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Abstract. In order to reason about the correctness of asynchronous circuit implementations and specifications,
Dill has developed a variant of trace theory [1]. Trace theory describes the behavior of an asynchronous circuit
by representing its possible executions as strings called “traces”. A wuseful relation defined in this theory is called
conformance, which holds when one trace specification can be safely substituted for another. We propose a new
relation in the context of Dill’s trace theory, called strong conformance. We show that this relation is capable of
detecting certain errors in asynchronous circuits that cannot be detected through conformance. Strong conformance
also helps to justify circuit optimization rules where a component is replaced by another component having extra
capabilities (e.g., it can accept more inputs). The structural operators of Dill’s trace theory — compose, rename and
hide — are shown to be monotonic with respect to strong conformance. Fxpertments are presented using a modified
version of Dill’s trace theory verifier which implements the check for strong conformance.

1 Introduction

Asynchronous circuits are enjoying a revival, as designers confront problems associated with the
complexity of modern VLSI circuits [2]. Despite their many potential advantages, however, the
verification of asynchronous circuits remains a difficult problem. Asynchronous circuits have been
designed assuming a wide variety of delay models for gates and wires [3, 4]. Furthermore, a number
of environmental modes have been used to define a circuit’s interaction with its environment, such as
fundamental [15] and input/output modes [7]. In practice, the task of verifying asynchronous circuits
is greatly simplified by considering only particular classes of behavior, e.g., delay-insensitivity [31],
where a circuit’s correct operation is independent of delays in circuit components and in the wires
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that connect them; or speed-independence [6], where a circuit’s correct operation is independent of
delays in components, while wires are assumed to have negligible delay.

Dill [1] has developed a trace theory for the specification and verification of asynchronous circuits.
Trace theory uses the theory of regular languages to model asynchronous circuits by representing
executions as strings called “traces.” The symbols in these traces represent signal transitions on
the interface terminals of the circuit being represented. Dill has also developed a verifier based
on trace theory. The verifier has been applied to a number of speed-independent asynchronous
circuits [8, 5] and has uncovered bugs in several published circuits [1]. Nowick [9] has integrated this
verifier into the asynchronous circuit synthesis framework used by a research division of Hewlett-
Packard [10, 11]. Despite the impressive performance of the verifier, the verification criteria it
uses, namely conformance, is inadequate to detect certain classes of commonly occuring errors
that can be introduced during speed-independent and delay-insensitive circuit design or during
circuit optimization. In this paper, we propose a simple extension to conformance, called strong
conformance, and point out when this criterion is useful and interesting during speed-independent
and delay-insensitive circuit verification. We first motivate the need for this notion through some
examples. Then, we present the theoretical aspects of strong conformance. Finally, we present
experiments that illustrate the strengths as well as the limitations of this notion.

Our work on verification raises a fundamental question: what are the most appropriate ways to
compare asynchronous circuits, and when are the different approaches useful? This question arises
quite naturally, because many comparison relations have been proposed in the area of process
calculi such as CCS [12] and CSP [16] (for example, see [17]). Although we do not offer a definitive
answer to this question, strong conformance can be seen as one useful contribution to the practical
verification of asynchronous circuits.

This work was principally motivated by our inability to reason about the correctness of some
of the optimization rules used in Brunvand’s asynchronous circuit compiler [18, 19] using existing
verification methods.

Section 2 presents the required background of Dill’s trace theory, and defines conformance, which
is the comparison relation used by Dill. Section 3 defines strong conformance as a small extension
to conformance. First, we present an algorithm for verifying this new relation. Next, we provide
two examples illustrating strong conformance. Finally, we examine the formal properties of strong
conformance. Section 4 presents experiments with an implementation of strong conformance in
Dill’s trace theory verifier. Section 5 discusses results, related work and conclusions.

2 Background: Trace Theory

In the past decade or so, different trace theories have been developed by various researchers.
These trace theories have been applied to the study of concurrent systems: by Hoare [16, Chapter
2], to the characterization of CSP processes; by Rem, Snepscheut, Udding [20, 21] and Ebergen
[22] to the analysis, verification, and characterization of speed-independent and delay-insensitive
circuits. This paper follows the version of trace theory proposed by Dill [1], who has applied his
theory to the verification of speed-independent circuits. Dill has also extended his theory of simple



trace structures to complete trace structures (which are capable of modeling infinite computations)
mainly for the study of liveness properties. Because the operations and decision procedures for finite
automata on infinite sequences are much more complicated [1], it is not clear how successful the
practical adaptation of the theory of complete trace structures will be in the area of asynchronous
circuit verification. (For a discussion of related issues, see [23, 24].)

