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Abstl'act 

Nondeterministic (ND) control has long been used to' express elegant 

solutions to complex search problems. Programs using ND control can be 

executed on conventional machines through a systematic examination of trial 

execution paths. Among the many approaches to the enurnera.tion of these paths 

is backtrack.ing~ a depth-first search of the execution path tree. Despite 

its implementational advantages, backtracking in its purest , form., suffers 

from a "forgetfulness" of retracted execution subpaths" This can lead to 

exponential run-time on problems such as top-down parsing in which the same 

subproblem can reoccur in slightly different global contexts. 

This paper presents an alternative form of ND contro~ implementation 

incorporating. "non-forgetfulness" into backtracking. Reoccurrences of 

previously searched subgoals are detected and their net computational effects ' 

recreated on demand. Since each distinct goal is pursued at mos.t once, 

search problems such as general top-down parsing run in polynomial time. 

Moreover, in contrast to an exhaustive, bottom-up appr.oach, goals are only 

pursued if appropriate in some global context. 

A strategy for non-forgetful backtracking is outlined in terms of 

coroutines and ordinary backtracking. The description of an Cilternative 

implementation of this strategy using simply coroutines is referenced. 

Top-dovln parsing is used to illustrate the application of this techn ique 

in both linguistic appearance and execution effect. Finally, some 

directions for further research into generalizations of these resul ts are 

suggested. 



,"History does not repeat i tsel f except in the minds of 
those who do not know history." 

Kahlil Gibran 

1. MOTIVATION 

Nondeterministic (ND) control ([Ch75], [FI67], [Jh67]) is a natural 

control strategy for a wide range of search applications including parsing, 

graph traversal, game playing, and enumeration problems. Under ND control. 

execution branches are automatically selected according to their ultimate 

correctness (toward reaching a desired goal state) rather than by locally 

available selection criteria. Thus ND control semantics assume the ser­

vices of a. .. ·1 oracle who guides the execution through uncerta.in branches while 

avoiding blind alleys. 

Such mystical control semantics can be simulated on conventional 

machines through anyone of a variety of interpretation schemes, each of 

which systematically examines trial paths within the tree of all possible 

execution sequences. Such schemes may be completely correct (e.g. breadth­

first execution tree searching), partially correct (e.g. depth-first execution 

tree searching), or heuristic (e.g. best-first execution tree searching 

with a bounded candidate path list). 

The ~ost popular approach to ND control simulation is backtracking 

([Br76], [GB65], [Hn76], [Kn75] , [GY76]) I a partially correct method. Under 

backtracking, the oracle of ND control is simulated by tentative, revers~le 

continuations of the program's current execution. On failure, the net effect 

of each retracted subexecution is one bit of information: "Not this branch". 

Full reversal of these exploratory subexecutions precludes any persisting 

benefit from subcomputations that may be needed again later. Yet in many 

backtracking search applications, identical subgoals frequently reoccur 

within slightly different global contexts (e.g. in chess, searching for moves 

from a particular board configuration when it results from two or more distinct 

move histories). This "forgetfulness" has given backtracking a reputation for 

slowness which we will here attempt to rehabilitate. 
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2. FORGETFULNESS IN SEARCHING 

Forgetfulness in searching algo!:"i L'lms (we use .. searching" here in a 

generic sense) may be defined as follows: 

a searching algoritlun is forgetful if the second, and sub­

sequent, searches for goal G in controlling state S each 

require as much time to complete as did the first such 

search. 

By controlling state we mean "that combination of global data that is 

instrumental in the success or failure of this goal". We denote the task of 

searching for goal G in controlling state S as (G,S). 

To eliminate forgetfulness, the =ollowing extensions must be made. to 

a searching algorithm: 

i) a correct (and, ideally, mnirnal) specification of the 

controlling state for each task; 

ii) a method of logging the result of each successful search 

undertaken on a task (G,S) when that task is first attempted; 

iii) a capability for recognizing reoc·currences of (G,S) tasks as 

they arise; 

iv) given such a repeated task (G,S), a means for recreating on 

demand the net state change that resulted from each 

success originally found on (G,S), and, finally, 

v) a means of authenticating any regenerated success, by 

summarizing its computation, should that local success 

contribute to a global success that is to be formally 

exhibited. 

