Efficiency in Nondeterministic Control
through
Non-Forgetful Backtracking

UuCs-77-114

by
Gary Lindstrom
Department of Computer Science
University of Utah
Salt Lake City, Utah 84103

October 15, 1977

This work has been supported in part by the National Science Foundation

under grant DCR73-03441 A0l to the University of Pittsburgh

Abstract

Nondeterministic (ND) control has long been used to express elegant
solutions to complex search problems. Programs using ND control can be
executed on conventional machines through a systematic examination of trial
execution paths. Among the many approaches to the enumeration of these paths
is backtracking, a depth-first search of the execution path tree. Despite
its implementational advantages, backtracking in its purest form suffers
from a "forgetfulness" of retracted execution subpaths. -This can lead to

exponential run-time on problems such as top-down parsing in which the same

'subproblem can reoccur in slightly different global contexts.

. This paper presents an alternative form of ND control implementation
incorporating "non-forgetfulness" into backtracking. Reoccurrences of
previously searched subgoals are detected and their net computational effects"
recreated on demand. Since each distinct goal is pursued at most once,
search problems such as general top-down parsing run in polynomial time.
Moreover, in contrast to an exhaustive, bottom-up approach, goals are only

pursued if appropriate in some global context.

A strategy for non-forgetful backtracking is outlined in terms of
coroutines and ordinary backtracking. The description of an alternative
implementation of this strategy using simply coroutines is referenced.
Top-down parsing is used to illustrate the application of this technique
in both linguistic appearance and execution effect. Finally; some
directions for further research into generalizations of these results are

suggested.

"History does not repeat itself except in the minds of
those who do not know history."” :
- = - Kahlil Gibran

1. MOTIVATION

.Nondeterministic (ND) contrel ([Ch751, [F167), [Jh67]} is a natural
control strategy for a wide range of search applications including parsing,
graph traversal, game playing, and enumeration problems. Under ND control,
execution branches are automatically selected accérding to their ultimate
correctness (toward reaching a desired goal state) rather than by locally
available selection criteria. Thus ND control semantics assume the ser-
vices of an oracle who guides the execution through uncertain branches while

avoiding blind alleys.

Such mystical control semantics can be simulated on conventional
machines through any one of a variety of interpretation schemes, each of

which systematically examines trial paths within the tree of all possible

‘execution sequences. Such schemes may be completely correct (e.g. breadth-—

first execution tree searching), partially correct (e.g. depth-first execution
tree searching), or heuristic (e.g. best-first execution tree searching '

with a bounded candidate path list).

The most popular approach to ND control simulation is backtracking

([Br7el, [GB65], [Hn76], [Kn75], [GY76]), a partially correct method. Under
backtracking, the oracle of ND control is simulated by tentative, reversible
continuations of the program's current execution. On failure, the net effect

of each retracted subexecution is one bit of information: "Not this branch".

Full reversal of these exploratory subexecutions precludes any persisting
benefit from subcomputations that may be needed again later. Yet in many
backtracking search applications, identical subgoals frequently reoccur
within slightly different global contexts (e.g. in chess, searching for moves
from a parﬁicular board configuration when it results from two or more distinct
move histories). This "forgetfulness" has given backtracking a reputation for

slowness which we will here attempt to rehabilitate.

2, FORGETFULNESS IN SEARCHING

Forgetfulness in searching algorithms (we use “searching" here in a
generic sense) may be defined as follows:) |
a searching algorithm is forgetful if the second,.and sub-
sequent, searches for goal G in controlling state S each
require as much time to complete as did the first such

search.

By controlling state we mean '"that combination of glokal data that is

instrumental in the success or failure of this goal"”. We denote the task of

searching for goal G in controlling state S as (G,S).