2.1 Definitions and Trace Structures

The following definitions and notations are taken from [1]. Trace theory is a formalism for
modeling, specifying, and verifying speed-independent circuits. It is based on the idea that the
behavior of a circuit can be described by a regular set of traces, or sequences of transitions. Each
trace corresponds to a partial history of signals that might be observed at the input and output
terminals of a circuit.

A simple prefiz-closed trace structure, written SPCTS, is a three tuple (I,0,S) where [ is the
input alphabet (the set of input terminal names), O is the output alphabet (the set of output terminal
names), and S is a prefix-closed regular set of strings over the alphabet o« = TUQO, called the success
set. In the following discussion, we assume that S is a non-empty set.

We associate a SPCTS with a module that we wish to describe. Roughly speaking, the success
set of a module described by a SPCTS is the set of traces that can be observed when the circuit is
“properly used”.

With each module, we also associate a failure set, I, which is a regular set of strings over a. The
failure set of a module is the set of traces that correspond to “improper uses” of the module. A
failure set of a module is completely determined by the success set: F' = (S — S)a*. Intuitively,
(SI—S) describes all strings of the form za, where 2 is a success and a is an “illegal” input signal.
Such strings are the minimal possible failures, called chokes. Once a choke occurs, failure cannot
be prevented by future events; therefore F' is suffix-closed.

As an example, consider the SPCTS associated with a unidirectional (non-inverting) BUFFER
with input ¢ and output b. In this context, we view a buffer as a component that accepts signal
transitions on a and produces signal transitions on b after an unspecified delay. If we were to use
BUFFER properly, its successful executions would include one where it has done nothing (i.e., has
produced trace €), one where it has accepted an a but has not yet produced a b (i.e., the trace a),
one where it has accepted an @ and produced a b (i.e., the trace ab), and so on. More formally,
the success set of BUFFER is {e, a,ab,aba,...}. This set is a record of all the partial histories
(including the empty one, €), of successful executions of BUFFER. An example of an improper usage
of BUFFER—a choke—is the trace aa. Once input a has arrived, a second change in a is illegal
since it may cause unpredictable output behavior. A buffer of this type can be used to model a
wire with some delay. Therefore, to transform a speed-independent circuit into a delay-insensitive
circuit in the context of Dill’s trace theory, buffers are attached to the terminals of the circuit.

We can denote the success set of a SPCTS using a state-transition notation. The success set of
BUFFER, described earlier, is captured by the following specification, where BUFFER is regarded as



a process:
BUFFER = a? — b! = BUFFER

In a process description, we use ‘|’ to denote choice, ‘=’ to denote sequencing, and a system of tail
recursive equations to capture repetitive behavior. We use symbols such as a? to denote incoming
transitions (rising or falling) and b! to denote outgoing transitions (rising or falling). The above
specification of BUFFER corresponds to the finite automaton in Figure 1 (which also shows the
choke of BUFFER):

BUFFER 7

Figure 1: The Finite Automaton corresponding to BUFFER

When we specify a SPCTS, we generally specify only its success set; its input and output alphabet
are usually clear from the context, and hence are omitted.

2.2 Operations on Trace Structures

There are two fundamental operations on trace structures: compose (||) finds the concurrent
behavior of two circuits that have some wires connected, and hide makes some output wires unob-
servable (suppressing irrelevant details of a circuit’s operation). A third operation, rename, allows
the user to generate modules from templates by renaming wires.

We consider the compose operation in more detail below (for further discussion, see [1]). The com-
pose operator models the effect of connecting identically named wires between two circuits, called
components. Given two components, A and B, with respective trace structures T4 = (4,04, S4)
and Ts = (Ig,0B, Sp), the joint behavior of A and B is denoted by the trace structure T4 || T'5.
Components A and B can be composed only if they have no output wires in common, i.e.,
O04aNOp = 0. If Typ = T4 || T, then the set of outputs of Typ is Oup = O4UOpB (whenever an out-
put is connected to an input, the result is an output), and the set of inputs is Iup = (I4UIB)—O4pn
(an input connected to an input is an input). Note that the alphabet, a5, of the composed trace
structure is the union of the alphabets of the components, gy U ap.

The success set, Sap, of T4p is obtained from the success sets of Ty and Ty using a product
construction method, sketched briefly below (for details, see [1]).