Clearly, one method of achieving non-forgetfulness is through 

exhaustive, bottom-up searching wi th ~e aid of a global tahle recording all 

successes on each task ([Br76]). Sue:") 2.:1 approach suffers from the following 

drawbacks: 

i) the overall control strategy is not data-driven in that 

goals are pursued inderencent of any global context guaranteeing 

their relevancy to the ?a~ticular data at hand* and 
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ii) overt "data engineerins" ::1..1S7. be done in the l'r.oaintenance of 

the global table, whereas uncer top-down searching such infor­

mation is elegantly distr:'bu":.ed throughout the local variables 

of the active search proc;SSeS. 

Our plan here is to present an ada=t~":..ion of searching which incorporates 

both the global strategy of backtrackin~ Ci.-,"d the non-forgetfulness of bottom­

up searching. Alternatively stated, we wish to "memoize'" ((Mc6S], [Mr70]) 

individual search functions operatin~ w:'th~n a backtracking regime. 

[Gs77] and Friedman et. al. [F~~76] hay: a:so studied ~~s problem.) 

(Gaschnig 

After our general approach is addr:ssed in the next :,ec:tion, a pa-rticular 

linguistic setting will be introduced ~ se=tion 4. Our method will then be 

illustrated in this setting using top-d='Nn parsing as a sampIe application 

(section 5). Finally, some directions ::or further research suggested by 

these results are offered in the conclu~in~ section. 

3. NON-FORGETFULNESS IK BACKTRACKING 

Our approach to non-forgetful ba=k~racking is based on the following 

interpretations to the extensions cited abcve: 

i) controlling state: we require the programmer to specify for each 

goal G the set S of global ... ·ar:.ab:es controlling that search. 

ii) success logging: whenever a ssarch is underta~en om a previously 

unsearched task (G,S) (an "ori~inal" search), the net result of 
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each success on that task is r;~orded in a table local to the original 

searcher before that success i5 reported upward. 'TIbe "net result" 

consists of the l-esul ting vallEs cf a set A of global variables 

encapsulating the search effec~. Like the set S. ~~e set A is 

specified by the programmer. 

iii) repeated task recognition: we as=:illl1e the existence of an associative 

memory in which we store the ~~~e=: of original searchers for each 

(G,S) key as they are created ~n ~he course of ~)C overall search 

logic. 

iv) recreating successes: when a ~:~~~ted task (G,S) arises, the original 

searcher for (G,S) is react~va~ed and put into regeneration mode. 



The ne.t result of each previously recorded sucC€ss on (G,S) is 

recreated (via direct assignments to the variab~es in A), until 

the success set is exhausted. Failure is then reported, and the 

original searcher suspends awaiting a new regeneration request 

whenever (G,S) n~xt arises. 

V) success authentication: we make the simplifying assumption here that 

the A set for each ·task contains a global variable that accumulates 

salient information summarizing each local success. Thus no further 

action by the. searchers is needed on the occasi.iml of a global 

success, for that global variable already summarlzes at that time the 

contribution of each participating searcher. tIn a more general 

framework, one may wish special actions to be ta~en by each searcher 

contributing to a global success when that SUCC£5S is to be 

authenticated. ) 

Figure 1 summarizes this logic as applied to an indi~idual search routine. 

This logic relies on a fundamental property of backtraCk±ng that is important. 

to our scheme: 

any problem suitable for backtracking must assure the ey~austive completion 

of any search task (G,S) before any instance of (G~S> can arise again 

(otherwise, the search process would be potentially ~nfinite under the 

depth-first strategy of backtracking) . 

Two beneficial implications of this fact are capitalized upon in our scheme: 

i) any original searcher for (G,S) will search to completion before 

any regeneration requests on (G,S) can arise, ana 

ii) any regeneration requests for (G,S) will be serw1ced thoroughly by 

its original searcher before any subsequent regeneration requests for 

(G,S) can arise. 

