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A b s t r a c t

Applying mathematical models to real situations often requires the use of discrete geo
metrical models of the solution domain. In some cases destructive measurement of the 
objects under examination is acceptable, but in biomedical applications the measurements 
come from imaging techniques such as X-ray, computer tomography (CT), or magnetic res
onance imagining (M RI). A necessary early step in the modeling process is then to extract 
from these images the measurements (locations and distances) that fiprm the basis of the 
geometrical model.

In this paper we describe the construction of a geometrical model of the human thorax based 
on the high resolution MRI scan of a single subject. We outline the scanning procedure, 
the image collection and conversion to computerized image files, the segmentation of the 
images into boundary nodes, and the connection of these nodes into surface, and then 
volume, meshes. Included are brief descriptions of the tools developed at the CVRTI for 
this project, as well as our experiences in creating and using them. The result of this work 
was a pair of models at two different levels of spatial resolution, which set new standards in 
the area of bioelectric field modeling and the application of these models has been described 
previously [1, 2].

1 Introduction

The development of numerical modeling tools which work on complex, irregular, two and 
three-dimensional domains has opened many fields previously dominated by direct exper
imental research to the application of simulation and modeling. While leadership in this 
advance has come largely from the areas of mechanical and electrical engineering, biomed
ical researchers have also been advocates of these techniques. For the medical researcher, 
the attraction goes beyond the cost issues of most engineering disciplines to the important 
ethical constraints of experiments involving both humans and animals. As a result, the 
biomedical research community, while historically not as mathematically sophisticated as 
other research groups, has been quick to apply emerging methodologies to their studies.

This paper describes just such an application of modeling techniques to biomedical, in this 
case electrocardiographic, research. The focus of the work is to develop computer models 
which, most generally phrased, will predict electrical activity in the heart from electric 
potential (voltage) measurements on the surface of the body, the essence of the medical 
diagnostic technique known as electrocardiography. In contrast to the largely qualitative 
or descriptive approach employed in the interpretation of the electrocardiogram (ECG), we 
seek a quantitative description of the electric field within, and on, the torso. Due to the 
complexity of the equations describing such relationships, any modeling approach requires 
a discrete description of the geometry of the heart and torso. The specific aim of this paper



is to describe the creation of just such a model of the human thorax geometry for studies 
of electrocardiographic field problems.

2 M RI Recording *

While destructive modeling of objects is an acceptable technique in some areas of modeling, 
gathering anatomical information from living beings is often more effectively done using 
(relatively) noninvasive techniques. For the reconstruction of three dimensional objects, 
a scanning modality is required. In medical applications, such scanning techniques make 
use of, for example, X-ray, for computer tomography (CT) scans; radionuclide emission, for 
gamma scans or autoradiography; ultrasound, for sonography; and magnetic spin resonance, 
for magnetic resonance imaging (MRI). Each of these modalities exhibits limits in spatial 
and temporal resolution, as well as a variable degree of side effects [3], which make the 
appropriate choice a function of many, often contradictory, factors.

For this project, we selected MRI as the imagine methodology best suited to our primary 
goals which were to achieve maximal spatial resolution with minimal side effects. We 
were fortunate to have the support of the University of Utah Health Sciences Center and 
Dr. Dennis Parker to overcome a significant shortcoming o f MRI —  the cost. Below is a 
description of all phases of the recording and digitalization of the Utah human torso models 
from a sequence of MRI images

2.1 R e c o r d in g  o f  M R I

Recording was performed at the LDS Hospital Magnetic Resonance Imaging Center by Dr. 
Dennis Parker. The subject, a healthy, 19-year old volunteer, was recorded on August 31, 
1990 with Robert MacLeod and Christopher Johnson assisting. Spacing between the images 
was 5 mm and all images from slices near the heart were gated with the R wave of the ECG.

2 .2  S ca lin g  o f  th e  Im a g es :

The scaling o f the images themselves was determined by the field of view (FOV) set by the 
operator of the MRI equipment. Every image contained 256 pixels by 256 pixels of data 
and these covered the selected field of view. The conversion to length units occured through 
simple division, for example, with a FOV =  48, the scaling factor is FOV/256 [cm/pixel].



2 .3  File nam in g conventions

Images recorded from this subject were saved in separate files (one per image) when they 
were transferred to the Vax and unpacked from the Data General format. The file names 
were set up originally as RCLMR.F001B to RCLMR.F143 from tape 1, and RCLMR.F001B to 
RCLMR.F096B from tape 2. During conversion (using C O N V E R T ) from the large image 
format to the 256 by 256 format, the files names were also converted and encoded with 
some information about the image data. The filename format was xxtn sm m m -pp p .m ri, 
where xx were the initials of the subject, n was the tape number, mm m  was the distance 
of the slice about the arbitrary zero-level set at the time of the recording, and ppp was the 
running number of the image in the set. The complete list thus ran from rltls020_001 .mri 
to rlt2s615_120 .mri, that is, 120 images running from 20 mm to 615 mm above the zero 
level.

3 Digitization of Slices

From the Vax, the image files were transferred to a Mac II via FTP with no conversion. 
Each file contained a single image, stored as a single 65536-byte record. Each byte contained 
the gray value for a single pixel in a 256 by 256 pixel image. The first byte in this file type 
was at the top left-hand corner of the image; the rest of the image followed sequentially 
from this point, left-to-right, top-to-bottom.

Digitization of the images was performed manually using the program New Digitize on the 
Mac II. This program has controls (pull-down menus) to read the data files and display 
them as 256 by 256 or 512 by 512 pixel images, in white-on-black or black-on-white shades. 
The user could also add constant values to all gray values to brighten the image and enhance 
dark sections.