Product Construction Method to Define Sup

As the success set for a component records the possible executions of the component, similarly
the success set that records the possible joint executions of A and B, Sap, must include only those
executions that are “in agreement” with the executions of both A and B. The product construction
method to define Syp has two steps. Step 1 determines those executions that are in agreement



with the success sets of A and B; this step results in an intermediate success set S;lB- Step 2 then
eliminates any “internal failures” that may be present in S;lB (to be discussed below), to result in
the final success set, Sap. To help define S;le we define = | v as the projection of trace z onto the
alphabet a. The projection retains, in order, all the symbols in z that are also in «. For example,
abe | {c,a} = ac, and abe | {d} = e.

Step 1: This step produces a set S;lB of all traces, z, where the projection of z onto either
alphabet, a4 or ap, is a trace belonging to the corresponding success set, S4 or Sg. That is, actions
on common symbols must occur through mutual consensus of the components, while actions on
disjoint symbols (i.e., symbols belonging to the alphabet of one component only) are governed only
by the rules of operation of the corresponding component. Formally, set S;lB contains all traces
z € (g Uap)” where (2 | ay) € Sy and (2 | ap) € Sp.

Step 2: This phase eliminates “internal failures” from S;lB to obtain the final success set, S4p.
Consider a trace z € S;le which is a success in both components. Suppose that component A can
successfully “extend” trace & by producing output a, where a then causes a failure in component
B. In this case, once trace x has occurred, the composite circuit can cause its own failure, since
component A may generate output a. As a result, to guarantee no failure in the composed circuit,
trace x itself must be avoided — in effect, x must be classified directly as a failure. In general,
a success trace x in the composed circuit is called an autofailure if x can be extended by one or
more outputs to produce a failure in the composed circuit. The process of obtaining S4p from S;lB
intuitively “exports” an internal failure to the interface of the circuit. That is, any input signal
which ultimately causes a failure is considered as the direct cause of failure. Formally, we obtain
Sap from S;lB as follows: Initially, let Sy = S;lB- For each trace z € S4p and finite sequence of
output symbols y € O% 5, if (zy | a4) € F4 or (zy | ap) € I, then Sap := Sap —z (i.e., remove
x from Sup). The resulting set Syp is the final success set of A || B.

2.3 Conformance: The Ability to Perform Safe Substitutions

A trace structure specification, Ts, can be compared with a trace structure description, 77, of
the actual behavior of a circuit. When T7 implements Ts, we say that Tt conforms to Ts; that is,
Ty < Ts. (The inputs and outputs of the two trace structures must be the same.)

Conformance holds when T can be safely substituted for Ts. More precisely, Tr < Tg if, for every
context 1", whenever T's || 77 has no failures, 77 || 7" has no failures, either. Intuitively, 77:

(a) must be able to handle every input that T's can handle (otherwise, 77 could fail in a context
where T's would have succeeded); and

(b) must not produce an output unless T's could produce it (otherwise, 77 could cause a failure
in the surrounding circuitry when T's would not).

We illustrate these two facets of conformance, first considering restrictions on input behavior
(case (a)). Consider a JOIN element:

J = a? =+ b7 =l —J
|67 = a? =l = J



Next, consider a modified JOIN:
JI = a?—=bl—>d—J1

Notice that the success set of J1 omits the trace b; a; c. Clearly it is not safe to substitute J1 for J
in all environments: J1 cannot accept a transition on b as its first input, whereas the environment
is allowed to generate a b as its first output transition, because this would have been acceptable
for J. Formally, we say J1 £ .J, since the implementation cannot accept an input transition which
the specification can receive.

However, it is safe to substitute J for J1, since J can handle every input (and more) that J1
can handle; so J < J1. Thus, conformance allows an implementation to have “more general” input
behavior than its specification.

Next, consider the case of restrictions on output behavior (case (b) above). We begin with a
simple case:

CONCURMOD = a? — (b!|| ¢!y - CONCURMOD
SEQNTLMOD = a? = ' — ¢! = SEQNTL_MOD

Note that the success set of SEQNTL _MQOD omits the trace a;c. It is not safe to substitute
CONCURMOD for SEQNTL_MQOD: some environment of SEQNTL_MQOD may not accept a
transition on ¢ after producing an a. Therefore, CONCUR_MOD £ SEQNTL_MOD (intuitively,
implementation CONCUR_MOD is “too concurrent”).

