View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE
provided by The University of Utah: J. Willard Marriott Digital Library

AN EXPERIMENTAL SYSTEM FOR
COMPUTER AIDED GEOMETRIC DESIGN
UuCS-84-008

2 NOVEMBER 1984

This report is based on the proposal submitted to DARPA in May, 1984. The time frame

for performance of the funded contract is September 1984 through August 1987. The

sections of the proposal which cover budget and biographical data of the senior research
personnel are not included.

Richard F, Riesenfeld

Principal !'nvestigator

Kent F. Smith

Co-Principa! /nvestigator

https://core.ac.uk/display/276277641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Project Overview and Summary

The main goal of this proposed level-of-effort research project is to extend present
capabilities in the area of Computer Aided Geometric Design (CAGD) and to develop
custom VLSI support for some special geometric functions. Our already proven expertise
in the areas of for CAGD, Very Large Scale Integration (VLSI) and programming language
development will be directed toward this goal. In order to realize the gains which are
discussed in the second chapter, considerable and coordinated effort will be required in
all three areas. We have considered the problem and have arrived at the overall
milestones which are discussed in this chapter. Subsequent chapters elaborate on the
the VLSI role in and the requirements for developing custom hardware algorithms for
computer geometry, and the supporting role that continued research and development of
the Lisp-based Portable Symbol Manipulation System will play in both the VLSI and CAGD
efforts. Each chapter presents the individual goals of the sub-phases of this project
which have been carefully correlated to meet the overall goals.

1.1 Project Statement of Work

The following statements are brief synopses of the more detailed ones which are
contained in the following chapters.

Geometric Modelling Statement of Work

1 Design mathematical spline representations and corresponding data structures
for use internal to the Alpha 1 modeller.

2. Demonstrate the power of the unified spline approach by modelling difficult
mechanical pieces in the Alpha 1 testbed. Challenging modelling candidates,
like a modern truck or a personnel carrier, will be chosen to be of interest to
the DoD community. Demonstration will result after creating and
implementing the necessary modelling tools. The result will be a three
dimensional mathematical representation.

3. Develop an exact arithmetic algorithm appropriate for use m the intersection
operation. Analyze candidate algorithms for suitability with regard to
specialized hardware implementation in VLSI.

4. Specify a functional architecture of the testbed Alpha 1 modeller which shows
relationships between candidate algorithms, and data components to allow
initial determination of an architecture for a VLSI implementation. Specialized
characteristics of the algorithms which are amenable to VLSI implementation
techniques will be identified if they exist.

5. Develop a methodology for extracting a finite element model from the
proposed spline based master geometry representation which will allow us to
interface to a large body of existing sophisticated finite element analysis
packages like Adina. Demonstrate the methodology on a selected testcase

VLS| Statement of Work

Formalize the structured tiling integrated circuit layout methodology and the
structured arithmetic tiling design methodology.

. Develop static and dynamic PPL cell libraries using the CMOS technology.
This will involve circuit design, simulation, layout, and testing. We expect to
use the MOSIS 3-micron technology.

. Design, implement and test selected CMOS PPL circuits for the special
purpose geometric processors to be integrated into the Alpha 1 testbed.
These circuits will be fabricated through MOSIS and will include circuits which
implement portions of the intersection and subdivision algorithms used in
Alpha 1

. Define, design, implement and test several high-speed full-custom GaAs
circuits of interest in geometric modelling. This will be done in conjuction
with Rockwell, using their design rules, and fabrication capabilities. Circuit
simulation will be done using an elementary model developed at Rockwell

. ldentify, design, implement (in NMOS and CMOS) and test a group of
parameterized tiles (other than arithmetic tiles) which will be required in the
implementation geometric processors. Since VLSI-based arithmetic
computations will be a key portion of the project, a specialized arithmetic
integrated circuit design capability will be developed, based on the structured
arithmetic tiling design methodology. Test structures will be fabricated using
the MOSIS facility.

. Design, implement and test a special-purpose geometric processor This may
be a fixed-point (or rational) arithmetic processor. This will be done using
structured tiling.

. Develop algorithms and tools for the automatic generation of parameterized
tiles and arithmetic structures. The parameterized tiles which will be
considered include RAM, ROM, multiplexors, data switches, and arithmetic
structures.

. Develop a unified set of tools which, in conjunction with the existing set of
PPL design tools, will be ussd for the design, verification and implementation
of the circuits described above. These tools will be built on a relational
database system and will include a hierarchical structured tiling design editor,
a hierarchical, mixed-level simulator, an advanced state-machine generator, an
arithmetic module generator, and test sequence generators.

Portable Symbol Manipulation System Statement of Work

Study and develop a graphical support software environment capable of efficiently
supporting VLSI and CAGD applications. This environment and programming language
must have the following characteristics:

1 The environment must be portable across many different workstations and be
easily transported to the new workstations soon to appear. Therefore, we
plan on utilizing architectural description language techniques to transport the
environment to each new workstation;

2. A language interpreter for program development to aid in the rapid
prototyping of the VLSI and CAGD applications;

3. Highly optimizing compiler for the incremental development of efficient
production quality code. o]

The following outlines the steps necessary to produce the graphical support system as
described above:

1 Integrate the architectural description language techniques into the current
environment used for VLSI and CAGD to provide enhanced optimization
techniques.

2. Expand the architectural description techniques to include code generation
that will allow more flexible and efficient production code. This enhanced
environment will be released to the CAGD and VLSI groups for testing.

3. Research into the integration of the architectural description techniques into
the entire environment. These new techniques will allow the graphical
support software environment to be transported to a new target architecture
simply by writing a new machine description.

4. Research and development into techniques for the specification of data types
and declarations in an environment which includes both interpretive and
compiled program development.

5. Investigate the extension of the data type and declaration mechanism to
provide efficient floating point and matrices as needed in VLSI and CAGD

6. Release the advanced portable graphical support environment for testing by
the VLSI and CAGD projects.

1.2 Project Deliverables and Milestones

This section briefly describes the anticipated milestones and deliverables for the propose;!
effort. It is understood that the milestones are approximate in nature and the actual
achievement dates may not correspond with those cited in this document.

Deliverables

At the conclusion of this contract we will have developed a hardware prototype system of
the selected geometric processes and demonstrate it. In order to demonstrate this part
of a total geometric design system, it will be integrated into the experimental geometric
modelling testbed Alpha 1 and applied to a selected model. The results of supporting
and related research into computer geometry, geometric modelling, VLSI, and Portable
Symbol Manipulation, as well as the integration of these areas, will be reported.

Milestones for Geometric Modelling Effort

12 Months Analyze modelling algorithms for hardware implementation.

12 Months Define hardware/software interface for geometry engine.

24 Months Demonstrate an interactive, spline-based geometric editor.

24 Months Graphically simulate a process for manufacturing prototypes using B-

spline based geometric models.

24 Months Develop an interface to an existing finite element modelling package
from a B-spline based geometric model.

36 Months Perform performance evaluations of the special-purpose VLSI
processors designed for Alpha 1

Milestones for VLSI

6 Months Formalize the IC tiling methodology which will permit the development
of special purpose processors for Alpha 1

12 Months Define a special arithmetic IC tiling methodology.

12 Months Define a set of parameterized tiles for use in processing datapaths.
18 Months PPL tiling implementations in both static and dynamic CMOS.

24 Months Have a tested arithmetic tiling capability in NMOS and have CMOS

m designs ready for testing.

24 Months Complete designs and testing of parameterized tile techniques Have
the maior tile generators completed.

30 Months Complete algorithm design for parameterized tiles.

30 Months Have a tested arithmetic tiling capability in CMOS.

30

36

36

36

36

12

12

18

18

36

36

Months

Months

Months

Months

Months

Months

Months

Months

Months

Months

Months

Integrate special-purpose processors (for intersection and/or
subdivision) into the Alphal engine.

Complete design and testing of GaAs test structures.

Complete design and testing of a variable-precision general arithmetic
processor. ,

Refine and improve the special-purpose processors for the Alpha 1
engine, if necessary.

Complete implementation of a unified CAD system for the design of
integrated circuits using structured tiling.

Milestones for Portable Symbol Manipulation Systems

Complete research work on a peephole optimizer.

Add declarative data types to the system.

Architectural description driven efficient code generation.

Add compile-time data type checking. ,

Source to source transformations working

Exploit data typing and declarations in an optimizing compiler.

2. Proposed Research

2.1 The Role of Computer Aided Design in Industry

The phrase that best characterizes the need for Computer Aided Design of mechanical
parts is "competitive edge'; the competitive edge in product design, cost, performance,
and quality. Traditional design uses "engineering drawings" as the model. These are
really two dimensional projections. Since there are normally only a few views given there
is usually either more than one interpretation that "fits" the drawings, or no interpretation

that can fit, as when the design features cannot be correlated properly. However,
complete manufacturing information is needed. This means that the drawings are
interpreted wherever ambigous: in many instances detailed design is actually

accomplished at the manufacturing stage. If desired, "wire frame" models are made (with
interpretation) and "skins™ or surfaces are put on them in the analogous manner of
stretching material across the frame. If it is necessary to specify information for a
numerical control process, then someone must interpret the engineering drawings and
generate a stream of instructions for a numerical control machine. |If it is necessary to
specify information to mathematical analysis packages, like a finite element analysis, a
finite element mesh has to be generated from the engineering drawings, again involving
interpretation to make a three dimensional approximation. This might lead to further
interpretation and design specification within this finite element model. The results,
however are not available to the numerical control device, or to other analysis or
visualization techniques. Different processes require different models, and none talks to
the others. Getting the results and information obtained from the processes into the
engineering drawings sometimes never occurs, and when it does, it is never certain that
the assembly line produced version will incorporate those changes, since again, there
must be interpretation of the drawings on how to make the molds, machine the product,
cut the metal, bend the stock, drill the holes, and the like.