4. A LlNGU1STIC SETflNG 

From the logic of figure 1, it is clear that coroutjj.nes are an essential 

ingredient in any implementation of non-forgetful backtracking. In fact, 

coroutines alone suffice if the programmer is willing to' manage explicitly 

the state saving and restoration inherent in backtrackiBg (see [Ln76]). 



However, if both NO control (with syste=at~c trial executions) and coroutine 

control (for suspending and reactivatin= original searchers) are available, 

a much cleaner implementation of this s~ategy can be obtained. 

To provide such a setting for our sam~le application in the next section, 

we present here a PASCAL extension incl~jing both SIMULA-like coroutines 

and primitives for ND control. (FurG~er discussion of the merits of such a 

control combination may be found in [Ln;7a].) 

4.1 Coroutine control extensions. 

The coroutine manipulation facilit~es of our PASCAL extension have been 

selected from those found in Coroutine FA-SeAL [Lm76]. We will need the 

following primitives: 

i) the data type ref, which :'s t.~e set of names of dynamically 

created coroutine instances; 

ii) the function CREATE«proc:;3.v.1':'3 caU», v..'hich dynamically 

creates a new coroutine i::sta.."1ce of the given procedure. 

Parameters are evaluated a..'"!d bound, but execution of the 

instance does not yet corru:ence. A value of type ref referring 

to the created instance is returned as the value of this call 

on CREATE (and is availab:e ~s SELF within the coroutine); 

iii) the function CALL«ref ex;», which passes control to the 

coroutine instance referrej to by the given expression. If that 

instance is newly created, it begins execution at its first 

statement. If the instance c~rrently is DETACHed (see (iv», it 

resumes following the sta~eme~t that caused that DETACHment; 

i v) the procedure DETACH I whi:;:'"! suspends the most tightly surrounding 

coroutine instance (in thE se~se of CALL/DETACH nesting), and 

returns control to its mos~ recent CALLer, with control 

resuming just following t:~ ~tatement doing that call, and 

v) the procedure ~rERMINATE (-=:rui .. 'alent to exiting fr0m the code 

body of the most tightly s'lrrounding coroutine instance), 

similar to DETACH except ~~a~ the coroutine instance is no 

longer CALLable. 
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4.2 Nondeterministic control. 

Of the many linguistic formulations of backtracking and NO control 

that have appeared in the literature (e.g. [Jh67], [Ch75], and [Hn76), 

we find the early work of Floyd [F167) to offer the best basis for our needs 

here. Our particular NO primitives, defined in terms of their effect under 

ordinary backtracking execution, are: 

i) the function NDCREATE«procedure call», which creates a 

coroutine instance of the given procedure operating as an 

independent NO system. This means: 

a) the instance may be manipulated (e.g. CALLed and 

DETACHed) as an ordinary coroutine instance, but 

in addition: 

b) one may use the special NO control primitives 

CHOICE and FAILURE within its dynamic scope. 

ii) the function CHOICE«exp», delivering successive integer 

values from I to the value of <exp> , in that order, and 

iii) the function FAILURE, signalling detection of a blind alley. 

This causes the following backtracking actions to occur in 

the most tightly surrounding NO system: 

a) the NO system's control state is reset to that in 

effect at the time of the most recently executed 

CHOICE call within the dynamic scope of that system. 

If at least one value remains to be generated by 

that CHOICE operation, a new value is selected for 

generation. Otherwise, if that CHOICE operation is 

exhausted, then the system's control state is reset to 

that associated with the next most recent CHOICE opera­

tion, etc. If all previous CllOICE operations in this 

system have been exhausted, then a F/lILUHE is done in 

the dynamically surrounding ND syst0m, if it exists. 