However, SEQNTL_MOD can be safely substituted for CONCUR_MOD in any environment.
Any environment accepting outputs from CONCUR_MOD will also accept outputs generated
by SEQNTL MOD, so SEQNTL MOD < CONCUR_MOD. Thus, conformance allows an
implementation to have “more constrained” output behavior than its specification.

This latter point can be illustrated more dramatically. We consider the earlier JOIN specification,
J, and a new implementation:

AlmostWood = a? = b7 = ¢! = AlmostWood
| b7 — a? — Almost Wood

J can be safely implemented by AlmostWood in any context for the following reason. As long as
the component and its environment generate the sequence abcabeabe . . ., J and Almost Wood behave
alike. However, suppose that the environment generates the string ba and waits for output ¢. J
will generate a ¢ after seeing ba, thereby allowing the environment to proceed. AlmostWood, on the
other hand, outputs nothing, and waits for a further @ or b — at the same time as the environment
is waiting for a c¢. In this case, the result is a deadlock. However, because no incorrect outputs are
generated, AlmostWood is a safe substitution for J; that is, AlmostWood < J.

Going to the extreme, consider the implementation:

BlockOfWood = a? = BlockOfWood
| b7 — BlockOfWood



This implementation also conforms to J: BlockOfWood does nothing useful, but neither does it
cause any failures.

In summary, conformance allows an implementation to be a refinement of a specification: an
implementation may have “more general” input behavior or “more constrained” output behavior
than its specification. However, in practice, one often wants to show not only that an implementa-
tion does no harm, but that it also does something useful. Unfortunately, prefix-closed trace theory
cannot distinguish “constrained” output behavior from deadlock. In spite of the usefulness of trace
theory, this is its greatest practical weakness.

2.4 On Establishing Conformance

As discussed earlier, in order to establish whether an implementation I conforms to a specification
S (i.e., Tr < Ts), it is necessary in principle to show that I can be safely substituted for S in all
contexts. Fortunately, a simpler method was first proposed by Ebergen [22] and further developed
in the context of his work by Dill [1]. The mirror, Ts, of S is defined as the trace structure whose
input set is the output set of T's, whose output set is the input set of Ts, and which has the same
success set of T's. Intuitively, the mirror is the worst-case environment which will “break” any trace
structure that is not a true implementation of Ts.

More formally, given SPCTS 17 and Ts (with non-empty success sets), 71 < Ts if and only if
Tr || Ts is failure-free (i.e., has an empty failure set). This result is proved and justified in [1].
Specifically, the mirror Ts produces as an output everything that Ts accepts as an input, so if 77
fails on any of these, there will be a failure in Ty || Ts. Similarly, Ts accepts as an input only what
Ts produces as an output, so if 77 produces something else, there will be a failure in Ty || Ts as
well.

Using this result, Dill has developed a verifier to establish conformance. Given implementation
I and specification S, with respective trace structures 17 and T’s, the verifier determines if T7 < T
as follows:

1. Trace structures T7 and T's are represented by deterministic finite automata [13].
2. Trace structure T is constructed.

3. The parallel composition, Ty || Ts, of implementation, T and mirror, Ts, is obtained, using
the product construction method described above.!

4. Ty < Ts is checked by determining whether 77 || Ts is free of failures. This check is performed
by searching the product automaton, depth-first, for a failure trace. If found, the failure trace
is printed and the search is aborted.

Figure 2 presents the details of Step 4 of this algorithm.

'In practice, Dill’s algorithm avoids the explicit construction of the product machine [1].



To illustrate the algorithm presented in Figure 2, we determine if the modified JOIN element,
J1, conforms to the JOIN element, .J, described earlier. The mirror, J, of J is defined as follows:

J = a=b—=e?—=J

| 0! = al = ¢? = J
We next obtain the composition .J || J1 using the product construction method. Of the two
components, J and J1, only J initially has an enabled output; in fact, both a! and b! are enabled

in .J. While the production of a! is acceptable for J1, the production of b! by J will cause J1 to
choke. Therefore, J1 £ J.

3 Strong Conformance

Definition: We define T C T’ read T conforms strongly to T', if T < T" and St 2 Spr. The
algorithm to check for strong conformance is presented in Figure 3.

The strong conformance relation is safe in that it guarantees conformance. It is not, however,
guaranteed to catch all liveness failures; but for a number of examples, a verifier based on strong
conformance provides much better error detection capabilities than conformance.