A single master model of the object geometry from which can be derived, in an
algorithmic and well defined manner, an N/C specification, a finite element model, a
rendering model, and other output type operations would insure that all the analysis and
rendering processes are seeing the same geometry. Powerful interfaces to the model and
tools for building models can lead to more accurately specified models, models whose
material specifications can be exactly known in advance and whose component placement
can be uniquely and exactly specified. Perhaps interfaces between the model, the results
of the mathematical analysis packages, and the design interface could allow the designer
to modify designs quickly to incorporate stress, pressure, thermal, or aerodynamic
changes as dictated by the analyses. These are all really methods of "interrogating' the
model.

American industry was slow to see the need for these new methods. Japanese industry
has made a national commitment to use computer aided geometric design and to
integrate it with computer aided manufacturing. While current commercially available
systems have few capabilities when compared to advanced research capabilities, and are
primitive when compared tc what is needed, there are noticeable effects trom their use
In the shipbuilding and automobile industries, the Japanese have had great success and

1

the Scandinavians have long seen the need for this new technology in shipbuilding.
Recently, American industry has realized that they will lose their competitive edge,
perhaps forever, if these ideas are not incorporated into their design and manufacturing
processes.

The need in the aircraft industry is clear, and the use there is very advanced. An
illustration of the potential benefits possible from using a unified computer geometry
model is in the area of modelling the surface geometry of an aircraft to assess possible
configurations during the crucial period of conceptual design. The capability to predict
performance characteristics from a very early configuration concept would provide
designers with an extraordinarily valuable early indicator of the utility and merit of a
preliminary design concept. Accurate visualizations of the parts portraying cut outs or
transparent surfaces could be specified to allow the designer to gain different
perspectives of the object, and multiple objects could be simultaneously displayed and
manipulated to check possible fits. The experimental computer aided geometric design
system. Alpha 1, that we use as our testbed, has these visualization features incorporated.
Preliminary interaction with designers has indicated that these features would be useful irv
the wider context. The model needed for aerodynamic analysis should be developed
from, and consistent with the geometry model to insure that the results of the
mathematical analysis will accurately predict the performance. Finally, the geometric
description could be used for building interior components like struts and spars, for
manufacturing stamping dies and drilling and riveting jigs, for fixturing layup of composite
fiber parts like wing panels and control surfaces, and for other manufacturing tasks.

The need for computer aided geometric design and modelling is present in more
traditional industries. The design of a tank requires analysis at every stage as to its
weight, armor placement for minimum vulnerability with weight and other restriction on
mobility, gun fire power, etc. With a unified computer geometry system, the designers
could develop a preliminary model, automatically interface to analysis packages, and
determine vulnerability of the model with the current armor placement. Armor could be
shifted and the process reapplied. |If the model is not developed in a form consistent
with the analysis methods, then a great deal of time must be spent interpreting the model
and deriving the computer model for analysis. Then after the analysis results are
obtained a new model must be developed, and then another new computer model, if the
original model automatically interfaces to, or directly supports the analysis, all the time
spent building the "second" model, which could be months, is saved. Faster interaction
would allow more design iterations in the same time span and perhaps less vulnerability
in the final product.

2.2 Contract Problem Statement and Objectives

Although extensive effort and success has been associated with computer aided design of
digital circuits, a parallel thrust has not been the case in three dimensional geometric
design where it is necessary for the design and manufacturing of mechanical, not
electrical, devices. It.is now becoming widely recognized that our capability as a nation
to achieve and execute good mechanical design is highly dependent on our computer
expertise. However many necessary fundamental advances have not yet occurred in the
laboratory, much less in practice.

12

Substantial work in computer aided geometric design (CAGD) has already been done in
the Department of Computer Science at the University of Utah. Alpha_1, a novel
experimental and spline-based solid modeller shows the advantages of our approach as it
acts as a testbed for new research. We now propose to press forward with necessary
research to develop advanced geometric modelling capabilities that are suitable for taking
on genuine industrial and DoD grade problems. Coordinated research into the system
organization is necessary, including both software and hardware aspects. It requires
fundamental research in geometric representations and algorithms, interactive
environments for computing and design, interfaces to engineering analysis procedures,
special purpose arithmetic units, symbolic algebra, high-speed parallel and pipelined
processing, and computer graphics.

We believe that the theory allows for a potential increase of at least five orders of
magnitude in computational capability over the current state through exploiting the
inherent parallelism of the problem, the use of more suitable arithmetic techniques, and
taking advantage of the faster logic families that are becoming available. Looking beyond
a specialized hardware system for improving the performance of the current rendering
and manipulation system and beyond the presently proposed contract period, further
increases in the computation power of the system could be applied to performing
analysis and functional simulation computations at interactive speeds. Certainly such a
system would not produce comparable performance increases for unrelated applications,
since this will not be a general purpose system. However, it will demonstrate how
customized architectures can be wused in an integral way to solve important,
computationally intensive problems.

22.1 Present Objectives

Within the contracting period we propose to pursue the research directions indicated
above and implement resulting algorithms or systems concepts on the testbed to prove
their viability as advanced concepts for design and manufacturing for a select class of
objects. It could become an example of how computers can be used to broadly support
the overall process of three dimensional mechanical design and manufacturing,
particularly serving to combine FUNCTION with FORM in the earliest stages of conceptual
design. This will enable a designer to gain some understanding of the performance of a
design through the simulation of some of its critical functions at a very preliminary stage
of a design.

To achieve satisfactory performance, this will require the concurrent development of
specialized computational engines to support the key tasks in converting a mathematical
model of an object into a set of polygonal representation optimal for the particular view
which can then be passed to a conventional rendering system. A maior task includes the
subdivision of a surface.

13

2.3 Method of Approach

We will utilize the close cooperation which exists between the software and the hardware
people in the department in a joint approach to this difficult and important problem area.
This project will become one of the broadest spectrum approaches to the problems in
computer geometry. In order to bring computer geometry in the next stage of
advancement we are proposing the following advances in the area of computer aided
geometric design:

A mathematically rigorous and functionally useful description of geometric
parts and assemblies must be developed for various types of analysis and
subsequent manufacturing, with natural methods of specification of this
geometry for the traditional designer. We will explore more general
representations which lend themselves to the fundamental notion of using a
single (universal) mathematical form with an associated recursive evaluation
scheme. Subdivision methods exploit recursive algorithms.

* The distribution of the system across a number of sub-systems, each
optimized for their particular task. The nature of the portions of the current
system concerned with the transformation of the mathematical description of
the object to the polygonal form, or other simple element, acceptable for
rendering points to components handling intersection, surface flatness testing,
subdivision, and scanline construction, operating as a pipelined system.

The use of massively parallel computation in many of these sub-systems,
replacing iteration and queuing structures. The basic nature of many of the
underlying algorithms in Alpha 1 is divide-and-conquer. A surface is tested
for flatness, and if it does not meet the specified criteria, it is divided into two
surfaces, each of which is then tested. Such a binary-tree process rapidly

reaches a point where a large number of processing elements can be well
utilized.

The use of processing elements more suitable to specific tasks than general
purpose computers. In addition to customization of datapaths and functional
units, new arithmetic structures will be employed to better match the
requirements of the particular geometric algorithms. Standard floating point
arithmetic is not particularly suitable for many geometric algorithms, yet it is
all that is available on conventional computers for handling non-integer data
In some cases, the basic algorithms can be transformed from floating point
arithmetic to fixed point algorithms, utilizing arithmetic units optimized for the
algorithms. In other cases, neither fixed nor floating point computation is
suitable. The implementations of key algorithms have been (greatly
complicated by the need to compensate for inexact floating point
representations, .resulting in a computational increase and more special cases
The use of precise rational arithmetic (where each number is stored as two
integers treated as the numerator and denominator of a fraction) solves many
of these problems, but requires the development of suitable algorithms and
design of hardware for the efficient hardware implementation of operations

14

such as addition, subtraction, and comparison (which requires the finding of a
common denominator).

* Finally the use of advanced VLSI technology (such as small geometry CMOS or
GaAs) and asynchronous structures can produce additional speed increase,
although not so great as specialized design techniques. In particular, the use
of speed-independent asynchronous structures not only eliminates the
difficulties of clocking very large circuits, but may result in smaller structures
than for clocked implementations. For example, to achieve high performance
in a clocked system, a counter requires an extensive carry generation network
(whose complexity increases with the square of the number of bits in the
counter). However, an asynchronous carry-completion adder can use a simple
ripple carry, along with some additional circuitry to determine when the
counter has reached its final value (increasing linearly with the number of
bits), and still achieve good performance. This is because fully half the count
operations require no carry (the least significant bit changes from 0 to 1), a
quarter require only the carry across a single bit, an eighth across two bits, "
and so forth. Rarely will a carry propagate across a significant number of
bits.