Otherwise the current system simply terminates. 

b) the local date state of the selected NO system (i.e. the 

set of all variables created within its dynamic scope) 
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is reset to that associated with the selected CHOICE 

point. Note that variables outside the ND system are 

left unchanged by a FAILURE action. 

c) rule (b) notwithstanding, a progr2ml.Iner may declare 

selected variables within a ND system to be nonreset 

upon FAILURE via the FAR prefix NORRESET. • 

4.3 Con~inin~ coroutines and ND control. 
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The primitives of these two control regimes may be mixed in any semantically 

meaningful execution sequence. While a complete specificatia,n of the semantics 

of such a mixed usage is beyond the scope of this paper, we will simply 

observe the following useful facts: 

i) ND systems can be created within one another. However, as long as 

no DETACHes are used within them, the FAILURE effects are as though 

only one overall system were created. 

ii) If a ND system becomes DETACHed and is reactivated hy a CALL from 

another ND system, then its subsequent ND control actions (CHOICE 

and FAILURE) have the same effect as they would had its new caller 

been its initial caller. 

iii) Finally, the control sequence {DE'l'ACH~ FAILURE (in the dynamically 

surrounding system)} is a useful control combination that cannot 

conveniently be programmed due to the context change immediately 

following the DETACH. Consequently, we assume the availability of 

a special command FAILDETACH performing this two-step action_ 

5. HON-FORGETFULNESS IN A TOP-DOWN PARSER 

\oje will now illustrate our notion of generalized backtracking through 

the familiar problem of fully general top-down parsing. 

Top-down parsing is attractive for our purposes here because: 

i) it exemplifies rule-driven searching, a familiar prog'ramming 

paradigm; 

ii) it is a well-understood process; 



iii) it is computationally non-trivial (involving true b,acktracking 

not directly expressible by ordinary recursion [Ln77b]), and 

iv) its "forgetfulness" leads to a dramatic decline in speed (i.e. 

exponential run time) for certain grammars and string sequences. 

5.1 Floyd's top-down parser. 

Floyd [F164) has elegantly formulated an approach to top-down parsing 

in ND control terms. That approach, cast into our PASCAL in figure 2. 

assumes the grammar has been put into the following normal form: 

a) the non-terminal symbols are taken from the upper case alphabet 

{A, ... , Z}; 

b) the terminal symbols are taken from the lower case alphabet 

{a, ••. , z}, and 

c) the grammar is non-left-recursive (this restriction can be 

eliminated by a variety of methods all complicating exposition), and 

d) there is only one rule for each nonterminal syrrbol a, and that 

rule obeys one of the following three forms: 

(alternation) ex -+- 61162 , \dth 61 and 62 nonterminals; 

(concatenation) ex -+- 6162 , with 61 and 62 nonter.min~s, or 

(terminal) ex -+- 1, with 1 a te~~inal symbol. 

5.2 Floyd's ~lgorithm in non-forgetful form. 

Floyd's top-down parsing algorithm may be recast into our non-forgetful 

backtracking framework by the following interpretations on fi.gure 1: 

i) A controlling state is simply the current global· string pointer 

ptr (since the string Stl~ itself is constant). Goals, of course, 

are non-terminal symbols. Tnus a task is a pair (Gl'ptr). 

ii) The associative memory for retrieving the name of the original 

searcher on a task (G,ptl') is simply a table indexed by G and ptl~, 

since each is dra~n from a comFact range. 
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iii) The net state change resulting from a successful search on a task 

(G,ptl') is simply the ph> value marking the end of the spanned 

substring, along with the p value pointing to the constructed 

subtree. 

iv) Instituting a net state change amounts to simply setting ptr and p 

to those values (string position beyond end of spanned substring, 

and root of spanning subtree, respectively) saved under that success; 

v) Authentication of a global success is accomplished by printing (via 

pri-nttl'ee) the overall parse tree as previously constructed 

incrementally. 

\~ith these modifications, Floyd's parser now has the following properties! 

i) the underlying search strategy is unchanged, with each distinct 

new goal arising in the same order as before; 

ii) when a repeated goal occurs, each success fotl."1d originally for that 

goal is simulated, one at a time, by direct assignrnent. to ptl? and p in 

time independent of the complexity of the spanning sUbtree; 

iii) when the BOSS routine detects a global success, then the subtrees 

associated with each participating subparse are outputted by 

traversal in linear time, and 

iv) the parser accommodates the general case of regenerated successes 

themselves involving regenerated successes at lower levels, with 

proper subtree outputting at all levels. 