To eliminate forgetfulness, the Zollowing extensions must be made to

-a searching algorithm:

i) a correct (and, ideally, minimal) specification of the

controlling state for each task;

ii) a method of logging the result of each successful search

undertaken on a task (G,S) when that task is first attempted;

iii) a capability for recognizing reoccurrences of (G,S) tasks as

they arise;

iv) given such a repeéted task (G,S), a means for recreating on
demand the net state change that resulted from each

success originally found on (G,S), and, finally,

v) a means of authenticating any regenerated success, by
summarizing its computation, should that local success
contribute to a global success that is to be formally

exhibited,

Clearly, one method of achieving non-forgetfulness is through
exhaustive, bottom-up searching with +he aid of a global table recording all
successes on each task ([Br76]1). Such &n approach suffers from the following

drawbacks:

i) the overall control strategy is not data-driven in that
goals are pursued inder=ndéent of any global context guaranteeing

their relevancy to the particular data at hand, and

ii)} overt "data engineering" zust be done in the maintenance of
the global table, whereas under top-down searching such infor-
mation is elegantly distribu=zed throughout the local variables

of the active search procsssss.

Our plan ﬁere is to present an adar azion of searching which incoiporates
both the global strategy of backtrackinc and the non-fcrgetfulness of bottom—
up searching. Alternatively stated, we wish to "memoize™ ({Mc68], [Mr70])
individual search functions operatinc within a backtracking regime. (Gaschnig

[Gs77] and Friedman et. al. [FWW76] havs also studied this problem.)

After our general approach is addrsss=d in the next gection, a particular
linguistic setting will be introduced iz s=ztion 4. Our method will then be
illustrated in this setting using top-dcwn parsing as a sample application
(section 5). Finally, some directions Zor further research suggested by

these results are offered in the concluiinc section.

3. NON-FORGETFULNESS IN BACKTRACKING

Our approach to non-forgetful back:zracking is based on the following

interpretations to the extensions cited above:

i) controlling state: we require the programmer to specify for each

goal G the set S of global variables controlling that search.

ii) success logging: whenever a sszarch is undertaken om a previously

unsearched task (G,S) (an "crxricinel" search), the net result of

each success on that task is rscorded in a table local to the original
searcher before that success is reported upward. Tihe "net result"
consists of the resulting valuss cf a set A of global variables
encapsulating the search effecz=. Like the set §, the set A is

specified by the programmer.

iii) repeated task recognition: we zszume the existence of an associative

.

memory in which we store the rzmes of original searchers for each
(G,S) key as they are created In the course of the overall search

logic.

iv) recreating successes: when a rzpzated task (G,S) arises, the original

searcher for (G,S) is reactivazz4d and put into regemeration mode.

e

The net result of each previously recorded success on (G,S) is
recreated (via direct éssignments to the variamles in A), until
the success set is exhausted. Failure is then reported, and the
original searcher suspends awaiting a new regemeration regquest

whenever (G,S) next arises.

V) success authentication: we make the simplifying assumption here that

the A set for each ‘task contains a global variable that accumulates
salient information summarizing each local success. Thus no further
action by the. searchers is needed on the occasion of a global
success, for that global variable already summarizes at that time the
contribution of each participating searcher. ﬁlh a more general
framework, one may wish special actions to be ta@ken by each searcher
contributing to a global success when that sucgess is to be

authenticated.)

Figure 1 summarizes this logic as applied to an in@iwvidual search routine.
This logic relies on a fundamental property of backtrackimg that is important

to our scheme:

any problem suitable for backtracking must assure tixe exhaustive completion
of any search task (G,S) before any instance of (G,8} can arise again
(otherwise, the search process would be potentially infinite under the

depth-first strategy of backtracking).
Two beneficial implications of this fact are capitalized wpon in our scheme:

i) any original searcher for (G,S) will search to completion before

any regeneration requests on (G,S) can arise, amnd

ii) any regeneration requésts for (G,S) will be sexwiced thoroughly by
its original searcher before any subsequent regemeration reguests for

(G,S) can arise.

4. A LIRGULISTIC SETTING

From the logic of figure 1, it is clear that coroutines are an essential
ingredient in any implementation of non-forgetful backtracking. In fact,
coroutines alone suffice if the programmer is willing to manage explicitly

the state saving and restoration inherent in backtracging (see [Ln761]).

However, if both ND control (with systeratic trial executions) and coroutine
control (for suspending and reactivatin: original searchers) are available,

a much cleaner implementation of this sirategy can be obtained.

To provide such a setting for our samgle application in the next section,
we ?resent here a PASCAL extension incltding both SIMULA-like coroutines
and primitives for ND control. (Further discussion of the merits of such a

control combination may be found in [Ini7aj.)