3.1 Examples Illustrating Strong Conformance

Example 1

Consider a specification for an asynchronous circuit to be built, given in a state-transition nota-
tion:

Spec = a? — a'! = Spec
| b7 — bl — Spec

This specification describes a component having input terminals @ and b, output terminals ¢’ and
b', and the behavior of process Spec. Process Spec waits for signal transitions on terminals ¢ and b.
If the first transition occurs on input terminal a, Spec generates an output transition on terminal
a’, and continues to behave as process Spec. If the first transition occurs on terminal b, it generates
an output transition on terminal ' and similarly continues to behave as process Spec.

The behavior of Spec can be realized in many ways. One implementation consists of two (non-
inverting) BUFFER components. In implementation TwoWires, the buffers are used to connect
input @ directly to output a’, and input b directly to output &'

TwoWires = WireA| WireB
WireA = a? —d!— WireA
WireB = b7 —b'! = WireB

TwoWires is an “over-implementation” since it can accept more input sequences than required;
for example, one a followed by one b. (Implementing exactly the required behavior, on the other



hand, requires additional components.) However it is a correct implementation, because it supports
all the behaviors that Spec supports. Therefore, TwoWires can be safely substituted for Spec in
any context; that is, TwoWires < Spec. Furthermore, TwoWires strongly conforms to Spec (i.e.,
TwoWires C Spec). Superficially, it may seem that < and C are the same — but the following
example shows that this is not the case.

Example 2

Consider the specification of the “universal do-nothing module” [1], BlockOfWood, described
earlier:

BlockOfWood = a? = BlockOfWood
| b7 — BlockOfWood

Now consider the specification of a JOIN element:

J = a? =+ b7 =l —J
| 0?7 = a? = cl—J

According to Dill’s trace theory, BlockOfWood conforms to J; therefore, BlockO fW ood is a safe
substitution for J. However, BlockO fWood deadlocks and is therefore an undesirable substitution.
The strong conformance check BlockOfWood C J fails, and on this basis we can reject BlockOfWood
as a replacement for .J. In this example, for our purposes, C is superior to <.

3.2 Properties of the Strong Conformance Relation

Strong conformance is a transitive relation, because < and C are transitive. Other important
properties of strong conformance are proved below.

Proposition. compose, rename, and hide are monotonic with respect to strong conformance.

Proof Outline. These structural operators are monotonic with respect to < as shown in [1, Page
58]. We are now required to show the additional facts that Sg D S4 implies:

Shide(X)(B) 2 Shide(X)(A) (1)
Srename(r)(B) 2 Srename(r)(A) (2)
SB|c 2 Sa|c (3)

Equation 1 follows from the fact that hide(X) is a function which simply removes members of X
from every success trace in S4 or Sp (as the case may be). Equation 2 follows from the fact that
rename(r) simply applies the renaming function r to every symbol in S4 or Sg (as the case may
be). Finally, Equation 3 follows from the fact that Spc = Sp NS¢ and Sy c = 54N Sc. O

In a practical sense, monotonicity is necessary for modular, or hierarchical, verification. For
example, it would not help to show that A < B if this did not imply that for any context C,
(Al C) < (B || C). More informally, we require of any practical system that if the replacement



of a component is no worse than the replaced part, then the whole system is no worse after the
substitution than before.

We also have the following result.
Proposition. If B C A, then S(A||Z) = S(B||_)' In other words, if B C A, the composition of A

with its maximal environment A (in the sense defined in Section 2.4) will exhibit the same success
traces as the composition of B with A.

Proof Outline. By definition, if B C A, then S 2 S4. Also, by definition, S5 = S4. Now, from
the definition of ||, Sx|ly = Sx N Sy if ax = ay. Therefore, SA||Z =954NS57=54=5N57=

Viewed yet another way, B can be replaced for A in any environment, up to the maximal
environment A, and one will not observe any difference in the set of transactions that can cross the

boundary between A and A or A and B.

This proof exactly characterizes the notion of strong conformance: B conforms strongly to A if
B may offer to accept excess inputs in certain states where A cannot accept them. This excess ca-
pability of B is harmless, because the maximal environment of A cannot make use of this capability
when B is used as a replacement for A.

4 Experimental Results

4.1 Error Detection in Queue Cell

A queue cell cONCUR-Q is specified by the Petri net [14, 8] in Figure 4, where the queue capacity
is set to 1. The queue cell can be realized using the familiar micropipeline circuit QI M P1 shown
in Figure 5.