* Development of interfaces between the geometry model and massive,
accepted and proven codes for Finite Element Analysis, numerically controlled
manufacturing processes, and the like That is, take the current Alpha 1
representation for geometry and tie it in with the world to test the hypothesis
that these very general high level models are adequate to support the various
functions that a geometric modeller should provide. In the course of this we
simultaneously learn about any defects in the present approach and, when
corrected, generate a system of broader utility.

* New methodologies for geometric modelling, and appropriate paradigms for
their use. Just as a categorically new computer language like Lisp or APL has
its typical paradigms or modes of thinking that it supports, we will have to
discover and establish the corresponding paradigms for solid modelling with

m freeform surface based objects. These insights come out of considerable
modelling experience, so we will look for objects of particular DoD interest in
selecting these tasks. While the goal is always to enhance the designer s
current environment, it is inevitable that this technology will redefine the
designer's role just as text editors are redefining the role of a secretary.

It is estimated that the necessary speed-up of five orders of magnitude over a VAX-750
running Unix can be potentially achieved by the use of the techniques discussed above
The use of higher-speed logic (such as high-speed CMOS and/or GaAs) will account for
at most one order of magnitude. An additional one and one-half to two orders of
magnitude speed improvement will be gained by exploiting parallelism in key algorithms
and highly efficient arithmetic structures which are specifically tailored to these
algorithms will account for another order of magnitude. The final order of magnitude
speed improvement will be gained by separating the various functional components of the
system (subdivision, intersection, rendering, etc.) into their own processors and pipelining

15

their tasks in converting the model into a final picture, thereby eliminating much of the
general-purpose processor overhead involved in computations such as loop control and
data alignment. Thus, these four elements should improve performance by about 105.

The major performance improvements will come through exploiting the inherent
parallelism in many of the individual tasks, and the use of arithmetic and data handling
structures more suitable to the task. For example, the replacement of the current

floating-point code in the intersector (which requires elaborate routines to counter the
inexact nature of floating-point when testing if two points are identical, and still can fail
for some pathological cases) with rational arithmetic could produce at least an order of
magnitude speed improvement. Both the subdivision and intersection tasks have a high
degree of potential parallelism, with little communications necessary between the parallel
tasks. For subdivision with a depth of 14, there can be parallel execution on the order of
106 to 107. The use of between 100 and 1000 simple processors, a more manageable

number to implement, could give a performance improvement of two or more orders of
magnitude.

The existence of specialized, high-speed hardware would also allow the use of algorithms
currently rejected because of their poor performance on our existing general purpose
hardware. For subdivision, a matrix multiply can be replaced by a more suitable recursive
calculation. A more precise intersector can be developed.

24 Summary

A close collaboration of research efforts in CAGD, VLSI, and Lisp Interactive Environments
is being proposed to further the area of three dimensional mechanical design. This
synergism will advance the individual projects through pursuit of the overall goal of
advancing the collective target area. It also has the potential for advancing the present
notion of how CAD in the three dimensional mechanical area might be performed.
Developing a solid computer science basis for undertaking such an area of endeavor
could open up this direction for dramatic changes in the longer term future -

This project has the promise of initiating a wider recognition of the need for coming to
grips with the fundamental issues of computer geometry. It is hoped that the results
both in terms of depth and scope of implications, will trigger a realization nationally that
computer geometry is a vitally important area of computer science. It bears heavily on
us in strategic terms as well as in economic and intellectual terms.

16

3. Computer Geometry and Computer Aided Design and Modelling

3.1 State-of-the-Art External to Utah

At the present, three dimensional mechanical CAD, or CAD/CAM or CAE (Computer Aided
Engineering), as it is sometimes labeled, is a field of recognized importance in industry.
Universities are in the midst of a far reaching swing from viewing CAD as fringe research
to accepting it as bona fide computing and engineering activity. But universities cannot
find knowledgeable faculty in adequate supply to meet the teaching or research demand,
nor can industries and government find trained scientists in sufficient number.
Consequently the field is caught in a period of rapid transition with a very limited talent
pool for carrying out the urgent needs for the future.

With the aforementioned exigencies prevailing, most effort is being committed to short
term development of pieces that can be used to meet the present demands for tools.
Much of this is computerized two dimensional drafting tools, and their extension to two-'
and-a-half dimensions with "wire frame" models. Very little long range, fundamental
research is underway, especially research addressing the systems integration aspects. At
present there is a great lack of integration of the essential components of a CAD system
largely because separate representational models are used by many of the various parts.

Most existing CAD systems are massive, rigid, unmanageable collections of programs
typically written in Fortran over many years, not written and structured in a modern way
and implemented flexibly to support interactive design interpretively.

At present geometric solid modellers do not allow the integrated use of freeform
surfaces, so the capability for modelling curvilinear geometry is separate from systems
offering true solid modelling. This is partly because the computational algorithms and
tools required for freeform object modelling are still in their infancy, and many times no
reasonable implementation is known. A major complicating factor is having to implement
geometric algorithms which are already complex on computers with floating point
arithmetic where replications of the same answers cannot be guaranteed. The same
problems are present in primitive based solid modelling systems, but since the underlying

primitives are less complicated than a freeform surface, the problems have less serious
consequences.

3.2 Introduction to Geometric Design and Modelling Concepts

During the 1960's lvan Sutherland and his mentor Steve Coons introduced the notion of
computer modelling geometric objects in Sketchpad and the project MAC little red book",
respectively. The ideas and results detailed therein form the seminal ideas for many
ensuing research activities in computer graphics and computer aided geometric design
(CAGD). The fields have developed enormously since those first days, but many of the
problems have only grown in complexity. What at first seemed like dazzling solutions
were really windows onto greater needs and problems to be solved. The field of

Computer Aided Geometric Design has historically been preoccupied with two particular
problem areas:

17

* Representation schemes, and

* Systems and techniques which generate models.

We shall briefly describe various representation schemes that have been developed for
modelling surfaces, including their advantages and limitations. For later comparson we
shall discuss representation schemes for simple "primitive" modelling methods. The
issues involved in embodying a model in these representations is examined. Further, we
explore whether this unified representational approach might allow a unified approach to
unsolved problems or to problems at present solved with many different ad hoc
techniques. We propose directions for theoretical, algorithmic systems and hardware
research in modelling and computer geometry issues. This entails the integration of
advances in theory, software and systems engineering, and hardware to mold a unified,
coherent attack on a vast multifarious problem.

3.3 Mathematical Representations

3.3.1 Introduction

If one is to use richer representations for objects beyond copious collections of surface
points, one must look to representations with mathematical structure Even the
widespread polyhedral models are mathematical representations, and homogeneous
coordinates with all their properties are applications of projective geometry, as was
pointed out by Riesenfeld [25]. For the most part simple objects with names like cubes
spheres can be represented exactly; their formulations are known. Freeform surfaces, on
the other hand are in the mind of the designer, and have no concise expression, the
CAGD system is supposed to furnish one. While mathematical representations can play a
role of fundamental importance in striving for a unifying view of the subject, there are
basic and major differences between the problems mathematics seeks to solve and its
motivations, and those of researchers in computer aided geometric design using
sculptured surfaces.

3.3.2 The General Approximation Problem

The Curve Approximation Problem is stated as: Given a set of N ordered points in the
plane, find a function from a predetermined class that passes as near to those points as
possible. Several possibilities arise. First, the problem may be unsolvable using the
given predetermined set of functions with that data. Second, the number of degrees of
freedom available from the set of data is too large; that is, more than one function will
pass through (interpolate) all the points. Third, exactly one function will interpolate the
specified points. Fourth, there will be a nonunique solution to the "as close as possible
criterion. Fifth, there will be a unique solution to the closeness criterion. The
presumption may be that the data is good and "hard"--that is, the curve must pass
through the data; or that the data is noisy, to a greater or lesser extent. Finally, the class
of functions chosen to approximate will determine many other desirable or undesirable
characteristics of the solution.

18

In mathematics, it is always assumed that there is an original function that the user is
trying to approximate. In ab initio design, however, what is original is usually a rough
mental sketch or idea of the shape of the curve. Rarely is an explicit mathematical form
known. Moreover, most mathematical approximation theory is developed for explicit
functions like z * F(x,y). The design world mainly operates in a parametric context since
the desired geometry and shape is coordinate s/stem independent and may not be
representable as a graph of a single valued function. A parametric function has a vector-
valued form like F(u,v) = <x(u,v),y(u,v),z(u,v)>.

The methods indicated below are all methods which have been used for design of
sculptured surfaces. We shall look at the underlying approximation methods originally
developed for explicit functions using the mathematics model of an original or primitive
function that one is trying to recover.

We shall discuss curve and surface schemes based on three classes of functions.

Classl: Polynomials on the interval [a,b] of degree less than or equal to N, denoted PN
They may be represented in many bases, the most common of which is the power basis

aQ + a,x' +a2+...+a[MkN. It is clear that these functions have N+1 degrees of freedom. If
any polynomial is zero on a subinterval of [a,b], then it must be zero on the whole
interval. This means that it is impossible to have local bases using only polynomials. In
any basis, modifying one coefficient effects the shape of the whole curve.