4.1 Coroutine contrecl extensions.

The coroutine manipulation facilitiss of our PASCAL extension have been
selected from those found in Coroutine FASCAL [Lm76])}. We will need the

following primitives:

i) the data type ref, which Is the set of names of dynamically

created coroutine instances;

ii) the function CREATE(<procciurz call>), which dynamically

. creates a new coroutine izstance of the given procedure.
Parameters are evaluated znd bound, but execution of the
instance does hot yet comrence. A value of type ref referring
to the created instance is returned as the value of this call

on CREATE (and is available zs SEFLF within the coroutine);

iii) the function CALL(<ref exr>), which passes control to the
coroutine instance referred to by the given expression. If that
instance is newly created, it begins execution at its first
statement. If the instance currently is DETACHed (see (iv)), it

resumes following the statszment that caused that DETACHment

iv) the procedure DETACH, which suspends the most tightly surrounding
coroutine instance (in the sense of CALL/DETACH nesting), and
returns control to its most recent CALLer, with control

resuming just following tx2 statement doing that call, and

v) the procedure TERMINATE (zjuiwvalent to exiting from the code
body of the most tightly =surrounding coroutine instance),
similar to DETACH except zha: the coroutine instance is no

longer CALLable.

4.2 Nondeterministic control.

Of the many linguistic formulations of backtracking and ND control
that have appeared in the literature (e.g. {Jh67}, [Ch75)}, and [Hn76]},
we find the early work of Floyd [F167] to offer the best basis for our needs

here. Our particular ND primitives, defined in terms of their effect under

ordinary backtracking execution, are:

i) the function NDCREATE(<procedure call>), which creates a
coroutine instance of the given proéedure operating as an
independent ND system., This means:

a) the instance may be manipulated (e.g. CALLed and
 DETACHed) as an ordinary coroutine instance, but

in addition:

b) one may use the special ND contrel primitives

CHOICE and FAILURE within its dynamic scope.

ii) the function CHOICE(<exp>), delivering successive integer

values from 1 to the value of <exp>, in that order, and

iii) the function FAILURE, signalling detection of a blind alley.

This causes the following backtracking actions to occur in

the most tightly surrounding ND system:

a) the ND system's control state is reset to that in
effect at the time of the most recently executed
CHOICE call within the dynamic scope of that system.
If at least one value remains to be generated by
that CHOICE operation, a new value is selected fof
generation. Otherwise, if that CHOICE operation is
exhausted, then the system's control state is reset to
that associated with the next most recent CHOICE opera-
tion, etc. If all previous CHOICE operations in this
system have been exhausted, then a FAILURE is done in
thebdynamically surrounding ND system, if it exists.

Othexrwise the current system simply terminates.

b) the local date state of the selected ND system (i.e. the

set of all variables created within its dynamic scope)

is reset to that associated with the selected CHOICE
point. Note that variables outside the ND system are

left unchanged by a FAILURE action.

¢) rule (b) notwithstanding, a programmer may declare
selected variables within a ND system to be nonreset

upon FAILURE via the VAR prefix FONRESET. e

4.3 Conbining coroutines and ND control.

The primitives of these two control regimes may be mixed in any semantically
- meaningful execution sequence. While a complete specification of the semantics
of such a mixed usage is beyond the scope of this paper, we will simgly

observe the following useful facts:

i) ND systems can be created within one another. However, as long as
no DETACHes are used within them, the FAILURE effects are as though

only one overall system were created.

ii) If a ND system becomes DETACHed and is reactivated by a CALL from
another ND system, then its subsequent ND control actions (CEOICE
and FAILURE) have the same effect as they would had its new callerx

been its initial caller.

iii) Finally, the control sequence {DETACH, FAILURE (in the dynamically
surrounding system)} is a useful control combination that cannot
conveniently be programmed due to the context change immediately
following the DETACH. Consequently, we assume the availability of
a special command FAILDETACH performing this two-step action.