Once the image was displayed on the screen, the user selected which surface was to be 
digitized and proceeded around the image, marking each point with the mouse. The outer, 
or body surface was the default starting surface and each selected point was marked with 
a red “ + ” sign. Additional surfaces which were digitized include the fat layer (boundary 
between fat and muscle), the inner boundary of the muscle, the epicardial, left ventricular 
and right ventricular endocardial, and both lung surfaces. Phantom electrodes placed on the 
subject could be digitized using sets of two points aligned with the corners of the electrode 
image. The order in which points are digitized was up to the user but was normally in a 
clockwise direction around the surface! Note also that the standard view of an MRI image 
is from the feet of the patient towards the head. At the time of processing, there was no 
facility to edit digitized points except to clear a whole set of points from one surface and 
re-digitize them all. Once the points were selected, the user stored the data in a text file 
for later processing.



3 .1  R aw  p oints file form at

The raw points files contained the digitized point locations from the New Digitize program. 
The format of the file was quite simple: each point was stored as a coordinate pair, delimited 
by a single comma. The first value of each pair represented the row number of the selected 
pixel, the second the column number, both relative to the top left corner of the image. 
Points from a single surface were stored together, prefixed by a single line containing the 
number and type of points which followed. For example: '

5 body su rface  p o in ts  
163,298
165.307
169.313
173.320
177,326
6 fa t  p o in ts  
169,301
172.308
176.314
180,322
185,329 
191,332
0 e p ica rd ia l po in ts  
0 rv endo p o in ts  
0 lv  endo p o in ts  
0 lung p o in ts
0 e le c tro d e  p o in ts

NOTE: This format was altered somewhat in November., 1990. As described above the 
“fat” points actually included both the points which separate the fat from the muscle and 
those which define the inner boundary of the muscle layer. This was changed so that the 
“fat” layer included only those points which separate the fat and muscle regions. The points 
which define the inner boundary of the muscle layer(s) were then to be found in a second 
“muscle” layer. This change was reflected both in the digitization software ( New Digitize, 
as well as data previously stored, which was converted using the program mrisort. An 
example of data in the new format is given below:

7 body su rface  p o in ts  
173,305
174.314
176.321



180,328 
184,334 
189,339 
5 fa t  p o in ts
181,309 .
181,320
186,327
194,331 .
199.336
0 e p ica rd ia l p o in ts
0 rv endo p o in ts
0 lv  endo poin ts
0 l e f t  lung poin ts
0 r ig h t lung poin ts
8 muscle po in ts
192,308
198,316
206,323
217,330
226.337 
230,342 
240,341
247.337
0 e le c tro d e  poin ts

3 .2  C o n v e r s io n  o f  U n its

The units returned by NewDigitize for the digitized points were based on the pixel row and 
column marked by the user with the mouse, but were shifted to facilitate display on the 
Macintosh screen. To convert the pixel location back to the 256 X 256 pixel format of the 
original MRI data image, the following conversion had to be applied:

mri_row_num = (mac_row_num -  35) /  2 
mri_col_num = (mac_col_num -  50) /  2

In order to combine digitized data and the MRI image in the same display, a further 
conversion was necessary to replace the row/column addressing scheme with a Cartesian 
co-ordinate system. See discussion of the program mri2ps in section 3.6.1 and mrimetric 
in section 3.8 below.



3 .3  C o n v e r s io n  o f  M R I  im ages  an d  tra n s fe r  t o  th e  S G I

Since we used a Silicon Graphics (SGI) workstation for the bulk of the further image pro
cessing, we had to move both the image files and the digitized values from the Macintosh 
or Vax. The digitized values in the raw data file were ASCII format and hence presented 
no problems, however, the image files were binary and had to be first converted from a 
single 65536-byte records to something more amenable to transfer over the TCP/IP-based 
link. This was made necessary by a limitation of the program TRANSL8 , which we used 
to convert binary files between VMS (RMS) format and UNIX. We chose to break the (for 
TRANSL8  oversized) 64 kByte single-record files into a sequence of 256-byte records and 
wrote the program CO N VER T .E X E  on the Vax 750 to perform the conversion.

Another feature of C O N V E R T  was the option to have amplitude histogram calculated from 
the gray values o f each image. The histogram had 100 bins which were divided equally over 
the full range of the gray values (maximum 0-255). The results were stored in ASCII files 
as pairs of values: the first number on each line was the gray value at the centre of the 
bin and the second number was the number of pixels found in the bin. The output name 
of the histogram data defaulted to the same as the image file with the extension ’’ .histo” . 
The point of constructing histograms of the gray values was to guide the modest image 
processing steps which could be performed before displaying the images. While the gray 
values were normalized to span the full range of 0-255 before being stored as Vax files, the 
number of pixels with gray values in the upper (white) end of the spectrum was often very 
small. By either adding a constant to the gray values (to lighten the image) or scaling the 
gray values by a factor (increasing the contrast), saturation of these relatively few light 
pixels could be tolerated in return for improved image quality.

3 .4  T ra n sfe r  o f  Im a g e  D a ta

The program TRANSL8, which performed the transfer of the converted image data files, ran 
on both the Vax and the SGI. In order to direct the conversion of the VMS binary format 
to that required by UNIX, a format file had to exist on each system. For the transfer of 
256-byte records of image data we used the same format file (MRI .FSF) on both systems:

# T ransfer the MRI data f i l e s ,  packed a s in g le  b u ffe r  o f  by tes ,
# across from VMS to  UNIX, 
access sequ en tia l
form unformatted 
record *(256A1)

The commands necessary to perform the transfer with TRANSL8 were similar to normal 
FTP commands: starting from the Vax, the user started TRANSL8, then issues the OPEN



com m and to attach to  the S G I:

V750>transl8

TRANSL8, TCP/IP Version 2 .00 '
Unpublished -  A ll r ig h ts  reserved under the copyright laws 

o f  the United States 
Copyright ( c )  1989,1990 A ccelr8  Technology C orporation ‘

t8> open sg i
Trying to  connect to  ’ s g i ’ . . .  OK 
W aiting f o r  Transl8 server response . . .  OK 
>> s g i Login (m acleod) : macleod 
>> Password requ ired  : 
macleod Login S u ccess fu l. 
t8>

From the t8> prompt, the user issued put and get commands as in ftp with the difference 
that the format file had to be specified if it did not have the same filename (with the . f s f  
extension) as the data file. The format of the put command was:

put s o u r c e f i le  [ t a r g e t f i le ]  - s  so u rce fo rm a tfile  - t  ta rg e t fo r m a tfile

eg.

put rltls0 20 _0 01 .m ri -s  m r i . f s f  - t  m r i . f s f

which would transfer the file rtlls020_001 .mri, keeping the target filename the same, 
under control of the format file m ir .fs f ,  which was available in the current directory of 
both the source and target computers.