Class 2. Piecewise polynomials of degree less than or equal to N-1. These functions s(x)
are called splines. For these functions the oreakpoints must be specified, that is, the
values of x that join the articulated polynomial pieces. A breakpoint is where the function
has one polynomial piece joining against another polynomial piece on the other side. At
each breakpoint the continuity class C[k] must be specified. The smoothest splines can
have k=N-1 continuous derivatives (implying the same polynomial on each side); the least
smooth can have k=-1 continuous derivatives (a discontinuous function with finite jumps
in value). The set of breakpoints together with the associated continuity classes at the
breakpoints is usually specified in a nondecreasmg sequence including multiplicities called
the knot vector t. One can represent one of these functions by finding the coefficients of
each of the polynomial pieces and storing them. These coefficients, however are not all
independent since the derivative continuity conditions at breakpoints must be met.
Another alternative is to use global basis definitions which incorporate the required
derivative continuities in the definition of the basis functions themselves.

One such basis that has the desired continuity built into its definition and is also minimal
is the B-spline basis. This basis is minimal in the sense that it is nonzero on the
smallest interval possible while still meeting required continuity conditions in a
nondegenerate way. Thus B-splines are local; they vanish outside a local support domain
Modifying parameters for one particular basis function affects the shape of the curve only
in a small region wTiere that particular basis function is nonzero. Other desirable
attributes will be discussed later.

The name spline comes from the mechanical draftsman's spline which behaves like a thin

19

beam. Over all functions that are and pass through a prescribed set of data points,
polynomial splines minimize what is often called "linearized" curvature, and have an
associate minimum energy property. The term uniform is used when the breakpoints, or
knots, are all evenly spaced. For convenience the integer are often selected as a uniform
knot set. The term nonuniform spline is used otherwise when the breakpoint spacing is
not regular.

Class 3. Piecewise exponentials are a closer solution to the problem stated above. They
also have breakpoints and continuity conditions which must be specified. They allow the
introduction of a 'tension” parameter and are the basis for the notion of splines under
tension.

3.3.2.1 Interpolation

The Planar Interpolation Problem is stated simply: Given {(x"y)}'=Q find a function y = f(x)
such that y; = f(x). While simply stated, this problem has given rise to many different

solutions. If the class of functions used is polynomials of degree <= n, then the choice
of basis can dramatically effect the computational stability of the evaluation scheme.

Polynomial Interpolation

One set of polynomial bases called the Cardinal or Lagrange basis is of the form

This basis is constructed to have the useful property that L(xp) = J(f). As can be directly
verified, the interpolant has the simple solution

z L
Z YLK

While this is a powerful representation for proving properties, this form is not
computationally tractable unless there is a family of many different problems to solve all
with the same abscissa coordinates x; in the data

A more general solution is called Hermite Interpolation, which is appropriate when
interpolation to derivative data, in addition to position information, is required In this
problem we seek a polynomial which interpolates {(x;yjy'l)}’=L A polynomial of degree

2n-1 is needed to meet the 2n conditions arising from values for position and slope at
each data location.

Generalized Hermite Interpolation allows specification of derivatives up to any order
Conditions for this then are

X yji'Lbj=0,1..m|(i=12..n

20

n
The number of linear conditions then is always n +r mi-

Polynomial Splines

When the number of points to interpolate is nontrivial, the degree used for polynomial
interpolation can become very high resulting in many undulations and possibly
unacceptable error in computation. To compensate for this problem, many piecewise
solutions have been developed, piecewise Hermite being the most popular, since it
guarantees at least derivative continuity between pieces. Unfortunately, most often the
derivatives are not given as part of the data and the user must figure out some way of
"guestimating' something reasonable. Another approach is to impose only derivative
continuity of a certain class at each breakpoint (interpolation points, usually), but not
specify the values that the slopes must take on. This approach leads to spline
interpolation. Advantages of spline interpolation are that the polynomial pieces are of a
low specified degree and hence there are fewer undulations with less magnitude than in
polynomial interpolation. The drawback is that the spline is not an analytic function, only,
a piecewise analytic one. Since the degree of continuity at the breaks can be specified,
this is more than sufficient for most applications. Further the "complete" spline

interpolant of degree 2m-1 minimizes Integral (sim))2 over all functions interpolating the

point data.

The spline basis exhibiting the Kronecker delta evaluation property corresponding to the
Lagrange basis is called the Cardinal Spline basis. This basis, however, can not be a local
basis and still meet the continuity conditions. The basis closest to being cardinal and
local is the B-spline basis. Each basis function of degree n-1 (order n) is nonzero over at
most n-1 spans, and on each span there are at most n nonzero basis functions. This
leads to a diagonally dominant banded linear system of equations which have highly
stable numerical solutions.

Generalized Splines under Tension

Sometimes is is desirable to interpolate the data and to also minimize a variational

property different from a quantity related to curvature That is, over all functions s that
interpolate the data, find s such that

Integral (s")2dt + a2lntegral (s')2dt = minimum,
a a

Clearly, the value of a affects the interpolant selected, because it govern the relative
weighting of importance between the first derivative and the second derivative The
solutions to this problem are piecewise exponentials.

3.3.2.2 Approximation

In contrast to the interpolation problem, the approximation problem wusually does not
require the approximant to go through all the data points. Sometimes there are other
criteria to be considered such as shape. A standard approximation scheme is the least

21

squares method. This is applied when there is more data than degrees of freedom in the
approximating set, and when noise might be present in the data. Least squares, however
is not at all a shape preserving scheme.

Polynomial Approximation

Suppose that f is a function from [0,1] to the real numbers, and let N be any positive
number. The curve

- e

where

S =(") X(@-x)n"

is called the Bernstein approximation to the function f on [0,1]. The functions 0 n form a
basis for all polynomials of degree n on [0.1]. This approximation converges to the
function f as n goes to infinity, but this method was not popular in mathematics since the
"rate of convergence" is very slow. This approximant, however, has important properties
for design since yp converges to the function f and to all its continuous derivatives, as n
goes to infinity. This unusually strong approximation property has been termed
simultaneous convergence. Also this approximation is variation diminishing. That is, >p
exhibits no more zeros than f; yp has no more undulations or wiggles in it than f. This
means that unlike interpolation, the Bernstein approximant never introduces extraneous
undulations into the process.

n

Finally, 2 t () = 1 for all x
Y. 2, (9]

Hence >p is a convex combination of original function values, so its maximal extent and a
convex superset containing it are known. A recursive procedure for evaluating the basis
functions can be developed from the combinatorial nature of the basis functions
evidenced by the binomial coefficients in the definition.

Polynomial Splines

Despite its attractive features, Bernstein approximation still suffers from the problem that
it is a single global polynomial, and hence the degree goes up with the closeness of
approximation. Another approach was investigated by Schoenberg in his use of the
variation diminishing splines. Given a knot collection x, let {B, n} define the B-spline basis

of order n (degree n-1) over that knot collection. Define another sequence x" by

V*, 3)(,ﬁl1 +)(.<A2 + .t X'rin-l'l
X n-1
Then

>s(x) = S f(x*)B. n(x)

22

is called the variation diminishing approximant to f. Since the B-spline basis is used with
the function values, rs is a local, shape preserving, approximant. Since B-splines also
sum to 1 at any value of x, the convex hull property still holds. As the variation
diminishing name implies, this approximation has no more undulations than the original
so-called primitive function it approximates. Here, as the number of knots increases, and
the max spacing diminishes, the variation diminishing approximant converges to the
function. Note that the degree does not increase. In 1972 deBoor and Cox independently
introduced a stable recursive algorithm for computing the B-spline basis functions making
them computationally tractable [5].

3.3.3 Explicit versus Parametric Representations

While these methods were all developed for explicit functions, design occurs in a
parametric world, for the most part. The geometry of mechanical parts is not influenced
by the particular coordinate system used for its spatial representation. The mathematical
methods developed for computer modelling must adhere to the same principles.
Parametric modelling accommodates this.

3.3.4 Inverting Approximation Schemes into Design Schemes

The most straightforward way to make modelling schemes out of the above interpolating
and approximating schemes is to insert vector (parametric) functions in place of the

scalar functions for which they were originally developed Then, for ab initio design, a
further twist of affairs is necessary.

Suppose M+1 ordered points in 3 space are given, {P,}*0- The most straightforward
approach to defining a curve with the data would be to interpolate the points using a
parametrized version of the cardinal basis. One could then use these points to control
the curve by moving them and moving the curve also. Unfortunately, this method is
fraught with fundamental problems. First, since high degree interpolation frequentiy has
undulations, so will these curves— interpolation is not variation diminishing. Secondly,
the parametrization selected for the spatial points strongly affects the final curve The
curve, in fact, can loop, retrace itself, and do other undesirable things to insure that the
interpolant meets each data point at the right parametric value. Indeed, these are
dangers with any interpolation method, although the problem is much less severe for

spline interpolation. Straightforward interpolation gives rise to as many problems as a
solves.

To convert the Bernstein approximation to the Bezier design scheme Gordon and
Riesenfeld [18] showed that one must make the identification f(i/M) = P(and that

M |
=r=0 p#" ()

is the Bezier curve of degree M.

Here the polygon connecting the points {P} is considered to be the function that is
approximated.