Suppose that the circuit is erroneously implemented as Q1M P2. QI M P2 is identical to QI M P1
except for a missing inversion bubble. (The QIM P2 description may be the result of a transcrip-
tion or editing error, for example.) This “implementation” does nothing wrong, but deadlocks
immediately.

QIM P2 conforms to CONCUR-Q, but QIM P2 does not conform strongly to CONCUR-Q. The
strong conformance check fails, and generates the error message:

. failure trace (RIN AIN)

The trace indicates that the implementation cannot produce output AIN after receiving RIN, while
CONCUR-(Q can.

This example shows that strong conformance can detect certain forms of deadlock that are not
detected by conformance. More precisely, if after seeing trace x, the specification has a successful
extension through output o while the implementation does not, strong conformance fails.

10



4.2 1-Location Queue in Place of a 2-Location Queue

Next, we experiment with a 1-location queue used in place of a 2-location queue. Conformance
passed the 1-location implementation, since the 1-location queue can be safely substituted for the
2-location queue. However, this implementation certainly has more limited output behavior than
the specification. The strong conformance check detects this limited output behavior; it finds the
following sequence leading to an error:

(STRONG-CONFORMS-TO-P *concur—-Q1* *concur-Q2*)
Failure path: (RIN AIN RIN AIN)

The strong conformance check could find this failure almost immediately. Increasing the queue
size did not increase the verification time substantially; for a 31-location queue in place of a 32-
location queue, the error was detected after about 0.1 seconds on a 10-MIPS workstation.

4.3 Call-Merge Optimization

The initial circuits generated by either the occam [18] or hopCP [25, 26] synthesis systems have a
number of redundancies. These redundancies arise because the HDL constructs are compiled with-
out taking their contexts into account. During optimization, it is often possible to take advantage
of a component’s context, and thereby replace it with a cheaper component. An example of such
an optimization, from [18], is shown in Figure 6.

Suppose that a circuit contains the CALL element, shown in Figure 6. The behavior of CALL
is described as follows:

CALL = a?—=d'—=c?—ad!l— CALL

| 07 = ' = e? = V1= CALL
Suppose that during the course of optimization, the ¢/ output of CALL is connected back to its ¢
input as shown in CALL1 in Figure 6. It is assumed that CALL1 is being operated in a delay-

insensitive context, as was the original circuit (i.e., components and wires are assumed to have
arbitrary delay). The delay-insensitive behavior of CALL1 is

CALLl = a?— (| a'l) = CALLL
| b7 = (V|| V') = CALLL

where the notation means: after performing a?, perform ¢! and a’! in some order before repeating
the behavior of CALL1 (and similarly for the second branch of the choice). The circuit, CALLI,
can be replaced by MCALL1 (shown in Figure 6), which is smaller and faster than CALL1. Clearly
MCALLL is not equivalent to CALL1, because the execution sequence

a?; 'l b?

is possible for MC'ALL1 but not for CALLI.

11



We have MCALL1 < CCALL1 as well as MCALL1 C CALL1. While the former check only
guarantees that there will be no chokes if MCALL1 replaces CALL1, the latter check also assures
us that MC' ALL1 can exhibit all the successful traces of CALL1. As a result, strong conformation
insures that MC' ALL1 has neither the deadlock behavior illustrated in Section 4.1 nor the con-
strained output behavior illustrated in Section 4.2. Strong conformance has been used to validate
a number of other optimizations in the occam synthesis system [18] as well.

4.4 Generalized Selector

An interesting phenomenon occurs when the specification for a circuit includes non-deterministic
choice. Consider a generalized selector G'S:

GS = a?—= (B—=GS | = GS)

where | denotes choice (in this example, a non-deterministic choice). When this module receives
an input on a, it makes a transition on either b or c.

Now consider the specification of an alternating selector [1]:
AS =  a?—=b—=a? == AS

AS < G (but not vice-versa) showing that AS is a safe substitution for G'S. However, neither
AS C GS (because Sgs € Sas — in fact, Sys C Sgg) nor GS C AS (because GS does not
conform to AS).

Clearly, AS is a valid replacement for G.S. For example, since GS can make a non-deterministic
choice, it might decide to choose strictly alternating outputs (thus, restricting its behavior to that
of AS). On the other hand, it is also the case that AS cannot implement all of the output behaviors
possible in GS.

