
Efficiency in Nondeterministic Control

through

Non-Forgetful Bac~tracking

UUCS-77-114

by

Gary Lindstrom

Department of Computer Science

University of Vtah

Salt Lake City, Utah 84103

October 15, 1977

This work has been supported in part by the National Science Foundation

under grant DCR73-03441 AOl to the University of P~ttsburgh

Abstl'act

Nondeterministic (ND) control has long been used to' express elegant

solutions to complex search problems. Programs using ND control can be

executed on conventional machines through a systematic examination of trial

execution paths. Among the many approaches to the enurnera.tion of these paths

is backtrack.ing~ a depth-first search of the execution path tree. Despite

its implementational advantages, backtracking in its purest , form., suffers

from a "forgetfulness" of retracted execution subpaths" This can lead to

exponential run-time on problems such as top-down parsing in which the same

subproblem can reoccur in slightly different global contexts.

This paper presents an alternative form of ND contro~ implementation

incorporating. "non-forgetfulness" into backtracking. Reoccurrences of

previously searched subgoals are detected and their net computational effects '

recreated on demand. Since each distinct goal is pursued at mos.t once,

search problems such as general top-down parsing run in polynomial time.

Moreover, in contrast to an exhaustive, bottom-up appr.oach, goals are only

pursued if appropriate in some global context.

A strategy for non-forgetful backtracking is outlined in terms of

coroutines and ordinary backtracking. The description of an Cilternative

implementation of this strategy using simply coroutines is referenced.

Top-dovln parsing is used to illustrate the application of this techn ique

in both linguistic appearance and execution effect. Finally, some

directions for further research into generalizations of these resul ts are

suggested.

,"History does not repeat i tsel f except in the minds of
those who do not know history."

Kahlil Gibran

1. MOTIVATION

Nondeterministic (ND) control ([Ch75], [FI67], [Jh67]) is a natural

control strategy for a wide range of search applications including parsing,

graph traversal, game playing, and enumeration problems. Under ND control.

execution branches are automatically selected according to their ultimate

correctness (toward reaching a desired goal state) rather than by locally

available selection criteria. Thus ND control semantics assume the ser­

vices of a. .. ·1 oracle who guides the execution through uncerta.in branches while

avoiding blind alleys.

Such mystical control semantics can be simulated on conventional

machines through anyone of a variety of interpretation schemes, each of

which systematically examines trial paths within the tree of all possible

execution sequences. Such schemes may be completely correct (e.g. breadth­

first execution tree searching), partially correct (e.g. depth-first execution

tree searching), or heuristic (e.g. best-first execution tree searching

with a bounded candidate path list).

The ~ost popular approach to ND control simulation is backtracking

([Br76], [GB65], [Hn76], [Kn75] , [GY76]) I a partially correct method. Under

backtracking, the oracle of ND control is simulated by tentative, revers~le

continuations of the program's current execution. On failure, the net effect

of each retracted subexecution is one bit of information: "Not this branch".

Full reversal of these exploratory subexecutions precludes any persisting

benefit from subcomputations that may be needed again later. Yet in many

backtracking search applications, identical subgoals frequently reoccur

within slightly different global contexts (e.g. in chess, searching for moves

from a particular board configuration when it results from two or more distinct

move histories). This "forgetfulness" has given backtracking a reputation for

slowness which we will here attempt to rehabilitate.

1

2. FORGETFULNESS IN SEARCHING

Forgetfulness in searching algo!:"i L'lms (we use .. searching" here in a

generic sense) may be defined as follows:

a searching algoritlun is forgetful if the second, and sub­

sequent, searches for goal G in controlling state S each

require as much time to complete as did the first such

search.

By controlling state we mean "that combination of global data that is

instrumental in the success or failure of this goal". We denote the task of

searching for goal G in controlling state S as (G,S).

To eliminate forgetfulness, the =ollowing extensions must be made. to

a searching algorithm:

i) a correct (and, ideally, mnirnal) specification of the

controlling state for each task;

ii) a method of logging the result of each successful search

undertaken on a task (G,S) when that task is first attempted;

iii) a capability for recognizing reoc·currences of (G,S) tasks as

they arise;

iv) given such a repeated task (G,S), a means for recreating on

demand the net state change that resulted from each

success originally found on (G,S), and, finally,

v) a means of authenticating any regenerated success, by

summarizing its computation, should that local success

contribute to a global success that is to be formally

exhibited.