5. NON-FORGETFULNESS IN A TOP-DOWN PARSER

We will now illustrate our notion of generalized backtracking through

the familiar problem of fully general top-down parsing.
Top-down parsing is attractive for our purposes here because:

i) it exemplifies rule-driven searching, a familiar programming

paradigm;

ii) it is a well-understood process;

iii) it is computationally non-trivial (involving true backtracking

not directly expressible by ordinary recursion [Ln77b]), and

iv) its "forgetfulness" leads to a dramatic decline in speed (i.e.

exponential run time) for certain grammars and string sequences.

. 5.1 Floyd's top-down parsef.

Floyd [Fl1l64] has elegantly formulated an approach to top-down parsing
in ND control terms. That approach, cast into our PASCAL in figure 2,

assumes the grammar has been put into the following normal foim:

“a) the non-terminal symbols are taken from the upper case alphabet
{a, ..., 2z} ’

b) the terminal symbols are taken from the lower case alphabet

{a, ..., z}, and

¢} the grammar is non-left-recursive (this restriction can be

eliminated by a variety of methods all complicating exposition), and

d) there is only one rule for each nonterminal symbol ¢, and that

rule obeys one of the following three forms:
(alternation) a +-Bl|82, with By and B; nonterminals;
(concatenation) o -+ B1B8,, with By and B, nonterminals, or

{(terminal) a = T, with T a terminal symbol.

5.2 Floyd's algorithm in non-forgetful form.

Floyd's top-down parsing algorithm may be recast into our non-forgetful

backtracking framework by the following interpretations on figufe 1:

i) A controlling state is simply the current global string pointer

otr (since the string str itself is constant). Goals, of course,

are non~terminal symbols. Thus a task is a pair {(G,pir).

ii) The associative memory for retrieving the name of the original

searcher on a task (G,ptr) is simply a table indexed by G and nir,

since each is drawn from a comgact range.

iii) The net state change resulting from a successful search on a task

(G,ptr) is simply the ptr value marking the end of the spanned
substring, along with the p value pointing to the constructed

subtree.

iv) Instituting a net state change amounts to simply setting ptr and p

to those values (string position beyond end of spanned substring,

and root of spanning subtree, respectively) saved under that success;

v} Authentication of a global success is accomplished by printing (via
printtree) the overall parse tree as previously constructed

incrementally.
With these modifications, Floyd's parser now has the following properties:

i) the underlying search strategy is unchanged, with each distinct

new goal arising in the same order as before;

ii) when a repeated goal occurs, each success found originally for that
goal is simulated, one at a time, by direct assignment to pf» and p in

time independent of the complexity of the spanning subtree;

iii) when the BOSS routine detects a global success, then the subtrees
associated with each participating subparse are outputtéd by

traversal in linear time, and

iv) the parser accommodates the general case of regenerated successes
themselves involving regenerated successes at lower levels, with

proper subtree outputting at all levels.

5.3 An implementation.

Figure 3 gives code for Floyd's parser converted to non-forgetful form.
Notice that neither BOSS nor SUBORD are altered in any way other thanrto
replace calls of the form:

SUBORD(G)

with calls of the form:

CALL (NDCREATE (SEARCH (G))) .
This ensures two salutary effects:

1) «calls on SUBORD are now systematically done through SEARCH, which

does success logging and regeneration, and

10

ii) each SEARCH routine is a separate ND subsystem, so it can be
DETACHed and re-CALLed when success regeneraticn must be done

for the same task in a subsequent context.

It is particularly interesting to note how CHOICE is used in three novel

ways within SEARCH:

first usage ("CHOICE(2)=1"): to intercept the final FAILURE done by

its original SUBORD searcher;

second usage ("CHOICE(2)=2"): to intercept the exhaustion of success

regeneration, and

‘third usage ("RESTOREGLOBALS(CHOICE(n))"): to select each saved original
success in turn for regeneration. This greatly simplifies the
coding of SEARCH and renders uniform its interface with its CALLer

in both original search and regeneration modes.

Figures 4 and 5 illustrate the revised parser's operatiomn onh a sample

grammay and input string.

