
A Correctness Criterion for Asynchronous Circuit Validation and Optimization

GANESH GOPALAKRISHNAN� �ganesh�cs�utah�edu�

ERIK BRUNVANDy �brunvand�cs�utah�edu�
NICK MICHELL �michell�cs�utah�edu�

University of Utah
Dept� of Computer Science
Salt Lake City� Utah �����

STEVEN M� NOWICKz �nowick�cs�columbia�edu�

Department of Computer Science
Room ���� Computer Science Building
Columbia University
New York� New York �����

Keywords� Asynchronous Circuits� Circuit Optimizations� Formal Veri�cation of Hardware� Trace Theory

Abstract� In order to reason about the correctness of asynchronous circuit implementations and speci	cations�
Dill has developed a variant of trace theory 
��� Trace theory describes the behavior of an asynchronous circuit
by representing its possible executions as strings called �traces�� A useful relation de	ned in this theory is called
conformance� which holds when one trace speci	cation can be safely substituted for another� We propose a new
relation in the context of Dill
s trace theory� called strong conformance� We show that this relation is capable of
detecting certain errors in asynchronous circuits that cannot be detected through conformance� Strong conformance
also helps to justify circuit optimization rules where a component is replaced by another component having extra
capabilities �e�g�� it can accept more inputs�� The structural operators of Dill
s trace theory � compose� rename and
hide � are shown to be monotonic with respect to strong conformance� Experiments are presented using a modi	ed
version of Dill
s trace theory veri	er which implements the check for strong conformance�

� Introduction

Asynchronous circuits are enjoying a revival� as designers confront problems associated with the
complexity of modern VLSI circuits ���� Despite their many potential advantages� however� the
veri�cation of asynchronous circuits remains a di�cult problem� Asynchronous circuits have been
designed assuming a wide variety of delay models for gates and wires ��� ��� Furthermore� a number
of environmental modes have been used to de�ne a circuit	s interaction with its environment� such as
fundamental �
�� and input�output modes ���� In practice� the task of verifying asynchronous circuits
is greatly simpli�ed by considering only particular classes of behavior� e�g�� delay�insensitivity ��
��
where a circuit	s correct operation is independent of delays in circuit components and in the wires

�Supported in part by NSF Award MIP����	

�
ySupported in part by NSF Award MIP�������

zSupported in part by the Semiconductor Research Corporation� Contract nos� ���DJ�	�
 and �	�DJ�	�
� and by

the Stanford Center for Integrated Systems� Research Thrust in Synthesis and Veri�cation of Multi�Module Systems�




brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


that connect them
 or speed�independence ���� where a circuit	s correct operation is independent of
delays in components� while wires are assumed to have negligible delay�

Dill �
� has developed a trace theory for the speci�cation and veri�cation of asynchronous circuits�
Trace theory uses the theory of regular languages to model asynchronous circuits by representing
executions as strings called �traces�� The symbols in these traces represent signal transitions on
the interface terminals of the circuit being represented� Dill has also developed a veri�er based
on trace theory� The veri�er has been applied to a number of speed�independent asynchronous
circuits ��� �� and has uncovered bugs in several published circuits �
�� Nowick ��� has integrated this
veri�er into the asynchronous circuit synthesis framework used by a research division of Hewlett�
Packard �
�� 

�� Despite the impressive performance of the veri�er� the veri�cation criteria it
uses� namely conformance� is inadequate to detect certain classes of commonly occuring errors
that can be introduced during speed�independent and delay�insensitive circuit design or during
circuit optimization� In this paper� we propose a simple extension to conformance� called strong
conformance� and point out when this criterion is useful and interesting during speed�independent
and delay�insensitive circuit veri�cation� We �rst motivate the need for this notion through some
examples� Then� we present the theoretical aspects of strong conformance� Finally� we present
experiments that illustrate the strengths as well as the limitations of this notion�

Our work on veri�cation raises a fundamental question� what are the most appropriate ways to
compare asynchronous circuits� and when are the di�erent approaches useful� This question arises
quite naturally� because many comparison relations have been proposed in the area of process
calculi such as CCS �
�� and CSP �
�� �for example� see �
���� Although we do not o�er a de�nitive
answer to this question� strong conformance can be seen as one useful contribution to the practical
veri�cation of asynchronous circuits�

This work was principally motivated by our inability to reason about the correctness of some
of the optimization rules used in Brunvand	s asynchronous circuit compiler �
�� 
�� using existing
veri�cation methods�

Section � presents the required background of Dill	s trace theory� and de�nes conformance� which
is the comparison relation used by Dill� Section � de�nes strong conformance as a small extension
to conformance� First� we present an algorithm for verifying this new relation� Next� we provide
two examples illustrating strong conformance� Finally� we examine the formal properties of strong
conformance� Section � presents experiments with an implementation of strong conformance in
Dill	s trace theory veri�er� Section � discusses results� related work and conclusions�

� Background� Trace Theory

In the past decade or so� di�erent trace theories have been developed by various researchers�
These trace theories have been applied to the study of concurrent systems� by Hoare �
�� Chapter
��� to the characterization of CSP processes
 by Rem� Snepscheut� Udding ���� �
� and Ebergen
���� to the analysis� veri�cation� and characterization of speed�independent and delay�insensitive
circuits� This paper follows the version of trace theory proposed by Dill �
�� who has applied his
theory to the veri�cation of speed�independent circuits� Dill has also extended his theory of simple