Clearly, one method of achieving non-forgetfulness is through

exhaustive, bottom-up searching wi th ~e aid of a global tahle recording all

successes on each task ([Br76]). Sue:") 2.:1 approach suffers from the following

drawbacks:

i) the overall control strategy is not data-driven in that

goals are pursued inderencent of any global context guaranteeing

their relevancy to the ?a~ticular data at hand* and

2

ii) overt "data engineerins" ::1..1S7. be done in the l'r.oaintenance of

the global table, whereas uncer top-down searching such infor­

mation is elegantly distr:'bu":.ed throughout the local variables

of the active search proc;SSeS.

Our plan here is to present an ada=t~":..ion of searching which incorporates

both the global strategy of backtrackin~ Ci.-,"d the non-forgetfulness of bottom­

up searching. Alternatively stated, we wish to "memoize'" ((Mc6S], [Mr70])

individual search functions operatin~ w:'th~n a backtracking regime.

[Gs77] and Friedman et. al. [F~~76] hay: a:so studied ~~s problem.)

(Gaschnig

After our general approach is addr:ssed in the next :,ec:tion, a pa-rticular

linguistic setting will be introduced ~ se=tion 4. Our method will then be

illustrated in this setting using top-d='Nn parsing as a sampIe application

(section 5). Finally, some directions ::or further research suggested by

these results are offered in the conclu~in~ section.

3. NON-FORGETFULNESS IK BACKTRACKING

Our approach to non-forgetful ba=k~racking is based on the following

interpretations to the extensions cited abcve:

i) controlling state: we require the programmer to specify for each

goal G the set S of global ... ·ar:.ab:es controlling that search.

ii) success logging: whenever a ssarch is underta~en om a previously

unsearched task (G,S) (an "ori~inal" search), the net result of

3

each success on that task is r;~orded in a table local to the original

searcher before that success i5 reported upward. 'TIbe "net result"

consists of the l-esul ting vallEs cf a set A of global variables

encapsulating the search effec~. Like the set S. ~~e set A is

specified by the programmer.

iii) repeated task recognition: we as=:illl1e the existence of an associative

memory in which we store the ~~~e=: of original searchers for each

(G,S) key as they are created ~n ~he course of ~)C overall search

logic.

iv) recreating successes: when a ~:~~~ted task (G,S) arises, the original

searcher for (G,S) is react~va~ed and put into regeneration mode.

The ne.t result of each previously recorded sucC€ss on (G,S) is

recreated (via direct assignments to the variab~es in A), until

the success set is exhausted. Failure is then reported, and the

original searcher suspends awaiting a new regeneration request

whenever (G,S) n~xt arises.

V) success authentication: we make the simplifying assumption here that

the A set for each ·task contains a global variable that accumulates

salient information summarizing each local success. Thus no further

action by the. searchers is needed on the occasi.iml of a global

success, for that global variable already summarlzes at that time the

contribution of each participating searcher. tIn a more general

framework, one may wish special actions to be ta~en by each searcher

contributing to a global success when that SUCC£5S is to be

authenticated.)

Figure 1 summarizes this logic as applied to an indi~idual search routine.

This logic relies on a fundamental property of backtraCk±ng that is important.

to our scheme:

any problem suitable for backtracking must assure the ey~austive completion

of any search task (G,S) before any instance of (G~S> can arise again

(otherwise, the search process would be potentially ~nfinite under the

depth-first strategy of backtracking) .

Two beneficial implications of this fact are capitalized upon in our scheme:

i) any original searcher for (G,S) will search to completion before

any regeneration requests on (G,S) can arise, ana

ii) any regeneration requests for (G,S) will be serw1ced thoroughly by

its original searcher before any subsequent regeneration requests for

(G,S) can arise.

4. A LlNGU1STIC SETflNG

From the logic of figure 1, it is clear that coroutjj.nes are an essential

ingredient in any implementation of non-forgetful backtracking. In fact,

coroutines alone suffice if the programmer is willing to' manage explicitly

the state saving and restoration inherent in backtrackiBg (see [Ln76]).

However, if both NO control (with syste=at~c trial executions) and coroutine

control (for suspending and reactivatin= original searchers) are available,

a much cleaner implementation of this s~ategy can be obtained.

To provide such a setting for our sam~le application in the next section,

we present here a PASCAL extension incl~jing both SIMULA-like coroutines

and primitives for ND control. (FurG~er discussion of the merits of such a

control combination may be found in [Ln;7a].)