3.4.1 A u tom a tic  login

It was possible to set up a file in the home directory of the VMS account which facilitated 
automatic login on the target system. The file had to be called FTP.INIT, and contained 
entries in the following format:

set systemname /username:yourusername /password:yourpasword

ftp://FTP.INIT


simply starting TRANSL8 with the name of the system in the command line initiated the 
full login on the target machine, eg.

vax4000>transl8 sg i 

TRANSL8, TCP/IP V ersion 2.00
Unpublished -  A ll r ig h ts  reserved  under the copyright laws o f  the United 
S tates '
Copyright (c )  1989,1990 A ccelr8  Technology C orporation

Trying to  connect to  ’ s g i ’ . . .  OK 
Waiting f o r  Transl8 server response . . .  OK 
macleod Login S u ccess fu l. 
t8>

3.4.2 T ransferring large num bers o f  file

To copy more then a few files in this manner proved very tedious and time-consuming. To 
expedite the process for the MRI data, we used DCL command files to run TRANSL8. The 
file contained all the necessary login and file transfer commands, for example:

tra n sl8  sg i
cd /u s r /p e o p le /m a c le o d /m r i/r c ld a ta
put rltls0 20 _0 01 .m ri -s m r i .fs f - t m r i . f s f
put rltls0 25 _0 02 .m ri -s m r i .fs f - t m r i . f s f
put rltls0 30 _0 03 .m ri -s m r i .fs f - t m r i . f s f
put rltls0 35 _0 04 .m ri -s m r i .fs f - t m r i . f s f
put rltls0 40 _0 05 .m ri -s m r i .fs f - t m r i .fs f
put rltls0 45 _0 06 .m ri -s m r i .fs f - t m r i .fs f

qu it

The cd command ensured that the data files arrived in the desired subdirectory and the 
. f s f  files were both in the same directories as the data files.



3 .5  A ccessin g  M R I  files under U N I X

Once the image files had been converted and transferred from the VAX/VM S realm to 
Unix, accessing them was quite straightforward. All extra control data was stripped away 
during the TRANSL8  process so that what remained was just a stream of bytes that could 
be read using, for example, unformatted Fortran read statements. Note, however, that the 
structure of the data was still in 256, 256-byte records, each record representing a row of 
the image, running from left to right, and rows running from top to bottom.

The Fortran routine ReadMrilmage was what we normally used to read the data and the 
essential lines of code are:

C********************************************************************* 
IMPLICIT NONE
INTEGER i , j , k ,  e r r o r , t le n , lu in ,

+ Trulen 
BYTE d a tin (2 5 6 ,* )
CHARACTER m rin filen am e*(* ), in ch ar*l

C*** Open the f i l e  with the MRI data

OPEN (UNIT = lu in , FILE=mrinfilename, F0RM=’ unform atted’ ,
+ ACCESS = ’ se q u e n tia l ’ , STATUS = ’ o ld ’ , READONLY,
+ IOSTAT = error)

IF (e r ro r  .NE\®. 0) THEN
tle n  = TruLen(mrinfilename)
WRITE( * , ’ ( / a , a /  a ,i6  ) ’ )

+ ’ Error opening f i l e  ’ ,m r in file n a m e (l:t le n ),
+ ’ is  1, error

GO TO 999 
END IF

DO i= 1,256
READ(luin) ( d a t i n ( i , j ) ,  j= l ,2 5 6 )

END DO 
CLOSE (lu in )

999 CONTINUE 
RETURN 
END



3 .6  P ostscrip t display -  th e mri2ps program

With the data transferred to the SGI computer, we needed programs to construct image 
copy in the Postscript (Adobe Systems) format. The program to convert mri images to 
postscript files was called mri2ps and ran interactively to create a single output file for 
each MRI image. An option of the mri2ps program allowed the user to select two image- 
enhancement manipulations of the images:

1. add a constant, user-specified value is added to all pixel gray-values, thus lightening 
the entire image.

2. use an amplitude histogram of the pixel data, which the program generates, to equalize 
the data and enhance contrast.

The latter maneuver is based on the finding that the largest numbers of pixels are found in 
the bins at the dark end of the gray scale, with an almost monotonic decrease in the number 
of pixels per bin as the scale becomes lighter. With the data divided into 100 bins spanning 
the 0-255 range, mri2ps permitted the user to specify what percentage of the maximum 
frequency to use as a cut off; the remaining pixel values were then “stretched” to fit the 
256-value dynamic range. The necessary steps were as follows:

1. Perform histogram on all gray values in the image and determine the frequency count 
in the largest bin, f max

2. Ask user what percentage ( Pcutoff of the largest frequency to use as cutoff, and com
pute / cutoff =  fmax * Pcutoff

3. Assuming a monotonic decrease in bin frequency as gray value goes from the largest 
bin towards the white end of the scale, find the bin with a frequency just larger then
fcutoffi binCutoff

4. Find the gray value in bincut0f f ,  graycutof f  and compute a scaling factor based on 
this value to apply to all other gray values: scale =  255/gra ycutof j

5. Apply scale to all gray values in the image, applying a cutoff of 255 to the results.

The result of this “stretching” was to increase the overall brightness of the image without 
noticeably enhancing the dark (black) pixels, i.e. the contrast was increased. Larger values 
of the cutoff percentage brought about a greater degree of contrast enhancement, but also 
drove more of the light pixels into (white) saturation. Typical values of acceptable contrast 
enhancement for this dataset lay in the range of 0.01 to 2 %.