23

If one uses B-spline basis functions to generate the curve, then Gordon and Riesenfeld
[19] identified f(t*) and P; to obtain the B-spline curve

7s(x) - 2 P,Bin(t).

It should be clear from this that the curves resulting from the Bezier scheme are a subset
of the curves resulting from the B-spline scheme. The B-spline curve is a variation
diminishing vector approximant to the polygon (it introduces no new wiggles). Its convex
approximant and local properties show a faithfulness to the polygon. One can use the
vertices of the polygon to control the shape of the curve, hence the name, "control
polygon". Moving a vertex can provide interactive control over the curve, and since the
curve "approximates" the polygon, it also provides geometric intuition as to its shape.
The shape of the curve is also affected by the particular choice of parametrization. One
can modify shape by retaining a constant polygon and modifying the knot vector in the
parametric space, as well.

If one chooses to interpolate fixed points, then the coefficients to the basis functions will
be determined as the solution of a linear system of equations. The polygon that this
yields may not look pretty, but the curve will interpolate. It is important to remember
that an interpolating polynomial (or spline) is unique; its shape does not depend on the
particular choice of basis used to represent or compute it.

3.3.5 Making Objects

3.3.5.1 Boundary Representations

A volumetric object can be specified in one of two ways. Either as a volume by name, or
by its boundary, a point being inside the solid if it is inside the boundary. Any object that
is defined by freeform surfaces has a boundary model, and one must devise a method of
representing surfaces which will eventually be that boundary.

Surface Representation Schemes

Research into schemes for representing shape in the computer received a central
emphasis during the late 1960's to middle 1970's. Coons' work [12] and Bezier [4] were
pioneering fathers in the field, each introducing techniques that bear their names.

Although the aim has been to develop representations which were applicable to computer
implementation, the character of the research is highly mathematical. An extensive
variety of schemes for the representation of shape in general, and sculptured surfaces in
particular have been explored.

A straightforward surface generalization developed from curve techniques is the form

S(u.v)

24

where {Q” and {Rj} are two collections of functions used for approximation. Each or
both might be a cardinal basis polynomial or spline, or Hermite basis functions, or Bezier
basis functions of different or the same degree, or B-spline basis function of different or
the same order. The resulting surface is called a tensor product surface.

When the C and the Rj are both cubic Hermite basis functions, then this is called the
Tensor Product Coons patch. The surface is one bicubic patch with sixteen parameters.
Those specify position, two first derivatives in each tangent direction, and the second
cross or "twist" derivative, at each of the four corner points of the patch. The resulting
surface interpolates to all of those conditions. Unfortunately, this first early method has
the drawback that information is difficult to determine in an explicit fashion, and very few
individuals understand exactly how the twist vectors influence the surface. The interface
to this method is numbers, since the coefficients of the basis functions are not directly
related to those desired numbers.

In this early period designing a sculptured surface generally entailed describing the shape
of a single surface patch. A few efforts were made to provide tools for joining patches’
[1], so that larger surfaces could be produced, but few attempts were made to model
real objects as examples.

If the Q(are Bernstein Bezier polynomial basis functions of degree n, and the R(are
Bernstein Bezier polynomial basis functions of degree m, the resulting surface is an n-th
by m-th degree polynomial patch. The coefficients of the basis functions form the
"Bezier mesh", and the attractive properties of convex hull, variation diminishing and
subdivision capabilities extend from the curve case.

If the (1 and R(are B-spline basis functions, possibly of different order with different knot
vectors, then the resulting surface is a B-spline tensor product surface, It has many
polynomial patches incorporated within it and the properties associated with the B-spline
curve (all the Bezier properties, plus arbitrary refinement) are easily extended to surfaces
The P((form the associated B-spline mesh.

Topological Primitives

A second method of defining objects by boundary representations is the Euler operator
scheme. The objects have a topological model realized in the geometry. The model is
represented as a graph of faces, edges, and vertices. The faces need not be planar in
theory, although most implementations only have planar polygonal faces for database and
algorithmic considerations. The Euler equation in graph theory relates the number of
faces, edges, and vertices of a solid (polyhedral) object to the genus of the topological
graph representing that object. The Euler operators are rules for modifying the model
while preserving a valid theoretic representation, that is, satisfying the appropriate Euler
equation.

25

3.3.6 Solid Volumetric Models

In the 1970s the notion of "solid modelling” was introduced through the scheme of
primitive volumetric modelling. Those who promoted this concept of solid modelling
emphasized that it is important to use objects which are well specified with a clearly
defined interior, boundary, and exterior. A valid model, in the solid model sense,
trichotomizes space so that for each point in space one can answer the classification
guestion, "Is this point inside, on the boundary, or outside of the model?" The objects are
thought of as solid volumes of material, hence the name. Infinitely thin shells are not
allowed. All objects must have some thickness, and boolean combinations of these
primitive volumes, like spheres, cylinders, rectangular prisms, and ellipsoids must preserve
the realizability of the model.

Some confusion surrounds the term "solid modelling', because of the coincidence that
the systems that introduced this concept of "regular operations' also introduced the
concept of modelling with combinations of primitive objects. The objects to be used for
modelling blocks, or primitives, were selected because their mathematical representations
are simple and they are valid in the preceeding sense. Simple set operations involving
these primitives were analytically possible, so they were used in systems that emphasized
solid modelling. Unfortunately this has resulted in confusion between the notion of being
able to "trichotomize space" and the method of adding and subtracting simple named
shapes.

3.4 Modelling Paradigms

3.4.0.1 Valid Object Systems

Beginning in the mid-70's, interest and emphasis turned to techniques and systems which
could automatically guarantee that an object created was in some sense a "valid" object
[20], Although the definitions of validity vary slightly, and are sometimes mathematically
cumbersome, a good rule of thumb is that a "valid" object is one that can be realized
physically. That is, a "valid" object which is modelled in the computer could, in principle,
be manufactured.

This direction, which is still the main point of interest for many researchers in the field,
has led to two important types of systems: those based on combinations of solid
primitives and those based on the "Euler Operators".

Solid Primitives

The solid primitives systems, e.g. PADL [29] and GMSolid [6], (sometimes called
Constructive Solid Geometry, or CSG systems) operate on the basic principle that if one
performs one of a small set of operations (set union, intersection, and difference) on
objects which are known to be valid, then the result of the operation is a valid object

order to achieve this, Voelcker and Requicha [21] found it necessary to modify slightly the
usual notions of set operations, and introduced the elegant "regularized" set operators
which are universally used in these types of systems, and which have found important

n

26

applications in other areas as well. Many commercial systems based on these operators
(including Voelcker and Requicha's PADL) have appeared, and they are well-suited for a
large number of mechanical design problems. A serious drawback, however, is that these
systems have no capability at all for handling sculptured surfaces. Neither the theory nor
the algorithms extend in any straightforward way.

Euler Operator Systems

The other basic type of system that has emerged from the emphasis on producing valid
geometric models is based on the Euler operators. All realizable, or valid, objects will
satisfy the general Euler equation, and the Euler operators permit only operations which
insure that the underlying graph satisfies the Euler equation. This kind of validity has a
graph-theoretic context and assures a different property than the above. In these
systems [15], there is an interesting distinction between the “"topology" and the
'‘geometry" of the object. Moving one vertex of a cube (for example) does not change the
numbers used in the basic Euler equation involving numbers of faces, edges and vertices.
In this way topologically valid, but geometrically unrealizable, objects may be defined. "

The Euler operator systems can incorporate sculptured surfaces to some extent [2],
although often not at the same level as the polyhedra which are the basic building blocks
for the system. Much of the control over validity, one of the guiding principles for the
system, may be lost when sculptured surfaces are incorporated.

3.4.1 Available Techniques for Design of Sculptured Surfaces

The historical emphasis in CAGD has largely ignored the question of techniques to aid in
the design of sculptured surfaces. Representation issues, of course, had to be solved
first. But the later emphasis on valid models caused sculptured surface design to be
largely ignored, because the problem was difficult enough just with simple components.

One author [17] describes the design problem as typically requiring structures formed
from various components. The simple primitive and Euler systems provide rich structures
through set operations, but lack rich components. The surface techniques provide rich
components at the expense of rich structures, since surface patches traditionally can only
be formed into rectangular arrays of rectangular patches.

More recently however, as the capabilities and limitations of the systems developed so
far are recognized, there is renewed interest in sculptured surfaces. And, although the
area has not been a primary emphasis, there is a handful of useful techniques for
designing sculptured surfaces which should be reviewed before considering the current
directions.

The available techniques for designing sculptured surfaces can be roughly divided into the
following categories:

1 Interactive control point movement (sometimes called the "picking and poking"
technique)

27

2. Interpolation and approximation
3. Lofting schemes
4. Extensions of boolean set operations to closed sculptured surfaces

5. Specialized schemes for particular applications

3.4.1.1 Interactive Control Point Movement

Interactive control point movement is perhaps the most widespread technique for
designing sculptured surfaces at research institutions [4, 23, 8, 27], The development of
high quality graphics displays and interactive devices such as light pens, tablets and mice,
led naturally to widespread use of interactive positioning of points in space as a means
for defining arbitrarily shaped surfaces. The points being manipulated could be either
actual surface points, through which a surface was later fit (interpolation), or points which
were fairly close to the surface and would mimic the general shape of the surface they
defined.