5.3 An implementation. 

Figure 3 gives code for Floyd's parser converted to non-forgetful form. 

Notice that neither BOSS nor SUBORD are altered in any way other than to 

replace calls of the form: 

SUBORD(G) 

with calls of the form: 

CALL (NDCREATE (SEARCH (G»). 

This ensures two saluta~y effects: 

i) calls on SUBORD are now systematically done through SEARCH, which 

does success logging and regeneration, and 
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ii) each SEARCH routine is a separate ND subsystem. so it can be 

DETACHed and re-CALLed when success regeneration must be done 

for the same task in a subsequent context. 

It is particularly interesting to note how CHOICE is used in three novel 

ways within SEARCH: 

first usage ("CHOICE(2)=I"): to intercept the final FAILURE done by 

its original SUBORD searcher; 

second usage ("CHOICE(2)=2"): to intercept the exhaustion of success 

regeneration, and 

third usage ("RESTORPJLOBALS(CHOICE(n» "): to select each saved original 

success in turn for regeneration. This greatly simplifies the 

coding of SEARCH and renders uniform its interface with its CALLer 

in both original search and regeneration modes. 

Figures 4 and 5 illustrate the revised parser's operation on a sample 

grammar and input string. 

5.4 Parser performance. 

Our non-forgetful top-down parser possesses the followin9 desirable char­

acteristics: 

i) full generality, including exhaustive parsing on ambiguous 

strings; 

ii) distributed (i. e. non-global) parse state represen.tation, with 

local success data associated with each original task searcher; 

iii) a top-down strategy that attempts only globally plausible 

subparsesi 

iv) polynomial run time, and 

v) tree outputting by direct traversal in time proportional to tree 

size. 

Time behavior is as follows. Denote the nlli~er of non-terminals in our 

grammar by IGI. Let n be the length of L~e input string. and b its degree 
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of ambiguity. Then the total time speno doing searching (exclusively on original 

tasks) is bounded by a number proportional to the maximum number of original 



successes, i.e. (number of substrings) x (number of goals) x (ambiguity), or 

OS(n) = n 2 IGI b 
2 

The space required can be estimated as follows. Clearly, the global 

task array is of size IGI n. Overall, the sum of D table sizes is propor­

tional to the number of original successes, OS(n). Moreover, the heap 

space required to represent all retained parse subtrees is also proport.ional 

to OS(n), for the local path length of each such success is 3 or less. 

Thus both space and time behavior for the non-forge.tful parser are of 

order OSen). Since this bound represents the minimum amount of time that 

could be consumed by an exhaustive parser, "non-forgetfulness" must in fact 

be attained despite the reoccurrences of subtasks under the global top-down 

strategy. 

6. CONCLUSION AND FUTURE WORK 

This paper has presented a fundamental notion of non-forgetfulness 

in backtracking along with its illustration through a particular case 

study. Y.~e results encourage further research to bring this technique 

into wider explicit use in general programming. Areas suggested include: 

i) formalization of this method into general linguistic primitives 

suitable for application in any "standard" backtracking situation. 

ii) extension of non-forgetfulness to search strategies beyond classical 

backtracking, where original searching and regeneration are not 

locally disjoint phases (e.g. a dynamic, incremental alpha-beta 

pruning search for moves in games); 

iii) further study of the controlling state notion, aimed at methods of 

ninimizing such states and readily recognizing their reoccurrence 

in general, and 

iv) analysis of the empirical impact this particular control regime has 

on individual control implemen~ation strategies, expecially in the 

area of storage management [PS;'i72], [SE73]. Some preliminary t.,;ork 

of this kind may be found in [SL76]. 
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procedure search(G,S,A); 

{G is given goal; 

S is controlling state; 