3.6 .1 Including digitized data: Co-ordinate Transformation

In addition to displaying the mri image data, mri2ps provided the option of including a 
plot of the surface boundary data, as entered by the user in NewDigitize, over the image. 
This required the matching of image and raw data coordinate system since the original MRI 
data was addressed in row/column format and the digitized points were in similar format 
but shifted and doubled to a 512 row by 512 column format. The necessary conversion is 
described by

xpoint =  ydigpoint — 50 .ypoint = 477. — xdigpoint, (1)

where xp oin t , ypoint describes the location of the point in Cartesian space and xdigpoint, 
ydigpoint the same point in the original digitized space.

See section 3.8 on the mrimetric program, which takes care of converting units of the 
digitized surface data from pixel addresses to shifted, corrected millimeters for more details.

3 .7  F ro m  raw  d ig it iz e d  t o  in te rp o la te d  p o in ts

3 .8  S ca lin g  o f  p o in ts : mrimetric

The original digitized points were in pixel rows and column format as they came from New  
Digitize but had to be converted into some absolute units of length, based on a standard 
co-ordinate system before they could be used for creating the model. The standard units 
for all our models were chosen to be millimeters and the scaling from pixels to millimeters 
was provided by the field of view of the MRI imaging equipment, as described is section 2.1. 
Our standard co-ordinate system, hereafter referred to as “body” co-ordinates, is aligned 
such that the z-axis runs caudal to cranially through the approximate centre of the body. 
The x-axis is directed toward the left arm, the y-axis, by default in a right-hand co-ordinate 
system, toward the back. The z  =  0 origin for this dataset was chosen at the level of the 
lowest slice so that all slices had positive z-values.

The program mrimetric performed the conversion of the digitized data from rows and 
columns to body co-ordinates. Below is a summary of the various functions required for 
this conversion.

3.8.1 C hecking for  dou b led  points

During the digitization process, accidental double-clicking at a point produced doubled en
tries in the resulting datafile. A subroutine in the mrimetric program called Check_For_Doubles



checked each point location against the remaining points and discarded any point within 
some tolerance.

3 .9  T ra n s fo rm in g  th e  d a ta  .

Transformation of the data was a two-part operation. The points first had to be centered 
about an origin (corresponding to the central axis of the body) and then'converted from pixel 
units to absolute length units (millimeters). We first attempted to determine the location 
of the origin from calculations of centre-of-mass of all the points in the torso surface of 
each layer. However, because the sample points entered during the digitization with New 
Digitize are not regularly spaced, the resulting predictions were inevitably biased and could 
not be used. Instead, we first performed a preliminary interpolation of the data and used 
these points to compute unbiased (or less biased, at least) centers of mass for each layer. 
From these values, pairs of x- and y-shifts could be tabulated for all the layers; these were 
then stored in a scaling file and read by mrimetric at execution time. The user could also 
enter the shifts manually or have them computed from centre-of-mass values at run time.

The scaling files were simple ASCII files containing records such as:

r lt ls 0 2 0 _ 0 0 1 . dat 48 0 rlz000_001.dat 277.71 234.30
r lt ls 0 2 5 _ 0 0 2 . dat 48 5 rlz005_002 .dat 278.12 234.30
r lt ls 0 3 0 _ 0 0 3 . dat 48 10 rlz010_003.dat 277.62 234.30

The first name in each line was the raw digitized data filename, the next value was the 
field of view in centimeters, the third was the actual z-value in millimeters, the fourth was 
the output filename for the scaled, shifted data, the last two were the x-shift and y-shift, 
respectively, in millimeters. Note that these values already included the offsets which arise 
from the digitization process in New Digitize (see section 3.6.1)

The second part of transformation of the data involved converting the pixel locations (row, 
column co-ordinates) into millimeters. The conversion factor followed directly from the 
value for the field of view of the MRI-recording and the number of pixels in the image (512 
by 512 in our case) as follows:

xva l = column_val * pixel_to_mm -  x s h ift

and

yval = row_val * pixel_to_mm -  y s h i f t .



where

pixel_to_mm = f ie ld _ o f_ v ie w  [cm] /  51.2

3 .1 0  C h e ck in g  fo r  c lo s e d  su rfaces

Subsequent stages of developing the geometric model were greatly simplified if surfaces in 
each layer could be treated as closed. While this condition represented something of an 
approximation on some layers, we considered the compromise to be well justified by the 
considerable savings in time in generating the model and the fact that absolute accuracy 
remained an unrealistic, and essentially unnecessary, goal for this project. Since this was an 
afterthought and not a criteria during the digitization process, it was necessary to detect and 
attempt to correct unclosed surfaces during the conversion of data from pixels to millimeters.

To check and, if necessary, close surfaces, we wrote the subroutines Close_Surf aces and 
Check_for_Closed. The aim of these routines was to flag discontinuities in the digitized 
data by monitoring the distance between successive points in a surface. When the distance 
between two points exceeded a pre-defined value (typically 40 mm) the program logged the 
location and point number as a discontinuity and passed this information to a routine for 
correction. Correction consisted of trying to use the next outer-most surface as a template, 
from which we could construct a parallel set of points to bridge the discontinuity. The 
procedure proved to be somewhat limited in cases where the template surface curved more 
than 10-20 degrees over the discontinuity. Even the worst case, however, yielded a set of 
points which we either accepted or manually adjusted to generate closed, relatively smooth 
and non-intersecting surfaces.