�



trace structures to complete trace structures �which are capable of modeling in�nite computations�
mainly for the study of liveness properties� Because the operations and decision procedures for �nite
automata on in�nite sequences are much more complicated �
�� it is not clear how successful the
practical adaptation of the theory of complete trace structures will be in the area of asynchronous
circuit veri�cation� �For a discussion of related issues� see ���� �����

��� De�nitions and Trace Structures

The following de�nitions and notations are taken from �
�� Trace theory is a formalism for
modeling� specifying� and verifying speed�independent circuits� It is based on the idea that the
behavior of a circuit can be described by a regular set of traces� or sequences of transitions� Each
trace corresponds to a partial history of signals that might be observed at the input and output
terminals of a circuit�

A simple pre�x�closed trace structure� written SPCTS� is a three tuple �I� O� S� where I is the
input alphabet �the set of input terminal names�� O is the output alphabet �the set of output terminal
names�� and S is a pre�x�closed regular set of strings over the alphabet � � I �O� called the success
set� In the following discussion� we assume that S is a non�empty set�

We associate a SPCTS with a module that we wish to describe� Roughly speaking� the success
set of a module described by a SPCTS is the set of traces that can be observed when the circuit is
�properly used��

With each module� we also associate a failure set� F � which is a regular set of strings over �� The
failure set of a module is the set of traces that correspond to �improper uses� of the module� A
failure set of a module is completely determined by the success set� F � �SI � S���� Intuitively�
�SI�S� describes all strings of the form xa� where x is a success and a is an �illegal� input signal�
Such strings are the minimal possible failures� called chokes� Once a choke occurs� failure cannot
be prevented by future events
 therefore F is su�x�closed�

As an example� consider the SPCTS associated with a unidirectional �non�inverting� buffer
with input a and output b� In this context� we view a bu�er as a component that accepts signal
transitions on a and produces signal transitions on b after an unspeci�ed delay� If we were to use
buffer properly� its successful executions would include one where it has done nothing �i�e�� has
produced trace ��� one where it has accepted an a but has not yet produced a b �i�e�� the trace a��
one where it has accepted an a and produced a b �i�e�� the trace ab�� and so on� More formally�
the success set of buffer is f�� a� ab� aba� � � �g� This set is a record of all the partial histories
�including the empty one� ��� of successful executions of buffer� An example of an improper usage
of buffer�a choke�is the trace aa� Once input a has arrived� a second change in a is illegal
since it may cause unpredictable output behavior� A bu�er of this type can be used to model a
wire with some delay� Therefore� to transform a speed�independent circuit into a delay�insensitive
circuit in the context of Dill	s trace theory� bu�ers are attached to the terminals of the circuit�

We can denote the success set of a SPCTS using a state�transition notation� The success set of
buffer� described earlier� is captured by the following speci�cation� where buffer is regarded as

�



a process�

buffer � a� � b�� buffer

In a process description� we use �j	 to denote choice� ��	 to denote sequencing� and a system of tail
recursive equations to capture repetitive behavior� We use symbols such as a� to denote incoming
transitions �rising or falling� and b� to denote outgoing transitions �rising or falling�� The above
speci�cation of buffer corresponds to the �nite automaton in Figure 
 �which also shows the
choke of buffer��

a?

b!

a?

a?, b!

BUFFER A "choke"

Figure 
� The Finite Automaton corresponding to buffer

When we specify a SPCTS� we generally specify only its success set
 its input and output alphabet
are usually clear from the context� and hence are omitted�

��� Operations on Trace Structures

There are two fundamental operations on trace structures� compose �k� �nds the concurrent
behavior of two circuits that have some wires connected� and hide makes some output wires unob�
servable �suppressing irrelevant details of a circuit	s operation�� A third operation� rename� allows
the user to generate modules from templates by renaming wires�

We consider the compose operation in more detail below �for further discussion� see �
��� The com�
pose operator models the e�ect of connecting identically named wires between two circuits� called
components� Given two components� A and B� with respective trace structures TA � �IA� OA� SA�
and TB � �IB� OB� SB�� the joint behavior of A and B is denoted by the trace structure TA k TB�
Components A and B can be composed only if they have no output wires in common� i�e��
OA�OB � �� If TAB � TA k TB� then the set of outputs of TAB is OAB � OA�OB �whenever an out�
put is connected to an input� the result is an output�� and the set of inputs is IAB � �IA�IB��OAB
�an input connected to an input is an input�� Note that the alphabet� �AB � of the composed trace
structure is the union of the alphabets of the components� �A � �B �

The success set� SAB� of TAB is obtained from the success sets of TA and TB using a product
construction method� sketched brie�y below �for details� see �
���

Product Construction Method to De�ne SAB

As the success set for a component records the possible executions of the component� similarly
the success set that records the possible joint executions of A and B� SAB � must include only those
executions that are �in agreement� with the executions of both A and B� The product construction
method to de�ne SAB has two steps� Step � determines those executions that are in agreement

�



with the success sets of A and B
 this step results in an intermediate success set S
�

AB
� Step � then

eliminates any �internal failures� that may be present in S
�

AB
�to be discussed below�� to result in

the �nal success set� SAB � To help de�ne S
�

AB
� we de�ne x � � as the projection of trace x onto the

alphabet �� The projection retains� in order� all the symbols in x that are also in �� For example�
abc � fc� ag � ac� and abc � fdg � ��

Step �� This step produces a set S
�

AB
of all traces� x� where the projection of x onto either

alphabet� �A or �B � is a trace belonging to the corresponding success set� SA or SB� That is� actions
on common symbols must occur through mutual consensus of the components� while actions on
disjoint symbols �i�e�� symbols belonging to the alphabet of one component only� are governed only
by the rules of operation of the corresponding component� Formally� set S