5.4 Parser performance.

Our non-forgetful top-down parser possesses the following desirable char-

acteristics:
i) full generality, including exhaustive parsing on ambiguous
strings;
ii) distributed (i.e. non-global) parse state representation, with

local success data associated with each original task searcher;

iii) a top—down strategy that‘attempts only globally plausible

subparses;
iv) polynomial run time, and

v) tree outputting by direct traversal in time proportional to tree

size,

Time behavior is as follows. Denote the number of non-terminals in our
grammaxr by |G|. Let n be the length of the input string, and b its degree
of ambiguity. Then the total time spend doing searching (exclusively on original

tasks) is bounded by a number proportional to the maximum number of original

successes, i.e. (number of substrings) x (number of goals) x {ambiguity), or
osm) = n? |g| b
2

The space required can be estimated as follows. Clearly, the global
task array is of size IG| n. Overall, the sum of D table sizes is propor-
tional to the number of original successes, 0S{n). Moreover, the heap
space required to represent all retained parse subtrees is also proporticnal

to 0S(n), for the local path length of each such success is 3 or less.

Thus both space and time behavior for the non—forgetfui pérser are of
order OS(n). Since this bound represents the minimun amount of time that
could be consumed by an exhaustive parser, '"non-forgetfulness" must in fact
be attained despite the reoccurrences of subtasks under the glilobal top-down

strategy.

6. CONCLUSION AND FUTURE WORK

This paper has presented a fundamental notion of non-forgetfulness
in backtracking along with its illustration through a particular case
study. The results encourage further research to bring this technique

into wider explicit use in general programming. Areas suggested include:

i) formalization of this method into general linguistic primitives

suitable for application in any “standard" backtracking situation;

ii) extension of non-forgetfulness to search strategies beyond classical

backtracking, where original searching and regeneration are not
locally disjoint phases (e.g. a dynamic, incremental alpha-beta

oruning search for moves in games);

iii) Further study of the controlling state notion, aimed at methods of
minimizing such states and readily recognizing their reocccurrence

in general, and

iv) analysis of the empirical impact this particular control regime has
on individual control implementation strategies, expecially in the
area of storage management [PSi72], [SE73]. Some preliminary work

of this kind may be found in [SL76].

11

[Br76]

[Ch75]

[F164]

[F167]

[FWW76]
16s77]
[GY76]

[GB65]
[Hn76]

[Th67]

[Kn75]

[Lm76]
[Ln76]}
[Ln77a]

[Ln77b]

12

References

Berry, G., "Bottom-up computation of recursive programs", Revue

Francaise d'Automatique, Informatigue, Recherche OCperationnelle 10,3
(Mar. 1976) 47-82.

Cohen, Jacgues, "Interpretation of nonQdeterministic algorithms in
higher-level languages," Inf. Proc. Ltrs. 3,4 (March 1975) 104-109.

Floyd, R.W., "Syntax of programming languages: a survey," IEEE PGEC
4 (1964), p. 346. Also in Rosen, Programming Languages and Systems,
McGraw-Hill.

Floyd, R.W., "Nondeterministic algorithms,”" JACM 14,4 (Oct. 1967)
636-644. o

Friedmanf“bggzéimP., David S. Wise, and Mitchell Wand, "Recursive
programming through table look-up,” Tech. Rpt. 45, Indiana Univ.
Computer Science Dept. (March 1976).

Gaschnig, John, "A general backtrack algorithm that eliminates most
redundant tests", Proc. IJCAI-77, Boston (Aug. 1977) p. 457. -

Gerhart, Susan L., and Lawrence Yelowitz, "Control structure abstractions
of the backtracking programming technique", IEEE Trams. Soft. Eng.
(Dec. 1976).

Golomb, S. W. and L. D. Baumert, "Backtrack programming," JACM 12
(1965), 516-524. <

Hanson, David R., "A procedure mechanism for backtrack programming,™

Proc. ACM Annual Conf. (Oct. 20-22, 1976), Houston, Texas, 401-405.

_Johansen, Peter, "Non-deterministic programming," BIT 7 (1967) 289-304.

Knuth, D., "Estimating the efficiency of backtrack programs", Math.
of Comp. 29-129 (Jan. 1975) 121-136. -

Lemon, Michael, "Coroutine PASCAL: a case study in separable control,”
M.S. thesis, Tech. Report 76-13, Dept. of C.S., Univ. of Pittsburgh
(Dec. 15, 1976). 68 pp.

