximation of
surfaces by polygons. The algorithm presented here has several stages (including extracting
curves of interest, splitting at critical points, and visibility testing). Surface coherence is used
extensively to reduce the number of ray tests one needs to perform to detect curve visibility, in
a similar way to that for polygons[10,l l] .

The trade-off is a reduced number of primitives in exchange for a higher complexity
of the operations between them. Driving the output directly from the surface results in high
quality images (Figure 1). Only silhouette curves need to be approximated, but they can be ap­
proximated at a much higher resolution than with pre-polygonized surfaces. Figure 1 compares
the two, after adaptive subdivision has been used to obtain the polygonal approximations.

Section 2 defines the required elements for presenting the algorithm and also introduces
the basic hidden curve algorithm. Section 3 explains how the curves of interest are extracted
from the surface. Usually four types of curves are useful: the surface boundary curves, curves
along C 1 discontinuities in the surface (if any), iso-parametric curves, and silhouette curves.
Section 4 addresses the 2D curve-curve intersection problems specific to this algorithm. Sec­

tion 5 presents issues in visibility testing arising from a surface-ray intersection algorithm.
Computation of surface-ray intersections is relatively expensive, especially when polygonal ap­
proximations to the surfaces have not been used, so methods to speed the computation are
described. Section 6 discusses extensions to this algorithm for trimmed surfaces.

All the images/comparison examples shown in this paper, were generated using nonuni­
form, rational B-spline (NUR.B) surfaces as implemented in the Alpha_l system.

2 T h e Basic A l g o r i t h m

Let the view orientation be normalized so that the view point V is on the positive z-axis at
oo and the image is projected onto the plane z = 0 , which will be referred to as the projection
plane or the screen. All other views can easily be preprocessed into this view.

Definition 2.1

1. A non-self-intersecting surface is called a simple surface.

2. A non-self-intersecting curve is called a simple curve.

3. Let P be the map to the projection plane, P (x , y , z) = (x , y , 0) . The subscript
P will usually denote the mapped entity, e.g., Cp = P(C) .

We consider only simple surfaces whose projected curves are simple curves. Also, inter­
section between surfaces are restricted to lie along boundaries. If not, the surfaces should be
intersected using the appropriate boolean operations, and trimmed surfaces should be created.
Figure 16 has surfaces which interpenetrate, and so boundaries between them are unknown and
visibility cannot be always correctly determined.

Suppose surface 5 = S (u ,v) E C 1, then N (u ,v) = § f x § § is normal to the surface S.
Unless otherwise specified, all surfaces with which we deal are assumed to be C 1 continuous,
and their parameterizations are assumed to be such that N (u ,v) / 0. If p is a point on the
surface 5 , then it is the image of a point in parameter space, so we write p — S(up, vp).

Definition 2.2

1. A silhouette point of a surface is a point p on the surface whose normal has a
zero z-component, i.e. N z(up, v p) = 0.

2. A silhouette curve of surface S is an ordered set o f silhouette points Q C S
forming a continuous curve such that V p £ Q, and V f > 0 , 3 q E S such that
N z(tiq, v q) / 0, and ||p - <j|| < e.

3. If 3 D C S that is the image of an open disk such that V d E D, N z(ud, vd) — 0,
we say that S has a silhouette surface and the above definition o f the silhouette
curve is simply its boundary.

Hidden Curve Rem oval G. Elber and E. Cohen 3

Hidden Curve Rem oval G. Elber and E. Cohen 4

We will not consider surfaces with silhouette sub-surfaces in them. Surfaces that do
contain silhouette surfaces may be preprocessed by trimming out the silhouette sub-surfaces
(see Section 6).

Lem m a 2.1 A surface S can be decomposed into silhouette curves and disjoint
regions whose boundaries are surface boundaries and/or silhouette curves.

Proof: Consider a point p £ S', N z(up,v p) 7̂ 0, and the set of points which can be
reached from p by continuous paths in the surface that do not cross any silhouette curves. Let
that set be Rp, and let R q be a similar set for point q £ S,q £ R p, if such a point q exists.
Clearly Rp fl R q = 0, for if there exists point r £ Rp fl R q, then there exists a continuous path
from p to r and from r to q, and hence from p to q. But this contradicts the way we picked q.
Call the collection of path connected regions 7Z.

For our proofs we require that the projection operation be bijective between each R £ 1Z
and its projected image.

Surprisingly not all surfaces are well behaved in this, although they are fairly rare.
Such a surface, as seen in figure 2, must be preprocessed and subdivided. Such surface can be
detected by noticing its boundary is self intersection:

Lem m a 2.2 Denote by F r (R) the boundary o f R £ 71, if R intersects with some
ray more than once, then P (F r(R)) is self intersecting, i.e. not simple.

