
D R A F T : w o r k i n p r o g r e s s -------- c o m m e n t s s o l i c i t e d

E v o l v i n g M a c h 3 .0 t o U s e M i g r a t i n g T h r e a d s

Bryan Ford Jay Lepreau '

UUCS-93-022

Center for Software Science
Department of Computer Science

University of Utah
Salt Lake City, UT 84112

E-mail: {ba ford ,lepreau }0cs.utah.edu

August 27, 1993

Abstract

Like most operating systems, Mach 3.0 views threads as statically associated w ith a single
task. A n alternative model is that of migrating threads, in which a single thread abstraction
moves between tasks w ith the logical flow of control, and “server” code is passively executed. We
have compatibly replaced M ach’s static threads w ith migrating threads, isolating that aspect
of operating system design and implementation. The key element of our design is a decoupling
of the thread abstraction into the controllable execution context and the schedulable thread of
control, consisting of a chain of contexts. A key element of our implementation is that threads
are now “based” in the kernel, and temporarily make excursions into tasks via upcalls. The new
system provides cleaner and more powerful semantics for thread manipulation, allows schedul
ing and accounting attributes to follow threads, simplifies both kernel and server code, and
improves R PC performance. We have retained the old thread and IP C interfaces for backwards
compatibility, w ith no changes required to existing client programs and only a m inim al change
to servers, as demonstrated by a functional U nix single server and clients. Code size along the
critical R P C path has been reduced by a factor of three, while its logical complexity has been
reduced by an order of magnitude. In itia l timings show that the performance of local R PC ,
doing normal marshaling, has also improved by a factor of three. We conclude that a migrating-
thread model is superior to a static model, and that it is feasible to improve existing operating
systems in this manner.

1 Introduction and Overview

We begin by defining and explaining four concepts that are key to this paper. They are kernel
and user threads, remote procedure call (RPC), static threads, and migrating threads. We explain
how kernel threads interact in implementing RPC, and the difference between implementing RPC
with static or migrating threads.

This research was sponsored in part by the Hewlett-Packard Research Grants Program.

Threads As the term is used in most operating systems and thread packages, conceptually a
thread is a logical thread of control (thus the name), i.e., the flow of control resulting from a particular
piece of work to be accomplished. In traditional Unix, a single process contains only a single kernel-
provided thread. Mach and many other modern operating systems support multiple threads per
process (per task in Mach terminology), called kernel threads. They are distinguished from user
threads, provided by user-level thread packages, which implement multiple threads of control atop a
single kernel-provided thread, by manipulation of the program counter and stack from user-space.
In the rest of this paper, we use the term “thread” to refer to a kernel thread, unless qualified.

In most operating systems, a thread includes much more than the flow of control. For example, in
Mach 3.0 a thread also (i) is the schedulable entity, with priority and scheduling policy attributes; (ii)
contains resource accounting statistics such as accumulated CPU time; (iii) contains the execution
context of a computation—the state of the registers, program counter, stack pointer, and handles
on the containing task and designated exception handler; (iv) contains points of thread control—the
thread control port1 and the suspend count.

R PC Remote procedure call, as the name suggests, models the procedure call abstraction, but
implemented between different tasks. The flow of control is temporarily moved to another location
(the “procedure” being called) and later returned to the original point and continued. RPC can be
used between remote computing nodes, but is often used between tasks on the same node: local RPC.
This paper focuses on the local case, and we use the unqualified term “RPC” to refer to local RPC.
To support RPC, a thread in a server task typically issues a blocking inter-process communication
(IPC) kernel call, which in Mach is a message receive operation. When a thread in a client task needs
an externally-provided service, such as opening a file, it issues an RPC to the file server by making
some sort of IPC kernel call, usually a message send. In synchronous RPC the client thread stops
executing its code, waiting for a response message from the server. Meanwhile the server thread
receives the client’s message (containing function name and marshaled arguments,), performs the
actual work function, and issues another kernel call to send back the response message. (Typically,
this is bundled with a message receive as well, waiting for the next request.) Asynchronous RPC is
the term for an RPC call in which the client thread does not block, but continues executing client
code. As in most systems, this is rare in Mach, and we use the unqualified term “RPC” to refer
only to synchronous RPC.

Static Threads In the RPC mechanism outlined above, each thread was tied to a given task.
When the client thread issued the RPC, control passed from the requesting thread in the client to a
completely unrelated service thread in the server. We refer to this as the static thread model, because
threads are statically associated with a given task. (In the object-based world, this is known as an
“active object” model[10], because a server “object” contains threads that actively provide service.)
The server thread’s resources are being used to provide service to the client. In switching control
from one thread to another, a full context switch was involved—a change of address mappings, task,
thread, stack, registers, priorities, etc., and often the invocation of the kernel scheduler. The client
thread’s state must be saved, and typically the service thread contains state such as its registers and
stack, which must be restored when it is activated.

M igrating Threads An alternate model, that of migrating threads, allows threads to move from
one task to another as part of their normal functioning. In this model, during an RPC the kernel
does not block the client thread upon its IPC kernel call, but arranges for it to continue executing,
right into the server’s code. A corresponding service thread that is waiting in a message receive
is never awakened by the kernel—instead, for the purposes of RPC, the server is merely a passive
repository for code. It is for this reason that in the object-based world, this is called the “passive
object” model. A partial context switch is involved—the kernel switches address mapping and tasks,

In Mach, a port is a kernel entity that is a capability, a communication channel, and a name—if one has the name of
a port, on can perform operations on the object it represents.

2

and usually has to switch stacks due to separate protection domains, but does not switch threads
or priorities, and does not invoke the scheduler. The client’s computational resources (rights to use
the CPU: priority, remaining time quantum, etc.) are being used to provide services to itself.

Although most operating systems support RPC using the static thread model, it is important
to note that this is not the case for all system services. All OSs using the “process model” [16] for
execution of their own kernel code2 (e.g., Unix, Mach, Chorus, Amoeba), actually migrate the user’s
thread into kernel code during a kernel call. No context switch takes place—only the stack and
privilege level are changed—and the user thread’s resources are used to provide services to itself.

Static vs. Migrating Threads In actuality, there is a continuum between these two models.
For example, in some OS implementations, certain client thread attributes, such as priority, can be
passed along to (“inherited by”) the server’s thread. Or a service thread may retain no state between
client invocations, only providing resources for execution[21]. Thus it can become impossible to
precisely classify every thread and RPC implementation. However, most systems clearly lie towards
one end of the spectrum or the other.

1.1 Providing Migrating Threads on Mach
Mach uses a static thread model, and a thread contains all of the attributes outlined in the

“Threads” paragraph above. In our work, we decoupled these semantic aspects of the thread ab
straction into two groups, and added a new abstraction, the activation stack, which records the
client-server relationships resulting from RPCs. A thread is now only: (i) the logical flow of control,
including the activation stack between activations in tasks, and (ii) the schedulable entity, with
priority and resource accounting attributes. An activation represents: (i) the execution context of a
computation, including the task whose code it is executing, its exception handler, and its program
counter, registers, and stack pointer, and (ii) the points of control: activation (formerly “thread”)
control port and suspend count.

The abstraction exported to the user that corresponds to the old “thread” abstraction is what we
internally call the “activation.” This is not only what makes sense for the needs of user programs,
but provides compatibility with original Mach 3.0, in which a thread was bound to only one task.

However, the real thread as defined above, the schedulable entity, is now a first-class entity,
no longer subordinate to a task, as in the original static thread model. In addition, by explicitly
recording the relationship between individual activations in the activation stack, we have elevated
RPC to an entity fully visible to the kernel, instead of a sequence of message passing operations. Our
thread abstraction now more closely models the original conceptual basis of a thread: a logical flow of
control. It turns out that elevating the thread and RPC abstractions greatly enhances controllability,
because the kernel can now take more elaborate and precise actions on a single activation or on the
entire thread. Another benefit of introducing to the kernel the notion of an inter-task RPC, is that a
number of aggressive IPC optimizations become possible. This was one of our original motivations,
but many other benefits have since surfaced.

1.2 Outline of Goals and Benefits
Our original goals in this project were several: (i) change Mach 3.0’s thread model to a migrat

ing one, (ii) retain backwards compatibility, and (iii) enable performance improvements via RPC
optimizations not possible with static threads.

During the design and implementation, we discovered we could achieve much more: (iv) normal
marshaling RPC became much faster, (v) thread controllability was much enhanced, (vi) kernel code
became much simpler, and (vii) several other advantages, discussed below, became evident.