3 .11  In te r p o la t io n : sp lin e  re p re se n ta tio n  o f  th e  d a ta  p o in ts

We used the raw points digitized from each image to construct parametric, bi-cubic spline 
equations for the outline of each surface, and then regenerated node points at a constant 
(and adjustable) spatial separation as a form of spatial filtering or interpolation. This 
allowed us to control the internodal separation, and hence the resolution o f the final model, 
as well as smooth the inevitably jagged hand-digitized point set. From each image, the 
result was a set of evenly spaced, closed loops, one for each surface, which we refer to as a 
‘layer’ . The format of such later files is described in section 6.7.

The points generated by the spline fit formed the basis for all further work with the model. 
This was also the stage of the process at which a manual pass was made to detect errant 
points and ensure spatial continuity between layers of the geometry. A program for this 
called ED TR ISLICE  was written on the Vax using the Tektronix PlotlO library (for use



with the Macintosh via Versaterm). The user could select the .slice files to read, and then 
view the entire surface, or select a single layer to edit. To help direct the editing, outlines 
of the layers above and below the actual edit layer were overlaid (in different colours), while 
only points in the middle layer could be moved. There was no facility for adding points, 
nor changing their order, just moving existing ones. A pass through every surface of every 
layer of the model was usually required before the set of model points was complete.

4 From points to surfaces

4 .1  B a ck g ro u n d

In order to apply the boundary element method (BEM) to realistic geometric models, and 
also to visualize recorded or computed potentials, it is necessary to connect the points into 
planar polygons. Triangular elements make an excellent choice for irregular surfaces such 
as those in the human body. While it is possible to define criteria for optimal triangulation 
[4, 5], we know of no fully automatic scheme for the generation of triangles from points 
scattered in three-dimensional. Fortunately, in this case we can take advantage of the fact 
that all points from the layers described here are constrained to parallel planes, which are 
regularly spaced. As a result, the general triangulation problem reduces to a much simpler 
task of connecting pairs rows of points in successive layers, essentially a “lacing” process.

4.1.1 Lacing triangles

Algorithms for performing lacing operations of datapoints on parallel planes have been 
described[6, 7, 8] and shown to work even in situations in which the surface bifurcates, as 
in, for example, the structure of blood vessels[7, 8].

In order to apply these techniques to the construction of a model of the human torso, we 
combined the points from adjacent layers into three-dimensional “slices” , which were the 
input for our lacing programs. Triangulation of each slice involved the following steps:

1. Determine an anatomically based starting point and locate the nearest node from each 
layer of the slice to that starting point. We typically chose the anterior midline of the 
body for a starting location.

2. Order the points for each surface in each layer in such a way that they form a continu
ous sequence, commencing at the starting point and proceeding in a common direction



(we chose counterclockwise, as viewed cranio-caudally) around the surface. This was 
typically performed during the cubic spline fitting of the sampled points.

3. Determine a starting point on one of the layers, and find the nearest point in the 
second layer; join these to define the first connective segment.

4. Proceeding to the next point in each layer, determine which of the two possible pairs of 
triangles that can be formed by joining them with the endpoints of the first segment 
yield the shortest diagonal (and hence the most optimal triangulation in terms of 
maximizing the size of the smallest angle in each triangle[5]).

5. With this pair of triangles defined, a new connective segment is formed, and the 
previous step can be repeated until all points have been included, and the surface 
completely triangulated.

Figure 1 shows this process in a simple case with 10 points in each layer of a slice. The 
starting point is at point 1, which is connected to point 11. Testing of the two possible 
diagonals (from points 1 to 12 or points 2 to 11), shows that the latter produces triangles 
with larger minimum angles and hence is the proper choice. A second triangle, consisting 
of points 2, 11, and 12 is also immediately constructed and the segment between points 2 
and 12 becomes the new starting point for further lacing.

0 Upper layer 
* Lower layer

Figure 1: Example of lacing two layers to triangulate the surface enclosing the resulting 
slice. Points from the upper layer are shown as empty circles, those from the lower as filled 
circles.

While this basic algorithm worked most of the time, there were a number of situations in 
which additional mechanisms were required. In some cases of extremely irregular surfaces, 
the lacing scheme had to be augmented with some checks for triangles which are too large, 
or had to be formed, not between nodes on different layers, but in the plane of one of 
the layers. Errors frequently occurred in regions of significant concavity, in which triangle 
segments ran outside the hull of the body, as, for example, in the crescent-shaped regions



of the lower lungs. Simple examples of these situations are given in Figure 2. In panel A  
the upper layer describes a smaller surface than the lower layer, and a single point (point 
P  in the figure) is shared by seven triangles, instead of two or three, as for all the other 
points. Panel B shows a situation in which erroneous triangles (shown in thicker, dashed 
lines) are constructed across a region which is outside the actual surface. Such triangles 
must be detected and removed, ideally without user input.

o Upper layer 
• Lower layer

Figure 2: Two examples of special cases in lacing triangles. In A , the two layers join to 
form a very flat surface since one layer does not lie directly over its neighbor. In panel B , a 
sharply curved surface can result in erroneous triangles which lie outside the actual surface 
(shown as dashed lines.)

4.1.2 Inside/O utside algorithm

Determining when a triangle lay outside the surface was one of several related problems that 
arose during the model construction (and will be described in more detail below), in which 
the basic question was whether a point was inside or outside a surface. To solve this, we 
again make use of the fact that all the points in tomographic data lay in discrete planes. If 
a point lies inside the curve outlining a surface on the plane (the “surface curve” ), then the 
algebraic sum of all the angles about the point which are formed between adjacent points 
on the curve, should be equal to 27r. For a point outside the curve (and hence the surface 
partially defined by the curve), the sum of the angles is zero. Using this fact, and provided 
that the points have already been ordered in a strict sequence of first-order neighbors, 
we can construct a set of tests with which the location of a point, relative to a surface, 
can be determined. This same concept can be extended directly to three dimensions if, 
instead of planar angles, the sum of the solid angles about a point is computed. However, 
this calculation requires knowledge of the outward normals on an already complete surface 
tessellation and is therefore unsuited to this application. (Note that once a triangularized 
geometry is complete, a computation of the sum of the solid angles is an excellent means of 
checking for closure and consistency of the outward normals.)



Figure 3 shows the principle behind the inside/outside algorithm, in which the sum of all 
angles 8{ over the ordered set of nodes about the point P  is equal to 2rc if P  is inside the 
curve, and 0 if P  is outside the curve.

Figure 3: The inside/outside algorithm, used to determine if point P  lies inside our outside 
the outline formed by joining the order set of nodes i. If P  is inside, J2i=i &i — 27t; if P  is 
outside, the sum is equal to zero.

To apply this technique to the problem of surface triangulation by lacing, we seek to detect 
not whether points, but triangle connectivities lie outside the surface. Hence we must derive 
one or more points from the proposed triangle and determine from their position relative 
to the surface whether or not the triangle itself lies outside. We found that checking the 
location of the triangle centroid projected on both layers (and eliminating the triangle if 
the centroid lies outside either) was adequate for most purposes.

4.1.3 Com pleting the surface m odel

Once laced into multiple slices, the points and triangle connectivities had to be concatenated 
to make a complete surface description. We performed this operation on a surface-by-surface 
basis so that the end result was a set of points and connectivities for each of the surfaces in 
the complete model. This allowed for easy selection of the surfaces that were to be included 
in a computation and/or visualization. Before they were ready to use, however, there were 
two final steps in the model construction process.

The first involved connecting the points which formed the ’ends’ or ’caps’ of the model, 
the first and last layer of each surface. We selected two approaches for this, either by 
triangulating the points in the layer, or by adding a grid of points to fill in the region 
defined by the points in the end layers, and then triangulating the resulting augmented 
layer in two dimensions. The choice of method depended on the size of the opening at each



end and the desired density and spatial resolution of the model we were constructing. The 
triangulation of the resulting two-dimensional point set was a straightforward matter and 
numerous programs exist for this purpose, some even in the public domain (e.g., voronoi 
from the netlib collection, available via electronic mail from netlib@ornl.gov). What is 
usually missing from these algorithms, however, is a provision for concave curves, in which 
case erroneous triangles are constructed which lie outside the curve. To remedy this, we 
implemented a check of all the triangles formed by the two-dimensional triangulation using 
the inside/outside test described above, applied to the centroid of each triangle.

The final step in constructing a surface model of the geometry involved setting the direction 
of the outward normal vectors to each of the triangular elements. Finding a normal is easily 
done by computing the cross product of any two sides of the triangle. Ambiguity remains, 
however, in the final choice of which of two opposite directions is outward, and which inward. 
This can be resolved in most cases by applying, once again, a test to the endpoints of both 
candidate normal vectors to determine which lies inside, and which outside the surface. For 
the models described here, added normal vectors in both directions to each of the three 
vertices of the triangle, then tested the endpoints relative to the surface to which the vertex 
belonged, until we achieved an unambiguous result of one endpoint found inside, the other 
outside the surface. The encoding of this information into the model files lay in the order 
in which the points of each triangle were stored and we used the standard convention of 
ordering points counterclockwise when viewed from the outside of the surface. As a final, 
complete check of the integrity of the model, we selected a point inside each surface, and 
computed the total solid angle about that point. If the surface description is complete (no 
holes), and all the outward normals are correct, the result must be 47T.

4 .2  P ro g ra m s  fo r  S u rfa ce  S e g m e n ta tio n

4.2.1 trisurf

The program which performs lacing and final construction of the model was called trisurf 
and is written in Fortran for use under Unix. The trisurf program combined a number 
of modules necessary to create surface descriptions from a set of points. The important 
assumption underlying the data structures of trisurf was that the points w ere layered in 
the z-axis, and had been  p re-sorted  accord in g  to  z-value. Once this condition was 
met, trisurf could take these points and create a fully triangularized surface-based model.

4 .2.2 map3d

The program used to visualize geometry and scalar data associated with geometry is mapSd. 
This program also permitted the editing of triangular meshes, at least in terms of the

mailto:netlib@ornl.gov


connectivity of the nodes of the model. There is a separate documentation for mapSd, 
which should be available from the same source as this document.

5 Volume Segmentation '

5.1 B a ck g ro u n d  ■

To apply three-dimensional finite element methods to a problem the solution domain must 
be discretized into a mesh of volume elements. Many problem domains can be described in 
terms of analytic functions, and automated mesh generation schemes will convert them into 
regularly spaced, or structured grids. Models which are based on a set of fixed, irregularly 
spaced sample points, on the other hand, are known as unstructured. While structured 
meshes are easier to construct and require less computer memory (since they can be de
scribed parametrically), they are poorly suited to irregularly-shaped objects, and especially 
poorly suited to follow boundaries between regions within the domain (e.g., the organs in 
a model of the human body). There are, however, techniques by which a set of three
dimensional points can be joined in some optimal sense to form a mesh of volume elements 
and many of these techniques are based on an extension of the Delaunay criteria to three 
dimensions [4, 9].

5.1.1 H ybrid  m eshing approach

Our approach was hybrid in nature, a combination of a regular grid applied within the 
irregular surface outlines from the digitized MRI images. Starting with the same point set 
used for surface triangulation, we first added a planar grid of points to each of the layers, 
then removed all points that were within some tolerance of an existing surface boundary. 
The spacing of the grid determined the overall density of the mesh. We then concatenated 
adjacent pairs of grided layers to form three-dimensional slices, which were the input data 
to a program which automatically generated optimal (in the maximum smallest angle sense 
o f Delaunay) tetrahedral elements. Subsequent quality control of the tetrahedralization 
consisted of removing tetrahedra which were flat, too large (and hence contained other 
smaller tetrahedra), or which spanned concave regions of the outer boundaries of the domain. 
To detect elements which lay outside the domain the location of the midpoint of each side of 
the tetrahedron was tested against the surface enclosing the domain, using, once again, the 
inside/outside check (see section 4.1.2); if any part of a tetrahedra lay outside the domain 
it was removed.