Proof: In order to show that the P (F r(R)) is self intersecting, it is enough to show
that there exists a point pb £ F r(R) and a point px £ In t(R) such that P(pb) = P(p'). If K
intersects R in at least two points, called pl and pm, find a continuous path p in R from pl to a
boundary point pb in F r(R). if P(p) intersects with P (F r(R)), we are done. Otherwise, a ray
through pb must intersect R in another place, since the projected path P(p) never crossed the
boundary.

Lem m a 2.3 Let R £ 7Z and rl 5r2 £ R. Then, Nz(uT1,v T1)N z(uTi,v ri) > 0, i.e.
they have the same sign at both r\ and 7*2.

Proof: Since there exists a continuous path from to r2 totally in R, N z along that
path can have no zeros so N z has the same sign at both and r2.

We define visibility as invisibility count of zero where:

Definition 2.3 The invisibility count of a point p is the number o f intersections of
the half-open ray ?? from the view point V to the point p has with sculptured surfaces
in the scene.

We will concentrate our discussion on determining visibility only (i.e. where the count
is zero), although one may use our algorithm to detect quantitative invisibility [6].

Figure 2: Single region surface (no silhouettes), which is not bijective.

L em m a 2 .4 Let R £ IZ, and let 3? be an half open ray to some point p.

1. The projection o f R to P (R) is injective, i.e. every point on R is mapped to a
unique point in the x — y plane.

2. R can modify the invisibility count o f some point p by at most one.

3. The invisibility count o f a point p will be increased by the region R iff P(p) E
P (R) , and R n 3? / 0.

Proof:

1. Follows from the definition o f R and lemma 2.2.

2. Since R must be injective, only one point o f it can be mapped to some projection plane
point. Specifically, given some point p , at most one point of R can be mapped onto P(p).

3. In order for R to hide p, there must exist a point in R that is mapped onto P (p) . But p
can be closer to the viewer and therefore R will hide p iff P (p) G P (R) and R n 3? / 0.

Tw o types o f curves are dealt with:

D e fin it io n 2 .4

1. Surface boundary curves and surface silhouette curves are defined to be active
curves.

2. The framework ips o f a surface S is the set o f all its active curves. Set ipf, =
P(v>5).

3. A n y curve which is not active is defined to be a passive curve. For example,
an isoparametric curve is passive.

Hidden Curve Rem oval G. Elber and E. Cohen 6

Figure 3: - silhouette might have cusps in its projection which the curve must be split at

Clearly active curves are those curves at which visibility o f all curves can change when
crossing them.

L em m a 2.5 Let C be a curve in the scene. I f Cpf)(\Jsipp) = <f>, then all points
p £ C have the same invisibility count.

P r o o f : Since C p does not intersect with any ipp, it is totally included in or excluded
from any R p for all regions. Relative to some region R , and based on lemma 2.4, C is invisible
iff C p G R p and R is closer to the viewer, and visible otherwise. Since it is true for any R, C
visibility must be homogeneous.

C o r o l la r y 2.1 Given a curve C , let { C p } denote the collection o f sub-curves o f
C p resulting from subdividing C p at each o f its intersection points with Usipp, and
let C l be each pre-image, i.e., C l C C . For each C l, all points p 6 C* have the same
invisibility count, except possibly the two end points.

Corollary 2.1 suggests an algorithmic way o f testing visibility o f curves in a scene.
Obviously many projected curves will intersect with some projected frameworks, but the number
o f times they do is finite and usually small. For each o f the subdivided curves, only one point
in its open interval needs to be tested for its invisibility count. As noted in [2,11], silhouette
curves can overlap; that is, a silhouette curve can be G l continuous and still have cusps in its
projection (called a curtain fold [2]). Since the visibility of the silhouette curves may change at
curtain folds, they must be split at these points. Fig 3 is an example o f such case, in which the
single silhouette curve has no G l discontinuity (left), while its projection has two cusps (middle
- at arrows), where the silhouette must be broke at, so we could get the correct hidden curve
result (right).

Using Corollary 2.1, we can define the basic algorithm:

1. Extract all curves of interest from the given surface(s) in the scene. This results in at least
the framework o f each surface, but can also include passive curves such as isoparametric
curves.

C1 Discontinuity
Figure 4: Four curve types in surface display.

Split each passive and active curve C at each point where its projection C p intersects
with any ipp and where •0s is closer to the viewer.

For each curve that results from the previous stage, fire a ray in the view direction through
an arbitrary interior point and find the invisibility count o f that point.

If the invisibility count o f the point is zero, then curve is shown, otherwise it is hidden.

Based on Corollary 2.1, the evaluation o f the invisibility count picks an arbitrary point p
in the interior o f curve C , and determines the visibility o f all o f C using the invisibility count o f
p. Curves are always split at tangent intersections, since they could potentially change visibility
at those points. A technique is used in [16,1,8,21,27] o f splitting a line into segments anytime it
intersects with any projected polygon boundary to make the segment visibility homogeneous.
In the next sections, we will describe the different stages for arbitrary sculptured surfaces. This
algorithm, although conceptually simple, does require accurate computation in non robust
numerical situations. We discuss our approaches to simplifying the operations and to reducing
the number o f times these complex operations must be performed.