4.1 Coroutine control extensions.

The coroutine manipulation facilit~es of our PASCAL extension have been

selected from those found in Coroutine FA-SeAL [Lm76]. We will need the

following primitives:

i) the data type ref, which :'s t.~e set of names of dynamically

created coroutine instances;

ii) the function CREATE«proc:;3.v.1':'3 caU», v..'hich dynamically

creates a new coroutine i::sta.."1ce of the given procedure.

Parameters are evaluated a..'"!d bound, but execution of the

instance does not yet corru:ence. A value of type ref referring

to the created instance is returned as the value of this call

on CREATE (and is availab:e ~s SELF within the coroutine);

iii) the function CALL«ref ex;», which passes control to the

coroutine instance referrej to by the given expression. If that

instance is newly created, it begins execution at its first

statement. If the instance c~rrently is DETACHed (see (iv», it

resumes following the sta~eme~t that caused that DETACHment;

i v) the procedure DETACH I whi:;:'"! suspends the most tightly surrounding

coroutine instance (in thE se~se of CALL/DETACH nesting), and

returns control to its mos~ recent CALLer, with control

resuming just following t:~ ~tatement doing that call, and

v) the procedure ~rERMINATE (-=:rui .. 'alent to exiting fr0m the code

body of the most tightly s'lrrounding coroutine instance),

similar to DETACH except ~~a~ the coroutine instance is no

longer CALLable.

5

4.2 Nondeterministic control.

Of the many linguistic formulations of backtracking and NO control

that have appeared in the literature (e.g. [Jh67], [Ch75], and [Hn76),

we find the early work of Floyd [F167) to offer the best basis for our needs

here. Our particular NO primitives, defined in terms of their effect under

ordinary backtracking execution, are:

i) the function NDCREATE«procedure call», which creates a

coroutine instance of the given procedure operating as an

independent NO system. This means:

a) the instance may be manipulated (e.g. CALLed and

DETACHed) as an ordinary coroutine instance, but

in addition:

b) one may use the special NO control primitives

CHOICE and FAILURE within its dynamic scope.

ii) the function CHOICE«exp», delivering successive integer

values from I to the value of <exp> , in that order, and

iii) the function FAILURE, signalling detection of a blind alley.

This causes the following backtracking actions to occur in

the most tightly surrounding NO system:

a) the NO system's control state is reset to that in

effect at the time of the most recently executed

CHOICE call within the dynamic scope of that system.

If at least one value remains to be generated by

that CHOICE operation, a new value is selected for

generation. Otherwise, if that CHOICE operation is

exhausted, then the system's control state is reset to

that associated with the next most recent CHOICE opera­

tion, etc. If all previous CllOICE operations in this

system have been exhausted, then a F/lILUHE is done in

the dynamically surrounding ND syst0m, if it exists.

Otherwise the current system simply terminates.

b) the local date state of the selected NO system (i.e. the

set of all variables created within its dynamic scope)

6

is reset to that associated with the selected CHOICE

point. Note that variables outside the ND system are

left unchanged by a FAILURE action.

c) rule (b) notwithstanding, a progr2ml.Iner may declare

selected variables within a ND system to be nonreset

upon FAILURE via the FAR prefix NORRESET. •

4.3 Con~inin~ coroutines and ND control.

7

The primitives of these two control regimes may be mixed in any semantically

meaningful execution sequence. While a complete specificatia,n of the semantics

of such a mixed usage is beyond the scope of this paper, we will simply

observe the following useful facts:

i) ND systems can be created within one another. However, as long as

no DETACHes are used within them, the FAILURE effects are as though

only one overall system were created.

ii) If a ND system becomes DETACHed and is reactivated hy a CALL from

another ND system, then its subsequent ND control actions (CHOICE

and FAILURE) have the same effect as they would had its new caller

been its initial caller.

iii) Finally, the control sequence {DE'l'ACH~ FAILURE (in the dynamically

surrounding system)} is a useful control combination that cannot

conveniently be programmed due to the context change immediately

following the DETACH. Consequently, we assume the availability of

a special command FAILDETACH performing this two-step action_

5. HON-FORGETFULNESS IN A TOP-DOWN PARSER

\oje will now illustrate our notion of generalized backtracking through

the familiar problem of fully general top-down parsing.

Top-down parsing is attractive for our purposes here because:

i) it exemplifies rule-driven searching, a familiar prog'ramming

paradigm;

ii) it is a well-understood process;

iii) it is computationally non-trivial (involving true b,acktracking

not directly expressible by ordinary recursion [Ln77b]), and

iv) its "forgetfulness" leads to a dramatic decline in speed (i.e.

exponential run time) for certain grammars and string sequences.

5.1 Floyd's top-down parser.

Floyd [F164) has elegantly formulated an approach to top-down parsing

in ND control terms. That approach, cast into our PASCAL in figure 2.

assumes the grammar has been put into the following normal form:

a) the non-terminal symbols are taken from the upper case alphabet

{A, ... , Z};

b) the terminal symbols are taken from the lower case alphabet

{a, ••. , z}, and

c) the grammar is non-left-recursive (this restriction can be

eliminated by a variety of methods all complicating exposition), and

d) there is only one rule for each nonterminal syrrbol a, and that

rule obeys one of the following three forms:

(alternation) ex -+- 61162 , \dth 61 and 62 nonterminals;

(concatenation) ex -+- 6162 , with 61 and 62 nonter.min~s, or

(terminal) ex -+- 1, with 1 a te~~inal symbol.

5.2 Floyd's ~lgorithm in non-forgetful form.

Floyd's top-down parsing algorithm may be recast into our non-forgetful

backtracking framework by the following interpretations on fi.gure 1:

i) A controlling state is simply the current global· string pointer

ptr (since the string Stl~ itself is constant). Goals, of course,

are non-terminal symbols. Tnus a task is a pair (Gl'ptr).

ii) The associative memory for retrieving the name of the original

searcher on a task (G,ptl') is simply a table indexed by G and ptl~,

since each is dra~n from a comFact range.

8

iii) The net state change resulting from a successful search on a task

(G,ptl') is simply the ph> value marking the end of the spanned

substring, along with the p value pointing to the constructed

subtree.

iv) Instituting a net state change amounts to simply setting ptr and p

to those values (string position beyond end of spanned substring,

and root of spanning subtree, respectively) saved under that success;

v) Authentication of a global success is accomplished by printing (via

pri-nttl'ee) the overall parse tree as previously constructed

incrementally.

\~ith these modifications, Floyd's parser now has the following properties!

i) the underlying search strategy is unchanged, with each distinct

new goal arising in the same order as before;

ii) when a repeated goal occurs, each success fotl."1d originally for that

goal is simulated, one at a time, by direct assignrnent. to ptl? and p in

time independent of the complexity of the spanning sUbtree;

iii) when the BOSS routine detects a global success, then the subtrees

associated with each participating subparse are outputted by

traversal in linear time, and

iv) the parser accommodates the general case of regenerated successes

themselves involving regenerated successes at lower levels, with

proper subtree outputting at all levels.

5.3 An implementation.

Figure 3 gives code for Floyd's parser converted to non-forgetful form.

Notice that neither BOSS nor SUBORD are altered in any way other than to

replace calls of the form:

SUBORD(G)

with calls of the form:

CALL (NDCREATE (SEARCH (G»).

This ensures two saluta~y effects:

i) calls on SUBORD are now systematically done through SEARCH, which

does success logging and regeneration, and

9

ii) each SEARCH routine is a separate ND subsystem. so it can be

DETACHed and re-CALLed when success regeneration must be done

for the same task in a subsequent context.

It is particularly interesting to note how CHOICE is used in three novel

ways within SEARCH:

first usage ("CHOICE(2)=I"): to intercept the final FAILURE done by

its original SUBORD searcher;

second usage ("CHOICE(2)=2"): to intercept the exhaustion of success

regeneration, and

third usage ("RESTORPJLOBALS(CHOICE(n» "): to select each saved original

success in turn for regeneration. This greatly simplifies the

coding of SEARCH and renders uniform its interface with its CALLer

in both original search and regeneration modes.

Figures 4 and 5 illustrate the revised parser's operation on a sample

grammar and input string.

5.4 Parser performance.

Our non-forgetful top-down parser possesses the followin9 desirable char­

acteristics:

i) full generality, including exhaustive parsing on ambiguous

strings;

ii) distributed (i. e. non-global) parse state represen.tation, with

local success data associated with each original task searcher;

iii) a top-down strategy that attempts only globally plausible

subparsesi

iv) polynomial run time, and

v) tree outputting by direct traversal in time proportional to tree

size.

Time behavior is as follows. Denote the nlli~er of non-terminals in our

grammar by IGI. Let n be the length of L~e input string. and b its degree

10

of ambiguity. Then the total time speno doing searching (exclusively on original

tasks) is bounded by a number proportional to the maximum number of original

successes, i.e. (number of substrings) x (number of goals) x (ambiguity), or

OS(n) = n 2 IGI b
2

The space required can be estimated as follows. Clearly, the global

task array is of size IGI n. Overall, the sum of D table sizes is propor­

tional to the number of original successes, OS(n). Moreover, the heap

space required to represent all retained parse subtrees is also proport.ional

to OS(n), for the local path length of each such success is 3 or less.

Thus both space and time behavior for the non-forge.tful parser are of

order OSen). Since this bound represents the minimum amount of time that

could be consumed by an exhaustive parser, "non-forgetfulness" must in fact

be attained despite the reoccurrences of subtasks under the global top-down

strategy.

6. CONCLUSION AND FUTURE WORK

This paper has presented a fundamental notion of non-forgetfulness

in backtracking along with its illustration through a particular case

study. Y.~e results encourage further research to bring this technique

into wider explicit use in general programming. Areas suggested include:

i) formalization of this method into general linguistic primitives

suitable for application in any "standard" backtracking situation.

ii) extension of non-forgetfulness to search strategies beyond classical

backtracking, where original searching and regeneration are not

locally disjoint phases (e.g. a dynamic, incremental alpha-beta

pruning search for moves in games);

iii) further study of the controlling state notion, aimed at methods of

ninimizing such states and readily recognizing their reoccurrence

in general, and

iv) analysis of the empirical impact this particular control regime has

on individual control implemen~ation strategies, expecially in the

area of storage management [PS;'i72], [SE73]. Some preliminary t.,;ork

of this kind may be found in [SL76].

11

12

Referenaes

[Br76] Berry, G., '''Bottom-up computation of recursive programs", Revue
Francaise ~'Automatique, Informatique, Recherche Operationnelle 10,3
(Mar. 1976) 47-82.

[Ch75] Cohen, Jacques, "Interpretation of non-deterministic algorithms in
higher-level languages," Inf. Proc. Ltrs. 3,4 (March 1975) 104-109.

[F164] Floyd, R.W., "Syntax of programming languages: a survey," IEEE PGEC
4 (1964), p. 346. Also in Rosen, Progranuning Languages andSysternS,
McGraw-Hill.

[F167] Floyd, R.W., "Nondeterministic algorithms," JACM 14,4 (Oct. 1967)
636-644.

[FWW76] Friedman, Daniel P., David S. Wise, and Mitchell Wand. "Recursive
programming through table look-up," Tech. Rpt. 45, Indiana Uni v_
Computer Science Dept. (March 1976).

IG s77] Gaschnig, John, "A ge"neral backtrack algorithm that eliminates most
redundant tests", Proc. IJCAI-:U.! Boston (Aug. 1977) p. 457.

[GY76] Gerhart, Susan L., and Lawrence Yelowitz, "Control st.ructure abstractions
of the backtracking programming technique", IEEE Trans. Soft. Eng.
(Dec. 1976).

[GB65j Golomb, S. W. and L.· D. Baumert, "Backtrack programming," JACM 12
(1965), 516-524.

[Hn76] Hanson, David R., "A procedure mechanismfor backtrdck programming,"
Proc. AC!'1 Annual Conf. (Oct. 20-22, 1976), Houston, Texas, 401-405.

[Jh67] Johansen, Peter, "Non-deterministic programming," BIT 7 (1967) 289-304.

[Kn75] Knuth, D., "Estimating the efficiency of backtrack programs", Math.
of Compo 29-129 (Jan. 1975) 121-136.

[Lm76] Lemon, Michael, "Coroutine PASCAL: a case study in separable control,"
M.S. thesis, Tech. Report 76-13, Dept. of C.S., Univ. of Pittsburgh
(Dec. 15, 1976). 68 pp.

[Ln76] Lindstrom, Gary, "Non-forgetful backtracking: an advanced coroutine
application," Tech. Report 76-8, Dept. of C.S., Univ. of Pittsburgh
(Dec. 6, 1976) 42 pp.

[Ln77a] Lindstrom, Gary, "Backtracking ~n generalized control settings",
Technical Report UUCS 77-105, Dept. of Computer Science, Univ. of
Utah (July 6, 1977).

[Ln77bj Lindstrom, Gary, "Control structure aptness: a case study using top­
down parsing," Dept. of Computer Science, Univ. of U't.ah (July 18, 1977)
26 pp.

..

[Mr70] :-larsh, David, "I-lemo functions, the Graph
control situation," Machine Intelligence
Meltzer, B. & D. Michie, eds., New York:

Traverser, and a simple
5, pp. 281-300.

Am. Elsevier (1970).

[Mc68] Hichie, D., '" Memo I fU11ctions and machine learning," Nature 218
(1968) 19-22.

13

[PSW72] Prenner, Charles J., Jay M. Spitzen, and Ben Wegbreit. "An implementation
of backtracking for pyogramming languages," Proc. ACM Nat '1:.. Conf _ .
(1972), 763-771.

ISE73] Smith, D.C. and H.J. Enea, "Backtracking in MLISP2," Proc. IJCAI-73,
Stanford (1973).

rSL76] Soffa, Mary Lou, and Gary Lindstrom, "Describing and t.esting generalized
control regimes through implementation modeling", Univ. of Pittsburgh
C. S. Dept. Tech. Rpt. 76-11 (December 1976) ..

procedure search(G,S,A);

{G is given goal;

S is controlling state;

A is set of globals altered}

begin if we have performed (G3 S) before then

pass request or. to ::;r!-ginal (C~S) sea:rcher

else

begin preserve values of globals specified in set A;

do search on G;

end

end {search}

while successful do

begin save valv£s of globals specified in set A;
suspend until. next success is requested

con tinue sem'cn.

end;

repeat restore ini~ial values of globaZs in set A;

report failure and suspend;

{now have regeneration request}

\"hile saved successes remain do

begin reswl'e A value set for this success;

suspend. uYi.ti l next S:A.ccess is requested

move to next saved success

end

until false {origir.al searchers never die}

FigUl·e 1. General strategy for ncn-f0rsetful searching.

14

{Floyd's parsing algorithm in conventi0nal NO form}

const 5 t rr.tax 50; {maximum string length}

~ ptr'Jal
synb =
ntsy.,..b

1. ~ strmax:
'a' .. 'Z· ;

',,' .. '7.';

{range of string pointers}
(vo(abulary of gra~~ar)
{nonterminal symbols}

tpr",synb e 'a' .• 'z'; (terminal synbols)
pcellptr = tpeell; (pointer to print tre .. cellI
valti~e = (locval,suheefl, (tags on print tree cells)
peell = re::oed link: peellptr, {link to next cell}

var

------ caSe valtag: val type of
locval: (val: ntsymbl,
suhref: (ptr: pcellptrl

en'=!.;

rule: <Hray [ntsynb,l. .2J of symb:
rutetype: array [ntsymbJ of (alt,eonc,term);
ptrlirn: ptrval;
root: ntsynb,
p. peellptr;
str: array {ptevalJ of termsYnb'

(subtree roo t labe I)
{pointer to subtrees}

{rules of grammar}
{type of each rule}
{length of test string}
{root of grammar}
{root of print tree}
{test string}

procedure printtree(p: pcellptr; d: integer); (print tree p indented d levels)

c'-"<;~ pt. v,') 1 taq of
lorv"l-;-~~ for i:-l to d <lo write("

wei teln (pt. val)
"), (ind"nt)

end;
~\lbref: ~.~ pdnttree(rt.link,d),

printtree(pt.ptr,d+l)

end [C-1srd
en1 (printtrec),

end

EE.?Z':luo., splic,,(~. result: peellptr, v,w, pcellptrl, (add subtree ref cell)

t-~';in no:;!w(result,subref);
----- [~3ultt.ptr:.v; resultt.linkl~w
~ (splicc),

proe£dure output(G, ntsymb) , {add subtree root cell}

bpgin new(p,locval):
pt.link:-nil, pt.val:=G

end {output},

procedure bo~B: (overall supervisor of parsinq process)

var ptr: ptrval, {parser's pointer into test string}

procedure subord(G: ntsymbl;

var psave: peellptr;

{general rule-driven searcher}

begin output(G); psave:=p,
case ruletype(G) of
---- alt: begin-Subord(rule(G,ehoice(21)I,

splice(p,p,psave)
end (al t case h

conc: begin sllbord(rule(G,I)I ,
splice(psave,p,psave),
subord(rule (G, 2)) ;

te.rm:

end {case}
end {suloord};

spliee(p,p,psave)
end (cone case),
~ptr<=ptrlim and str(ptr)-rule[G,l) then
- ptr :.ptr+-l--
else failure

begin {body of boss}
ptr:-l,
subord (root) ,

it pt~ptrlim+l then printtree(p,O),
r;i~ure {get exhaustive list of all parses}

end {boss},

end.

(main proqram)
(read rules, root, 9trlnq,
call(ndcreate(boss))

(program)

and ptrllm)

Fi.gure 2. Floyd's top-down parser in conventional ND form.

(added to ~ section of r:::.in progl' 1117:)

task: array [ntsymb,ptrval] of ref; {initialized to nil values}

(in BOSS and SVBORD .. each call subord(a) changed to:)

call(ndcreate(search(a»)

(code added for new proced~re:)

procedure search(G: ntsymb);

const sucmax = 10; {maximum number of local successes}

type Avals = record p: pcellptr; {A set values for subord}
ptr: ptrval

end;
sucnr = 0 sucmax; {local success serial numbers}

nonreset var n: sucnr; {local success counter}
{array of A set values} D: array [sucnr) of Avalsj

procedure saveglobals(n: sucnr) i

begin {save current A set values under success name n}
D[n}.p:=pi D[n].ptr:=ptr

end {saveglobals};

procedure restoreglobals(n: sucnr) i

begin {restore A set values associated with success name n}
p:=D[n}.Pi ptr:=D[n] .ptr

end {restoreglobals}i

begin if task(G,ptr]1nil then {(G,ptr) searched before}
call(task[G,ptr]) {ask for success regenerations & pass back}

else {have original search instance}

16

if choice(2)=1 then {log successes on original search}
b;gin task [G,ptr] :=selfi {enter name of searcher under (G,ptr)}

n:=Oi saveglobals(n); {save A set values on entry}
subord(G) ; {call subord for actual searching}
n:=n+l; saveglobals(n) {must have new success, so save it}

end
else {have intercepted final failure wi thin subord call}
repeat restoreglobals(O) i {restore A set values from initial entry}

faildetachi {report failure & suspend}
{now have regeneration request from ne\" searcher on (G ,ptr) }

until choice(2)=2; {cycle back to faildetach when regens stop}
restoreglobals(choice(n» {pick a success & return to new caller}

end {search}

Figure 3. Hodifi·:::ations to obtain non-forgetful parser.

Sample grammar:

R-+Y

Y -+ Z X

X-+RR

z ·-+ a

z (alternation)

(concatenation)

(concatenation)

(terminal)

Trees produced for sample string a a a a 2

(stored form)

Y
I
0-- Z'K Y X .''?

11 I I
X R o--Z 0

I I 'K
12 I

---oo--Z R
'K 'K

T ll 13 I
O--<>';:--<>-'K-- --_-co " _______ 0 ~- Z

114 113 112 17 'K 14

R R
I I
"1<:--o--o---o -- Z

P / 11 7 'K 1 1 6 'K1 1 5 'K1 6 'K15

p

R

I

Y

I
0 __ Z

'K 1 1

X R
I I
o-' --o--Z

'K 118 'K12

R

I

Y
I
o--Z

'K13

X R
I I

R
I

0--0--0 __ 0 ____ _ 0 __ 0 --- 0 - Z
;:1('" 'K 'K 'K 'K ~ 'K ,.

./' 121 120 119 LI0 L9 18 -:- 5 " ~ 5

Figure 4. Sample results from non-fo~ge t ful parser.

(printed form)

R
y

Z
X

R

R

R

z
x

R

R

Y

Z

z

Y

Z
X

z
x.

R

R

R

R

17

Z

Z

Z

Z

I 1 2 3 4 5

l? if~~ ~~ ~ e: T17 T21 T24 T
25 T14 T

18
T

10 TIl

ptr: 6 6 4 2 5 3 6 4 --

~
y y

T2 T3 (none) (none)

~~~ ~ ~ 
y 

T
16 

T
20 

T
23 T9 

, 6 6 4 6 

' ~ X X 

(untried) 

~~ 
TIl T7 (none) 

X T6 TID G 
~ ~ TIS T19 T22 

6 6 4 
-

Z ~ , ' ~ ~ " .~ ~ . 
Figure. 5. Task table for figure 4 example, showing saved global values for each success. 