The fact that all the interactive media tend to be two-dimensional, where the design
problems are inherently three-dimensional, has always posed a serious problem with this
technique. Some elaborate schemes for true three-dimensional display and interaction [9]
were investigated in the 70's, with most of the research abandoned within a few years of
its beginning. A recent revival of interest has produced commercial three-dimensional
displays, but three-dimensional input devices are not generally in use.

More serious problems exist for the industrial designer who must produce a design for a
specific product. This technique for surface design offers no natural way to specify
measurements or dimensions. The positioning of the control points on the graphics
screen is almost always a purely aesthetic choice made by the operator. Further the
number of points which must be positioned in order to achieve the desired shape can
become quite large and the whole process can be a tedious and frustrating experience

3.4.1.2 Interpolation and Approximation

This classical field of mathematics offers a wide variety of techniques for producing a
surface which fits or comes close to a given set of data. Interpolation and approximation
techniques are used widely in industrial sculptured surface design, possibly because so
much design is done by adjusting an existing design for a new product. Interpolation
provides a convenient way of creating a model of an existing product, which can then be
modified by either adjusting the original data or using other techniques.

These techniques also have drawbacks for the designer. Interpolation has a surprisingly
frequent propensity to produce unwanted undulations ("wiggles') in the resulting surfaces
In fact, much of the research in interpolation has been concerned with minimizing this
effect. Interpolation and approximation also typically require large amounts of carefully
prepared data, again making the production of a surface a very tedious task. Finally, the
level of mathematics which a designer must understand in order to produce the desired

28

surface is much too high. Too many parameters, especially the ones involved with
minimizing wiggles, may be difficult for the designer to understand and specify
reasonable values for.

3.4.1.3 Lofting

Certain industries, most notably, the aircraft industry, have made almost exclusive use of
lofting for the design of their products. There are as many lofting schemes as there are
groups who use them, and new lofting schemes are fairly simple to derive for specific
applications which desire to use them.

Most lofting schemes do share a few basic properties. Lofting generally consists of the
design of a number of planar cross-section curves which correspond to planar cuts
through the object at specified locations. The lofting process produces a surface which
goes through all of those cross-sections, and behaves reasonably between the sections.
The degree of continuity between the sections, the particular representation used, and all
the other details depend entirely upon the application and the group designing the loftirvg
scheme.

3.4.1.4 Set Operations on Complex Operands

The ability to combine sculptured surfaces using the set operations described for the
volumetric primitive systems above has been predicted by many researchers as a
breakthrough for the design of sculptured surfaces. One of the most promising aspects
of this area in the last year has been the production of several theses which demonstrate
that this capability is indeed possible and practical [28, 7],

The powerful capabilities of set operations have been convincingly demonstrated by the
solid primitive systems, and it is clear that these operations will prove invaluable in the
design of sculptured surfaces when they become tractable.

3.4.1.5 Specialized Techniques

All of the methods discussed so far can be thought of as rather general techniques which
are widely accepted and used in many applications. The exception is perhaps the set
operations on surfaces because the results are too new to have been extensively adopted,
but there is no doubt of their utility and eventual widespread use.

However, there still exist many applications for which none of these techniques exactly
fits the needs of the designers. When this situation occurs, a new approach is developed
which is specific to the problem at hand. There are, of course, too many of these
specialized methods to discuss or even to list here.

One of the difficulties with this collection of other techniques is that they are often
presented with a narrow viewpoint. One technique cannot be combined with another
because each was developed for a single, often specialized, surface representation Some
of the most intriguing techniques for designing surfaces do not produce a final surface
representation - the surface design operators produce pictures of surfaces, but do not

29

actually define a geometric model. A surprising number of these specialized approaches
do not use a true surface representation at any point. Instead they define modelling
techniques which operate on polyhedral representations or on dense point sampled data,
even when smooth surfaces are actually desired. A few efforts have been made to
collect several techniques into one toolbox, but some of these have made the crucial
error of using a natural but distinct surface representation to describe each method. This
means that the designer can use only one of the available tools to design his entire
object, unless he can provide a way of converting among the various representations, a
formidable or even impossible task.

3.5 Computer Science CAGD at Utah

The range of research activities and interests is widespread in the Computer Science
CAGD research group. We have developed a CAGD testbed, the Alpha 1 system.
Fundamental concepts embodied here are the notion of a unified theoretical framework
and representation, so that all processes may have access to any or all geometrical,
aspects of the model, and a hierarchical approach to object design. We feel that the use
of separate models supporting different design and analysis processes is somewhat akin
to the story of the elephant and the blind men. Each blind man is allowed to touch a
different part of the elephant; each 'sees" a different creature. Unfortunately, in such a
case the whole is not really the sum of the separate parts. By having a single flexible
representation for all objects designed, we hope to have each blind man, the various
design teams, at least be able to touch all parts of the elephant. In this metaphor, the
ultimate goal of a CAGD system should be to give vision to the blind man.

For the separate research components, the Alpha 1 realization offers rich sources of data
to test out algorithms, systems integration problems to test out system design concepts,
a graphical rendering capability to test out research on the role of visualization
techniques for shapes and design, and benchmarks for new modelling tools. As research
becomes mature we integrate those concepts into the testbed so all the other
researchers can use the new capabilities in pursuit of their individual goals.

The first testbed component was a capability for high quality computer images of
freeform surfaces. In the past, computer aided freeform surface modelling used systems
which supported only line drawings of the models. While providing important information,
these images cannot give the designer more than gross cues about smoothness, surface
normal variation, and shape. High quality raster images, on the other hand, gave many
visual cues as to shape, highlights, and normal variation, but were not easily and
accurately available for surfaces defined by splines. It was felt that the designhers would
be able to use this visualization capability within the design cycle. Response has
indicated empirical approval of this concept.

The impetus for building a system arose from the development of the Oslo Algorithms
[11] for computing discrete B-splines, or d-splines as they are termed |locally.
Subsequent to this finding, Cohen and Riesenfeld postulated that the theory of discrete
splines in conjunction with the Oslo Algorithms could form the foundations of a unified
and cohesive CAGD system, a system in which there is a single uniform mathematical

30

representation throughout and a single way of evaluating objects. This approach
essentially extends previous ad hoc subdivision schemes to a much more useful level of
generality and provides a sound and rigorous theoretical basis for understanding these
methods. This allows the system designer to achieve an overall degree of unification
derived from the homogeneity of the representational and computational scheme. The
resulting systems architecture, although based on a more complex theory, becomes
conceptually and practically simpler.

The testbed serves as a study in whether a unified approach to geometry can help in the
specification of an integrated system. We plan to use the Alpha 1 testbed at such time
as theoretical advances make it possible to study some broader, but much more complex,
related alternative representations and algorithms [13].

The research project proposes to continue to stay in close touch with actual, real-world
problems, and has used these experiences to guide its ambitions for the kinds of support
that it feels designers want and require. Trying to model them with a high degree of
faithfulness to the specifications and always analyzing the instances when compromises
were necessary, we have taken on several projects of substantial geometric modelling
sophistication. This approach has led to research and creation of design tools and
algorithms which result from a considerably enhanced understanding among the
researchers of what is actually desired by designers and engineers.

Below is a section on the research issues that we pursue. To better understand them, we
also must devote research effort to keeping our testbed, Alpha 1, at the leading edge of
what is possible.

So far the Alpha_1 System has been developed on general purpose computing and
graphics equipment. It is now felt that a sufficient understanding of the maior
components of CAGD systems architecture exists so that we can begin to factor out key
algorithms and explore their hardware realizations. Because of the unifying homogeneous
theoretical structure of Alpha 1, some critical algorithms which are heavily used can be
factored out for hardware speedups. Just as realtime voice synthesizers have led to new
ideas and algorithms for speech processing, when the hardware becomes functional v/e
forsee a surge in research whose exact emphasis at present is even to predict.

3,51 Philosophy of the System Design and Configuration

This section describes the design philosophy underlying the Alpha 1 testbed system. The
figure is a block diagram of the planned configuration; the individual components are
explained in more detail below.

31

+— —t
Interactive Geometric Design Environment!
| \MndOW | * Constructive geometry
* Volumetric Primitives
Oriented * Shape Modification Tools
W orkstation * Surface Design Operations

* Volume/Set Operations

A
|
\Y
+ + Application
\% Screen I Data Base I Specific +---mmmm- +
Designer<- —>| Modelling | Alpha_1 | < e 1IE xternal |
A Editor I | Language | Object I Programs | Data |
+ | Source I Descriptions | + - +
+ +
A
\Y
+ +

| Data Extraction

Shaded Raster Images
Shape Visualization Tools
Mass Property Calculation
N/C Machining Toolpath Gen
Finite-Element Mesh Gen

Alpha_1 Testbed System Configuration

The Alpha 1 system has as its core object descriptions in two forms. One should be
allowed to describe an object by a program, or set of procedures in the modelling
language, or by a numeric object description form. The modelling language provides for
parametric, or procedural, object modelling so that an entire family of parts may be
represented by a single procedure. For example, the primitives normally provided by a
CSG system, such as spheres, cones, and cylinders, are defined as procedures Evaluation
of the procedural definition of an object produces a file containing a B-spline boundary
representation of the object. This file can be used by the data extraction programs to, for
example, produce a shaded image of the object.