In addition, to our knowledge, an existing operating system has never had two implementations
that differed only in thread model. Now that we have done so, it is possible to make a concrete
The “process model” is in contrast to the “interrupt model,” as exemplified by the V operating system[9], in which
kernel code must explicitly save state before potentially blocking.

3

comparison of the two thread models, since we have isolated that aspect of operating system design
and implementation.

In the rest of this paper we describe this work in detail. We first discuss related work, then
cover the advantages of a migrating thread model, describe our kernel implementation and interface,
including extensive discussion of the thread controllability issues, examine how RPC works in the
new system, and explore how the Unix server could be changed to leverage migrating threads.
Finally, we present the implementation status and preliminary results, outline future work, and the
conclusions we draw from this work.

2 Related W ork

Most operating systems use a static thread model, but there are a number of exceptions. Sun’s
Spring[19] operating system supports a migrating thread model very similar to ours, although it
uses different terminology. Spring’s “shuttle” corresponds to our “thread,” and their “thread” cor
responds to our “activation.” Alpha[13] is oriented to real-time constraints, and its migrating thread
abstraction is especially important for carrying along scheduling, exception-handling, and resource
attributes. In both of these systems a thread can migrate across nodes in a distributed environ
ment, and indeed Alpha’s terminology for a migrating thread is a “distributed thread.” Psyche[25]
is a single-address-space system that supports thread migration.. .and lots of other stuff.. .expand
comparison in final paper. The Lightweight RPC system[4] on Taos exploited migrating threads as
a critical part of its design, but focused on high-performance local RPC. Object-oriented systems
have traditionally distinguished between “active” and “passive” objects, corresponding to static
and migrating thread models[10]. Clouds[14] exemplifies a passive object (migrating thread) model,
while Emerald[5], as we do, provides both both active and passive objects—support for both styles
of execution.

However, all of these systems were designed from the start with a migrating thread model, and
are different from traditional operating systems in many ways other than thread model. To our
knowledge, heretofore the thread model issue itself has not been separated out and examined. Our
goal is to do this by comparing the two thread models in the same operating system, providing
information focused on the thread model. By implementing migrating threads on Mach 3.0, we
also demonstrate how an existing operating system with static threads can be adapted to migrating
threads.

3 Motivation

A migrating thread approach has several advantages which are outlined in this section. The
majority of the benefits are linked to use with RPC and are described first. But there are also con
trollability advantages for threads during all kernel interaction, and these are outlined in section 3.2.
In the context of the Alpha OS, [13] also discusses many advantages offered by migrating threads.

3.1 Remote Procedure Call

Many of the advantages of migrating threads stem from their use in conjunction with RPC.
Migrating threads provide a more appropriate underlying abstraction on which to build RPC inter
faces than do static threads. Many of the problems with static threads stem from the semantic gap
between the control model—a procedure call abstraction within a single thread of control—and the
mechanism used to implement the model—two threads executing in different tasks. Using migrating
threads for RPC provides benefits in performance, functionality and in ease of implementation. Since
RPC is very frequently used, especially in newer microkernel-based operating systems where most
internal system interactions are based on RPC, this aspect of the system can be of great importance
in determining the performance and functionality of the system as a whole.

4

3.1.1 Invocation Efficiency
For RPCs to be performed in the static thread model, two threads, one in each task, must

synchronize and exchange information in the kernel. Two thread-to-thread context switches are
required during the operation: one on call and one on return. However, in the migrating thread
model, the entire RPC can be performed by just one thread that temporarily moves into the server
task, performs the requested operation, and then returns to the client task with the results. No
synchronization, rescheduling, or full context switching needs to be done.

Thread migration also permits well-known optimizations such as LRPC[4], as well as numerous
other optimizations in flexibly structured or shared address space systems e.g., Lipto[17], Opal[8]3,
FLEX[7], and Mach In-Kernel Servers[22,18]. In these systems some degree of inter-domain memory
sharing is accomplished, thus blurring domain boundaries. RPC implemented by threads that
migrate from one domain to another can take advantage of this boundary blurring, providing many
optimizations in argument passing, stack handling, etc.

In general, migrating threads provide invocation support that is more widely applicable than that
offered by static threads. This advantage is relevant to more styles of invocation than simply RPC.
In particular, the benefits in an object-based environment are great, because invocation of relatively
fine-grained objects is prohibitively inefficient if the objects must be active. With passive objects,
it is more feasible to apply similar OS abstractions to both medium and course-grained objects.

3.1.2 Thread Attributes and Real-time Service
In the static thread model, when a client task performs an RPC, control is transferred to an

entirely different thread that has its own scheduling parameters such as execution priority, as well
as other attributes such as resource limits. Unless specific fictions are taken, the attributes of the
thread in the server will be completely unrelated to those of the client thread. This can cause the
classic problems of starvation and priority tnverston[15], when a high-priority client is unfairly made
to compete with low-priority clients that are accessing the same server. On the other hand, if the
client thread migrates into the server to perform the operation, all such attributes can be properly
maintained with no extra effort. Obviously, this issue is of particular importance to systems that
attempt to provide guarantees of real-time service.

A related advantage is in resource accounting, which can be made more accurate since the work
done in a server on behalf of a client can automatically be so attributed.

3.1.3 Interruptions
Often, due to asynchronous conditions, it is desired to interrupt an RPC in which a client is

blocked, either temporarily or permanently. To do this cleanly in the static thread model, it is
not enough merely to abort the message send/receive operation, because the server will continue
processing the request without any indication that the client no longer desires its completion. If
some entity wants to abort an RPC in which a thread is blocked, it must find the server to which
the RPC is directed, know how to interact with that server enough to send it a request to abort an
RPC operation, and provide the server with some kind of identification specifying which RPC is to
be aborted. This usually proves to be a complex and difficult process. In addition, every server that
may be accessed must support these abort operations. This can be difficult to guarantee in practice,
especially if any user-mode task can set itself up as a “server” and allow other user threads to make
RPCs to it, as Mach 3.0 allows. Migrating threads, on the other hand, provide a channel through
which standardized requests for interruption can be propagated.

3.1.4 Server Simplification
Migrating threads simplify the implementation of RPC in servers. RPC servers based on static

threads must create and perpetually maintain a “pool” of service threads whose sole purpose is to
Opal claims that threads remain within a protection domain, but closer examination seems to indicate that the thread
actually migrates in the intrâ node case.

5

wait for and service incoming RPC requests. Management of this thread pool to achieve maximum
performance without excessively large resource consumption is tricky, especially on multiprocessors,
where the number of service threads waiting for RPC requests must at all times be carefully balanced
to match the number of processors. If instead, server code is simply executed by clients’ migrating
threads, the balancing occurs automatically.

In the case of “personality servers” that emulate monolithic operating systems such as Unix or
OS/2, migrating threads can simplify the server even more, because the original operating system on
which the server is based is likely to have used a limited migrating thread model, in which threads
“migrate” into the monolithic kernel for system calls. Maintaining this model in the personality
server achieves greater code re-use and simplifies the handling of system call interruptions, thread
management, and control mechanisms such as Unix signals.

3.1.5 Kernel Simplification

As later shown by our results in Section 8.3, migrating threads greatly simplify the kernel as well.
Kernel RPC paths based on migrating threads tend to be short and flow naturally, while optimized
RPC paths based on static threads are often long, convoluted, and contain innumerable tests.

While the existence of fast, efficient microkernels based on static threads demonstrates that high
performance is possible in this model, such systems usually impose semantic restrictions that distort
their implementation towards a migrating thread model. For example, QNX[20], a commercial real
time operating system, supports only unqueued, synchronous, direct process-to-process message
passing with priority inheritance. This design makes it a de facto migrating threads system even
though it does not claim to be one.

3.2 T h read C on trollab ility

In a static thread model, threads are often intended to be completely controllable resources.
Ideally, in this model, any entity with appropriate privilege, such as a program holding a “thread
control port” in Mach 3.0, is able arbitrarily to stop a thread and modify its state, at any time.
Conceptually, threads execute only user-mode instructions, and therefore there is never a time when
system integrity could be violated by manipulation of the thread.

Unfortunately, this model in its purest form does not work in real operating systems. Threads
must be able to invoke kernel-level code in order to communicate with other entities in the system,
if they are to do anything more than pure computation. Since a thread executing unknown kernel
code may not be arbitrarily manipulated, the model of complete controllability must break down
somewhat: it must be possible to defer or reject thread control operations when necessary.

Traditional operating systems have various ways of working around this problem which usually
work, but are often complex, inconsistent, and unreliable. For example, Mach 3.0 provides a thread
control operation which aborts a system call in which the target thread is blocked, so that the
thread can be manipulated. However, many kernel operations cannot be aborted in a transparent,
restartable way, so the entity trying to control the thread may have to wait an arbitrary length of
time, or retry an arbitrary number of times, before it can safely do so. If this is the case, who is
really being controlled— the target thread, or the thread trying to control it?

The ability of threads to migrate merely adds additional situations in which threads cannot be
arbitrarily controlled. Since the complete controllability model is not realistic anyway, reducing
the ambitiousness of the model, to allow for migrating threads, does not necessarily entail any loss
of functionality. In fact, by forcing the boundaries of controllability to be explicitly defined, and
explicitly recording the flow of control across tasks, the thread control mechanisms provided by the
kernel can be made more powerful.

6

9

Figure 1: Original Mach 3.0 Thread Model

4 K ernel Im plem entation

In this section we describe the underlying structure of our implementation of migrating threads
in the Mach 3.0 microkernel. Many of the techniques we used could be similarly applied to other
traditional multithreaded operating systems such as Unix macrokernels.

4.1 T h read Im plem entation
Conceptually, a traditional Mach 3.0 user thread started executing in a particular task, and

occasionally trapped into the kernel to communicate with “outside” entities. The kernel later re
turned from the system call and resumed the user code. The initial and normal location of a thread
was in user space, and threads only “visited” the kernel occasionally, to request services. Figure 1
illustrates this system.

In our migrating thread implementation, the situation is in a sense reversed, as illustrated in
Figure 2. A thread starts executing as a purely kernel-mode entity, and later makes an upcall[12]
into user space to run user code. Conceptually, the kernel is “home base” for all threads: the only
time user-level code is executed is during “temporary excursions” into a task. A thread executing
in user mode is associated with the task in which it is currently running, but a thread running in
the kernel is not tightly associated with any user-level task.

While a thread in the kernel can now make upcalls into user space, the traditional kernel/user
interface is still preserved. Once a thread is executing in user space, it can make calls back to the
kernel in the form of traps and exceptions. Alternatively, the kernel can make further upcalls into the
same or a different user task. This redefinition of the kernel/user interface is the primary mechanism
supporting migrating threads in our implementation.

A distinction should be made between the “kernel” and what we refer to as “glue” code. The
kernel is conceptually a protection domain much like a user-level task, in which threads can execute,
wait, migrate in and out, and so on; its primary distinction is that it is specially privileged and
provides basic system control services. Glue code is the low-level, highly system-dependent code
that enacts the transitions between the kernel and user tasks. The distinction between the kernel
and glue code is often overlooked because both types of code usually execute in supervisor mode
and are often linked together in a single binary image. However, this does not necessarily have to
be the case; for example, in QNX[20], the 7K “microkernel” consists of essentially nothing but glue
code, while the “kernel proper” is placed in a specially privileged but otherwise ordinary process. It
will become clear in later sections that even though the kernel and glue code may still be lumped
together, in the presence of migrating threads the distinction between them becomes extremely

7

Figure 3: Activations

the CPU state of the first thread while executing server code.
To provide controllability and protection at the same time, we split the concept of a “thread”

into two parts: the part used by the scheduler, and the part allowing arbitrary control. The first,
which we still refer to as the “thread,” migrates between tasks and enters and leaves the kernel. The
second, which is a user-mode activation that we label an activation, remains permanently fixed to a
particular task. Arbitrary control is permitted only on a specific activation, not on the thread as a
whole.

Whenever a thread migrates into a task (including the initial upcall from the kernel on thread
creation), an activation is added to the top of the thread’s “activation stack.” When a thread returns
from a migration, the corresponding activation is popped off the activation stack. This is illustrated
in Figure 3.

Activations are created either implicitly during thread creation, or explicitly by servers expecting
to receive incoming migrating threads. An explicitly created activation is unoccupied until a thread
migrates into the task and “activates” it.

Control of activations is implemented primarily through asynchronous procedure calls, or APCs,
similar to asynchronous traps (ASTs) in monolithic kernels. When returning from the kernel into
an activation, glue code checks for APCs attached to the activation and if present, calls them.
For example, to suspend an activation, an APC is attached to that activation which will block
until resumed. Previously, Mach dealt with thread suspension as part of the scheduler, adding more
complexity to its already-complex state machine; now the scheduler knows nothing about suspension.

4.4 K ern el Stack M anagem ent

In our current migrating threads implementation, each activation must have its own kernel stack.
This is because some information about the linkage of one activation to the next is stored on the
kernel stack by a migrating upcall into a task, and since the activation chain can be broken at
any point, the information for each activation must be separate. We have begun to implement a
design in which all linkage information is stored in the activations themselves, and a single kernel
stack is sufficient for the entire thread. In fact, this is required for it to be possible to do task
migration across nodes in a distributed system, because state held on a kernel stack cannot be easily
encapsulated for migration.

9

In this section we describe the semantics of thread control operations, the interface to those
operations, and some aspects of the implementation. We again believe our approach could be
similarly applied to other traditional multithreaded operating systems. In fact, Mach 3.0 presented
an especially difficult case for evolution to migrating threads because of its rich, powerful thread
control interface; adaptation of other operating systems with less powerful interfaces should be more
straightforward.

! f
5.1 C on tro l In terface

In the original Mach kernel, threads were exported to user-mode programs in the form of thread
control ports, through which control operations could be invoked. In our system, while threads still
exist, the control abstraction presented to user-level code is instead the activation control port. This
can work because the old thread execution abstraction exported to the user was bound to a single
task, very much like activations are now. Internally the kernel now maintains a new “chain of acti
vations” abstraction associated with the schedulable entity— what this paper terms the thread. We
maintain compatibility with existing Mach code by making activation control ports direct replace
ments for thread ports at the binary level— all system calls which previously expected or returned
thread ports now use activation ports instead. For compatibility at the source level, appropriate
synonyms are provided.

The question remains of how the thread control operations in the old system should map to
activation operations. Mach 3.0 provides the following primary operations on thread ports:

• thread-abort and thread_abort_saf ely: Abort a kernel operation in progress and return
control to user code.

• thread-suspend and thread_resume: Suspend and resume the thread’s execution.

• thread_terminate: Destroy a thread.

• thread-get-state and thread-set-state: Set and query the thread’s user-visible CPU state.

• thread_get_special_port and thread_set_special_port: Set and query the special ports
attached to the thread, such as the exception port and the mach_thread_self port.

• thread-priority, threadjnax_priority, thread_policy, and thread_info: Set and query
the thread’s priority and scheduling policy, and retrieve scheduling statistics.

Our methods for handling these operations are described in the following sections.

5.2 A b o r t R equ ests ; • ; t f '
In our migrating threads implementation, we have provided the functionality of Mach 3.0’s

thread_abort and thread-abort .sa fe ly calls, but in a cleaner and more general form. An abort
request is a form of asynchronous message passed from a client to the kernel or a server it is calling,
asking the callee to abort the requested operation and return control to the client as soon as possible.
Abort requests are primarily an information-passing mechanism supported by the kernel in a uniform
way. They do not in themselves provide control over threads, because they have no forcefulness:
abort requests are merely “requests,” not “demands.”

An abort request may be “posted” to a specific activation in a number of situations, such as
when thread_abort (now act^abort) is called. If the target activation is not the topmost in its
thread, and the activation immediately above it (i.e., the server it is calling) has specified an interest
in hearing about abort requests, the request is propagated upward into that activation as well. This
continues until the top of the activation stack is reached or until an activation is encountered in
which abort requests are blocked.

5 Controllability: Semantics, Interface, and Implementation

10

If the abort request reaches the topmost server, then as soon as that server notices the request,
it returns to its caller with an appropriate status indicating that it has complied with the request.
If its caller is not the activation on which the request was posted (i.e., the caller is somewhere in the
middle), then it also attempts to comply with the request. Eventually the activation stack unwinds
and control returns to the client in which the request was made. The kernel can honor abort requests
as well as servers, and in fact the unwinding is likely often to begin in a blocked kernel operation.

There are two “flavors” of abort requests: safe aborts and strong aborts. Safe aborts are to be
honored only if the operation in progress can be successfully restarted later. Strong aborts are to
be honored whenever possible, regardless of whether the operations are restartable.

The existing thread_abort operation now posts a strong abort request, while thread_abort_-
sa fely posts a safe abort. Neither operation waits for the target thread actually to return to the
specified activation; this is a slight deviation from original Mach semantics, but does not cause prob
lems in normal use because of the way it intercicts with other control mechanisms (see Section 5.2.3).

By default, new activations added to a thread’s stack have abort requests blocked, to prevent in- ’
terference with an unwary server’s functioning. The kernel is already capable of honoring most abort
requests, and new servers written to work with migrating threads can be designed to honor them
too. In effect, we have provided a generic interruption request mechanism which works uniformly
for both migrating RPCs and kernel calls.

In the future we intend to add a third abort operation, act_abort_immediate, which first gen
erates a strong abort request at the target activation, then breaks the activation chain, returning
control to the client immediately. This will work much like thread termination, discussed below.

5.2.1 Suspension
In Mach 3.0 thread semantics, the basic purpose of suspending a thread is to prevent it from

executing any more user-mode instructions until it is resumed. Therefore, suspending a task’s threads
turns that task into a “passive entity,” allowing its address space and other state to be examined or
modified without interference from its threads. It is not required that all of the thread’s computation
be immediately stopped, as long as that computation does not occur in the task itself (i.e., it is
acceptable for the thread to be in the kernel).

These semantics extend easily to migrating threads. When an activation is suspended, the kernel
ensures that no more user-mode instructions will be executed in that activation. If the thread is
executing elsewhere, it will not be affected until it attempts to return to the suspended activation.
An unoccupied activation not currently attached to any thread can also be suspended and resumed;
a migrating RPC which tries to enter it is blocked until the activation is resumed.

5.2.2 Termination
Mach 3.0’s thread.terminate operation can be used both for orderly termination of a thread

known to be at a “clean point,” most often performed by a thread on itself, and for destroying a
thread in a task whose internal integrity has been compromised, usually as an automatic side effect
of terminating the task. Mapping thread termination to activation termination requires separate
consideration of these two uses.

The former case, orderly termination, makes sense only when performed on a thread’s one and
only activation. Even in a static thread model, a thread in a correctly functioning task may not be
terminated while processing an RPC request. Since the only purpose of a “guest” thread that has
migrated into a server is to process an RPC request, it makes no sense to terminate an activation
other than the first, or bottommost. Similarly, if an activation is not the topmost, then it is a client
in the middle of an outgoing migrating RPC, which again cannot possibly be considered a “clean
point.” In fact, explicit activation termination for orderly shutdown is not necessary at all in the
new model, except to maintain backward compatibility, because the initial activation could simply
return to the kernel, “falling off the bottom” of the thread’s activation stack and causing the thread
to self-destruct.

11

Figure 4: Activation Termination

Kernel

Therefore, the only termination case involving threads with multiple activations is the disorderly
termination of the thread, in the event of a task failure. Put another way, the kernel may assume that
if one of a stack of activations is terminated, it is because of a catastrophic failure in that activation’s
task, and its job is only to inform other affected parties without breaching their protection.

The termination mechanism in our implementation is illustrated in Figure 4. If a thread’s topmost
activation is terminated while that thread is executing in user mode, execution in that activation is
immediately terminated and the thread returns from that activation with an error code indicating
that the server has died. If the activation was the bottommost, as in orderly termination, then the
thread destroys itself.

If an activation not at the top of a thread’s activation stack is terminated, or if the thread is in
a kernel call at the time, then the thread splits into two separate threads with identical scheduling
parameters. One thread is left with the top part of the activation stack, above the terminated
activation, and the other thread is given the bottom part. The thread with the upper segment
continues executing in the topmost server uninterrupted, ensuring that thread termination does not
violate protection. A strong abort request is automatically propagated upward through this thread,
providing a hint that the work being done is probably no longer of value. The thread given the
bottom part of the activation stack returns to its now-topmost activation with an appropriate error
code, as described above.

This is essentially the same as the termination mechanism used in Spring[19]. Abort requests in
this case act like Spring’s “alerts.”

In our system, not only can a thread be split when running in user mode in a more recent
activation than the terminated activation, but also when the thread is executing in the kernel, on
behalf of the terminated activation. This in fact provides more controllability than in the original
Mach 3.0 system. Previously, attempting to terminate a thread could potentially block for some
time, while the caller waited for the victim to leave the kernel or otherwise get to a “clean point.”
In the new model, terminating an activation is always an immediate operation: if the terminated
activation happens to be calling the kernel, then the carpet is safely yanked out from under the
kernel call, so to speak. A thread with no activations is left behind to finish whatever operation it
was performing and quietly self-destruct afterwards.

This required careful planning of kernel data structures and locking mechanisms; in particular,
the line between the kernel and glue code, described earlier, had to be defined precisely. Once worked

12

out, however, this technique not only added additional controllability, but considerably simplified
the implementation of control mechanisms in the kernel, as we show in Section 8.3.

5 .2 .3 C P U S t a t e

The original Mach 3.0 design provided thread operations which, in the “ideal” complete controlla
bility model, would allow a thread’s entire CPU state to be saved, restored, examined, and modified
at any time. All CPU state operations were provided by two primitives, thread_get_state and
thread_set_state, defined to produce sensible results only while the target thread was suspended.

However, because of the problems with the complete controllability model, many of the things
for which the CPU state control mechanisms are commonly thought to be useful, in fact cannot be
reliably implemented in Mach 3.0. Appendix A examines some of these potential uses under both a
static and a migrating thread model, and briefly describes what would be involved in making them
work reliably in both models.

Since the existing CPU state control operations are already problematic, and it would be difficult
to achieve complete backward compatibility with them, we chose to structure these operations in
our migrating threads implementation to fit current uses of these operations: in particular, those
made by the Unix server and emulator, and by application programs that create their own threads
and control them in straightforward ways.

Mach 3.0 requires thread-abort or thread_Jabort_saf ely to be called on a thread just before
examining or setting its state, unless the thread has just been created. Otherwise, the state operation
could work with “stale” information, producing useless results. Under migrating threads, aborting
an activation before manipulating its state is not strictly required. If not done, the CPU state
operations wait patiently until the thread is in the target activation, without interfering with its
functioning.

If a thread attempts to abort or manipulate the state of an activation on the same thread, instead
of deadlocking the thread as might be expected, a special compatibility operation is invoked which
allow the operation to complete immediately in a minimally functional way. This is a temporary
hack motivated by the way the Unix server currently handles signals, and avoids significant change
to the server. In Section 7.1.2 we describe a cleaner and more general way of handling signals under
migrating threads, which we will implement later.

5 .2 .4 S c h e d u lin g P a r a m e t e r s

The final Mach 3.0 thread control operations that must be mapped to activation operations are
those managing thread scheduling parameters such as priority, scheduling policy, and CPU usage
statistics. Unlike the operations described above, these operations are still conceptually performed
on threads rather than activations. However, the original Mach 3.0 thread control ports have become
activation ports, raising the question of how the interface for these operations should be handled.

Since every active activation is attached to exactly one thread, in our current implementation we
export thread operations as operations on activations, and, in the kernel, redirect the operations to
the attached thread. However, this raises a protection problem, since any activation in the thread
can modify the global scheduling state. For example, a server could lower a thread’s maximum
priority (which cannot be raised without special privileges) while processing an RPC, leaving the
client with a “crippled” thread upon return. In our initial implementation, this is not a problem in
practice because the Unix server is trusted by all clients. However, a better solution will be needed
eventually.

One solution would be to provide an activation operation which forbids future activations higher
in the stack from changing global thread state. Thread state could still be manipulated from that
activation or lower (assuming it has not also been forbidden at a lower level).

Another, more general approach would be to partially reinstate threads as user-visible entities.
Each activation would contain a send right to which all thread operations get redirected. This send

13

right would by default refer to the actual thread within the kernel, but it could be redirected to an
arbitrary user-level port. Activations added to a thread’s stack would inherit the thread port from
the previous level. Thus, a client could intercept requests by servers to change global thread state,
or merely forbid servers from touching it by setting the thread port to an invalid send right.

5.3 Task C ontrol Interface
Most task control operations work the same way under migrating threads as in the original

Mach design. Others were modified in straightforward ways to match the new thread model. In
particular, the task.threads call now returns a list of the activation ports of the task, instead of
thread ports. When a task is suspended, resumed, or terminated, all of the activations within it
(instead of threads) are similarly suspended, resumed, or terminated.

6 M ig r a t in g R P C

Once the basic kernel mechanism for supporting migrating threads was in place, the task remained
of demonstrating its effect on RPC performance and complexity. Because our focus at this point
is purely on migrating threads, our initial implementation retains the original Mach kernel message
interface, with fully marshaled data, etc. In this section we describe this RPC system, as well as the
changes required to servers to make them support migrating RPC. (No changes are required to make
them run with traditional RPC, since the kernel itself is almost completely backward compatible.)

6.1 Client-side
From the client’s point of view, RPC semantics are unmodified. The kernel checks the message

options to make sure they are compatible with migrating RPC, and checks the destination port to
ensure that the server is capable of handling migrating RPCs. For a request to be compatible with
migrating RPC, it must meet these requirements: (i) both a message send and a message receive must
be requested at the same time; (ii) the reply port in the outgoing message must match the receive
port for the receive operation; (iii) no timeout may be specified; and (iv) no notification requests
may be specified. In practice, almost all MIG-generated mach_msg calls meet these requirements, so
most clients automatically make use of migrating RPC. Note that the data can contain port rights
and out-of-line memory.

6.2 Server-side
Initializing a server to support migrating RPCs is done in much the same way as in normal static-

threads servers. The difference is that the server must create one or more unoccupied activations,
each containing a pointer to a stack in its own address space, and the entry point of its normal
dispatch function. Providing this information to the kernel will be encapsulated within a function,
probably within the cthreads package.

Traditional static-thread RPC is still supported automatically. A large pool of server threads
is no longer needed, but at least one must still exist to process occasional asynchronous messages,
because in the current implementation this is used as a fallback mechanism when migrating RPC
cannot be used.

When a migrating RPC is made into the server, the kernel allocates an unoccupied activation
from the server’s pool, copies the incoming message onto the server stack, and makes an upcall into
the server task to the dispatch routine. This MIG-generated routine is identical to the one used
to dispatch traditional messages, except that it returns through a special kernel entry point. On
return, the kernel does not need to do any security checks or port manipulation, and the reply port
provided by the client in the mach_msg call is not used at all.

If a migrating RPC is attempted and the kernel discovers that there are no activations currently
available, in our initial implementation the kernel falls back to the normal message path, causing a

14

normal message to be queued to the port. This is not ideal, and better solutions are obvious. One
method is to block incoming migrating RPCs until an activation is available. Another method would
be to detect when the last available activation is about to be used for a migrating RPC, and instead
of immediately making the requested RPC, temporarily “sidetrack” and make a special notification
upcall into the server. At this point the server can create more activations if it deems this desirable.
If it does, it returns them to the kernel and the original RPC can proceed. Otherwise, it returns
immediately and the RPC blocks until a stack is freed.

6.3 Problem s with M igrating R P C
Migrating RPC presents a number of potential problems, most of them infrequently occurring,

which we discuss in this section.

6 .3 .1 M e s s a g e O r d e r in g '

In Mach 3.0, messages sent from a particular thread to a particular port will be received in
the same order they were sent. There is one case in which these semantics could be violated in
our migrating threads implementation. If a thread sends an asynchronous message to a server
the message can be queued on the server’s port. If the client then immediately does a migrating
synchronous RPC, it could migrate directly into the server, “ahead of” the queued message. We do
not expect this to be a problem in practice: asynchronous and synchronous messages are not often
mixed, and even if they are, it is likely that the server receiving them has multiple threads receiving
messages from the same port, causing ordering to be lost anyway. If necessary, this problem could
be avoided by disabling migrating RPCs to a port containing queued messages.

6 .3 .2 S in g le -t h r e a d e d S e r v e r s

Another issue is servers that contain only a single service thread, and therefore lack internal
synchronization control. Since client threads can migrate in at any time, something must be done to
ensure that two threads do not execute simultaneously. Multiple migrating threads can be prevented
by allocating only one activation, but that would not prevent a migrating thread and the sole service
thread from executing concurrently. For small servers, the easiest way might be to use a mutex lock
in the server, which is acquired on entry to every server work function and released on return. A
more transparent method would be for the kernel, on a thread migration, to check the server port’s
queue of threads waiting for a message, and if the service thread is on it, remove it for the duration
of the activation. If the thread queue is empty, the kernel would block the migrating thread. Since
important single-threaded servers are few, we have not yet dealt with this problem.

6 .3 .3 U n b o u n d e d P r i o r i t y In v e r s io n

There is a potentially serious security problem stemming from the priority inheritance between
protection domains that is implicit in migrating RPC. Consider a multithreaded client program
which calls a local trusted server on a uniprocessor. One thread in the client could depress its
priority to a low value and then issue an RPC, resulting in server code running at low priority,
possibly holding a lock internal to the server. Soon after the RPC request is issued, another client
thread could loop at its normal priority. This would prevent the first thread (currently inside the
server) from executing. If that thread indeed happens to hold a server lock, this scenario could
effectively stop the server.

This is the classic problem of unbounded priority inversion[15]. The reason that priority inheri
tance causes this problem is that we have only half-implemented it. Previously, the priority of the
client thread had no effect on server thread priority—there was no priority inheritance, and therefore
interactions of this sort among threads caused no security problems. Of course, there were problems
maintaining any kind of prioritization of service. But by solving priority inversion in one area we
made it a more serious problem in another area. Since we are now transferring priority along with
the thread, we therefore need to support priority inheritance in the rest of the system. In particular,

15

as soon as a high priority thread is blocked by a low priority one, the latter must temporarily be
given the priority of the blocked thread. The changes necessary to support this can be confined to
the kernel and the cthreads library.

At the end of section 9 we outline how our partial decoupling, of the schedulable entity from the
activation stack, will make it easier to fully support priority inheritance. This is work we have in the
design stage. Meanwhile, the problem could be worked around in a variety of ways. For example,
the Mach kernel or trusted server could simply promote to normal the priority of any thread while
in the server, and restore it upon return. The kernel would also need to prohibit any lowering of
priority directed at any activation but the first in a chain.

6.3.4 User-level Thread Issues
The most important issue with migrating RPC is that the user-level thread management and

synchronization package most widely used on Mach, cthreads, has significant limitations in the
presence of migrating RPC.

Server Thread Management Cthreads presents a significant problem to the server of a mi
grating RPC. Servers use cthreads to multiplex user threads on top of kernel threads, replacing
kernel-mode context switches with much faster user-level context switches, whenever possible. How
ever, one of the main assumptions made by the user-level threads package is that all of the kernel
threads on which it is running its user-level threads are interchangeable—that one kernel thread can
be used for an operation just as well as another. This assumption can be satisfied in a static thread
model, although in the process it makes real-time monitoring and control of server threads difficult.

In a migrating thread model, however, kernel threads migrating in from clients are not
interchangeable—they may have different priorities and other attributes. Even ignoring this, the
return-to-kemel after an RPC has been processed must be done on the same kernel thread that the
RPC came in on. In general, trying to multiplex threads in this manner loses one of the main ad
vantages of our design: providing a kernel entity (the activation stack) which represents a particular
piece of work in progress, i.e., an entire logical thread of control. Therefore, multiplexing a server’s
user-level threads on top of incoming kernel threads is not appropriate. In cthreads, multiplexing
can easily be avoided by “wiring” the user-level thread.

However, some speed is lost in the elimination of user-level thread multiplexing, because syn
chronization operations in the server sometimes now require kernel-level context switches instead
of user-level context switches. Measuring real applications, including on multiprocessors, will be
necessary before we can be sure the gains from better RPC performance are not outweighed by
this additional cost. We believe that the speed advantage of user-level context switching is not as
significant in typical RPC servers as it is in compute-intensive programs, the traditional benchmarks
for thread implementations. In well-designed servers providing “system” functions, we suspect that
internal contention can be minimized so that the importance of RPC speed outweighs that of context
switch speed. We point out that in many commercial microkernel-based systems, including QNX[20],
Chorus[24], and KeyKOS[6], OS servers do not use user-level threads. Instead, these systems either
provide multithreading purely with kernel threads, or their functions are are sufficiently decomposed
so that each server can be based on a single kernel thread, requiring no internal synchronization.
However, until we have performance results for the Unix server with migrating RPC, losing user-level
threads when servicing RPCs remains a concern.

Note that it is only for “guest” threads migrating in from other tasks that user-level thread
multiplexing is a problem; threads native to the server can still use some kind of user-level thread
system, or even a specialized multiplexing mechanism such as scheduler activations.

A M ore Appropriate Synchronization System Since cthreads can no longer multiplex user-
level threads on kernel threads in servers, it should be replaced with a synchronization library better
optimized to provide synchronization over kernel threads. Also, kernel-visible synchronization will

16

be necessary to fully implement priority inheritance. We are planning a replacement for cthreads
that provides synchronization primitives in a user-level library, but in cooperation with the kernel.

7 T h e U n ix S e rv e r

To function on the new kernel using traditional RPC, no changes were necessary to the OSF/1
single server and emulator, or to the libraries they use. To support migrating RPC, a few changes
will be required. Initially, we are choosing ways which have minimal impact on existing code—
better, cleaner mechanisms can be provided in the longer term. The server will be modified to
invoke the new setup function in the cthreads library and to wire incoming cthreads. The existing
complex management of the server’s thread pool, while basically no longer used, can be retained. We
anticipate making no modifications to the emulator. Since we are providing backwards-compatible
semantics for thread manipulation, we expect that no modifications will be needed to the existing
complex code for handling Unix signals.

We do not anticipate a large performance improvement in the single server. However, our initial
goal is not primarily to show performance improvement, but to demonstrate the gain in simplicity
and cleanliness provided by migrating threads, and how migrating threads can be implemented in a
backward-compatible way in an existing operating system.

7.1 Desirable M odifications
The Unix server could be made simpler with two modifications that take advantage of migrating

threads.

7 .1 .1 U s e A b o r t R e q u e s t s

Currently, because Mach 3.0 provides no standard way of propagating abort requests into RPCs,
the Unix server must manually handle all Unix system call interruptions such as those caused by
pending signals. It could be considerably simplified by taking advantage of the propagating abort
operations now provided by the kernel. This would also make interruption semantics naturally
extend to other servers in the system, such as ones installed by Mach-specific application programs
running under Unix.

7 .1 .2 T a k e A d v a n t a g e o f M i g r a t i o n fo r S ig n a l H a n d lin g

Emulating Unix signal semantics under Mach has always been an extremely complex and error-
prone task, because delivering signals in the static thread model requires carefully synchronizing a
client and server thread and “atomically5’ manipulating the client thread’s stack frame from within
the server. Migrating threads could considerably simplify signal management by taking advantage
of the implicit protected synchronization provided by migrating RPC.

We plan to introduce into the kernel an alternate CPU state manipulation operation, with which
a generic send right connected to a migrating RPC port can be “installed” into an activation. The
next time the thread containing that activation returns to it (or immediately, if already in it), the
kernel will make a migrating RPC to the installed port, similar to the exception RPCs already used
by the kernel. The RPC will include the activation’s complete CPU state, which can be modified
arbitrarily. Any necessary modifications to other aspects of the client, such as pushing a signal stack
frame on the client’s stack, can be handled as they are now. When the RPC returns, execution will
be resumed in the activation with the new state.

To deliver a signal with this system, instead of having to forcefully break a client thread out of
its server RPC and carefully bring it under control, the Unix server simply can install a state-change
callback port in the client’s activation. As soon as the client thread has reached a clean, controllable
place, it will make a migrating RPC into the server. The server can then modify the client’s state and
stack frame. When it returns from the RPC, the client will take the new state and begin executing

17

Figure 5: Cleaner Signal Handling with Migrating Threads
time ----------------------- ►

Unix Server handle system call server notices modify
' ' pending signal CPU state

server activatii jL
| insta

lllg§*gllgggiĝ

Emulator/
Unix Program

thread

RPC
to Unix
server

\ \
return from \

signal
handler

Unix syscall state-change RPC

client activation
m

the signal handler. This system, illustrated in Figure 5, will effectively emulate the “asynchronous
trap” (AST) mechanism typically used by macrokernels to handle signals.

Besides simplifying the server, this mechanism will obviate the need for the compatibility hack
that we held to include in the kernel, described in Section 5.2.3.

8 R e s u lts

8.1 Status
At this writing basic kernel support of thread migration is complete, including the elimination

of continuations[16], the separation of threads from tasks, support for upcalls into user space, and
the new thread creation mechanism. The activation control mechanisms are fully implemented and
backward compatibility with the old interfaces is nearly complete. The emulator-based Unix server
runs unmodified on this new microkernel, but is still using traditional thread-switching RPC.

The reversal of the kernel/user interface model is fully implemented: threads in the kernel can
call into user tasks, and user code can return to the kernel. Threads can migrate from one task
to another. Tasks no longer maintain a list of threads, but do maintain a list of activations. Most
of the task- and thread-manipulation routines have been modified to correctly redirect to the new
activation-manipulation routines.

The required MIG and Unix server work has been started, but is not complete.

8.2 Perform ance
On an HP9000/730, which has a 67 Mhz PA-RISC 1.1 processor, preliminary timings of a null

cross-task migrating RPC shows a cost of 640 cycles round-trip, compared to 2300 cycles with
traditional Mach RPC. We expect this time to be further reduced by the time we release the final
version of this paper.

We will include RPC performance comparisons for various argument sizes and types, including
traditional RPC. We have a detailed breakdown of the time spent in various sections of the critical
RPC path under static threads, which we will show along with the equivalent breakdown for the
migrating RPC path. Finally, we will measure overall system performance running the OSF/1
single server. We will include counts of the different kinds of message paths, which should show that
traditional RPC is no longer used for synchronous messages.

18

8.3 Code Simplification

8.3.1 Continuations
The first step in this project was disabling continuations^ 6] in order to make upcalls into user

space possible. This required changing 217 lines and deleting 573. While not large, these changes
were widespread, occurring in 54 places in many unrelated routines in the kernel. The changes
substantially simplified control flow throughout: since continuations are effectively “non-local-gotos,”
the logical simplification was disproportionately larger than their number.

Note that a continuation model is not strictly incompatible with migrating threads. If the
implementation did not use upcalls from kernel stacks, but instead stored all activation linkage
information explicitly, a single kernel stack per thread could be used and a continuation model
would be possible. We are currently implementing such a scheme, but will be using only a few
continuations in the RPC path—not the many scattered uses that now exist.

8 .3 .2 C o n f in in g C o n t r o l la b i l i t y

Making threads independent of tasks and uncontrollable outside of user mode greatly reduced
code complexity in a number of areas. The source file containing most thread management operations
was reduced by more than half, from 72K to 32K. In the new 18K source file supporting activations,
management operations account for only 7K. This largely resulted from cleaner management of
thread suspension, resumption, and termination. As an example, threa.d_tennina.te previously
had to make a special check to see if the thread being terminated was the current thread, and if so,
handled termination separately. Since the kernel is now completely “out of bounds” for such control,
an equivalent call to terminate an activation on the current thread only affects that activation, not
the thread itself. In effect, a thread can now cleanly and safely shoot itself in the foot.

The task management module was reduced by 38%, due to the looser association between tasks
and threads, which simplified locking and eliminated many special-case situations.

8 .3 .3 M i g r a t i n g R P C

In the original version of Mach 3.0, the critical kernel RPC path executed a total of about 400
machine-dependent assembly language instructions, plus about 900 instructions of the (larger set of)
code generated from 1350 lines of system-independent C code. In our as yet incomplete implemen
tation of migrating RPC, the critical path now executes about 250 machine-dependent instructions
plus about 140 instructions generated by 100 lines of system-independent code. This represents
a reduction of 37% in system-dependent instructions and 84% in system-independent instructions.
Overall instruction count reduction is a little more than a factor of three, which corresponds well
with the speed improvement. We expect the system-independent code to be significantly further
reduced by the time our implementation is complete.

Any programmer comparing the source code for the original RPC path with that of the mi
grating path will immediately notice the tremendous logical simplification of the code. To roughly
quantify the reduction in complexity, we counted the number of branch instructions resulting from
‘if’ statements and other conditionals on the RPC paths. The old path contained 197 branches in
the optimized mach_msg_tra.p path, while the new one contains 22, a reduction by a factor of nine.
Note, moreover, that in the new code the common RPC path is the only path, which handles all
migrating RPC. In the old code, only the “common cases” were handled by the path we measured;
a much larger, mostly separate “fallback” code path was used for less common cases, meaning that
much 1PC code was duplicated. If we included both the optimized and unoptimized paths in our
branch counts, our improvements in “logical complexity” would be far better than the cited factor
of nine.

To understand the context-switch costs of the old and new systems, we must examine the Mach
code. From the list of our thread and activation attributes in Section 1.1, it looks unlikely that we
save much work on a context switch by not having to change the schedulable entity. But examination
of the Mach implementation reveals why the old style thread handoff is so expensive. The kernel

19

essentially executes a portion of the scheduler, and there are numerous constraints that it must check:
both the old and new threads must be in just the right states, they can’t be locking resources, there
is lots of run queue manipulation, lots of port right manipulation, lots of resources acquired along the
way, and lots of care to be able to unroll everything if it were to fall off the optimized path. In essence,
it’s a very dynamic situation, and with that comes expense. By contrast, switching activations is
much more of a static situation, and setting up the actual execution context is straightforward.

8.4 M em ory Use
We will quantify the memory required for kernel stacks and activations, which will tend to be

increased by the elimination of most continuations, but decreased by our new implementation that
uses only one kernel stack for the entire migrating thread. We expect server memory requirements
to remain about the same: a large thread pool is no longer needed, but an activation pool with
attached server stacks is used instead.

9 F u tu re W o r k

This work enables many further improvements to Mach and and Mach servers, as well as raising
areas for further research. Providing an appropriate replacement for the cthreads synchronization
primitives is important in order to make a fair evaluation of the impact of relying on kernel-level
context switches. In Section 7.1 we outlined improvements that could now be made to the Unix
server in signal and interruption handling. Other parts of the paper mentioned improvements that
could be made to the Mach kernel, such as in the thread creation mechanism. Demonstrating that
these claims of potential improvements are indeed true would be useful, and are areas we hope to
pursue.

Our earlier work on moving trusted servers into the kernel’s protection domain and address space
(INKS)[22] used ad-hoc thread migration. By re-working the thread abstraction from scratch, our
new system solves all of the problems encountered[18]. Partly as a result of removing continuations,
it also allows critical optimizations that original INKS could not perform: server-kernel and server-
server interactions. INKS could easily be adapted to our new system, and simplified in the process.

The “NORMA” (NO Remote Memory Access) [2] version of Mach 3.0 allows IPC between different
nodes of a distributed memory multiprocessor, implemented in the microkernel. While the current
migrating thread system does not support NORMA, extending it do so should not be difficult.
Kernels would be able to forward threads across the network, snaking through activations on different
machines, in much the same way that messages and ports are forwarded now. A system crash on
a particular node can be handled as if every activation on that node failed due to internal errors,
breaking distributed threads into multiple segments if necessary. These issues have already been
explored in depth in Alpha[13].

The RPC optimizations made possible by migrating threads, especially in local RPC, raise the
issue of asynchronous messages, which do not fit the RPC model. In Mach and the Unix server today,
the only significant number of asynchronous messages are generated through the pager interface. It
is possible to replace those with synchronous messages by redefining the interface. Whether that
can be done while preserving a large degree of backward compatibility is currently unknown.

Going in a different direction, our work allows improvements in Mach’s support for real-time
systems. At the implementation level, we have largely decoupled two portions of the thread ab
straction: the schedulable entity (priority, scheduling policies, etc.) from the thread of control (the
chain of activations). This makes it feasible to decouple them entirely. While a thread will normally
be attached to a particular schedulable entity, it will be possible for the schedulable entity to move
briefly to a different thread. For example, if high-priority thread H must block waiting for a lock
being held by low-priority thread L, then the logical action, and the necessary one in a real-time
system, is for thread H temporarily to raise the priority of thread L to its own, until thread L releases
the lock. This is normally done in real-time systems in ad-hoc ways, often made complex by the fact

20

that a thread’s “priority” is often not just a single number: many different scheduling attributes
may need to be transferred. Being able to detach temporarily a schedulable entity from its thread
should make this much simpler.

An R P C M odel M ore Amenable to Optimization The Mach message format imposes un
necessary overhead on migrating RPC; in the migrating thread model, other designs could provide
much higher performance.

We will introduce a migrating RPC mechanism in which the kernel is provided with an interface
definition describing the procedures to be called through that port, along with the parameters
they take and their data types. The kernel will then be able to precompute optimized RPC paths
specialized to individual procedures. RPCs can then proceed directly through the kernel with no
redundant marshaling and unmarshaling stages; the kernel can intelligently follow pointers to by
reference arguments and copy them between the client and server as necessary, as well as match client-
server argument semantics (e.g., allocation/deallocation), if necessary. This has many similarities
to the mechanism used in LRPC[4]. In cases where protection domains have been merged[22], much
of the copying can be avoided.

We will also allow this mechanism to be used in thread exception processing, replacing the
catch_exception_raise mechanisms currently in use. This will allow a no-emulator server, such as
the new version of OSF/l-MK[23], to directly provide the kernel with descriptions of Unix system
calls to be redirected to the server. In handling these system call exceptions, the kernel will auto
matically handle the transfer of parameters, including by-reference data. This will obviate the need
for the server to perform expensive kernel calls to emulate the many copyin and copyout operations
during Unix system call processing.

10 C o n c lu s io n

We draw two main conclusions from our work. First, by changing only the thread model of an
existing operating system, and evaluating the two versions, we show that a migrating thread model is
superior to a static model. Migrating threads provide superior functionality, performance, and code
simplification. In the area of functionality, thread migration (i) provides more powerful semantics
for thread manipulation, and (ii) allows scheduling and other attributes to follow threads, especially
important for real-time systems. In performance, thread migration (i) improves the performance of
ordinary RPC, and (ii) enables a multitude of aggressive RPC optimizations, especially in systems
under current research which provide cross-domain memory or address-space sharing. However,
thread migration does have the performance disadvantage of not allowing user-level threads to service
RPCs. In reducing implementation complexity, thread migration simplifies (i) kernel code, and (ii)
server code. In each of these areas, our implementation and measurements have demonstrated the
first benefit, while potential gains from the second seem evident, but have not yet been shown.

Our second main conclusion is that it is feasible to improve existing operating systems, by
changing their thread model from static to migrating. Even in the case of Mach 3.0, which has an
unusually rich thread-manipulation interface, we show that this far-reaching change can be made
while retaining backward compatibility, and with only moderate implementation effort. A key
element of that implementation is “basing” threads in the kernel, which temporarily make excursions
into tasks via upcalls.

At this writing, in an intermediate stage of the work, some caveats exist. First, we need to
measure the performance of the Unix server with wired cthreads for its “guest” migrating threads
(or with replacement synchronization primitives). Until that is done, we cannot be sure the higher
cost of kernel context switching does not cancel out the speedups we have demonstrated. Ideally,
this experiment should also be performed on a multiprocessor. Secondly, since the current imple
mentation has the drawback of using more memory for kernel stacks, and not completely supporting
priority inheritance, it remains to be shown that removing those limitations does not add significant

21

complexity. And finally, until the Unix server is running, we have not sufficiently demonstrated
backwards compatibility. However, we expect these issues to be favorably resolved.

A c k n o w le d g e m e n ts

We thank Mike Hibler for extensive discussion of controllability and signal issues, and Douglas
Orr for general input.

R e fe r e n c e s

[1] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Sched
uler activations: Effective kernel support for the user-level management,of parallelism. ACM
Transactions on Computer Systems, 10(1):53—79, February 1992.

[2] J. S. Barrera. A fast Mach network IPC implementation. In Proc. of the Second USENIX Mach
Symposium, pages 1-12, 1991.

[3] Paul Barton-Davis, Dylan McNamee, Raj Vasswani, and Edward D. Lazowska. Adding sched
uler activations to Mach 3.0. In Proc. of the Third USENIX Mach Symposium, pages 119-136,
Santa Fe, NM, April 1993.

[4] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy. Lightweight
remote procedure call. ACM Transactions on Computer Systems, 8(1):37—55, February 1990.

[5] A. P. Black, N. Huchinson, E. Jul, H. Levy, and L. Carter. Distribution and abstract types in
Emerald. IEEE Drans on Software Engineering, SE-13(l):65-76, 1987.

[6] Alan C. Bomberger and Norman Hardy. The KeyKOS nanokernel architecture. In Proc. of
the First USENIX Workshop on Micro-kemels and Other Kernel Architectures, pages 95-112,
Seattle, WA, April 1992.

[7] John B. Carter, Bryan Ford, Mike Hibler, Ravindra Kuramkote, Jeffrey Law, Jay Lepreau,
Douglas B. Orr, Leigh Stoller, and Mark Swanson. FLEX: A tool for building efficient and
flexible systems. In Proc. Fourth Workshop on Workstation Operating Systems, October 1993.
To appear.

[8] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska. Sharing and
protection in a single address space operating system. Technical Report UW-CSE-93-04-02,
University of Washington Computer Science Department, April 1993.

[9] D. R. Cheriton. The V distributed system. Communications of the ACM, 31(3) :314—333, March
1988.

[10] Roger S. Chin and Samuel T. Chanson. Distributed object-based programming systems. ACM
Computing Surveys, 23(1), March 1991.

[11] Dejan S. Milojicic, Wolfgang Zint, Andreas Dangel, and Peter Giese. Task migration on the
top of the Mach microkernel. In Proc. of the Third USENIX Mach Symposium, pages 273-289,
Santa Fe, NM, April 1993.

[12] David D. Clark. The structuring of systems using upcalls. In Proc. of the 10th ACM Symposium
on Operating Systems Principles, pages 171-180, Orcas Island, WA, December 1985.

[13] Raymond K. Clark, E. Douglas Jensen, and Franklin D. Reynolds. An architectural overview
of the Alpha real-time distributed kernel. In Proc. of the First USENIX Workshop on Micro-
kemels and Other Kernel Architectures, pages 127-146, Seattle, WA, April 1992.

22

[14] P. Dasgupta, R.C. Chen, S. Menon, M. Pearson, R. Ananthanarayanan, U. Ramachandran,
M. Ahamad, R. LeBlanc Jr., W. Applebe, J.M. Bernabeu-Auban, P.W. Hutto, M.Y.A. Khalidi,
and C.J. Wileknloh. The design and implementation of the Clouds distributed operating system.
Computing Systems, 3, Winter 1990.

[15] Sadegh Davari and Lui Sha. Sources of unbounded priority inversions in real-time systems and a
comparative study of possible solutions. ACM Operating Systems Review, 23(2):110-120, April
1992.

[16] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean. Using contin
uations to implement thread management and communication in operating systems. In Proc.
of the 13th ACM Symposium on Operating Systems Principles, Asilomar, CA, October 1991.

[17] Peter Druschel, Larry L. Peterson, and Norman C. Hutchinson. Beyond micro-kernel design:
Decoupling modularity and protection in Lipto. In Proc. of the 12th International Conference
on Distributed Computing Systems, pages 512-520, Yokohama, Japan, June 1992.

[18] Bryan Ford, Mike Hibler, and Jay Lepreau. Notes on thread models in Mach 3.0. Technical
Report UUCS-93-012, University of Utah Computer Science Department, April 1993.

[19] Graham Hamilton and Panos Kougiouris. The Spring nucleus: a microkernel for objects. In
Proc. of the Summer 1993 USENIX Conference, pages 147-159, Cincinnati, OH, June 1993.

[20] Dan Hildebrand. An architectural overview of QNX. In Proc. of the First USENIX Workshop
on Micro-kernels and Other Kernel Architectures, pages 113-126, Seattle, WA, April 1992.

[21] D.B. Johnson and W. Zwaenepoel. The Peregrine high-performance RPC system. Software —
Practice and Experience, 23(2):201—221, February 1993.

[22] Jay Lepreau, Mike Hibler, Bryan Ford, and Jeff Law. In-kernel servers on Mach 3.0: Implemen
tation and performance. In Proc. of the Third USENIX Mach Symposium, pages 39-55, Santa
Fe, NM, April 1993.

[23] Simon Patience. Redirecting system calls in Mach 3.0: An alternative to the emulator. In Proc.
of the Third USENIX Mach Symposium, pages 57-73, Santa Fe, NM, April 1993.

[24] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann,
C. Kaiser, S. Langlois, P. Leonard, and W. Neuhauser. The Chorus distributed operating
system. Computing Systems, 1 (4):287—338, December 1989.

[25] Michael L. Scott, Thomas J. LeBlanc, and Brian D. Marsh. Design rationale for Psyche, a
general-purpose multiprocessor operating system. In Proc. of the 1988 International Conference
on Parallel Processing, pages 255-262, August 1988.

[26] M. Swanson, L. Stoller, T. Critchlow, and R. Kessler. The design of the Schizophrenic worksta
tion system. In Proc. of the Third USENIX Mach Symposium, pages 291-306, Santa Fe, NM,
April 1993.

23

A p p e n d ix A : O th e r Issu es o f C o n tr o lla b il ity a n d M ig r a t in g T h re a d s

In this section we examine some common ways in which Mach’s thread control facilities are
useful, or are thought to be useful, and their conceptual and practical differences in a migrating
threads system.

Thread Creation
Thread creation is done in Mach by first creating a thread with “unknown” CPU state, and then

explicitly setting it to a known state before allowing it to run. This form of “thread control” does
not present a problem either with static threads or with migrating threads, because a thread which
has never had a chance to run cannot possibly be in a system call or have migrated anywhere.

Debugging ,
The basic CPU state primitives in Mach 3.0 allow a debugger to examine the state of a thread

stopped at a breakpoint or some other point in user code, possibly change the thread’s state, and
to restart it again according to user commands. The debugger might also want to “catch” an
already-executing but uncontrolled thread.

As traditionally defined, debugging is focused on the particular task being debugged; there
fore, operations outside the task, even if being performed by the same thread, should be ignored
and unaffected by the debugger. This means that thread^abort cannot safely be used to catch a
thread and bring it under control, because that could damage the thread’s execution. The existing
thread-abort jsa le ly call can be used instead, but if it fails, the debugger must keep retrying until
successful or until the user gets tired of waiting.

A cleaner and simpler method is possible in our migrating threads design: the debugger can
“post” a safe abort on the thread, and then block in the act_get_state call until the thread returns
to that activation. No constant retrying is necessary, and if the thread takes an inordinately long
time to return (i.e., something’s wrong), the user always has the option just to terminate the task.

Transparent Cross-node M igration o f Tasks and Threads
In this section we discuss encapsulating the state of a task and its activations, in order to

transport them to another compute node, where they will be reinstantiated.
In an “ideal” completely controllable system, a thread can be transported to another node (prob

ably as a part of task migration) completely from user mode by saving the state of the original thread,
creating a new thread on the target node with the original thread’s state, and finally destroying the
original thread. However, in practice the same problems must be faced as with debugging— and
in this case, it may not be acceptable to wait for an arbitrary amount of time for the thread to be
migrated. For example, the node on which the thread is running may be shutting down, requir
ing immediate evacuation. Such situations can occur often in systems like Schizo[26], which allow
“guest” tasks to use the resources of idle workstations without interfering with the workstation’s
normal functioning.

In practice, the ability of a thread to be transported can sometimes be ensured by limiting a
task’s operations to basic IPC primitives which can always be safely aborted, used in communication
only with tasks on other nodes, or with other tasks which can also be migrated if necessary. This
limitation could potentially hold on Schizo, for example, where a guest task has practically no
interaction with local resources like device drivers.

Still other problems remain, however, such as page fault handling. On some architectures, such
as the Motorola 680x0 series, the entire page fault exception state cannot be made visible to or
modifiable by unprivileged code. This means that, for user-level task migration to work on such
systems, page faults must be allowed to complete before threads are moved. A page fault may
involve paging from an entity with unknown performance properties, possibly located an arbitrary
distance away on a network, so it may still not be possible to guarantee quick task migration.

24

A working user-level task migration system for Mach has been created[ll], but since it has no
way of getting around this basic controllability problem, it can only work well most of the time.

There is no good solution to this problem short of providing some support in specially privileged
code, for cross-node thread transportation. (It does not have to be the kernel, but it must be some
entity which the kernel trusts.) Moving a thread must be a “primitive” operation of the distribution
mechanism, in the same way that migrating an IPC port or a block of distributed shared memory
is. In the case of Mach 3.0, to be reliable, thread movement would have to become part of the
NORMA[2] code.

The situation under migrating threads is no different. Threads become distributed entities,
conceptually “snaking through” the network following the thread’s migrating RPC paths. As with
static threads, specially privileged code must be involved, but this time only to transport individual
activations on a thread rather than the thread as a whole.

Checkpointing
Another way in which highly controllable CPU state is thought to be useful is to provide per

sistence in the form of transparent checkpointing. If the state of every thread in a task, along with
the task’s other resources, can be captured and written to stable storage at regular intervals, then
it can later be restarted at that point. In practice, the same problems occur as in task migration:
the lack of complete controllability of threads may require delaying a checkpoint, and it may not be
acceptable for such delays to be arbitrarily long.

Checkpointing presents an additional twist, however. In any checkpointing mechanism, a clear
boundary must be drawn around the part of the system to be made persistent. Not everything can
be persistent; for example, device drivers must at least know when the system has been restarted so
they can reinitialize the hardware they control. Any communication involving entities outside the
persistence boundary is subject to failure. In addition, if the persistence boundary includes multiple
tasks, all communication among those tasks must also be made persistent.

In Mach 3.0 with static threads, this means that RPC messages directed from persistent tasks
to non-persistent entities must be carefully monitored, so a proper failing reply message can be
generated if the system is restarted at a checkpoint made during the RPC. If this were not done,
the persistent task making the RPC request would hang after restart, awaiting a reply message that
will never come. If multiple persistent tasks are involved, then any in-transit messages between them
must also be checkpointed. In essence, to checkpoint under Mach 3.0, having control over a task
would not be enough even if it were possible in its ideal form; it is also necessary to keep track of
the IPC performed by the task. '

In a migrating thread system, the situation is simpler. Only the activations of a thread in
persistent tasks, and the connections between these activations, must be made persistent, not the
entire thread. After a system restart, any non-persistent activations of a thread simply appear to
have been terminated. The persistent parts of a thread can still function even if the thread has been
split into multiple disjoint pieces— much like an earthworm that has been chopped up.

Unix is a trademark o f USL. O S F /l is a trademark o f the Open Software Foundation.

25