Lindstrom, Gary, "Non-forgetful backtracking: an advanced coroutine
application," Tech. Report 76-8, Dept. of C.S., Univ. of Pittsburgh
(Dec. 6, 1976) 42 pp.

Lindstrom, Gary, "Backtracking in generalized control settings”,
Technical Report UUCS 77-105, Dept. of Computer Science, Univ. of
Utah (July 6, 1977).

Lindstrom, Gary, "Control structure aptness: a case study using top-
down parsing," Dept. of Computer Science, Univ. of Utah (July 18, 1977)

26 pp.

[Mr70]

[Mc68]

- [PSW72]

[SE73]

[SL76]

13

Marsh, David, "Memo functions, the Graph Traverser, and a simple
control situation,"” Machine Intelligence 5, pp. 281-300.
Meltzer, B. & D. Michie, eds., New York: Am. Elsevier (1970).

Michie, D., "'Memo' functions and machine learning," Nature 218
(1968) 19-22,

Prenner, Charles J., Jay M. Spitzen, and Ben Wegbreit, "An implementation
of backtracking for programming languages," Proc. ACM Nat'l. Conf.
(1972), 763-771.

Smith, D.C. and H.J. Enea, "Backtracking in MLISP2," Proc. IJCAI-73, -
Stanford (1973).

Soffa, Mary Lou, and Gary Lindstrom, "Describing and testing generalized
control regimes through implementation modeling", Uniwv. of Pittsburgh
C. 8. Dept. Tech. Rpt. 76-11 (December 1976).

14

procedure search(G,S,A);

{G is given goal;
S is controlling state;

A is set of globals altered}

begin if we have performed (G,S) before then
pass request ox to original (C,S) searcher
begin preserve values of globals specified in set A;
do search on G;
while successful do
begin save values of globals specified in set 4A;
suspend until next success s requeéted
continue search '
end;
repeat restore initial values of globals in set A;
report failure and suspend;
{now have regeneration reqguest}
while saved successes remain do
begin restore A value set for ithis success;
suspenc until next success 18 requested
move tc rext saved success
end
until false {original searchers never die}
end

end {search}

Figure 1. General strategy for ncn-forgetful searching.

{Floyd's parsing algorithm in conventicnal ND form}

{link to next cell}

{subtree root lavel}
{pointer to subtrees}

{rules of grammar}
{type of each rule}
{1ength of test string)

const strmax = 50; {maximum string length}
type ptrval = l..strmax; {range of string pointers)
symb = 'a' .. 'z'; (vocabulary of grammar}
ntsymb = ‘A’ .. 'Z'; {nonterminal symbols}
termsymb = ‘a' .. 'z'; {terminal symbols}
pcellptr = tpeell; {pointer to print tree cell)
valtype = (locval,subref); {tags on print tree cells)}
pcell = record link: pcellptr;
case valtag: valtype of
locval: {val: ntsymb);
subref: (ptr: pcellptr)
end;
‘!35' rule: array [ntsymb,1..2} of symb;
rulet/pe array [ntsymb]) of (alt,conc, term} ;
ptriim: ptrval;
root: ntsymb;

p: pcellptr;
str: array [ptrval] of termsymb;
procedure printtree{p: pcellptr; d: integer);

var i: integer;

begin case pt.valtag of
locvalt begin for {:=1 to d do write(" *};
writeln(p¥.val)
and;
subref: begin printtree(pt.link,d);
printtree(pt.ptr,d+l)
end

|

end {casel
end {printtree};

prozedurs splice{var result: pcellptr; v,w: pcellptr)

naw(result,subref);
resultt . prtre=v; resultt,linki=w
end {splicel;

procedure output(G: ntsymb)

ke-in

{add subtree root cell}

new{p,locval);
pt.link;=nil;
end {output};

begin
pt.val:=G

FPigure 2.

{xoot of grammar)}
{root of print ttee}
{test string}

(print tree p indented 4 levels}

{indent}

; {add subtree ref cell}

Floyd's top-down parser

{overall supervisor of parsing process}

procedure bocs;

var ptr: ptrval; {parser's pointer into test string}

procedure subord(G: ntsymb);

var psave: pcellptr;

begin output(G):; psave:=p;

case ruletypelG) of
alt: begin “subord{rule(G,choice(2)]);

splice(p,p,psave)

end {alt casel;

begin subord{rule(G,1]):
splice({psave,p,psave);
subord(rule(G,2])):
splice(p,p,psave)

end {conc case};

1f ptr<=ptrlim and str(ptrl-rule[G 1}
ptr‘-ptz+1

else failure

conc:

- teym:

end {casel
N end (subord}

begin {body of boss}
pPtr:=1;
subord{root) ;
if ptr=ptrlim+l then printtree(p,0);
failure {get exhaustive list of all parses)
end (boss];

begin {main program)
{read rules, root, string, and ptrlim}
call{ndcreate(boss})

end. {program}

in conventional ND form. -

{general rule-driven searcher}

then

16

(added to var section of rizin progiam:)

task:

array [ntsymb,ptrval] of ref; {initialized to nil values}

(in BOSS and SUBORD, each call subord(a) changed to:)

call(ndcreate{search(a)))

(code added for new procedure:)

procedure search(G: ntsymb);

const sucmax = 10; {maximum number of local successes}
type Avals = record p: pcellptr; {a set values for subord}
ptr: ptrval
end;
sucnr = 0 .. sucmax; {local success serial numbers}
nonreset var n: sucnr; {local success counter}

begin
B

D: array [sucnr] of Avals; {array of A set values}

procedure saveglobals(n: sucnr);

begin {save current A set values under success name n}
D[n]l.p:=p; Din].ptr:=ptr
end {saveglobals};

procedure restoreglobals(n: sucnr);

begin {restore A set values associated with success name n}
p:=D[n].p; ptr:=Dn].ptr
end {restoreglobals};

if task([G,ptrl#nil then {(G,ptr) searched before}

call(task[G,ptr]) {ask for success regenerations & pass back}
else {have original search instance} :
if choice(2)=1 then {log successes on original search}

begin task[G,ptr]:=self; . {enter name of searcher under (G,ptr)}
n:=0; saveglobals(n); {save A set values on entry}
subord(G) ; {call subord for actual searching}
n:=n+l; saveglobals(n) {must have new success, so save it}

end

else {have intercepted final failure within subord call}

repeat restoreglobals{0); {restore A set values from initial entry}
faildetach; {report failure & suspend}

{now have regeneration request from new searcher on (G,ptr)}
until choice(2)=2; {cycle back to faildetach when regens stop}
restoreglobals(choice(n)) {pick a success & return to new caller}

end {search}

Figure 3. Modifications to obtain non-forgetful parser.

Sample grammar:

R+>Y | 2 (alternation)
Yo7 X (concatenation)
X RiR (concatenation)
Zi> a (terminal)

Trees produced for sample string aa a a a

(stored form) (printed form)

¥ R
| B4
[} ZK Y X = VA
T I L i X
o R o ZK OO s b R
| | I Tz | Ti1 Es] ¥
) QK '\}_\ ";\ °K_ i - Z
Tas - Tya T 1o T7 Ty X
R R R
| I
K % 5 3 i g R
P/ W7 Tae ‘Trs. Te T\Ts
R
7
¥ ¥ R
| | y
o 7 a"-*‘——ZK Z
ey T3 X
X R X R R
| | I | z
(-] () Z [e J?
) T ‘
Tig T2 T K—u Y
R R R %
| | | I X
o o) o) -0 Z R
p/KTu “Tes Tha o Tis Te 0k T Th Pt
R

igure 4. Sample results from non-forgetful parser.

Figure 6. Task table for figure 4 example, showing saved global values for each success.

f 1 2 3 4 5 g
: G- s i
| G ()
s 19,(%2)|&) s
b \,f 3
i §
: 341 18 4ol "z L
i
£ 1.2 61 4 5 6
® 3
Q e (none) (none) ,
efe @ 5
i S
161 o0l T2 49 T9
g R 5 6
i ' @ Q :
: > "
{ (untried) @ @ @ ks (none) a
()| (29w) (o)
‘ ' 0 7 3
Y3ul "ol 'm 14 g
g3 g 1814 5 .
F] () (;) (;)
i 2 | b '3 T4 's
, 3 4 5 6
¥ B

e 1 L AR 534 T £ P
.

8T,