In summary, in this example, strong conformance is too restrictive a criterion from the point
of view of “safe substitution”. However, if what is desired is that every trace specified by G5
is possible in an implementation, then implementation AS is unacceptable; in this case, strong
conformance supports the desired point of view. Thus, the appropriateness of a verification relation
— conformance vs. strong conformance — depends precisely on the design goals being served by
verification. This point is explored further in the next subsection.

4.5 A Caveat in Applying Conformance Checks

As shown in the previous examples, strong conformance can detect common errors (such as
omitting a “bubble” at the input of a C-ELEMENT) which cannot be detected by conformance.
However, in using the strong conformance check in practice, one must keep in mind the assumptions
underlying conformance versus strong conformance.

To illustrate this point, consider the specification of a four-phase to two-phase converter with
“quick return” (see Figure 7):

QRA2.SPEC = rd? — ((r2! = a2?) || (ad! — rd?)) — ad! - QR42_.SPEC
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where ((a4! — r4?) || (r2! — a27?)) represents all possible overlapped executions of (a4! — r4?)
and (r2! — a27). This specification describes a module which converts from a -phase handshaking
protocol (e.g., 147 — a4l — r47 — a4!) on the left interface to a 2-phase handshaking protocol (e.g.,
r2! — a27?) on the right interface.

Consider an implementation QR42_IMP of QR42_SPEC:

QRA2IMP = r4? — (r2! = a2? — ad! — r4?) — ad! - QR42_IMP

This implementation operates in accordance with the specification, but the concurrent behavior
of QR42_SPEC has been sequentialized. Implementation QR42_IMP conforms to QR42_SPEC;
however, QR42_IMP does not conform strongly to QR42_SPEC. The error-trace produced by the
failed strong conformance check is (R4 A4). That is, QR42_IMP is incapable of producing an A4
immediately following an R4.

Depending on the application, conformance might be the appropriate verification relation, since
it indicates that QR42_IMP is a safe substitution for QR42_SPEC. On the other hand, strong
conformance indicates that QR42_IMP has more constrained output behavior than QR42_SPEC.
In particular, QR42_IMP allows no concurrency between outputs r2 and a4. For certain appli-
cations, such limited behavior may be unacceptable; strong conformance successfully detects an
error.

This example illustrates that the usefulness of a verification relation depends on the intended
design goals. Strong conformance is not a general solution to the problem of asynchronous verifi-
cation. However, for many applications, it is a simple and powerful formalism for locating errors
that cannot otherwise be detected by conformance.

5 Discussion, Related Work, and Conclusions

A relation strong conformance between trace structures has been presented and its various uses
have been pointed out. This notion is closely related to the definition of decomposition presented
by Ebergen [22]. Key differences between our work and Ebergen’s are noted below, and related
work is also discussed.

Ebergen’s trace theory is designed with different objectives: to specify computations, and syn-
thesize circuits through calculations using trace-theoretic rules. This trace theory does not directly
relate to circuit components; for instance, two trace structures containing the same output symbol
can be weaved. The “weave” operator merely captures constraints on joint execution; it does not
correspond to the act of connecting two circuit outputs. In contrast, Dill’s || operator relates di-
rectly to the composition of circuit components; hence, Dill prevents the composition of two trace
structures having the same output symbol.

In Ebergen’s trace theory, the link between trace theoretic operators and circuit behavior is
brought out through the following key notions and theorems: decomposition, DI decomposition,
the separation theorem, and the substitution theorem. Together with a rich collection of equational
laws on commands (where commands denote trace structures), Ebergen’s trace theory is used to
synthesize correct circuits, without having to first “generate” a circuit and then “test” it using
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a verifier (as has been the approach suggested here). A tool to demonstrate the power of Eber-
gen’s trace theory, called VerDect, is now available [30]. VerDect checks for Ebergen’s condition
of decomposition, in effect performing a verification under the speed-independent model (delay-
insensitivity is guaranteed under Ebergen’s method of synthesis by performing a syntactic check
on decompositions [22, 31]). Dill’s and Ebergen’s work address the two prevalent points of view:
post-hoc verification after “intelligent human design” wvs. “correct by construction” design.

The notion of strong conformance is latent in Ebergen’s definition of the decomposition relation
[22, Definition 3.1.0.0, Page 42] — as was discovered after the fact by us. A similar idea called input
liberalization has also been proposed by Ad Peeters [32] — again discovered after the fact. However,
neither Ebergen nor Peeters suggest using their definitions for validating circuit optimizations, as
we do here.