�

AB
contains all traces

x � ��A � �B�
� where �x � �A� � SA and �x � �B� � SB �

Step �� This phase eliminates �internal failures� from S
�

AB
to obtain the �nal success set� SAB�

Consider a trace x � S
�

AB
� which is a success in both components� Suppose that component A can

successfully �extend� trace x by producing output a� where a then causes a failure in component
B� In this case� once trace x has occurred� the composite circuit can cause its own failure� since
component A may generate output a� As a result� to guarantee no failure in the composed circuit�
trace x itself must be avoided � in e�ect� x must be classi�ed directly as a failure� In general�
a success trace x in the composed circuit is called an autofailure if x can be extended by one or
more outputs to produce a failure in the composed circuit� The process of obtaining SAB from S

�

AB

intuitively �exports� an internal failure to the interface of the circuit� That is� any input signal
which ultimately causes a failure is considered as the direct cause of failure� Formally� we obtain
SAB from S

�

AB
as follows� Initially� let SAB � S

�

AB
� For each trace x � SAB and �nite sequence of

output symbols y � O�
AB

� if �xy � �A� � FA or �xy � �B� � FB � then SAB �� SAB � x �i�e�� remove
x from SAB�� The resulting set SAB is the �nal success set of A k B�

��� Conformance� The Ability to Perform Safe Substitutions

A trace structure speci�cation� TS � can be compared with a trace structure description� TI � of
the actual behavior of a circuit� When TI implements TS � we say that TI conforms to TS 
 that is�
TI � TS � �The inputs and outputs of the two trace structures must be the same��

Conformance holds when TI can be safely substituted for TS � More precisely� TI � TS if� for every
context T �� whenever TS k T � has no failures� TI k T � has no failures� either� Intuitively� TI �

�a� must be able to handle every input that TS can handle �otherwise� TI could fail in a context
where TS would have succeeded�
 and

�b� must not produce an output unless TS could produce it �otherwise� TI could cause a failure
in the surrounding circuitry when TS would not��

We illustrate these two facets of conformance� �rst considering restrictions on input behavior
�case �a��� Consider a JOIN element�

J � a� � b�� c�� J

j b� � a� � c�� J

�



Next� consider a modi�ed JOIN�

J
 � a�� b�� c�� J


Notice that the success set of J
 omits the trace b
 a
 c� Clearly it is not safe to substitute J
 for J
in all environments� J
 cannot accept a transition on b as its �rst input� whereas the environment
is allowed to generate a b as its �rst output transition� because this would have been acceptable
for J � Formally� we say J
 �� J � since the implementation cannot accept an input transition which
the speci�cation can receive�

However� it is safe to substitute J for J
� since J can handle every input �and more� that J

can handle
 so J � J
� Thus� conformance allows an implementation to have �more general� input
behavior than its speci�cation�

Next� consider the case of restrictions on output behavior �case �b� above�� We begin with a
simple case�

CONCUR MOD � a�� �b�� k c���� CONCUR MOD

SEQNTL MOD � a�� b��� c��� SEQNTL MOD

Note that the success set of SEQNTL MOD omits the trace a
 c� It is not safe to substitute
CONCUR MOD for SEQNTL MOD� some environment of SEQNTL MOD may not accept a
transition on c after producing an a� Therefore� CONCUR MOD �� SEQNTL MOD �intuitively�
implementation CONCUR MOD is �too concurrent���

However� SEQNTL MOD can be safely substituted for CONCUR MOD in any environment�
Any environment accepting outputs from CONCUR MOD will also accept outputs generated
by SEQNTL MOD� so SEQNTL MOD � CONCUR MOD� Thus� conformance allows an
implementation to have �more constrained� output behavior than its speci�cation�

This latter point can be illustrated more dramatically� We consider the earlier JOIN speci�cation�
J � and a new implementation�

AlmostWood � a�� b�� c�� AlmostWood

j b�� a�� AlmostWood

J can be safely implemented by AlmostWood in any context for the following reason� As long as
the component and its environment generate the sequence abcabcabc � � �� J and AlmostWood behave
alike� However� suppose that the environment generates the string ba and waits for output c� J
will generate a c after seeing ba� thereby allowing the environment to proceed� AlmostWood� on the
other hand� outputs nothing� and waits for a further a or b� at the same time as the environment
is waiting for a c� In this case� the result is a deadlock� However� because no incorrect outputs are
generated� AlmostWood is a safe substitution for J 
 that is� AlmostWood � J �

Going to the extreme� consider the implementation�

BlockOfWood � a�� BlockOfWood

j b�� BlockOfWood

�



This implementation also conforms to J � BlockOfWood does nothing useful� but neither does it
cause any failures�

In summary� conformance allows an implementation to be a re�nement of a speci�cation� an
implementation may have �more general� input behavior or �more constrained� output behavior
than its speci�cation� However� in practice� one often wants to show not only that an implementa�
tion does no harm� but that it also does something useful� Unfortunately� pre�x�closed trace theory
cannot distinguish �constrained� output behavior from deadlock� In spite of the usefulness of trace
theory� this is its greatest practical weakness�

��� On Establishing Conformance

As discussed earlier� in order to establish whether an implementation I conforms to a speci�cation
S �i�e�� TI � TS�� it is necessary in principle to show that I can be safely substituted for S in all
contexts� Fortunately� a simpler method was �rst proposed by Ebergen ���� and further developed
in the context of his work by Dill �
�� The mirror� TS � of S is de�ned as the trace structure whose
input set is the output set of TS � whose output set is the input set of TS � and which has the same
success set of TS� Intuitively� the mirror is the worst�case environment which will �break� any trace
structure that is not a true implementation of TS �

More formally� given SPCTS TI and TS �with non�empty success sets�� TI � TS if and only if
TI k TS is failure�free �i�e�� has an empty failure set�� This result is proved and justi�ed in �
��
Speci�cally� the mirror TS produces as an output everything that TS accepts as an input� so if TI
fails on any of these� there will be a failure in TI k TS � Similarly� TS accepts as an input only what
TS produces as an output� so if TI produces something else� there will be a failure in TI k TS as
well�

Using this result� Dill has developed a veri�er to establish conformance� Given implementation
I and speci�cation S� with respective trace structures TI and TS � the veri�er determines if TI � TS
as follows�


� Trace structures TI and TS are represented by deterministic �nite automata �
���

�� Trace structure TS is constructed�

�� The parallel composition� TI k TS � of implementation� TI and mirror� TS � is obtained� using
the product construction method described above��

�� TI � TS is checked by determining whether TI k TS is free of failures� This check is performed
by searching the product automaton� depth��rst� for a failure trace� If found� the failure trace
is printed and the search is aborted�

Figure � presents the details of Step � of this algorithm�

�In practice� Dill�s algorithm avoids the explicit construction of the product machine ����

�



To illustrate the algorithm presented in Figure �� we determine if the modi�ed JOIN element�
J
� conforms to the JOIN element� J � described earlier� The mirror� J � of J is de�ned as follows�

J � a�� b�� c�� J

j b�� a�� c�� J

We next obtain the composition J k J
 using the product construction method� Of the two
components� J and J
� only J initially has an enabled output
 in fact� both a� and b� are enabled
in J � While the production of a� is acceptable for J
� the production of b� by J will cause J
 to
choke� Therefore� J
 �� J �

� Strong Conformance

De�nition� We de�ne T v T
�

� read T conforms strongly to T
�

� if T � T
�

and ST 	 S
T

� � The
algorithm to check for strong conformance is presented in Figure ��

The strong conformance relation is safe in that it guarantees conformance� It is not� however�
guaranteed to catch all liveness failures
 but for a number of examples� a veri�er based on strong
conformance provides much better error detection capabilities than conformance�

��� Examples Illustrating Strong Conformance

Example �

Consider a speci�cation for an asynchronous circuit to be built� given in a state�transition nota�
tion�

Spec � a�� a��� Spec

j b�� b��� Spec

This speci�cation describes a component having input terminals a and b� output terminals a� and
b�� and the behavior of process Spec� Process Spec waits for signal transitions on terminals a and b�
If the �rst transition occurs on input terminal a� Spec generates an output transition on terminal
a�� and continues to behave as process Spec� If the �rst transition occurs on terminal b� it generates
an output transition on terminal b� and similarly continues to behave as process Spec�

The behavior of Spec can be realized in many ways� One implementation consists of two �non�
inverting� buffer components� In implementation TwoWires� the bu�ers are used to connect
input a directly to output a�� and input b directly to output b��

TwoWires � WireA k WireB

WireA � a�� a
�

�� WireA

WireB � b�� b
�

�� WireB

TwoWires is an �over�implementation� since it can accept more input sequences than required

for example� one a followed by one b� �Implementing exactly the required behavior� on the other

�



hand� requires additional components�� However it is a correct implementation� because it supports
all the behaviors that Spec supports� Therefore� TwoWires can be safely substituted for Spec in
any context
 that is� TwoWires � Spec� Furthermore� TwoWires strongly conforms to Spec �i�e��
TwoWires v Spec�� Super�cially� it may seem that � and v are the same � but the following
example shows that this is not the case�

Example �

Consider the speci�cation of the �universal do�nothing module� �
�� BlockOfWood� described
earlier�

BlockOfWood � a�� BlockOfWood

j b�� BlockOfWood

Now consider the speci�cation of a JOIN element�

J � a�� b�� c�� J

j b�� a�� c�� J

According to Dill	s trace theory� BlockOfWood conforms to J 
 therefore� BlockOfWood is a safe
substitution for J � However� BlockOfWood deadlocks and is therefore an undesirable substitution�
The strong conformance check BlockOfWood v J fails� and on this basis we can reject BlockOfWood
as a replacement for J � In this example� for our purposes� v is superior to ��

��� Properties of the Strong Conformance Relation

Strong conformance is a transitive relation� because � and 
 are transitive� Other important
properties of strong conformance are proved below�

Proposition� compose� rename� and hide are monotonic with respect to strong conformance�

Proof Outline� These structural operators are monotonic with respect to � as shown in �
� Page
���� We are now required to show the additional facts that SB 	 SA implies�

Shide�X��B� 	 Shide�X��A� �
�

Srename�r��B� 	 Srename�r��A� ���

SBkC 	 SAkC ���

Equation 
 follows from the fact that hide�X� is a function which simply removes members of X
from every success trace in SA or SB �as the case may be�� Equation � follows from the fact that
rename�r� simply applies the renaming function r to every symbol in SA or SB �as the case may
be�� Finally� Equation � follows from the fact that SBkC � SB � SC and SAkC � SA � SC � �

In a practical sense� monotonicity is necessary for modular� or hierarchical� veri�cation� For
example� it would not help to show that A � B if this did not imply that for any context C�
�A k C� � �B k C�� More informally� we require of any practical system that if the replacement