A is set of globals altered} 

begin if we have performed (G3 S) before then 

pass request or. to ::;r!-ginal (C~S) sea:rcher 

else 

begin preserve values of globals specified in set A; 

do search on G; 

end 

end {search} 

while successful do 

begin save valv£s of globals specified in set A; 
suspend until. next success is requested 

con tinue sem'cn. 

end; 

repeat restore ini~ial values of globaZs in set A; 

report failure and suspend; 

{now have regeneration request} 

\"hile saved successes remain do 

begin reswl'e A value set for this success; 

suspend. uYi.ti l next S:A.ccess is requested 

move to next saved success 

end 

until false {origir.al searchers never die} 

FigUl·e 1. General strategy for ncn-f0rsetful searching. 
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{Floyd's parsing algorithm in conventi0nal NO form} 

const 5 t rr.tax 50; {maximum string length} 

~ ptr'Jal 
synb = 
ntsy.,..b 

1. ~ strmax: 
'a' .. 'Z· ; 

',,' .. '7.'; 

{range of string pointers} 
(vo(abulary of gra~~ar) 
{nonterminal symbols} 

tpr",synb e 'a' .• 'z'; (terminal synbols) 
pcellptr = tpeell; (pointer to print tre .. cellI 
valti~e = (locval,suheefl, (tags on print tree cells) 
peell = re::oed link: peellptr, {link to next cell} 

var 

------ caSe valtag: val type of 
locval: (val: ntsymbl, 
suhref: (ptr: pcellptrl 

en'=!.; 

rule: <Hray [ntsynb,l. .2J of symb: 
rutetype: array [ntsymbJ of (alt,eonc,term); 
ptrlirn: ptrval; 
root: ntsynb, 
p. peellptr; 
str: array {ptevalJ of termsYnb' 

(subtree roo t labe I) 
{pointer to subtrees} 

{rules of grammar} 
{type of each rule} 
{length of test string} 
{root of grammar} 
{root of print tree} 
{test string} 

procedure printtree(p: pcellptr; d: integer); (print tree p indented d levels) 

c'-"<;~ pt. v,') 1 taq of 
lorv"l-;-~~ for i:-l to d <lo write(" 

wei teln (pt. val) 
"), (ind"nt) 

end; 
~\lbref: ~.~ pdnttree(rt.link,d), 

printtree(pt.ptr,d+l) 

end [C-1srd 
en1 (printtrec), 

end 

EE.?Z':luo., splic,,(~. result: peellptr, v,w, pcellptrl, (add subtree ref cell) 

t-~';in no:;!w(result,subref); 
----- [~3ultt.ptr:.v; resultt.linkl~w 
~ (splicc), 

proe£dure output(G, ntsymb) , {add subtree root cell} 

bpgin new(p,locval): 
pt.link:-nil, pt.val:=G 

end {output}, 

procedure bo~B: (overall supervisor of parsinq process) 

var ptr: ptrval, {parser's pointer into test string} 

procedure subord(G: ntsymbl; 

var psave: peellptr; 

{general rule-driven searcher} 

begin output(G); psave:=p, 
case ruletype(G) of 
---- alt: begin-Subord(rule(G,ehoice(21)I, 

splice(p,p,psave) 
end (al t case h 

conc: begin sllbord(rule(G,I)I , 
splice(psave,p,psave), 
subord( rule (G, 2)) ; 

te.rm: 

end {case} 
end {suloord}; 

spliee(p,p,psave) 
end (cone case), 
~ptr<=ptrlim and str(ptr)-rule[G,l) then 
- ptr :.ptr+-l--
else failure 

begin {body of boss} 
ptr:-l, 
subord (root) , 

it pt~ptrlim+l then printtree(p,O), 
r;i~ure {get exhaustive list of all parses} 

end {boss}, 

end. 

(main proqram) 
(read rules, root, 9trlnq, 
call(ndcreate(boss)) 

(program) 

and ptrllm) 

Fi.gure 2. Floyd's top-down parser in conventional ND form. 