An alternative methodology for translating concurrent process descriptions in a simple language
into delay-insensitive circuits is described by Weber et al. [33]. The correctness of this compiler is
shown by exhibiting a bisimulation relation [12] between the state transition system of the input
description and the circuit generated from it. The authors point out that in general bisimulation is
too strong an equivalence relation for use in verification. For example, although the optimization
illustrated in Figure 6 is certifiable using strong conformance, the state transition systems of the
unoptimized and the optimized circuits shown in this figure are not bisimilar. In fact, a notion of
correctness identified by Dill [1] called conformation equivalence (defined to be true when imp <
spec and spec < imp), which is much weaker than the bisimulation relation, also cannot explain the
relationship between the unoptimized and the optimized versions of the circuits in this figure. The
fact that some correctness criteria prove to be “too strong” stems from the fact that optimizations,
both at the high level as well as at the circuit level, do not usually replace equals by equals.
However, bisimulation as well as conformation equivalence are correctness criteria that are useful
in their own ways. Thus, we re-emphasize the generally agreed upon fact that for supporting
hardware verification in practice, a catalog of correctness criteria is needed, and the designer should
apply judgment in choosing the “right” correctness criterion for the task at hand.

The process algebra developed by Udding and Josephs holds promise to contain state explosion
[34, Remark on page 2], as circuits are derived through calculations in their process algebra, rather
than verified post-hoc, as with Dill’s verifier. However, so long as the two points of view exist —
post-hoc verification after “intelligent human design” wvs. “correct by construction” design using
intelligent calculations —, both approaches have an important role to play.

Finally, work in verification of asynchronous circuits appears to be proceeding along (at least)
two distinct lines: (1) a class of work that uses various trace models; (2) a class of work based on
process algebras. Many of the notions used in these areas seem to be conceptually similar: e.g.,
autofailure manifestation [1] (which converts possible failures to actual failures) and may/must
pre-orders (used by [17]). However there are fundamental differences between these approaches as
well: e.g., unidirectional wires carry information only one way, so that a component cannot refuse
an input; however, a CCS/CSP rendezvous can be refused by not participating. One hopes to see
unifying efforts relating these as yet unrelated efforts.

Acknowledgments. Thanks to Jo Ebergen for his insightful feedback on an earlier version of this
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Notation and Initialization:

Define T = if (T =1Ty) then T else Tp.

Define neat(s,z) to be the next state reached from state s on symbol z.
Initialize a global set of state pairs, visited = ¢.

Call conforms-to-p (Ts, Ty, start-state(Ts), start-state(77)).

conforms-to-p-1 (To, Ty, sto, st1) =
if (sto, st1) € visited
then return

else
begin
visited := visited U {(stg, st1)};
for each T' € {1y, T }
for each enabled output x of T
if 2 is enabled in T
then conforms-to-p-1 (T, 11, next(sto, ), next(sty, z))
else FRROR (print failure trace and abort)
end if
end for
end for
end
end if

end conforms-to-p-1

conforms-to-p (T, 11, stg, st1) =
begin
conforms-to-p-1 (1o, T4, sto, st1);
print( “success”)
end
end conforms-to-p

Figure 2: Algorithm for Checking Conformance
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Notation and Initialization:

Define T = if (T =1Ty) then T else Tp.

Define neat(s,z) to be the next state reached from state s on symbol z.
Initialize a global set of state pairs, visited = ¢.

Call strong-conforms-to-p (Ts, Ty, start-state(Ts), start-state(77)).

strong-conforms-to-p-1 (1y, 11, sto, st1) =
if (sto, st1) € visited
then return
else
begin
visited := visited U {(stg, st1)};
for each enabled input = of 7, (* Strong conformance checking loop *)
if z is not enabled in T}
then FRROR (print failure trace and abort);
end if
end for;
for each T' € {1y, 11}
for each enabled output x of T
if 2 is enabled in T
then strong-conforms-to-p-1 (1y, 11, next(sto, z), next(sty, x))
else ERROR (print failure trace and abort)
end if
end for
end for
end
end if

end strong-conforms-to-p-1

strong-conforms-to-p (1o, T4, sto, st1) =

begin
strong-conforms-to-p-1 (1o, 11, sto, st1);
print( “success”)

end

end strong-conforms-to-p

Figure 3: Algorithm for Checking Strong Conformance
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Figure 4: Petri Net Specification of a Queue
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Figure 6: Call—Merge Optimization: CALL, CALL1, and MCALL1, respectively
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Figure 7: QR42 Converter Specification
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