5.1 .2 Assigning conductivities

One of the major advantages of the finite element technique over, for example, the boundary 
element method, is that the effect of inhomogeneities, even those of an anisotropic nature, 
can be included directly in the formulation of the problem. In the case of electrical activity 
in the human torso, there exist different tissue types which possess different passive con
ductivity characteristics, and hence affect the distribution of electric potential and current 
in the body. The associated step in constructing our finite element model of the human 
torso was, therefore, to identify those elements which lay in certain regions of the body, and 
to assign each a conductivity tensor. We located the elements by projecting the centroid 
of the tetrahedra onto the nearest surface and then subjecting that point to a chain of 
inside/outside tests on each of the boundary surfaces of the model until its relative position 
was determined. For example, a point which lay inside the body surface but outside the 
boundary between subcutaneous fat and skeletal muscle, was part of the fat layer; a point 
which was inside the body surface, the fat/muscle boundary, and the inner boundary of 
the muscle, but outside of all other surfaces, was not part of any distinct tissue group, and 
was assigned a conductivity equal to the mean for the thorax. We did not assign numerical 
conductivity values until execution o f the finite element solver, employing a look-up table 
based on group numbers assigned to each tissue region.

5.1.3 S orting  slices

The final step in the three-dimensional model construction was the concatenation of the 
tetrahedralized slices into a complete geometrical description of points, connectivities, and 
tissue regions. In order to facilitate transfer of the simulation results back to the surface 
description of the model, we kept tables which described the location of each point, in terms 
of both the volume and surface point numbers.

6 File Format Summary

6 .1  R a w  M R I  im a g e  files

This is the format of the images as they came from the digital tapes produced on the MRI 
computer.



Format: binary
Data type: byte 
Record length: 65536 bytes
#  of records: 1

O rder o f  data  storage: first byte is the upper left pixel of the image; following bytes run 
left to right and top to bottom of the image. Each pixel is specified by a single byte 
(256 gray values). '

6 .2  C o n v e r te d  M R I  im a g e  files

These files are the output of the CONVERT program, which transformed the single-record 
raw MRI files into 256, 256-byte records. Each record was equivalent to one line of the 
image.

Format: binary
Data type: byte 
Record length: 256 bytes
#  of records: 256

O rder o f  storage: each record represents one line of the image; the first record is the top 
row and each row runs from left to right across the image.

6 .3  C O N V E R T  H is to g ra m  files

These were the optional output of the CONVERT program, the histogram of the gray values 
in each image.

Format: ASCII
Data type: character-coded real and integer
Record length: variable
#  of records 100 (number of bins in histogram)

R ecord  form at: 2 character strings, separated by one or more spaces: the first contains 
the gray value at the centre of the bin, the second contains the number of pixels in 
that bin



6 .4  New Digitize d ata  files =  raw M R I  d ata  files

These were the output files from the MRI digitizing program New Digitize. They contained 
the locations in the image of the sampled points, organized into separate surfaces. The 
filenames were set as rltXsYYY_ZZZ .dat, where r l t  identified the subject, X was the number 
of tape from which the data was transferred from the MRI machine to the Vax, YYY was the 
level of the slice in millimeters, relative to the lowest layer recorded, and ZZZ was the running 
number of the slice. For example, rltls0 20 _0 01 .d at was from tape' 1, at ‘20 millimeters 
from the lowest recorded slice, and was the first layer in the series. (Note: the reason this 
was the first slice, although there were slices recorded lower on the torso, was because these 
lowest slices were discarded before digitization with New Digitize).

Format: ASCII
Data type: character and character-coded integer
Record length: variable
#  of records: variable

R ecord  form at: Records are of 2 types: surface header records and pixel co-ordinate 
records. Surface header records are single lines containing the type of surface described 
(body surface, lungs, lv and rv endocardial, epicardial, fat, and electrodes) and the 
number of points which follow to describe the boundary. Following each header record 
is a sequence of co-ordinate pairs, separated from each other by a single comma (no 
space). The first number of each pair is the row location, the second number is the 
column location of each pixel, relative to the top left corner of the image. Data ranges 
from 0 to 600 along both axis.

6 .5  P o s ts c r ip t  files

These were “standard” postscript files, divided into four sections: 1) a header or prolog, and 
contains no executable statements, only text comment lines which are human-readable; 2) a 
setup section of dictionaries for commonly used commands an character sets; 3) the image 
data in pixel (image) format [10, 11]; 4) a block of text information for the plot (filename, 
date stamp and image processing values applied to the image data), followed by the vector 
draw instructions for the plot of the digitized values (optional).

6 .6  S ca le d  M R I  d a ta  files

The input to the mrimetric program were raw MRI data files and the output were files 
in the scaled MRI data format. The layout of these files was almost identical to the raw



MRI data files described above, with the co-ordinates converted from pixel addresses to 
units of millimeters. The origin of each layer was located on the z-axis of the torso, as set 
in mrimetric . Filenames were set to rlzxxx_yyy.dat, where xxx was the z-value of the 
layer, in millimeters, relative to the lowest level actually used in the model, and yyy was 
the running number of the layer. Thus rlz005_001.dat contained data from the second 
layer, at a level of z — 5 mm.

Format: ASCII i
Data type: character and character-coded integer
Record length: variable
#  of records: variable

R e co rd  form at: Records are of 2 types: surface header records and pixel co-ordinate 
records. Surface header records are single lines containing the type of surface described 
(body surface, fat, muscle, epicardium, left lung, right lung, Iv and rv endocardium, 
and electrodes) and the number of points which follow to describe the boundary. 
Following each header record is a sequence of co-ordinate pairs, separated by a single 
comma (no space). The first number of each pair is the x co-ordinate, the second 
number is the y co-ordinate, relative to a central origin; both numbers are in units of 
millimeters.

6 .7  In te r p o la te d  la yer  files ( . t o r s o ,  . f a t ,  .m u scle , e t c .)

A converted MRI data file was the input to the interpolation program (on the Vax), whose 
output was an interpolated layer file. For each single MRI data file (containing points for all 
the surfaces in one layer) the interpolation program sorted the data into individual surfaces 
and output a separate file for each. Hence, from a file like r lz l2 5 _0 2 6 . dat came files for each 
of the surfaces in that layer: rlzl25_026 .to rs o , rlzl25_026 . f  at, and rlzl25_026 .muscle, 
etc. The format of these files was even simpler than that of the MRI files, just lists of x, y, 
and z co-ordinates.

Format: ASCII
Data type: character-coded integer
Record length: variable
#  of records: variable

R ecord  form at: Each record consists o f a set of x, y, and z co-ordinates in a list-directed 
real format, separated by multiple blanks. There is no indication of how many points 
are in the files so reading must continue until an end-of-file is hit.



6 . 8  S l i c e  F i l e s  ( . s l i c e )

The slice files followed very simply from the interpolated layer files and were constructed 
by concatenating the contents of two successive layer files (typically using the VMS copy 
command). Filenames included the subject eg. r l ,  the slice number, and the surface, 
with the extension . s l i c e .  For example RLZ_FAT.SLICE97 contained the points in the fat 
surfaces from slice 97, which were the same points as in fat layers 97 and 98.

Format: ASCII
Data type: character-coded integer
Record length: variable
#  of records: variable

R ecord  form at: Each record consists of a set of x, y, and z co-ordinates in a list-directed 
real format, separated by multiple blanks. There is no indication of how many points 
are in the files so reading must continue until an end-of-file is hit. There are two 
sections to the files: the first contains the points from the lower i.e. smaller values of 
z) layer of the slice; the second set of points are form the upper layer of the slice.

6 .9  .p t s ,  . f a c ,  an d  . t e t r a  files

This file type is the one we used more often to store geometry in this project. This is 
not a single file type, but more accurately a family of ASCII files which each contain 
different components of the geometry. A file with the extension .pts contains the locations 
of the nodes of the geometry, with a single point described on each line by its x , y, and z 
Cartesian coordinate in floating point format. The connectivities of the nodes into triangles 
are described in files with the .fac extension, each line containing three integer values which 
are indices to points in a .pts file. Index values begin at 1 (not zero). For tetrahedral 
elements, we have files with the .tetra extension, each line containing a set of four indices to 
nodes in a .pts file. All of the .pts, .fac, and .tetra files can also have an optional identifying 
integer value appended to each line of the file, which defines the “group” number for the 
node or element. Group numbers can be freely assigned as we have established no fixed 
conventions.

6 .9 .1  .p t s  file s

Format: ASCII
Data type: reals coded as ASCII strings
Record length: 3 or 4 reals
#  of records: one for every point



R ecord  form at: Each record contains an ASCII coded set of co-ordinates in three-dimensi
onal space, stored as X, Y, and Z, respectively. In a new form of the .p ts  file, a forth 
entry has been added to each record, a scalar which is associated with the point it 
shares the record with. These values are normally the “group numbers” , which are 
determined as part of finding the conductivities of the elements of the finite element 
model.

6.9.2 .fa c  files

Format: ASCII
Data type: integers coded as ASCII strings 
Record length: 3 or 4 integers
#  of records: one for every triangle

R ecord  form at: Each record contains an ASCII coded set of pointers to points in a .p ts  
file (usually of the same name with the .p ts  extension). These three points, when 
connected, form a triangle on the surface of the model somewhere. A scalar value can 
be appended to each record as a freely defined value associated with the triangle.

6 .9.3 .t e t r a  files 

Format: ASCII
Data type: integers coded as ASCII strings 
Record length: 4 or 5 integers
#  of records: one for every tetrahedron

R ecord  form at: Each record contains an ASCII coded set of pointers to points in a .p ts  
file (usually of the same name with the .p ts  extension). These four points, when 
connected, form a tetrahedron in the volume of the model. A scalar value can be 
appended to each record as a freely defined value associated with the triangle.

7 Summary

We have constructed two torso models from a single set of MRI scans, one which uses all 
the images and maintains an internodal spacing of about 5 mm (high resolution model), the 
other utilizing every second MRI scan, with a mean internodal spacing of 11 mm (medium 
resolution). The models contain 42,000 (11,000) surface nodes joined to form 85,000 (19,000)



triangles and 82,000 (22,000) total nodes to form 500,000 (130,000) tetrahedra, where the 
first numbers are for the high resolution and the number in parentheses are for the medium 
resolution model.

8 Glossary of Terms

Below is a list of the commonly used terms in this documentation (and the research it
describes).

Layer: refers to a set o f points which all lie in the same plane and describe a set of outlines 
in cross section. Typical examples of this would be the digitized datapoints from a 
single MRI image.

Slice: is a three-dimensional structure, composed of a pair of adjacent layers. Exact usage 
here is somewhat vague when we combine more than 2 layers (is this still a slice, or a 
set of slices?) but normally we intend a slice to represent a pair of layers.

G rid : is a set of regularly spaced points in a single plane. Grids are typically added to 
layers to fill in the space between the surface outlines, eg.to close a surface at the top 
and bottom. Grids are also added to each layer of a model in order to tetrahedralize 
it for use with the finite element solver.

T riangularization : is the act (art?) of connecting points into triangular surface elements. 
This can be done in two and three dimensions, and can be ‘optimal’ in some sense of 
creating elements as close to equilateral as possible. In the case of triangulating sur
faces based on tomographic data, as described here, we have a somewhat constrained 
triangulation we refer to as lacing since we simply linked pairs of point sequences from 
adjacent layers.
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