(added to ~ section of r:::.in progl' 1117: ) 

task: array [ntsymb,ptrval] of ref; {initialized to nil values} 

(in BOSS and SVBORD .. each call subord(a) changed to:) 

call(ndcreate(search(a») 

(code added for new proced~re:) 

procedure search(G: ntsymb); 

const sucmax = 10; {maximum number of local successes} 

type Avals = record p: pcellptr; {A set values for subord} 
ptr: ptrval 

end; 
sucnr = 0 sucmax; {local success serial numbers} 

nonreset var n: sucnr; {local success counter} 
{array of A set values} D: array [sucnr) of Avalsj 

procedure saveglobals(n: sucnr) i 

begin {save current A set values under success name n} 
D[n}.p:=pi D[n].ptr:=ptr 

end {saveglobals}; 

procedure restoreglobals(n: sucnr) i 

begin {restore A set values associated with success name n} 
p:=D[n}.Pi ptr:=D[n] .ptr 

end {restoreglobals}i 

begin if task(G,ptr]1nil then {(G,ptr) searched before} 
call(task[G,ptr]) {ask for success regenerations & pass back} 

else {have original search instance} 

16 

if choice(2)=1 then {log successes on original search} 
b;gin task [G,ptr] :=selfi {enter name of searcher under (G,ptr)} 

n:=Oi saveglobals(n); {save A set values on entry} 
subord(G) ; {call subord for actual searching} 
n:=n+l; saveglobals(n) {must have new success, so save it} 

end 
else {have intercepted final failure wi thin subord call} 
repeat restoreglobals(O) i {restore A set values from initial entry} 

faildetachi {report failure & suspend} 
{now have regeneration request from ne\" searcher on (G ,ptr) } 

until choice(2)=2; {cycle back to faildetach when regens stop} 
restoreglobals(choice(n» {pick a success & return to new caller} 

end {search} 

Figure 3. Hodifi·:::ations to obtain non-forgetful parser. 



Sample grammar: 

R-+Y 

Y -+ Z X 

X-+RR 

z ·-+ a 

z (alternation) 

(concatenation) 

(concatenation) 

(terminal) 

Trees produced for sample string a a a a 2 

(stored form) 

Y 
I 
0-- Z'K Y X .''? 

11 I I 
X R o--Z 0 

I I 'K
12 I 

---oo--Z R 
'K 'K 

T ll 13 I 
O--<>';:--<>-'K-- --_-co " _______ 0 ~- Z 

114 113 112 17 'K 14 

R R 
I I 
"1<:--o--o---o -- Z 

P / 11 7 'K 1 1 6 'K1 1 5 'K1 6 'K15 

p 

R 

I 

Y 

I 
0 __ Z 

'K 1 1 

X R 
I I 
o-' --o--Z 

'K 118 'K12 

R 

I 

Y 
I 
o--Z 

'K13 

X R 
I I 

R 
I 

0--0--0 __ 0 ____ _ 0 __ 0 --- 0 - Z 
;:1( '" 'K 'K 'K 'K ~ 'K ,. 

./' 121 120 119 LI0 L9 18 -:- 5 " ~ 5 

Figure 4. Sample results from non-fo~ge t ful parser. 

(printed form) 

R 
y 

Z 
X 

R 

R 

R 

z 
x 

R 

R 

Y 

Z 

z 

Y 

Z 
X 

z 
x. 

R 

R 

R 

R 
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Z 

Z 

Z 

Z 



I 1 2 3 4 5 

l? if~~ ~~ ~ e: T17 T21 T24 T
25 T14 T

18 
T

10 TIl 

ptr: 6 6 4 2 5 3 6 4 --

~ 
y y 

T2 T3 (none) (none) 

~~~ ~ ~ 
y 

T
16 

T
20 

T
23 T9 

, 6 6 4 6 

' ~ X X 

(untried) 

~~ 
TIl T7 (none) 

X T6 TID G 
~ ~ TIS T19 T22 

6 6 4 
-

Z ~ , ' ~ ~ " .~ ~ . 
Figure. 5. Task table for figure 4 example, showing saved global values for each success. 