3 C u r v e Extraction

The four types o f curves which we display are boundary curves, iso-parametric curves, curves
along C 1 discontinuities in the surface, and silhouette curves (see Figure 4). All but the last
type are view independent.

Extraction o f the first three types o f curves is usually extremely simple since these
curves are isoparametric. For example, Figure 5 shows the same pawn as in Figure 1. We
assumed the surfaces are C 1 continuous, but if some are not, they must be subdivided at
the appropriate isoparametric values. This creates a new boundary and two new surfaces on
which the algorithm is then correct. This splitting stage is only added when tangent plane
discontinuities are present.

The silhouette curves are not isoparametric curves usually (Figure 5), and in general,

2.

3.

4.

Figure 5: Pawn extracted curves, i n u - u space.

there is no computationally feasible way to represent them exactly. An approximation technique
must be used in this case, and a piecewise linear curve is the simplest choice.

One method o f extracting the silhouette curves o f a surface is to subdivide the surface
up to a given e tolerance and fetch all the surface pieces with silhouettes on them. We seek
methods using subdivision and spline properties to identify regions with silhouettes. To solve
this problem we are interested only in the zero set o f the z component o f N (u ,v) ,

N z(u ,v) -
d x (u ,v) dy(u, v) d y (u ,v) d x (u ,v)

du dv du dv (1)

Now if the first term on the right side of equation 1 is positive everywhere and the
second negative everywhere, N z is positive everywhere.

L e m m a 3.1 Given a scalar B-spline surface

n —1 m — 1
°(U,V) = 'y] ^2 ai,jBi,ku,Tu(u)Bjil%ttTv(v),

then dcr(u,v)
j=0 t=0

> 0 whenever at+ i j — > 0

P r o o f : Consider partial derivative o f a with respect to u.

n — 1 m — 2da

du = X > - !) E Ql+1J ai,j B i ,k - i (u)B jj (v) .
fr'o ,tS Ti+k ~ Ti+1

Hidden Curve Rem oval G. Elber and E. Cohen 9

Figure 6: Adaptive silhouette extraction, in R 3

Object Adaptive Non adaptive
saddle 1 5.7
discont 1 3.6
pawn 1 5.4
queen 1 3.4
rook 1 4.0

knight 1 2.1

Table 1: - adaptive and non adaptive silhouette extraction relative time.

Since the blending functions B are nonnegative, and the difference r,+ k — t,-+i > 0, if
« ,+ i j — a , j > 0, for all i and j , will be positive everywhere.

Lemma 3.1, and an analogous version for can be used on the x and y coordinate
functions to provide a simple test for ruling out the existence o f silhouette curves in a surface.
Needing only 0 (m n) first order differences, it can act as an additional termination condition
for the subdivision.

This adaptive subdivision reduces the theoretical number o f surfaces resulting from
O(-V) in the non adaptive case to O (-) , when again e is used as flatness tolerance! Figure 6
shows such an adaptive subdivision for a surface with three silhouette curves. Also table 1
compares the relative times adaptive and non adaptive subdivision techniques consumes.

The reverse o f lemma 3.1 is not true, that is, a surface may have no silhouette curves,
and yet the differences may not all have the same sign. A 2D counterexample in Figure 7 shows
a control polygon with 2 silhouette points, but a curve with none.

We can now define the adaptive subdivision to extract silhouette curves. A combined
termination condition for this highly recursive algorithm is used. The flatness test o f the surface
is used with the silhouette existence condition developed above to form a termination test that
will be referred as T erm in a te(S) , a boolean predicate.

Hidden Curve Rem oval G. Elber and E. Cohen 10

Figure 7: Curve with no silhouette points but with control polygon with two silhouette points

PROCEDURE ExtractSilhouette(S r f)
BEGIN

S r f i , Sr f2 ;

IF Srf may have silhouette DO
IF Terminate(Srf) DO

add S r f to silhouette surface list;
END;
ELSE DO

Subdivide S r f into two pieces: Srfi and Srf2)
ExtractSilhouette(Srfi);
ExtractSilhouette(Srf2);

END;
END;

END;

Figure 8 shows the pawn object with the resulting potential silhouette sub-surfaces from
another view (left).

Once done, one can trace the silhouette surfaces resulting from the subdivision process
to form a piecewise linear approximation o f the real continuous silhouette. This solution is
frequently only a poor approximation, or else the process is time consuming. To avoid these
problems, our method applies an improvement stage. In this numerical stage, an attempt is
made to improve each vertex o f the piecewise linear polyline approximation so that it is on the
real silhouette.

Let po be an approximated silhouette point extracted from the subdivision. Then:

Hidden Curve Rem oval G. Elber and E. Cohen 11

Figure 8: Sub-surfaces, with silhouette, from different view (left), and improved (right)

1. The approximation point po, is relatively close to the real silhouette.

2. If po —> s, a point on the silhouette, the exact location o f s on the silhouette is not
important.

3. A surface silhouette point, s, is a point where N z(us, v s) = 0.

4. Let e be the accuracy required and |-/VJ'| < e.

Armed with that, the idea is quite simple: “ walk” on the surface parametric domain in
the direction that maximizes the changes in N z (gradient) to minimize |-/V*|. The direction is
evaluated only once (to speed the process), since (by 1 above), the direction is not going to be
changing much, and (by 2 above) the exact location on the silhouette is not important. The
direction to “walk” , A is exactly A = (9JV* (^ ’l,Po) ; dNz(igo,vPo)y whjch js evaluated numerically
(see Figure 9). By doing so, we reduced the dimentionality o f the problem from a 2 D problem
in the parametric space, to a I D problem along the line with direction A .

Given surface S and the point po, the “walking” algorithm is:

1. Evaluate A at po, where A = ((p̂° ’yP0) ; (u™ 'yP0)) anc[set the “ walking” direction
to A .

Hidden Curve Rem oval G. Elber and E. Cohen 12

Figure 9: The numerically improved silhouette (o f the saddle ob ject) in parametric space

2. Evaluate S at po, where S = dNz^Jr° ,vP° ̂

3. Let
A N z(up° , v p°)

Pl = p 0 + r n ’-- L
||A|| o

Evaluate N z (uPl, vPl), at pi.

4. Let i be 1.

5. If \Nz(uPi, v Vl)| < € stop: pi is the improved point.

6. Using Ar2(uPl- 1, vp'~1) and N z(uPi, vp') linearly interpolate (extrapolate) i and pi to
form p!+ i such that N z = 0 at p,-+i, and evaluate the new N z(uPi+1, vPi+1):

Let t be the solution for

7V2(up,_1 , vPi- 1)t + N z(uPi, vPi)(1 — t) = 0

and let
pi+1 = p i - i t + pi(1 - t)

7. i = i + 1,

8. G oto 5.

Stages 5 - 8 are exactly the secant method. Because the surface is relatively flat from
flatness testing during the subdivisions, the accuracy is improved by almost a magnitude on
each iteration. The method usually converges to sufficient accuracy within 3 to 4 iterations.
The result is a piecewise linear interpolant to the real silhouette. One can adaptively add and
improve points, until the distance between the unimproved and the improved point is less than
given tolerance.

F ig u r e 8 a lso s h o w s th e sa m e p a w n , th is t im e w ith th e im p r o v e d s i lh o u e t te (r ig h t) .

Hidden Curve Rem oval G. Elber and E. Cohen 13

4 C u r v e - C u r v e Intersection

Curve-curve intersection is not a problem specific to hidden curve removal algorithms. The
solution to the curve-curve intersection problem is generally not available in analytic form,
and some kind of subdivision or iterative technique is used to determine those points [5,19,30].
We do not want to be restricted to a specific curve type or order, but would like as general a
solution as possible. While the subdivision process guarantees convergence to all intersections,
it is slow, and so effort is invested in finding methods to eliminate unnecessary subdivisions.

Like any other divide and conquer method, one needs to define a termination condition
for the subdivision algorithm. For example one might use curve flatness tests and approximate it
as a line for the intersection purposes. Alternatively curve length smaller than a given tolerance
might be used. Again, this termination test will be referred as T erm inate(C) boolean predicate.
The generic algorithm to solve the problem is therefore:

PROCEDURE CurveCurveIntersection(C \ , C 2)
BEGIN

C a r^ b r^ b ,
1 > > ^2 > ° 2 »

IF Terminate(Ci) and Terminate(C2) DO
IF Ci bbox intersects C2 bbox DO

Add intersection point to solution point list,
END;

END;
ELSEIF Ci bbox intersects

Subdivide Ci into two
Subdivide C 2 into two
CurveCurveIntersection(C “, C£)
CurveCurveIntersection(C “, C 2)
CurveCurveIntersection(C\, Cl)
CurveCurveIntersection(C\, C 26)

C 2 bbox DO
b.r'a r-'b , '-'I > '-'j 1

r ao 2 , C h • '-'2 »

END;
END;

However, this generic algorithm is very expensive. Subdivision is exponential in nature,
and the key operation is a fast and tight (see below) test checking whether the two curves
intersect. Few ways to achieve that are known, and most of them depend on the fact the
Bezier/NURB curves are bounded by the control polygon convex hull. The simplest test bounds
each curve by an axes parallel box found using the curve control polygons (bounding box as it
called) and uses them for the intersection test. Since the bounding boxes might intersect even
when the curves do not, this type of bounding is not tight. A better bound can be achieved,
but usually this makes the bounding box intersection comparison more complex and slow. The

Hidden Curve Rem oval G. Elber and E. Cohen 14

Figure 10: 4 stages o f the curve/curve intersection subdivision using strip bounding boxes.

convex hull o f the control polygon might be used, but generating and testing with them are
neither simple nor fast. Strips, or rotated boxes, allows bounding diagonal curve as tight as
horizontal or vertical ones. A better bound (but again more com plex) is the fat arc [29], As
Bezier and NURB curves tend to converge to a constant radius curves when they are subdivided,
this type will bound them extremely well (for comparison also see [29]). The strip was selected
in our case for its simplicity, and yet its much tighter than axes parallel bound. Figure 10 shows
few stages o f the subdivision using strips.

If it can be shown that two curves have exactly one intersection, and the numerical
solution will converge to it, it usually will converge much faster to the root than using only
subdivision. Uniqueness o f the solution can be determined, using the cone test [28] by comparing
the possible tangent directions o f the two curves and requiring them not to overlap. Finding a
condition to guarantee convergence is harder task, and heuristic approach is used: if the strip
width/length ratio is small, the curve is almost a straight line, and 2D Newton Raphson is
likely to converge. This numerical method is therefore applied any time the two curves have
at most one solution and both strip bounding boxes are elongated enough. If successful, the
algorithm can stop, otherwise the subdivision is continued. This numerical stage is initialized
with the tw'o subdivided curves, and with their middle parametric point as initial guess.

Figure 11 shows one stage o f Newton Raphson process: the initial guesses are P § , Pq for
curves a and f3, respectively. Using the evaluated tangents at these points, linear interpolation
is evaluated for both , to find the next point, which is mapped back to the curves parametric
domain as P ° and P -f.

The subdivided curves (and not the original given curves) are used to make sure the

Hidden Curve Rem oval G. Elber and E. Cohen 15

Figure 11: Newton Raphson method is applied whenever its possible

solution, if found, will be bounded to the right range. The process is iterated until successful
or until one o f the failing conditions becomes true.

The main problems in this iteration process are that the parameterization is usually
nonlinear, and so once the solution o f the current iteration is found, it must be mapped back
to the parametric space. Fortunately, the curves are the result o f subdivision and small, and
therefore their parameterization is fairly linear.

The improved curve/curve intersection is therefore:

PROCEDURE CurveCurveIntersection(C-y, C2)
BEGIN

Ca r-'b /"’a nb .1 9 '-'i » ^ 2 » ^2 ’

IF TerminateCC!) and Terminate(C2) DO
IF Ci bbox intersects C 2 bbox DO

Add intersection point to solution point list.
END;

END;
ELSEIF Ci and C 2 have at most one intersection,

and both are ‘‘elongated’’ enough DO
IF Ci and C 2 have common end point DO

Ignore intersection point.
END;
ELSEIF Attempt to apply Newton Raphson succeeded DO

Add point to solution point list.
END;

Hidden Curve Rem oval G. Elber and E. Cohen 16

Axes Para. B B O X Strips B B O X Strips + NR
Example Subdiv Time Subdiv Time Subdiv Time

1 138 22.5 104 22.4 0 1
2 98 3.3 75 3.95 4 1
3 1091 2.14 449 1.29 174 1
4 98 7.85 36 4.5 4 1

Table 2: - curve/curve intersection - relative time comparison, and number of subdivisions
required.

ELSEIF Ci bbox intersects C2 bbox DO
Subdivide Ci into two: Ca c} ;
Subdivide C 2 into two: Ca *-'2 > C 26;
CurveCurvelntersectionC Ca 1 > C 2“)
CurveCurvelntersectionC ° 1 > Cb2)
CurveCurvelntersectionC Cb ° 1 » C 2“)
CurveCurvelntersectionC Cb ° 1 > Cb2)

END;
END;
ELSEIF Ci bbox intersects C 2 bbox DO

Subdivide Ci into two: Ca f'b .
Subdivide C 2 into two: c a C 2;
CurveCurvelntersectionC c a '-'1 > C2“)
CurveCurvelntersectionC c a 1 > c 26)
CurveCurvelntersectionC c\, C 2a)
CurveCurvelntersectionC c l c b2)

END;
END;

In other word, the subdivision technique, and the Newton Raphson method are inter­
leaved until success is reached. The subdivisions presented by the bounding boxes of Figure 10,
were the only ones required After four subdivision stages the Newton Raphson method has
been applied successfully.

A test is performed, to make sure that the two curves have an interior point as their
only intersection point. If not, a trivial comparison of the two end point will detect that and
will reduce the cost of applying the numerical method to an end condition where it is likely to
fail.

This process is much faster than using only axes parallel bounding boxes, and is also
faster than using only strips based subdivision. Table 2 and Figure 12, compare 4 examples, 3
of which are drawn in Figure 12, while the first is simply intersection of X axis with Y axis.