�



of a component is no worse than the replaced part� then the whole system is no worse after the
substitution than before�

We also have the following result�

Proposition� If B v A� then S�AkA� � S�BkA�� In other words� if B v A� the composition of A

with its maximal environment A �in the sense de�ned in Section ���� will exhibit the same success
traces as the composition of B with A�

Proof Outline� By de�nition� if B v A� then SB 	 SA� Also� by de�nition� S
A
� SA� Now� from

the de�nition of k� SXkY � SX � SY if �X � �Y � Therefore� SAkA � SA � SA � SA � SB � SA �
S
BkA� �

Viewed yet another way� B can be replaced for A in any environment� up to the maximal
environment A� and one will not observe any di�erence in the set of transactions that can cross the
boundary between A and A or A and B�

This proof exactly characterizes the notion of strong conformance� B conforms strongly to A if
B may o�er to accept excess inputs in certain states where A cannot accept them� This excess ca�
pability of B is harmless� because the maximal environment of A cannot make use of this capability
when B is used as a replacement for A�

� Experimental Results

��� Error Detection in Queue Cell

A queue cell concur�Q is speci�ed by the Petri net �
�� �� in Figure �� where the queue capacity
is set to 
� The queue cell can be realized using the familiar micropipeline circuit QIMP
 shown
in Figure ��

Suppose that the circuit is erroneously implemented as QIMP�� QIMP� is identical to QIMP

except for a missing inversion bubble� �The QIMP� description may be the result of a transcrip�
tion or editing error� for example�� This �implementation� does nothing wrong� but deadlocks
immediately�

QIMP� conforms to concur�Q� but QIMP� does not conform strongly to concur�Q� The
strong conformance check fails� and generates the error message�

��� failure trace �RIN AIN�

The trace indicates that the implementation cannot produce output AIN after receiving RIN� while
concur�Q can�

This example shows that strong conformance can detect certain forms of deadlock that are not
detected by conformance� More precisely� if after seeing trace x� the speci�cation has a successful
extension through output o while the implementation does not� strong conformance fails�


�



��� ��Location Queue in Place of a ��Location Queue

Next� we experiment with a 
�location queue used in place of a ��location queue� Conformance
passed the 
�location implementation� since the 
�location queue can be safely substituted for the
��location queue� However� this implementation certainly has more limited output behavior than
the speci�cation� The strong conformance check detects this limited output behavior
 it �nds the
following sequence leading to an error�

�STRONG�CONFORMS�TO�P �concur�Q�� �concur�Q���

���

Failure path� �RIN AIN RIN AIN�

The strong conformance check could �nd this failure almost immediately� Increasing the queue
size did not increase the veri�cation time substantially
 for a �
�location queue in place of a ���
location queue� the error was detected after about ��
 seconds on a 
��MIPS workstation�

��� Call�Merge Optimization

The initial circuits generated by either the occam �
�� or hopCP ���� ��� synthesis systems have a
number of redundancies� These redundancies arise because the HDL constructs are compiled with�
out taking their contexts into account� During optimization� it is often possible to take advantage
of a component	s context� and thereby replace it with a cheaper component� An example of such
an optimization� from �
��� is shown in Figure ��

Suppose that a circuit contains the CALL element� shown in Figure �� The behavior of CALL
is described as follows�

CALL � a� � c��� c� � a��� CALL

j b�� c��� c� � b��� CALL

Suppose that during the course of optimization� the c� output of CALL is connected back to its c
input as shown in CALL
 in Figure �� It is assumed that CALL
 is being operated in a delay�
insensitive context� as was the original circuit �i�e�� components and wires are assumed to have
arbitrary delay�� The delay�insensitive behavior of CALL
 is

CALL
 � a� � �c�� k a���� CALL


j b� � �c�� k b���� CALL


where the notation means� after performing a�� perform c�� and a�� in some order before repeating
the behavior of CALL
 �and similarly for the second branch of the choice�� The circuit� CALL
�
can be replaced byMCALL
 �shown in Figure ��� which is smaller and faster than CALL
� Clearly
MCALL
 is not equivalent to CALL
� because the execution sequence

a�
 c��
 b�

is possible for MCALL
 but not for CALL
�







We have MCALL
 � CALL
 as well as MCALL
 v CALL
� While the former check only
guarantees that there will be no chokes if MCALL
 replaces CALL
� the latter check also assures
us thatMCALL
 can exhibit all the successful traces of CALL
� As a result� strong conformation
insures that MCALL
 has neither the deadlock behavior illustrated in Section ��
 nor the con�
strained output behavior illustrated in Section ���� Strong conformance has been used to validate
a number of other optimizations in the occam synthesis system �
�� as well�

��� Generalized Selector

An interesting phenomenon occurs when the speci�cation for a circuit includes non�deterministic
choice� Consider a generalized selector GS�

GS � a�� �b�� GS j c�� GS�

where j denotes choice �in this example� a non�deterministic choice�� When this module receives
an input on a� it makes a transition on either b or c�

Now consider the speci�cation of an alternating selector �
��

AS � a�� b�� a�� c�� AS

AS � GS �but not vice�versa� showing that AS is a safe substitution for GS� However� neither
AS v GS �because SGS �
 SAS � in fact� SAS � SGS� nor GS v AS �because GS does not
conform to AS��

Clearly� AS is a valid replacement for GS� For example� since GS can make a non�deterministic
choice� it might decide to choose strictly alternating outputs �thus� restricting its behavior to that
of AS�� On the other hand� it is also the case that AS cannot implement all of the output behaviors
possible in GS�

In summary� in this example� strong conformance is too restrictive a criterion from the point
of view of �safe substitution�� However� if what is desired is that every trace speci�ed by GS

is possible in an implementation� then implementation AS is unacceptable
 in this case� strong
conformance supports the desired point of view� Thus� the appropriateness of a veri�cation relation
� conformance vs� strong conformance � depends precisely on the design goals being served by
veri�cation� This point is explored further in the next subsection�

��� A Caveat in Applying Conformance Checks

As shown in the previous examples� strong conformance can detect common errors �such as
omitting a �bubble� at the input of a C�element� which cannot be detected by conformance�
However� in using the strong conformance check in practice� one must keep in mind the assumptions
underlying conformance versus strong conformance�

To illustrate this point� consider the speci�cation of a four�phase to two�phase converter with
�quick return� �see Figure ���

QR�� SPEC � r��� ��r��� a��� k �a��� r����� a��� QR�� SPEC


�



where ��a�� � r��� k �r�� � a���� represents all possible overlapped executions of �a�� � r���
and �r��� a���� This speci�cation describes a module which converts from a ��phase handshaking
protocol �e�g�� r��� a��� r��� a��� on the left interface to a ��phase handshaking protocol �e�g��
r��� a��� on the right interface�

Consider an implementation QR�� IMP of QR�� SPEC�

QR�� IMP � r��� �r��� a��� a��� r���� a��� QR�� IMP

This implementation operates in accordance with the speci�cation� but the concurrent behavior
of QR�� SPEC has been sequentialized� Implementation QR�� IMP conforms to QR�� SPEC

however� QR�� IMP does not conform strongly to QR�� SPEC� The error�trace produced by the
failed strong conformance check is �R� A��� That is� QR�� IMP is incapable of producing an A�

immediately following an R��

Depending on the application� conformance might be the appropriate veri�cation relation� since
it indicates that QR�� IMP is a safe substitution for QR�� SPEC� On the other hand� strong
conformance indicates that QR�� IMP has more constrained output behavior than QR�� SPEC�
In particular� QR�� IMP allows no concurrency between outputs r� and a�� For certain appli�
cations� such limited behavior may be unacceptable
 strong conformance successfully detects an
error�

This example illustrates that the usefulness of a veri�cation relation depends on the intended
design goals� Strong conformance is not a general solution to the problem of asynchronous veri��
cation� However� for many applications� it is a simple and powerful formalism for locating errors
that cannot otherwise be detected by conformance�

� Discussion� Related Work� and Conclusions

A relation strong conformance between trace structures has been presented and its various uses
have been pointed out� This notion is closely related to the de�nition of decomposition presented
by Ebergen ����� Key di�erences between our work and Ebergen	s are noted below� and related
work is also discussed�

Ebergen	s trace theory is designed with di�erent objectives� to specify computations� and syn�
thesize circuits through calculations using trace�theoretic rules� This trace theory does not directly
relate to circuit components
 for instance� two trace structures containing the same output symbol
can be weaved� The �weave� operator merely captures constraints on joint execution
 it does not
correspond to the act of connecting two circuit outputs� In contrast� Dill	s k operator relates di�
rectly to the composition of circuit components
 hence� Dill prevents the composition of two trace
structures having the same output symbol�

In Ebergen	s trace theory� the link between trace theoretic operators and circuit behavior is
brought out through the following key notions and theorems� decomposition� DI decomposition�
the separation theorem� and the substitution theorem� Together with a rich collection of equational
laws on commands �where commands denote trace structures�� Ebergen	s trace theory is used to
synthesize correct circuits� without having to �rst �generate� a circuit and then �test� it using


�



a veri�er �as has been the approach suggested here�� A tool to demonstrate the power of Eber�
gen	s trace theory� called VerDect� is now available ����� VerDect checks for Ebergen	s condition
of decomposition� in e�ect performing a veri�cation under the speed�independent model �delay�
insensitivity is guaranteed under Ebergen	s method of synthesis by performing a syntactic check
on decompositions ���� �
��� Dill	s and Ebergen	s work address the two prevalent points of view�
post�hoc veri�cation after �intelligent human design� vs� �correct by construction� design�

The notion of strong conformance is latent in Ebergen	s de�nition of the decomposition relation
���� De�nition ��
����� Page ��� � as was discovered after the fact by us� A similar idea called input
liberalization has also been proposed by Ad Peeters ���� � again discovered after the fact� However�
neither Ebergen nor Peeters suggest using their de�nitions for validating circuit optimizations� as
we do here�

An alternative methodology for translating concurrent process descriptions in a simple language
into delay�insensitive circuits is described by Weber et al� ����� The correctness of this compiler is
shown by exhibiting a bisimulation relation �
�� between the state transition system of the input
description and the circuit generated from it� The authors point out that in general bisimulation is
too strong an equivalence relation for use in veri�cation� For example� although the optimization
illustrated in Figure � is certi�able using strong conformance� the state transition systems of the
unoptimized and the optimized circuits shown in this �gure are not bisimilar� In fact� a notion of
correctness identi�ed by Dill �
� called conformation equivalence �de�ned to be true when imp �
spec and spec � imp�� which is much weaker than the bisimulation relation� also cannot explain the
relationship between the unoptimized and the optimized versions of the circuits in this �gure� The
fact that some correctness criteria prove to be �too strong� stems from the fact that optimizations�
both at the high level as well as at the circuit level� do not usually replace equals by equals�
However� bisimulation as well as conformation equivalence are correctness criteria that are useful
in their own ways� Thus� we re�emphasize the generally agreed upon fact that for supporting
hardware veri�cation in practice� a catalog of correctness criteria is needed� and the designer should
apply judgment in choosing the �right� correctness criterion for the task at hand�

The process algebra developed by Udding and Josephs holds promise to contain state explosion
���� Remark on page ��� as circuits are derived through calculations in their process algebra� rather
than veri�ed post�hoc� as with Dill	s veri�er� However� so long as the two points of view exist �
post�hoc veri�cation after �intelligent human design� vs� �correct by construction� design using
intelligent calculations �� both approaches have an important role to play�

Finally� work in veri�cation of asynchronous circuits appears to be proceeding along �at least�
two distinct lines� �
� a class of work that uses various trace models
 ��� a class of work based on
process algebras� Many of the notions used in these areas seem to be conceptually similar� e�g��
autofailure manifestation �
� �which converts possible failures to actual failures� and may�must
pre�orders �used by �
���� However there are fundamental di�erences between these approaches as
well� e�g�� unidirectional wires carry information only one way� so that a component cannot refuse
an input
 however� a CCS�CSP rendezvous can be refused by not participating� One hopes to see
unifying e�orts relating these as yet unrelated e�orts�

Acknowledgments� Thanks to Jo Ebergen for his insightful feedback on an earlier version of this


�



paper�

References


� David L� Dill� Trace Theory for Automatic Hierarchical Veri�cation of Speed�independent Cir�
cuits� MIT Press� 
���� An ACM Distinguished Dissertation�

�� Ivan Sutherland� Micropipelines� Communications of the ACM� June 
���� The ��		 ACM
Turing Award Lecture�

�� Jerry R� Burch� Delay models for verifying speed�dependent asynchronous circuits� In Proceed�
ings of IEEE International Conference on Computer Design 
ICCD�� pages ��� ���� 
����

�� Srinivas Devadas� Kurt Keutzer� Sharad Malik� and Albert Wang� Veri�cation of asynchronous
interface circuits with bounded wire delays� In International Conference on Computer Design

ICCAD�� IEEE� pages 
�� 
��� November 
����

�� Steven M� Nowick and David L� Dill� Practicality of State�Machine Veri�cation of Speed�
Independent Circuits� In International Conference on Computer Design 
ICCAD�� IEEE� pages
��� ���� November 
����

�� David E� Muller and W�S� Bartky� A Theory of Asynchronous Circuits� In The Annals of the
Computation Laboratory of Harvard University� Volume XXIX� Proceedings of the International
Symposium on the Theory of Switching� Part I� pp� �������� Harvard University Press� 
����

�� John A� Brzozowski and Jo C� Ebergen� On the delay�sensitivity of gate networks� IEEE
Transactions on Computer� �
�

��
��� 
���� November 
����

�� David L� Dill� Steven M� Nowick� and Robert F� Sproull� Speci�cation and automatic veri�ca�
tion of self�timed queues� Formal Methods in System Design� 
�
�� July 
����

�� Steven M� Nowick� Personal Communication� �����


�� Al Davis� Bill Coates� and Ken Stevens� The post o�ce experience� Designing a large asyn�
chronous chip� In Proceedings of the �
th Annual Hawaiian International Conference on System
Sciences� Volume I 
Architecture and Biotechnology Computing�� pages ��� �
�� IEEE Com�
puter Society Press� 
���� Published in the Minitrack Asynchronous and Self�Timed Circuits
and Systems�



� A� Davis� B� Coates� and K� Stevens� Automatic synthesis of fast compact self�timed control cir�
cuits� In ���� IFIP Working Conference on Asynchronous Design Methodologies 
Manchester�
England�� April 
����


�� Robin Milner� Communication and Concurrency� Prentice�Hall� Englewood Cli�s� New Jersey�

����


�




�� John E� Hopcroft and Je�rey D� Ullman� Introduction to Automata Theory� Languages� and
Computation� Addison�Wesley Publishing Company� Reading� Massachusetts� 
����


�� James L� Peterson� Petri Net Theory and the Modeling of Systems� Prentice�Hall� Englewood
Cli�s� New Jersey� 
��
�


�� Stephen H� Unger� Asynchronous Sequential Switching Circuits� Wiley�Interscience� New York�
New York� 
����


�� C� A� R� Hoare� Communicating Sequential Processes� Prentice�Hall� Englewood Cli�s� New
Jersey� 
����


�� Rocco DeNicola and Matthew Hennessy� Testing equivalences for processes� Theoretical Com�
puter Science� ����� 
��� 
����


�� Erik Brunvand� Translating Concurrent Communicating Programs into Asynchronous Circuits�
PhD thesis� Carnegie Mellon University� 
��
�


�� Erik Brunvand and Robert F� Sproull� Translating concurrent programs into delay�insensitive
circuits� In International Conference on Computer Design 
ICCAD�� IEEE� pages ��� ����
nov 
����

��� Martin Rem� Jan L�A� van de Snepscheut� and Jan Tijmen Udding� Trace theory and the
de�nition of hierarchical components� In Randal E� Bryant� editor� Proc� ��	� Caltech VLSI
Conference� pages ��� ���� Computer Science Press Inc�� 
����

�
� Jan L� A� van de Snepscheut� Trace Theory and VLSI Design� Springer Verlag� 
���� LNCS
����

��� Jo C� Ebergen� Translating Programs into Delay Insensitive Circuits� Centre for Mathematics
and Computer Science� Amsterdam� 
���� CWI Tract �
�

��� Amir Pneuli� How vital is liveness� verifying timing properties of reactive and hybrid systems�
In Rance Cleveland� editor� Springer Verlag Lecture Notes in Computer Science� No�
��� CON�
CUR ���� pages 
�� 
��� Springer Verlag� 
����

��� Z� Har	El and Robert P� Kurshan� Software for analytical development of communication
protocols� AT�T Technical Journal� January 
����

��� Venkatesh Akella� Action re�nement based transformation of concurrent processes into asyn�
chronous hardware� Ph�D� research in progress�

��� Venkatesh Akella and Ganesh Gopalakrishnan� Static analysis techniques for the synthesis of
e�cient asynchronous circuits� Technical Report UUCS��
��
�� Dept� of Computer Science�
University of Utah� Salt Lake City� UT ��

�� 
��
� To appear in TAU ���� ���� Workshop
on Timing Issues in the Speci�cation and Synthesis of Digital Systems� Princeton� NJ� March
�	���� �����


�



��� Ganesh Gopalakrishnan and Prabhat Jain� Some recent asynchronous system design method�
ologies� Technical Report UUCS�TR�����
�� Dept� of Computer Science� University of Utah�
Salt Lake City� UT ��

�� 
����

��� Chris Myers and Teresa H��Y� Meng� Synthesis of timed asynchronous circuits� In Proceedings
of the International Conference on Computer Design 
ICCD����� pages ��� ���� 
����

��� Jerry Burch� Trace Algebra for Automatic Veri�cation of Real�Time Concurrent Systems� PhD
thesis� Carnegie�Mellon University� August 
���� Technical Report CMU�CS��������

��� Jo C� Ebergen and Sylvain Gingras� A veri�er for network decompositions of command�based
speci�cations� In Proceedings of the �
th Annual Hawaiian International Conference on System
Sciences� Volume I 
Architecture and Biotechnology Computing�� pages �
� �
�� IEEE Com�
puter Society Press� 
���� Published in the Minitrack Asynchronous and Self�Timed Circuits
and Systems�

�
� Jan Tijmen Udding� A formal model for de�ning and classifying delay�insensitive circuits and
systems� Distributed Computing� �
��
�� ���� 
����

��� Jo C� Ebergen and Ad M�G� Peeters� The modulo�n counter� Design and analysis of delay�
insensitive circuits� Technical Report CS��
���� Department of Computer Science� University
of Waterloo� June 
��
�

��� Sam Weber� Bard Bloom� and Geo�rey Brown� Compiling joy to silicon� In Thomas Knight
and J� Savage� editors� Advanced Research in VLSI � Proceedings of the ���� Brown�MIT
Conference� The MIT Press� March 
����

��� Mark B� Josephs and Jan Tijmen Udding� An algebra for delay�insensitive circuits� Technical
Report WUCS������� Department of Computer Science� Washington University� St� Louis� MO�

����


�



Notation and Initialization�

� De�ne !T � if �T � T�� then T� else T��

� De�ne next�s� x� to be the next state reached from state s on symbol x�

� Initialize a global set of state pairs� visited � ��

� Call conforms�to�p �TS �TI � start�state�TS�� start�state�TI���

conforms�to�p�� �T�� T�� st�� st�� �
if �st�� st�� � visited

then return
else

begin

visited �� visited� f�st�� st��g

for each T � fT�� T�g

for each enabled output x of T

if x is enabled in !T
then conforms�to�p�� �T�� T�� next�st�� x�� next�st�� x��
else ERROR 
print failure trace and abort�

end if
end for

end for
end

end if
end conforms�to�p��

conforms�to�p �T�� T�� st�� st�� �
begin

conforms�to�p�� �T�� T�� st�� st��

print��success��

end

end conforms�to�p

Figure �� Algorithm for Checking Conformance


�



Notation and Initialization�

� De�ne !T � if �T � T�� then T� else T��

� De�ne next�s� x� to be the next state reached from state s on symbol x�

� Initialize a global set of state pairs� visited � ��

� Call strong�conforms�to�p �TS �TI � start�state�TS�� start�state�TI���

strong�conforms�to�p�� �T�� T�� st�� st�� �
if �st�� st�� � visited

then return
else

begin

visited �� visited � f�st�� st��g

for each enabled input x of T� �" Strong conformance checking loop "�

if x is not enabled in T�
then ERROR 
print failure trace and abort��

end if

end for

for each T � fT�� T�g

for each enabled output x of T

if x is enabled in !T
then strong�conforms�to�p�� �T�� T�� next�st�� x�� next�st�� x��
else ERROR 
print failure trace and abort�

end if
end for

end for
end

end if
end strong�conforms�to�p��

strong�conforms�to�p �T�� T�� st�� st�� �
begin

strong�conforms�to�p�� �T�� T�� st�� st��

print��success��

end

end strong�conforms�to�p

Figure �� Algorithm for Checking Strong Conformance


�



Capacity number of tokens here

AoutRoutRinAin

Figure �� Petri Net Speci�cation of a Queue

C

RIN

AOUT

ROUT

AIN

BUF

BUFBUF

BUF

C

AIN

RIN

AOUT

ROUT

Error

QIMP2QIMP1

Figure �� Two Di�erent Queue Elements

C’

B

C’

B

A’

A

C

C’
CallCall

XOR

A

A’

B

A

B’ B’
B’

A’

Figure �� Call�Merge Optimization� CALL� CALL
� and MCALL
� respectively

R4 R2

A4 A2

QR42_SPEC

Figure �� QR�� Converter Speci�cation

��


