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A b s t r a c t

Sensor systems are becoming ubiquitous throughout society, yet their design, construction 
and operation are still more of an art than a science. In this paper, we define, develop, and 
apply a formal semantics for sensor systems that provides a theoretical framework for an in­
tegrated software architecture for modeling sensor-based control systems. Our goal is to de­
velop a design framework which allows the user to model, analyze and experiment with dif­
ferent versions of a sensor system. This includes the ability to build and modify multisensor 
systems and to monitor and debug both the output of the system and the affect of any mod­
ification in terms of robustness, efficiency, and error measures. The notion of Instrumented 
Logical Sensor Systems (ILSS) that are derived from this modeling and design methodol­
ogy is introduced. The instrumented sensor approach is based on a sensori-computational 
model which defines the components of the sensor system in terms of their functionality, 
accuracy, robustness and efficiency. This approach provides a uniform specification lan­
guage to define sensor systems as a composition of smaller, predefined components. From 
a software engineering standpoint, this addresses the issues of modularity, reusability, and 
reliability for building complex systems. An example is given which compares vision and 
sonar techniques for the recovery of wall pose.
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Abstract

Sensor systems are becoming ubiquitous throughout society, yet their design, construction 
and operation is still more of an art than a science. In this paper, we define, develop, and ap­
ply a formal semantics for sensor systems that provides a theoretical framework for an inte­
grated software architecture for modeling sensor-based control systems. Our goal is to develop 
a design framework which allows the user to model, simulate and experiment with different 
versions of a sensor system. This includes the ability to build and modify multisensor systems 
and to monitor and debug both the output of the system and the affect of any modification in 
terms of robustness, efficiency, and error measures. The notion of Instrumented Logical Sen­
sor Systems (ILSS) that are derived from a modeling and design methodology is introduced.
The instrumented sensor approach is based on a sensori-computational model which defines 
the components of the sensor system in terms of their functionality, accuracy, robustness and 
efficiency. This approach provides a uniform specification language to define sensor systems 
as a composition of smaller, predefined components. From a software engineering standpoint, 
this addresses the issues of modularity, reusability, and reliability for building complex systems.
The proposed framework is implemented as a component library in a visual programming sys­
tem called “CWave” that is being developed at the University of Utah.
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1  I n t r o d u c t i o n

In any closed-loop control system, sensors are used to provide the feedback information that repre­

sents the current status of the system and the environmental uncertainties. Building a sensor system 

for a certain application is a process that includes the analysis of the system requirements, a model 

of the environment, the determination of system behavior under different conditions, and the selec­

tion of suitable sensors. The next step in building the sensor system is to assemble the hardware 

components and to develop the necessary software modules for data fusion and interpretation. Fi­

nally, the system is tested and the performance is analyzed. Once the system is built, it is difficult to 

monitor the different components of the system for the purpose of testing, debugging and analysis. 

It is also hard to evaluate the system in terms of time complexity, space complexity, robustness, and 

efficiency, since this requires quantitative measures for each of these measures.

In addition, designing and implementing real-time systems are becoming increasingly complex 

because of many added features such as fancy graphical users interfaces (GUIs), visualization capa­

bilities and the use of many sensors of different types. Therefore, many software engineering issues 

such as reusability and the use of COTS (Commercial Off-The Shelf) components (Profeta, 1996), 

reliability (Kapur et al., 1996; Kim & Subbaraman, 1997; Stewart & Khosla, 1997), and embedded 

testing (Weller et al., 1990) are now getting more attention from system developers.

In a previous paper, we proposed to use formal semantics to define performance characteris­

tics of sensor systems (Dekhil & Henderson, 1996a). In this paper, we address these and other 

problems related to sensor system modeling and evaluation. We start by presenting a theoretical 

framework for modeling and designing sensor systems based on a formal semantics in terms of a 

virtual sensing machine. This framework defines an explicit tie between the specification, robust­

2



ness and efficiency of the sensor system by defining several quantitative measures that characterize 

certain aspects of the system’s behavior. Figure 1 illustrates our proposed approach which provides 

static analysis (e.g., time and space complexity) and dynamic handles that assist in monitoring and 

debugging the system.

1.1 Sensor Modeling

Each sensor type has different characteristics and functional description. Therefore it is desirable 

to find a general model for these different types that allows modeling sensor systems that are inde­

pendent of the physical sensors used, and enables studying the performance and robustness of such 

systems. There have been many attempts to provide “the” general model along with its mathemat­

ical basis and description. Some of these modeling techniques concern error analysis and fault tol­

erance of multisensor systems (Brooks & Iyengar, 1993; Dekhil & Sobh, 1997; Iyengar & Prasad, 

1994; Nadig et al., 1993; Prasad et a i ,  1991; Prasad et al., 1994). Other techniques are model- 

based and require a priori knowledge of the scanned object and its environment (Durrant-Whyte, 

1988; Groen et al., 1993; Joshi & Sanderson, 1994). These techniques help fit data to a model, 

but do not provide the means to compare alternatives. Task-directed sensing is another approach to 

devise sensing strategies (Briggs & Donald, 1994; Hager & Mintz, 1991; Hager & Mintz, 1989), 

but again, it does not provide measures to evaluate the sensor system in terms of robustness and 

efficiency.

Another approach to modeling sensor systems is to define sensori-computational systems as­

sociated with each sensor to allow design, comparison, transformation, and reduction of any sen­

sory system (Donald, 1995). In this approach the concept of information invariants is used to define 

some measure of information complexity. This approach provides a very strong computational the-
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Figure 1: The proposed modeling approach.
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ory which allows comparing sensor systems, reducing one sensor system to another, and measur­

ing the information complexity required to perform a certain task. However, as stated by Donald, 

the measures for information complexity are fundamentally different from performance measures. 

Also, this approach does not permit one to judge which system is “simpler,” “better,” or “cheaper.” 

To that end, we introduce the notion of an Instrumented Logical Sensor System (ILSS) which 

represents our methodology for incorporating design tools and allows static and dynamic perfor­

mance analysis, on-line monitoring, and embedded testing. Figure 2 shows the components of the 

ILSS. Currently, an ILSS library is under development as part of an interactive graphical program­

ming environment called “CWave” used to design and execute real-time control systems (refer to 

“http://easy.cs.utah.edu/cwave/cwave.htm” for more information about the CWave project).

Performance
Measures

Figure 2: The Instrumented Logical Sensor System Components.

5

http://easy.cs.utah.edu/cwave/cwave.htm%e2%80%9d


2  P e r f o r m a n c e  S e m a n t i c s  o f  S e n s o r  S y s t e m s

The use of sensors in safety critical applications, such as transportation and medicine, requires a 

high level of reliability. However, increased robustness and reliability of a multisensor system re­

quires increased cost through redundant components and more sensor readings and computation. 

In contrast, increasing the efficiency of the system means less redundant components, fewer sen­

sor readings and less computation. Performance analysis is crucial to making an informed tradeoff 

between design alternatives.

Performance analysis consists of a static analysis of a specification of the system and its pa­

rameters as well as a dynamic analysis of the system’s run-time behavior. The static analysis can 

be based on some formal description of the syntax and semantics of the sensor system, while the 

dynamic analysis requires on-line monitoring of some quantitative measures during run-time.

Our goal is to achieve strong performance analysis and provide information which allows the 

user to make informed choices concerning system tradeoffs. This involves a sensor system model 

which permits quantitative measures of time and space complexity, error, robustness, and efficiency, 

and which facilitates analysis, debugging and on-line monitoring.

Formal semantics o f programming languages provides techniques to describe the meaning of a 

language based on precise mathematical principles. These formal techniques should provide the 

following: precise machine-independent concepts, unambiguous specification techniques, and a 

rigorous theory to support reliable reasoning (Gordon, 1979). The main types of formal seman­

tics are: denotational semantics which concerns designing denotations for constructs, operational 

semantics which concerns the specification of an abstract machine together with the machine be­

havior when running the program, and axiomatic semantics which concerns axioms and rules of
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Our view is that performance semantics should allow us to compute measures of interest on 

program structures. Denotational semantics is the closest to our view since, according to (Ashcroft, 

1982), to specify the semantics of a language denotationally means to specify a group of functions 

which assigns mathematical objects to the program and to parts of programs (modules) in such a 

way that the semantics of a module depends only on the semantics of the submodules. Thus, given a 

set of programs, V,  from a language, and an operating context, C, the semantics is a set of functions

^ = m

where

where 3? is the measurement domain.

The static semantics defines structural measures over the syntax of p €  V.  This includes stan­

dard measures such as maximum depth of the program graph, branching measures, data structure 

properties, storage estimates and standard computational complexity measures. Note that these can 

be determined without reference to C (i.e., /  : V  —y 3?). This can be extended to include functions 

of the operational context C, including sensor models, accuracy, precision, redundancy and replace­

ment, as well as operating system effects, communication strategies and protocols, and processor 

properties.

The dynamic semantics include validity measures and operational characteristics. Validity mea­

sures permit the comparison of behavior models to actual run-time performance (monitors), while 

operational characteristics are simply measures of run-time values (taps). The values of a tap or 

monitor are represented as a sequence X  =  ( x n : n <E Af);  x n is the nth value produced by the tap

inference for reasoning about programs.



where S  is the structure produced by the tap or monitor.

2.1 Simple Example: Time Vs. Robustness Using Sonar Readings

This simple example demonstrates the motivation of the proposed approach and how it can be used 

to select between alternatives. In this example we have a “classical” tradeoff between speed (time 

to accomplish a certain task) and robustness (a combination of accuracy and repeatability). As­

sume that the sonar has been calibrated to eliminate any environmental effects (e.g., wall type, au­

dio noises, etc.). The variables in this case are the accuracy of the physical sonar sensor and the 

number of readings taken for the same position.

Assuming the time to take one reading is t , the error standard deviation is a ,  and the probability 

of a bad reading is P r &, taking one reading yields minimum time and worst accuracy. By adding 

a filter (e.g., averaging) and taking multiple readings, accuracy increases and time also increases. 

Therefore, we need quantitative measures to decide how many readings are needed to achieve the 

required accuracy (measured in terms of the standard deviation of the error) within a time limit.

Using the formalism presented earlier, the semantics of this problem can be defined using the 

set of functions T  — { t i m e ,  e r ro r , r e p e a ta b i l i ty } .  In the case of using a single reading these 

functions can be written as:

t im e ( s in g le )  =  t 

e r r o r ( s in q le )  =  , °  =

r e p e a ta b i l i ty ( s in g le )  =  1 — P r b

or monitor

X  : A f S



t ime(average)  =  nt  +  r„

error(average)  =  .
■ \ J n * {  1 -  P r b)

repeatabil i ty(average) =  1 — Pr"

where rn is the time to calculate the average of n readings, and tj =  0.

In this simple example we were able to get estimates of the required measures using mathemat­

ical models. However, we did not consider the changes in the environment and how it affects these 

measures. In this case, the set of functions T  are mappings from the cross product of the program 

V  and the operating context C  to the measurement domain 5?, that is

' f i - . Vx C- *  91

To solve this problem, we either have to model the environmental effects and include it in our 

model, or we may need to conduct simulations if a mathematical model is not possible. Simulation 

is a very useful tool to approximate reality, however, in some cases even simulation is not enough to 

capture all the variables in the model, and real experiments with statistical analysis may be required 

to get more accurate results.

3  S e n s o r  S y s t e m  S p e c i f i c a t i o n

The ILSS approach is based on Logical Sensor Systems (LSS) introduced by Henderson and Shil- 

crat (Henderson & Shilcrat, 1984). LSS is a methodology to specify any sensor in such a way that

Now, if we take the average of n  readings, the semantics can be written as:



hides its physical nature. The main goal behind LSS was to develop a coherent and efficient presen­

tation of the information provided by many sensors of different types. This representation provides 

a means for recovery from sensor failure and also facilitates reconfiguration of the sensor system 

when adding or replacing sensors (Henderson et al., 1985). - -

We define the ILSS as an extension to the LSS and it is composed of the following components 

(see Figure 3):

1. ILSName: uniquely identifies a module.

2. Characteristic Output Vector (COV): strongly typed output structure. We have one output 

vector (COVout) and zero or more input vectors (COVtn).

3. Commands: input commands to the module (Com m andsin) and output commands to other 

modules (Com m andsout).

4. Select Function: selector which detects the failure of an alternate and switches to another 

alternate (if possible).

5. Alternate Subnets: alternative ways of producing the COVout. It is these implementations of 

one or more algorithms that carry the main functions of the module. .

6 . Control Command Interpreter (CCI): interpreter of the commands to the module.

7. Embedded Tests: self testing routines which increase robustness and facilitate debugging.

8. Monitors: modules that check the validity of the resulting COVs.

9. Taps: hooks on the output lines to view different COV values.
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Figure 3: The extended logical sensor module.

These components identify the system behavior and provide mechanisms for on-line monitor­

ing and debugging. In addition, they give handles for measuring the run-time performance of the 

system.

Monitors are validity check stations that filter the output and alert the user to any undesired 

results. Each monitor is equipped with a set of rules (or constraints) that governs the behavior of 

the COV under different situations.

Embedded testing is used for on-line checking and debugging proposes. Weller proposed a sen­

sor processing model with the ability to detect measurement errors and to recover from these er­

rors (Weller et al., 1990). This method is based on providing each system module with verification



Figure 4: Local embedded testing.

tests to verify certain characteristics in the measured data and to verify the internal and output data 

resulting from the sensor module algorithm. The recovery strategy is based on rules that are local 

to the different sensor modules. We use a similar approach in our framework called local embedded 

testing in which each module is equipped with a set of tests based on the semantic definition of that 

module. These tests generate input data to check different aspects of the module, then examine the 

output of the module using a set of constraints and rules defined by the semantics. Also these tests 

can take input data from other modules if we want to check the operation for a group of modules.

Figure 4 illustrates the idea of local embedded testing. Local embedded testing increases the 

robustness of the system and provides the user with possible locations to tap into when there is a 

problem with the system.
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In our proposed framework, a sensor system is composed of several ILSS modules connected to­

gether in a certain structure. We define operations for composing ILSS modules, and then define 

the semantics of these operations in terms of the performance parameters. Some of these operations 

are (see Figure 5): .

•  S e r i a l ( I L S S l ,  I L S S 2): two logical modules are connected in series. Here COV3 =  C O V 2.

•  S e le c t ( I L S S l ,  I L S S 2): C O V 3  is equal to either C O V 1 or C O V ‘2 .

• C o m b in e ( I L S S l ,  I L S S 2): C O V 3 is the concatenation of C O V  1 and C O V 2.

For these simple constructs, the semantics is defined as a set of functions that propagate the re­

quired performance measures. Several techniques can be used for propagation. Best case analysis, 

worst case analysis, average, etc. Selecting among these depends on the application, hence it should 

be user defined. As an example, the time of the resulting logical system using worst case analysis 

can be calculated as follows:

• t i m e ( S e r i a l ( I L S S \ ,  I L S S 2)) =  t i m e ( I L S S l )  +  t i m e ( I L S S 2)

• t i m e ( S e l e c t ( I L S S l ,  I L S S 2 )  =  m a x ( t i m e ( I L S S l ) , t i m e ( I L S S 2 ) )

• t i m e (C o m b in e ( I L S S l ,  I L S S 2 )  =  m a x ( t i m e ( I L S S l ) , t i m e ( I L S S 2 ) )

Hence, the semantic functions of the composite system are defined in terms of the semantic func­

tions of the subcomponents, Similarly, functions that define the propagation of other performance 

measures can be defined in the same way.

3 .1  C o n s tr u c t io n  O p e r a to r s
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Select:

C om bine: ^  C O V 3

Figure 5: Some operations used for propagating the performance measures.
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For error propagation, we can use a simple approach which does not require carrying a lot of 

information through the system. This approach is based on the uncertainty propagation described 

in (Faugeras, 1993; Holman & W. J. Gajda, 1978). Assume that we have a certain module with n 

inputs X  =  (xi, x2, . . . ,  x n) and m  outputs Y  — (yi, y2, . . . ,  ym) such that Y  =  f ( X ) ,  and assume 

that we know the error variance associated with the input vector A* =  (AXl, AX2, . . . ,  Ax„) (see 

Figure 6), then the error variance for the output vector can be calculated using the equation:

where is the partial derivative of Y  with respect to X  evaluated at the measured value of the input 

vector A". If all the elements in X  are independent variables, then this equation can be written as:

A»< =  E I d x '
Axj , i  =  1 ,2 , . . .  ,m

Y = f (X) 

'5Y

>1
y2

Figure 6 : A simple approach for error propagation.

Our overall goal is to provide a tightly coupled mechanism to map high-level performance mea­

sures onto an appropriate set of monitors, tests and taps os as to provide the required information.

4  I m p l e m e n t a t i o n

The ultimate goal of this project is to utilize the proposed theoretical framework in a usable model­

ing and prototyping environment with tools for analysis, debugging, and monitoring sensor systems



with emphasis on robot control applications. Thus, we are developing an ILSS library within a vi­

sual programming system called CWave targeted toward the development of control systems for 

measurement devices and hardware simulations. CWave is developed by the Component Software 

Project (CSP) research group in the Department of Computer Science at the University of Utah in 

cooperation with the CSP group at Hewlett Packard Research Labs in Palo Alto, California.

CWave is based on a reusable software components methodology where any system can be im­

plemented by visually wiring together predefined and/or user created components and defining the 

dataflow between these components. The CWave design environment includes several important 

features that make it suitable to use as a framework for implementing ILSS components. Some of 

these features are:

• Open architecture with ease of extensibility.

• Drag-and-drop interface for selecting components.

•  Several execution modes including single step, slow, and fast execution.

• On-line modification of component properties.

• The ability to add code interactively using one of several scripting languages including Visual 

Basic and Java Script. This is particularly useful to add monitors and/or taps on the fly.

•  Parallel execution using visual threads.

•  On-line context sensitive help.

Figure 7 shows the CWave design environment with some o f its features.
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Figure 7: CWave design environment.

4.1 Implementing ILSS Components

An object-oriented approach is used to develop the ILSS components using Visual C++ for imple­

mentation. Each component is an object that possesses some basic features common to all compo­

nents plus some additional features that are specific to each ILSS type. The following are some of 

the basic functions supported by all components:

Initialize: performs some initialization steps when the component is created.

Calibrate: starts a calibration routine.

Sense: generates the COV corresponding to the current input and the component status.
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Test: performs one or more of the component’s embedded tests.

Select: selects one of the alternate subnets. This allows for dynamic reconfiguration of the system.

Monitor: observes the COV and validate its behavior against some predefined characteristic cri­

teria.

Tap: displays the value of the required variables.

We used several design patterns in designing and implementing the components. Design pat­

terns provide reliable and flexible object-oriented designs that can accommodate rapid modifica­

tions and extensions (Gamma et al., 1995). For example, the decorator pattern is used to dynami­

cally attach additional functionality to the object. This is particularly useful in our case where the 

user can dynamically choose the performance measures to be propagated and the values to be mon­

itored while the system is running.

4.2 The ILSS Component Library

To hide most of the implementation details and provide higher reusability and reliability of the sys­

tem, we are currently developing an ILSS library which will include some of the commonly used 

sensors for mobile robot applications such as cameras and sonar sensors. This library is expandable 

where more components can be added easily. The user can select one of several sensor types and 

modify its parameters and/or algorithms to fit the application. In addition, on-line monitoring and 

embedded testing will be defined for each component and the user can add or modify there routines 

to get the required information.

Reset: resets all the dynamic parameters of the component to their initial state.
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Components are added to the library after extensive testing and debugging to ensure reliability. 

The components in the library should be flexible enough to accommodate different application with 

varying needs. However, there is a tread-off between reusability and efficiency (see Figure 8.) In­

creasing the generality of a component to accommodate different applications with varying needs 

may require a lot of overhead which reduces the efficiency, while building a component for a spe­

cific application can be optimized to that application, but that will reduce its reusability. In conclu­

sion, some design decisions has to be made and several factors should be considered when building 

new components to be added to the ILSS library.

Reusability Efficiency

Figure 8: The tradeoffs between efficiency and usability.

5  E x a m p l e :  W a l l  P o s e  E s t i m a t i o n

The following example illustrates the use the proposed framework to model and analyze two alter­

natives for determining flat wall position and orientation using sonar sensors (Dekhil & Hender­

son, 1996b; Henderson et al., 1996b; Henderson et al., 1996a; Henderson et al., 1997). The sonar 

sensors are mounted on a LABMATE mobile robot designed by Transitions Research Corporation.



The LABMATE was used for several experiments in the Department of Computer Science at the 

University of Utah. It was also entered in the 1994 and 1996 AAAI Robot Competition (Schenkat 

et al., 1994) and it won sixth and third place , respectively. For that purpose, the LABMATE was 

equipped with 24 sonar sensors, eight infrared sensors, a camera and a speaker. 1 Figure 9 shows 

the LABMATE with its equipment. .

Figure 9: The LABMATE robot with its equipments.

In this example, we consider two different logical sensors to determine wall pose and find the 

corresponding errors and time complexity for each. The first ILSS considers the sonar sensor as a 

point sensor (i.e., the location of the return point is at the middle of the sonar spread wedge.) The 

second ILSS deals with the sonar sensor as a wedge sensor (i.e., it returns a wedge centered at the 

sonar sensor and spread by an angle 29.) Both ILSS use two sonar readings to calculate the wall 

position. Figure 10 shows the two logical sensors.

1The LABMATE preparations, the sensory equipments, and the software and hardware controllers were done by L. 

Schenkat and L. Veigel at the Department of Computer Science, University of Utah.
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Figure 10: Two Instrumented Logical Sensors for determining wall position.
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In this figure, ri and r2 are the two sonar readings generated from Sonar  1 and Sonar2,  respec­

tively. P oin t .S on ar  determines the location of the sonar reading as the mid-point of its spread 

wedge. W edge .Sonar  .Line  takes the two range values n  and r2, and the spread angle of the sonar 

beam 6, and returns two 2D points on the line representing the wall. . ,

5.1 System Modeling and Specification

As shown in Figure 10, ILSS 1 is composed of four modules, two Sonar modules and two PointSonar  

modules, and a Combine  operator. On the other hand, LSS2 has three modules, two Sonar modules 

and a Wedge Sonar-Line module preceded by a Combine  operator. Figure 11 shows the attributes 

for each of these modules.

In this figure, each ILSS is defined in terms of a set of components that characterize the module. 

The data and the corresponding performance measures start from the Sonar  module and propagate 

upward until they reach the COV of the main ILSS. On the other hand, the commands start from the 

main ILSS and propagate downward until they reach the Sonar  module. The COV is composed of 

two parts: data and performance measures. For example, COVout for Sonar  1 is

- ({r i,0},{< ,A ;i,A *}) '

where t is the time consumed to execute the module and Ar] and A# are the error variances for ri 

and 6, respectively. In this example, each module has only one alternate subnet, therefore, the select 

function is trivial.

22



ILSS Name Sonar Point-Sonar Wedge-Sonar-Line,

COV in None ( lr,e| ) Mt,

/  {rl,0 1 ,r2 ,0 2 } x 
{t, Arj _ Aqj (Aj-2, Aq2> '

COV out ,  {r.e} X 
V{t, Ar A0r

,  {x,y} . 
M t, Ax AyK

/  {x l,y l,x2 ,y2 } x 
{t»Axj Ayj Ax2!Ay2} '

Commands in {calib, sense} {init, calib, sense} {init, calib, sense, reset}

Commands out None {calib, sense} {init, calib, sense}

CCI cci_sonar() cci_point_sonar() cci_wedge_sonar()

Select Function call read_sonar call calculate_xy call calc_line_points

Alt. Subnet read_sonar() calculate_xy () calc_line_points()

Embedded Tests test_sonar() test_point_sonar() test_wedge_sonar()

Monitors watch_sonar() watch_point_sonar() watch_wedge_sonar()

Taps display_sonar() display _point_sonar() display _wedge_sonar()

Figure 11: The attributes of the main modules used in the example.
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Using worst case analysis, the performance semantic equations of the time and error for ILSS 1 and 

ILSS2 can be written as: - .

t ime(ILSSl)  = time (Combine (Serial (Sonar 1, Pointsonar  1), serial(Sonar2, Point son ar  2)))

error(ILSSl)  =  error(Combine(Serial(Sonarl,  Po intsonar l) ,  serial(Sonar2, Point sonar2)))

t ime(ILSS2) =  time(serial(combine(S onar l , Sonar2) , W  edge sonar  .line))

error(ILSS2 ) =  error(serial(combine(Sonarl, Sonar2),W~edgesonarJine))

Now, we need to calculate the time and error for the subcomponents. Assume that t sonar i , tsonar 2, tpotnt_s0riari, 

tpointsonar2> and twedge_sonar Jine are the time for the subcomponents, and Ari, Ar2, and Aq are the error 

measures for rlt r2, and 6, respectively. The time for LSSl and LSS2 can be easily calculated using the 

propagation operations discussed earlier as follows:

t im e(ILSSl)  — max(tBonar\ -(- £potnt_sonarl i tsonar2 "t” p̂om<_sonor2)

■ t ime(ILSS2)  — max(tsonar\ , t sonar2) “f- twedgesonar-itne

where P i l s s i  and P i l s s 2 represent the current program steps executed on ILSS1 and ILSS2, respectively.

Propagating the error requires more elaborate analysis for each component. At the first level, we have 

the physical sonar sensor where the error can be determined either from the manufacturer specs, or from ex­

perimental data. In this example we will use the error analysis done by Schenkat and Veigel (Schenkat et al.,

1994) in which there is a Gaussian error with mean /i and variance a 2. From this analysis, the variance is a 

function of the returned distance r. To simplify the problem let’s assume that the variance in both sensors is 

equal to 4.0mm2. Also, in this logical sensor there is an algorithmic error due to the fact that the actual point 

can be anywhere on the sonar wedge, and not just at the center as is returned. This error can be calculated by

5 .2  P e r f o r m a n c e  S e m a n t ic  E q u a t io n s
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assuming that 9 is a random variable uniformly distributed over the range ( - 11°, 11°) given that the beam 

spread of the sonar is 22° (see Figure 12). The variance of the angle 9 is therefore equal to:

(22tt/180)2 l2 
= ------Y2------ 0.0123rac?

Figure 12: The error in the point-sonar module.

In this case we have:

e r r o r (S o n a r l)  =  {4.0mm2, 0.0123rac?2}

erro r (S o n a r2 ) =  {4.0mm2,0.0123rac?2}

Next, for the P o in t S o n a r ,  there are two sources of errors; error due to the uncertainty in r , and the 

algorithmic error represented by the variance in 9. The output of this module is the estimated (x , y) location 

of the point where the sonar beam hits the wall. This can be written as:

x \  =  r i  cos 9, 2/1 =  r \ sin 9

x 2 =  cos 9, 2/2 =  ^2 sin 9 

Since r, and 9 are independent, then the error associated with a:, and y, can be calculated as follows:



To calculate the worst case error, we evaluate these expressions at 9 — 11°, assuming that rj =  1000mm 

and r2 =  1100mm, we get:

. Ari =  cos2 9 * 4.0 +  ( -r i  sin 9)2 * 0.0123 = 451.67mm2 *

Ayj =  sin2 9 * 4.0 +  (ri cos 9)2 * 0.0123 =  11852.18mm2 

Aj;2 =  cos2 9 * 4.0 +  (—r2 sin 9)2 * 0.0123 = 545.72mm2 

AV2 =  sin2 9 * 4.0 +  (r2cos0)2 * 0.0123 =  14341.28mm2 

Now, we can write the error functions for Point_Sonar modules as follows:

er r or [Point S o n a r  1 ) =  {451.67mm2,11852.18mm2}

error(Point-Sonar2) =  {545.72mm2,14341.28mm2}

and for ILSS1 we have:

error(ILSSl)  =  {451.67mm2,11852.18mm2,545.72mm2,14341.28mm2}

In the W  edge S o n a r  .Line module, there are five possible cases for that line depending on the values 

of and r2 (Henderson et al., 1996a). In any case, the two points laying on the line can be written as:

® l — cos Q?!, y\ — r\ sin o;i -

x 2 =  r2cosa2, t/2 =  r2sina2

where the values of a l  and a 2 are between —9 to 9 (see Figure 13).

Considering the worst case error, we can set ai =  a? =  9. Assuming that the error in 9 is zero, then the 

error in the calculated points is:
dxi \  2



■ • - . - ( * ) * *

Evaluating these expressions using the same values we used for L S S 1 we get:

A X l  =  cos2 0  * 4.0 — 3.85mm2

Ayi =  sin2 0  * 4.0 — 0.15mm2 

AX2 =  cos2 6  * 4.0 =  3.85mm2 

AV2 — sin2 0  * 4.0 =  0.15mm2 

Finally, the error function for I L S S 2  is:

e r r o r ( I L S S 2 ) =  {3.85mm2, 0.15mm2,3.85mm2,0.15m m 2}

Comparing the error and time measures for the ILSS1 and ILSS2 we can select between these two alter­

natives based on the application requirements.

Figure 13: The general case for the points returned by the wedge_sonar_line.
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This example illustrates the importance and usefulness of the ILSS library since all these analysis can be 

performed once and put in the library for reuse and the user does not have to go through these details again. 

For example, if different sonar sensor is used, then the same error analysis can be used by supplying the 

sensor’s error variance. In addition, given that the error range has been determined, redundancy can be added 

using different sensor pairs to sense the same wall and a monitor can be added to detect error discrepancies.

5.3 Simulation Results

These two instrumented logical sensors were used with the LABMATE to find the location of walls using 

synthetic and real data. Figure 14 shows the error in both cases using synthetic data representing 300 lines 

at different angles from the sonars, the results show that the error using I L S S 2  was much smaller than the 

error using I L S S l  which supports the analysis conducted using our proposed approach. In this figure, the 

error in p  and 0  varies based on the region to which the line belongs.2 For example, we can see transition at 

line 100 which corresponds to moving from region 1 to region 2. for the results of applying these two logical 

sensors to run the LABMATE with more detailed comparisons see (Henderson e t  a l . ,  1997).

Note that, to keep things simple, we did not consider the error in the sonar location and orientation. How­

ever, these errors can be incorporated in the model in the same manner.

6  C o n c l u s i o n s

In this paper we presented a theoretical framework for sensor modeling and design based on defining the 

performance semantics of the system. We introduced the notion of i n s t r u m e n t e d  s e n s o r  s y s t e m s ,  which is a 

modeling and design methodology that facilitates interactive, on-line monitoring for different components of

2There are five different regions that a line representing the wall can fall in. See (Henderson e t  a l . ,  1996a) for more 

details.
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Figure 14: The error in both cases using synthetic data.
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the sensor system. It also provides debugging tools and analysis measures for the sensor system. The instru­

mented sensor approach can be viewed as an abstract sensing machine which defines the semantics of sensor 

systems. This provides a strong computational and operational engine that can be used to define and propa­

gate several quantitative measures to evaluate and compare design alternatives. The implementation of this 

framework within the CWave system was described and examples of using this framework were presented.

Currently, we are working on building an ILSS library with several design tools which will assist in rapid 

prototyping of sensor system and will provide an invaluable design tools for monitoring, analyzing and de­

bugging sensor systems.
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