It is required that we find the intersections between curves which are tangent to each

Hidden Curve Rem oval G. Elber and E. Cohen 17

Figure 12: 3 examples o f curve/curve intersections (see Table)

Figure 13: Tangent CCI.

other. Many intersections between iso-parametric curves and silhouettes are o f this kind. For
example, figure 13 is an enlargement o f one such problem region in figure 1. If two curves
have the same tangent line at their intersection point, the e selected as the error measure for
the computation method affects the results. If it is too small, then the method may miss the
intersection; if it is too big, several (approxim ated) intersection points may result close to each
other, where only one actually exists. When surfaces have been approximated by polygons
exactly the same problem occurs. However, crossing o f active curves in the projection plane
must be detected since the visibility may change at such intersections (Lemma 2.5).

In this specific case most o f the tangential curve intersection can be considered in a sim­
pler framework. Consider two parametric space curves that map onto curves in R 3 intersecting
at simultaneous tangencies. In most cases (see Figure 13) one o f the curves is a silhouette curve
and the other is isoparametric. Hence considering the intersection in parametric space reduces
it to the problem of intersecting a planar curve with a straight line.

Hidden Curve Rem oval G. Elber and E. Cohen 18

Figure 14: Monotone curves have multiple intersection

Another numerical instability may arise when dealing with curves whose projections are
identical or have identical subcurves. If the curves are exactly the same, one can be eliminated.
If two distinct curves project onto the same curve in the image space, but have different orders,
knot vectors, or parametric continuity, there is currently no stable, computationally feasible
method for analytically determining that the two curves are identical. Instead a heuristic
threshold on the maximum number of valid intersections is used. This solution causes some
overhead which might be reduced by analytical detection of such cases.

Given a curve-curve intersector, finding all the intersections among N curves the straight­
forward way of intersecting each curves against all the others is 0 (N 2), which is the worst case
possible. Usually one can do much better. Sweep algorithms to sort and improve this order have
been developed, mainly for straight line segments [15,9,22,25]. They improve the average case
order to O(NlogN) , but have the same worst case behavior of 0 (N 2). Extending this notion to
an arbitrary curve type environment is complex since curves, unlike lines, may intersect more
than once. In fact, two spline curves can be continuous and have no zeros in their first and
second derivatives, but can intersect multiple times, as Figure 14 demonstrates.

Although the current implementation of this algorithm uses a simplified bounding box
sweep, research in this axea is in progress. More on this can be found in [3].

5 Surface-ray intersection

Finding intersections of rays with surfaces occur frequently in graphics and geometry problems,
in particular in the ray-tracing rendering technique[26,33]. Usually freeform surfaces are first
approximated into polygons or preprocessed into small simplified pieces. Both strategies require
a relatively large amount of memory. Since only a partial invisibility count is needed, we need
not solve for the exact intersection point.

Hidden Curve Rem oval G. Elber and E. Cohen 19

L em m a 5.1 Let S be a path connected continuous surface with no silhouette curves.
If P(ips) is a simple curve, then S is visible relative to itself, and therefore, all curves
belonging to S are totally visible relative to it.

P ro o f: Since S has no silhouette curves, ifts (definition 2.4) consists only of S boundary
curves, and 7Z has exactly one element. Since P(V’5) is a simple curve, P is bijective on the
interior of its whole domain.

By making use of this lemma we can reduce significantly the number of subdivisions
required to solve the surface-ray intersection. When resolving the visibility of a given point
p often one can use lemma 5.1, and decide on p-visibility much sooner than using only a
subdivision technique. This decision can be made even if the exact intersection point of the
ray from V to p with the surface S is unknown. Using curve visibility propagation and surface
coherence, the number of rays that need to be fired can be reduced.

D efin ition 5.1 For a curve j5, Touching{(3) is the set of all curves, other than f3,
that have one endpoint o f their projections lying on j3p.

If a curve a is split into Qi and a 2 at the parametric value where P (a) intersected
with P (P), such that a j has a lower parametric range than a 2, then:

1. a 2 is the next curve of a\, and will be denoted as a 2 = N ext(a\).

2. 01 is the previous curve of 02 , and will be denoted as c*i = P rev (a 2).

3. a \ ,a 2 G Touching(P).

To use this coherence, the curve adjacencies of definition 5.1 must be determined and
kept during the curve-curve intersection stage. Each time a curve is split, all the information on
the splitting and split curves must be kept, in addition to the 2 level ordering relation between
them. Although, this might look time consuming, it is not. Each time a curve is split (a
relatively complex operation), a constant number of adjacency pointers is updated. By doing
so, one can derive a set of rules by which the visibility is propagated so fewer rays need be fired.
The following corollary is only a subset of such rules and which will be sufficient to demonstrate
its power:

C oro llary 5 .1 If rj is an active curve, <f) £ Touching^rj), and 7 is split into 71
and 72 such that 71,72 E Touching(r]), 71 = P rev{72) then (see Figure 15 for all
references)

1. If rj is a silhouette curve o f the surface a, and a has only one silhouette, then
rj is visible relative to a. See h.

2. If rj is a visible silhouette curve, at least one o f 71, 72 is visible. See a, b and
c. If 7 is a passive curve or the scene has only closed models, then exactly one
of 71 , 72 is visible. See c.

3. If r] is visible but not a silhouette curve, then exactly one o f 71, 72 is visible.
See i.

4- If <f> is passive curve and T] is a boundary curve (but not a silhouette), and both
have the same z at the touching point, then <f> has the same visibility as rj. See
}■

5. If T) 6 Touching(<f>), both are boundary curves, and both t] and <f> have the same
z at their touching point, then 77 and <f> have the same visibility. See g.

P ro o f: All the above conclusions result directly from lemma 2.5.

Each of these cases is simple by itself, but in combination they form powerful visibility
propagation tools. Corollary 5.1- 2 is unique, in that one needs more information so the visibility
of the adjacent curve can be resolved. A visible silhouette on closed objects must bound two
regions, exactly one of which is visible, so only a single adjacent curve should be tested for
visibility to classify the regions. For open objects, if a silhouette curve splits a boundary curve,
both subcurves may be visible (see a, Figure 15).

We shall use Figure 15 to demonstrate the propagation ability. Assume the framework
curves are given in in the following order: the silhouette curve following by boundary curves 1,
4, 2, 3.

The visibility of each curve in the framework is checked first. Using Corollary 5.1, since
only one silhouette curves exists, by result 1, it is visible. As this object is open, no propagation
to the boundary curves is allowed. A ray is fired to test the visibility of boundary curve 1, and
it is found to be visible. Using result 5.1-5, curves 2.1 (through i , Figure 15) and 4.1 (through
2) are found to be visible. The next framework curve with unknown visibility is 4 which has
been split into two, 4.1 and 4.2. The first half (4.1) visibility is already known, so only one
ray for the second half (4.2) is fired, and which find it to be visible as well. Using result 5.1-5
curve 4.2 (through 3) sets curve 3.2 to be visible, which in turn sets 3.1 (through 4), using
result 5.1-3, to be invisible. Since 3.1 touches curve 2.2 (at 5), at its end, 2.2 is also set, using
result 5.1-5, to be invisible.

Instead of firing 8 rays, for the 8 active curves in the saddle surface (1, 2.1, 2.2, 3.1, 3.2,
4.1, 4.2 boundary curves, and one silhouette), only 2 were fired. The question on the optimal
way to order these curves is still open. But the improvement in this specific case in much
greater. Using result 5.1-4, since all the iso-parametric curves touch boundary curves at the
same 2 value, they inherit their visibility from that of the boundary. Using result 5.1-3, the
visibility of the boundary curves is propagated to the interior iso-parametric pieces, so no ray
need to be fired for any iso-parametric curve.

In addition to all the above, if the number of surfaces is small, a cache of the subdivided
surfaces can be handled. If a surface was subdivided once for given ray, all but the last few
steps will be identical for nearby rays. The main problem with this approach is the amount of
memory it may require, and so it may be useful only if the scene consists of a small number of
surfaces.

Table 3 compares this propagation in terms of number of rays fired for active and passive
curve and relative time to test the visibility of all the curves. Note the relation between the
two is not linear mainly because of the cache used.

Hidden Curve Rem oval G. Elber and E. Cohen 20

Hidden Curve Rem oval G. Elber and E. Cohen 21

Figure 15: The curves visibility is propagated - firing 2 rays is enough for all curves

Propagation No propagation
act.
rays

pas.
rays

rel.
time

act.
rays

pas.
rays

discont 9 14 5.5 19 96
saddle 2 2 8 8 54
wiggle 11 7 4.5 21 95
pawn 12 68 1.9 17 152

Table 3: Visibility propagation comparison

6 T r i m m e d Surfaces

An important issue to address is the support o f trimmed surfaces. A careful look in the teapot
(Figure 16) uncovers a problem with the design near its handle/body joint. The model was
originally done by juxtaposing the surface descriptions for the handle and body without trim­
ming the surfaces, so the handle and the body surfaces interpenetrate. Curves which should be
hidden at the joint are visible, since this algorithm cannot detect such cases.

Using trimmed surfaces in the model and in the algorithm eliminates this difficulty. The
modifications necessary in our algorithm to support trimmed surfaces were small and occurred
in two stages o f the algorithm.

1. The curve extraction stage needs to trim the extracted curves against the trimming curves
in the parametric space.

Hidden Curve Rem oval G. Elber and E. Cohen 22

Figure 16: A hidden curve view o f the teapot

2. The surface-ray intersection stage should test if the point on surface S that hides the tested
point is in a trimmed part o f S. The trimming curves should be propagated through in
the subdivision process, and a totally trimmed out surface can be another termination
condition for the subdivision.

Figure 17 shows the results o f the modified algorithm.

7 A c k n o w l e d g e m e n t s

Particular thanks to the A lph a .l group for all their help and support in this research.

References

[1] A. Appel. The Notion o f quantitative Invisibility and the Machine Rendering o f Solids
Proceedings ACM National Conference 1967.

[2] J. Blinn. A scan line algorithm for displaying parametricaly defined surfaces. Computer
Graphics 12. 3. 1977.

[3] B. Bruderlin, E. Cohen, and G. Elber. A Plane-Sweep Hidden-Surface Algorithm for
Curved Surfaces. Technical report No. 90-006, Computer Science, University o f Utah.

[4] C. Sequin and P. Wensley. Visible Feature Return at O bject Resolution. IEEE Computer
Graphics and Application, May 1985, pp 27-50.

Hidden Curve Rem oval G. Elber and E. Cohen 24

[10] C. Hornung. An Approach to a Calculation-Minimized Hidden Line Algorithm. Computer
& Graphics, Vol 6, No 3, pp 121-126, 1982.

[11] C. Hornung. A Method for Solving the Visibility Problem IEEE CG&A July 1984, pp.
26-33.

[12] C. Hornung, W . Lellek, P. Pehwald, and W . Strasser. An Area-Oriented Analytical Vis-
iblity Method for Displaying Parametrically Defined Tensor-Product Surfaces. Computer
Aided Geometric Design, 2 (1985) 197-205.

[13] J. Foley and A. Van Dam. Fundamental of Interactive Computer Graphics.

[14] Gerald Farin Curves and Surfaces for Computer Aided Geometric Design. Academic Press,
Inc. Harcourt Brace Jovanovich, Publishers.

[15] R. Guting. New Algorithm for Special Cases of the Hidden Line Elimination Problem.
Computer Vision, Graphics, and Image Processing 40, 188-204 (1987).

[16] I. Sutherland, R. Sproull, and R. Schumacker A Characterization of ten Hidden-Surface
Algorithms. Computer Surveys, Vol. 6, No. 1, Mar. 1974, pp. 1-55.

[17] T. Ivamada and S. Kawai. An Enhanced Treatment of Hidden Lines. ACM Transaction
on Graphics, Vol 6, No. 4, October 1987, Pages 308-323.

[18] J. Kripac. Classification of edges and its application in determining visibility. Computer
Aided Design, Volume 17, Number 1, January/February 1985.

[19] J. Lane and R. Riesenfeld. A Theoretical Development for the Computer Generation
and Display of Piecewise Polynomial Surfaces. IEEE Transaction on pattern analysis and
machine intelligence, vol. PAMI-2, No. 1, January 1980.

[20] L. Li. Hidden-line algorithm for curved surfaces. Computer Aided Design, Volume 20, No.
8, October 1988, Pages 466-470.

[21] P. Loutrel. A Solution to the HiddenJine Problem for Computer Drawn Polyhedra IEEE
Transactions on Computers, Vol. C-19, No. 3, 205-213, March 1970.

[22] M. Mckenna. Worst-Case Optimal Hidden-Surface Removal. ACM Transaction on Graph­
ics, Vol 6, No. 1, January 1987, Pages 19-28.

[23] C. Montani and M. Re. Vector and Raster Hidden-Surface Removal Using Parallel Con­
nected Stripes. IEEE Computer Graphics and Application, July 1987, pp 14-23.

[24] K. Morken Some Identities for Products and Degree Raising of Splines. UNKNOWN

[25] O. Nurmi. A Fast Line-Sweep Algorithm for Hidden Line Elimination. BIT 25 (1985), pp
466-472.

[26] J. Peterson. PRT - A High Quality Image Syslhesis System for B-spline Surfaces. MS
thesis, Computer Science Dept., University of Utah, Dec. 1987.

[27] J. Rankin. A Geometric Hidden-Line Processing Algorithm. Comput. & Graphics Vol. 11,
No. 1, pp. 11-19. 1987.

[28] T . Sederberg and R. Meyers. Loop Detection in Surface Patch Intersections. Computer
Aided Geometric Design 5, pp 161-171, 1988.

[29] Thomas W . Sederberg, Scott C. W hite and Alan K. Zundel. Fat Arcs: A bounding
Region with Cubic Convergence. Technical report No. ECGL-88-1, Engineering Computer
Graphics Laboratory, Brigham Young University, Provo, Utah 84602, June 23, 1988.

[30] T . Sederberg and S. Parry. Comparison o f Three Curve Intersection Algorithms. Computer
Aided Design, Volume 18, Number 1, January/February 1986.

[31] T . Sederberg and Alan K. Zundel Scan Line Display o f Algebraic Surfaces. SIGGRAPH
89, pp 147-156.

[32] Steven G. Satterfield and David F. Rogers. A Procedure for Generating Contour Lines
From a B-Spline Surface IEEE Computer Graphics and Application, Aprit 1985, pp 71-75.

[33] M. Sweeney. Ray Tracing Free-Form B-Spline Surfaces. IEEE Computer Graphics and
Application, Februaury 1986, pp 41-49.

Hidden Curve Rem oval G. Elber and E. Cohen 25