The designer interacts with the data base through a window-oriented workstation with
both graphics windows and text windows. He can make a change to the model source
and immediately see the result of the change in a graphics window. The geometric
design environment should provide many tools for the designer. He might have available

32

to him drafting-type operations with points, construction lines and arcs, that can be
fleshed out with surfaces; volumetric primitives from which to build objects; direct
manipulation of the B-spline control mesh defining the boundary of his object; shaping
functions such as bend, taper and warp; and, finally, boolean set operations.

While the processes described above are fine for ab initio design, sometimes an object
which has been produced by some other process must be represented. A good example
is the airfoil of a turbine blade. The shape of this is rigidly specified by aerodynamic
considerations, and is usually produced by a specialized system. Application specific
programs can be written to convert such external data.

Once an object has been designed, a number of data extraction tools may be applied to
it. Perhaps the most noticeable is the production of a shaded raster image of the object.
In order to produce the most realistic possible image, the image rendering process has a
host of options. The object may be lit with lights in several directions, its surface finish
and color can be precisely specified, etc. A user-specified resolution value determines
the accuracy of the picture, this may be set to a coarse value for a quick look, or to a
fine value for a final image.

A number of shape visualization tools should be available to the designer. The use of
various semi-realistic imaging techniques would enable him to better investigate and
understand the object, as in the case of coloring an image of an object to map the values
of non-geometric data such as temperature

Another data extraction tool can calculate mass properties of the object, including
volume, surface area, moments of inertia, and mass. The production of N/C machine
cutter toolpaths for manufacturing an object, and the generation of meshes for finite-
element analysis are other desirable data extraction tools.

3.5.2 Our Areas of Research Interest and Approaches

3.5.2.1 Long Range goals

The long term goals of the project are to treat the problems inherent in computer
modelling the 3-D geometry of complex parts and the systems implications thereof, and
then use this shape information to enter into the realm of predictively simulating the
real-world behavior characteristics of a mechanical model. In such a scheme a model
object would be imbued with knowledge about its critical functions in the world and be
able to perform in reasonable accord with the rules which govern it, at least in the
design, analysis, and manufacturing contexts. The medium range project goals involve
speeding up a key component of the system: the process which converts the fundamental
spline-based model to simple elements suitable for rendering, mass property calculation,
and the like.

It is our philosophy that the most useful geometric design and modelling systems will be
ones that exhibit an integrated approach which allows for many different processes,
somewhat like a workbench with many different tools available. The mathematical

33

representation used in defining the object is the workbench for the system, and the glue
that holds it together. It provides the common medium for all of the tools to work on or
build up. A single flexible representation which can embody the correct geometry of the
most interesting, difficult, types of mechnical parts can be used to build interfaces to
mathematical analysis packages for stress, heat, pressure, aerodynamic, hydrodynamic,
etc, to perhaps form an interactive loop between design and analysis so designs can
quickly reflect the latest analytical results. The man machine interface, the ‘'front end" of
the design system must be able to give the designer enough flexibility to meet his design
criteria for the model without flooding him with useless parameters.

The emphasis of our present and future research falls into several broad categories on
which we shall elaborate.

3.5.2.2 Modelling Tools Based on a Unified Representation

At present, the nonuniform tensor product B-spline surface is used as the representional
workbench. The B-spline curves and surfaces are fairly simple to work with, and very,
powerful in their ability to describe a wide range of shapes. Efficient computational tools
now exist for manipulating and evaluating B-spline curves and surfaces.

While the Bezier and B-spline points {P, } and their associated meshes give a rough idea
of the surface and allow manipulation by poking the points, it is rare that the designer
would know at the beginning of the design cycle enough about the surface to give the
initial surface enough degrees of freedom. And he certainly would not, in general, be
able to position the control points in the right locations Just as in the mind of the
designer where a design is first a rough sketch which progressively becomes more
refined and detailed, the computer aided sculptured design process should allow for
progressive refinement and detailing as the design cycle continues.

The capability to arbitrarily add degrees of freedom to a tensor product spline was
introduced by Cohen. Lyche and Riesenfeld with the Oslo Algorithm [11], The basis for
this algorithm is in the theory of discrete splines, another type of spline” defined over a
discrete domain. The duality provided by this theory between continuous and discrete
splines creates a unifying theoretical basis for many operations

The Oslo Algorithms also permit arbitrary spline subdivision, that is, the process of
looking at one spline as if it were composed of two, or more, shorter (in parametrization)
splines with smaller extent. Using this procedure recursively together with the convex
hull property and the variation diminishing property has allowed us to generate temporary
graphics databases wuseful as input to apply high quality computer graphics modules
capable of rendering three dimensional freeform surfaces. One can hypothesize that this
same type of procedure would support the generation of temporary derived models
necessary for analysis procedures. It could perhaps support a feedback spiral between the
analysis package and the geometric model to give very fine and high quality information
where necessary, and less information where less is needed. The Oslo Algorithms are
also used to support boolean operations on freeform surfaces.

34

While the complexity of designing with nonuniform parametric B-spline curves is greater
than with simpler wuniform splines, Bezier curves, or other piecewise continuous
polynomial forms, it also carries much higher flexibility. The B-spline basis carries the
continuity conditions, so the user does not always need to remember them. Since
refinement and subdivision are inherently a nonuniform procedure they also fit within this
framework.

Set operations on objects are a natural paradigm for many design realizations such as
drilling a hole or hogging out material with an N/C cutter. The intersection of a sphere
and a cylinder or a box and a sphere can be computed analytically, although
implementationally it may not be sufficiently stable so numerical algorithms are frequently
used. The intersection of two freeform surfaces is much more complex. Intersecting bi-
cubic patches analytically then this results in the following:

The implicit representation of each patch is a trivariate implicit equation of degree 18,

in other words of the form | c I,x'szk = 0. The intersection is then the common
R
solution of these two equations, but only for (x,y,z) within the parametric range, not the
infinite surface. Another approach is to implicitize one and substitute the parametric
equations for the other for x.y, and z The result is an implicit bivariate polynomial in the
parameters for one surface of degree 108, which could potentially have approximately
300,000 coefficients! Solving analytically for explicit ranges is clearly not feasible in any
general way. Thus, geometric and numerical approximations would have to be used in

any practical system. This new capability mentioned above, to use set operations with

In [28] an extended combinational algebra is proposed for partially bounded objects.
These objects might be intermediate stages towards a final realizable object, or to be
used in new type operations necessary to make ‘'cut away'lviews or a cookie cutter-

The concept of partially specified freeform objects with their own combinational logic is a
new area of research, as is defining solid objects from partial surfaces using these
extended boolean combinations to obtain a final whole. Until recently there was not any
algebra for combining partially defined objects as intermediate steps to realizable objects
Correct and proper paradigms for modelling with them and stable realizations of the
algorithms in software and hardware are two major areas of research.

Traditionally the design of freeform surfaces has stood apart from the specification of the
solid object. Hence, the making of realizable objects out of analytic definitions of tensor
product B-spline surfaces requires many design paradigms; some of which are not yet
invented. All of the general techniques for designing sculptured surfaces which were
discussed above can be applied to surfaces represented with B-splmes. Interactive
control point movement has been most widely used with B-spline surfaces or their
special subclass, the Bezier surfaces. Most interpolation and approximation techniques
which are based on polynomials are easily adapted for B-splines, and lofting schemes can
readily be derived for B-spline surfaces. Further, the recently developed set operation
algorithms for general surfaces are all based on B-spline representations or on

freeform surfaces is still young, and its full utility and characteristics are not yet known.

35

subclasses. Potentially, a system based on B-splines can offer a designer a choice of the
traditional methods for design, in addition to the newly developed set operations in a
system incorporating freeform surfaces.

As noted before however, these traditional approaches, while quite powerful for many
applications, fall short for other applications. Even where they can be used, they are
often cumbersome and difficult for designers to understand. In order for designers of
sculptured surfaces to be able to define easily and naturally their desired shapes, a new
set of tools must be provided m addition to the existing methods. It is crucial that at
any point in the design process, the designer can switch easily to the tools which are
most convenient for the design of a particular portion of the object. A unified
representation is required if these conditions are to be met.

An important step in providing such a flexible design system is the investigation of the
various specialized approaches that have been developed to handle the areas where the
traditional methods failed. This research must proceed with the view of adapting and
integrating a wide variety of specialized, but flexible, tools for an environment based on'
the unified representation. The research must also look for totally new techniques for
surface design which can be incorporated into the unified approach. Before Computer
Aided Geometric Design systems for sculptured objects can come into widespread use
and realize their full potential as an aid to design and manufacture, a variety of tools
must be created which can be used compatibly, conveniently, and naturally by many
designers within a single modelling system.

3.5 2.3 Representations

The nonuniform B-spline tensor product is the most versatile surface representation
available for design. Its good attributes include the variation diminishing property, the
convex hull property, refinement capability which supports a "top down" approach to
design and creation of modelling tools, and a subdivision capability on which is based
extended boolean operations. These properties together form the basis for the first
experimental solid modelling system based on sculptured surfaces that incorporates the
"simple" primitive objects.

However, there are substantial and important reasons in computer aided geometric design
to seek more general, intrinsically multivariate, surface forms for some of the following
reasons. Deriving from its cartesian product construction, the tensor product formulation
is a mapping of a rectangular domain. Tensor product surfaces fit naturally onto
rectangular patches, or "topologies" as it is called, but can become problematic when
applied to other regions with three sides or five sides, for instance. While four sided
patches can be fit to nonrectangular regions by collapsing the length of a side or
combining a number of rectangular patches, such solutions often are inelegant and
unsatisfactory They are inelegant because they may involve degenerate sides or other
special contortions that are nonsymmetric and extraneously introduced. They can be
unsatisfactory because they may introduce secondary problems through degeneracies or
other anomolies that require the specification of data which is not normally available as
part of the original problem. In addition, tensor product surfaces have an explicit
orientation and special parametric or coordinate direction associated with each

36

independent variable. They also require the specification of a full matrix of coefficients,
regardless of what is appropriate to the particular application that gives rise to the need
for the surface. It often occurs that more data is required then is convenient or
reasonably available, so the user is forced into employing contrived methods to produce
the remaining data that the scheme demands.

There have been many special solutions proposed for various types of special regions,
especially for triangles. Such solutions may be satisfactory in some primary respects, but
they are still not completely satisfactory in other respects. Some of the available
solutions, which exist only in explicit form z = F(x,y), are not generalized to parametric
form S(u,v) = (X(u,v),y(u,v),z(u,v)). They also constitute a special surface element that is
likely to be different from the rest of the surface form. Further, here too it frequently
occurs that more data is required than is available, so the user must contrive methods to
produce it. The use of a differently defined element in the middle of a homogeneous
region can cause some global implementation problems because it requires special
treatment by other processes that operate on the surface representation.

Properties of the Ideal Multivariate Representation

Clearly, the capability to represent intrinsically tensor product and nontensor product
regions in a way faithful to the geometry is most desirable. However, beyond the desire
to attain elegance, there is a clear advantage in a CAGD system to have a homogeneous
representation on which all other processes can operate in a consistent and
straightforward manner. There are implementation advantages to having a single surface
form that perhaos specializes to the common tensor product, but that introduces a single
uniform representation throughout the system for all surfaces.

For computational stability and efficiency and for interactive design utility, a surface basis
element should have nonnegative values over a locally supported region, if possible. The
B-spline basis is such a set of basis functions in the univariate case: a higher dimensional
analog would be very attractive. A convex hull property that occurs when the basis
functions sum to one and are nonnegative aids considerably in the task of developing
various set operations like surface intersection. The convex hull property can be used to
simplify hierarchical divide-and-conquer schemes by allowing the implementor to perform
a super test for intersection of convex hulls, and then subdivide on an positive answer
indicating a possibility of an actual surface-surface intersection. Such sets of functions
might have a shape preserving approximation property, an attribute which has proved to
be desirable when it is present in a mathematical representation applied to interactive
design. The space that is spanned should be a useful space of functions like a piecewise
polynonial space of a certain continuity class which forms a generalization of a univariate
spline. As in the univariate case, the lower the degree the mere attractive the set for
CAGD. A fast and stable computational algorithm must be available to place any potential
multivariate scheme into candidacy. A subdivision algorithm has come to be an
important implementation approach, therefore such an algorithm would probably have to
be developed if it were not part of a computational method for general elements of this
space.

37

Tensor product domains are well served by the tensor product B-spline basis. Such a set
of functions over a general topology would support a new kind of design scheme in
which the control points might be either regularly or arbitrarily spaced. Even then, before
integration into a system, considerable experimentation would be necessary to determine
what kinds of constellations of control points would lead to tractable and applicable
design schemes, and which ones would be of academic interest only.

3.5.2.4 Systems Approach

Using modern computer science and software engineering principles and tools in the
design and implementation of an experimental geometric modelling system is an
important factor in the development of a modular, robust, and extensible testbed which
supports the research into mathematical representations, interactive design paradigms,
and numerical processing of geometric models. While not actively involved in developing
the fundamentals of such techniques, we are pioneering their application to the design,
implementation, and maintenance of a large geometric modelling system.

From the first, our testbed has been designed as an integrated system with the great
advantage of using a single powerful and computationally stable family of geometric
representations and algorithms. Modularity is incorporated in the design by structuring it
as a set of "packages" with clean interfaces, which facilitates piecewise incremental
evolution and eventual factoring of the system to use specialized hardware.

The software production environment provides advanced tools combined with mobility
between computer systems in this period of explosive change. The Unix1 family of
operating systems has exceeded our expectations as an implementation base, both in the
number of available, compatible implementations over a range of machines from
supercomputers to workstation microprocessors, and in the high quality of the software
engineering tools available in the Unix environment. To a large extent, our work is the
beneficiary of the active research in software development tools being performed on Unix
systems.

The choice of programming languages is crucial to the eventual success of a large
system such as a powerful geometric modeller. The language must provide modern
structured control and data structures and a module packaging facility. Most
implementations, of Pascal are not capable of packaging nd are more suited to small
programs. Ada is not yet available in a production programming system. We chose C as
our base level implementation language due to its high quality and proved performance in
implementing the Unix operating system and utilities. The C programming paradigm we
have adopted includes tools that facilitate dynamic storage allocation of lists, trees and
networks of objects, and object-oriented programming with generic operations', avoiding
the familiar disease of FORTRAN programs that are riddled with fixed array limits and
cannot easily be extended to new data types or operations.

'llnix is a tradmark of Bell Laboratories

38

For an interactive geometric model construction environment, it is necessary to use a
language implementation which provides an interpretive, extensible high-level command
interface together with graceful descent into compiled code and effecient means of
driving high-performance interactive graphics devices. Our approach involves the
development of an interactive modelling environment incorporating window oriented
display management and event driven graphical interaction embedded in the Portable
Standard Lisp system developed at Utah.

Finally, the use of software engineering 'meta-program' concepts to manage system
evolution is adhered to in our software development paradigm. In particular, we
incorporate the Unix tools for automatically synchronizing source code changes with
executable compiled modules, allowing different researchers to experiment with variations
on the system without impacting each other or the base system and automatically
merging the tested extensions into the base system.

This approach has led to the often surprising ability of our experimental research testbed,
Alpha_1, to accommodate the addition and modification of experimental datastructures
and algorithms.

3.525 Interfacing to Analysis packages

Finite element packages exist to analyse a model's generalized structural, thermodynamic,
aerodynamic, or hydrodynamic characteristics, as well as to perform flow analysis to
measure suitability for injection molding. The ultimate goal of simulating real object
performance by a geometric model requires interfacing with analysis packages for
feedback in many domains which require integrated analysis of the entire model together
with its environment.

The geometrical shape is typically just one component of the total description required by
an analysis package. Material properties, initial conditions, and environmental loadings
must all be provided in the model for extraction as analysis input. The detailed form of
these "attributes'lwill vary between analysis domains and even between packages in the
same domain.

Output from currently available analysis packages is typically produced as a voluminous
serial file, originally intended for a line printer. Parsing the output stream will be a
significant problem for the analysis package interface, since it must also associate back
from the internal element node numbers used by the analysis package to locations on the
parametric surfaces of the original geometric model.

The analysis result cou-ld augment the model with additional attributes or attribute
distributions, which could be displayed to the designer in appropriate ways such as
distorted geometry or continuous variation of model color. Analysis attributes integrated
into the model could also be used to guide automatic iterative design procedures which
optimize a design across multiple analysis runs.

39

3.5.2.6 Hardware Integration

We think that realization of intrinsic geometry algorithms in hardware would magnify the
effect of the theoretical computer geometry results. First, the process of specification of
what geometric processes are "basic" or most frequently needed during the design
process and the employment of inherently parallel structures in modelling algorithms
would lead to a decrease in the effort needed to model an object. Just as Von Neumann
architectures in computers lead to certain types of numerical methods, system integration
between software and hardware components will lead to new design paradigms and tools.
They will encourage the development of new modelling algorithms, tools, and
representations which can build upon the hardware. Further the hardware realizations
might have more widespread use. Such a candidate would be a hardware realization of "
exact" or "arbitrary precision" arithmetic. The processes of subdivision, extended boolean
operations, and rendering all require many arithmetic operations. Since the
implementations now use floating point arithmetic, the errors make it difficult to
determine equality. The question of "Is this point on two surfaces?" becomes impossible
to answer exactly. In fact, if the simpler question "Is this point on the specified line?" can
have two answers if the computations are done in two different ways. '

Further, other frequently used operations which are computationally intensive slow the
interaction response time. It would be desirable to speed up these processes so that the
designers will wait for the response and be interested enough to interact immediately.

3.6 Example: Preliminary and Detailed Turbine Engine Blade Design

Another example illustrates how such design systems would fit together in layers. Design
detailing tasks receive design goals from preliminary designs of the overall system, which
must in some cases specify the performance of components, rather than deriving the
performance from as-yet-undesigned component geometry. Analysis of an aircraft
preliminary design must assume reasonable values for the thrust, weight, and size of the
engines, rather than simulating the function of every engine component.

Similarly, the preliminary design of the turbine engine must specify the goals of the
turbine stages in terms of work put into the gas flow by compressor stages or extracted
by turbine stages. An interactive design environment capable of analyzing such a
specification in a variety of operating speeds and temperatures and displaying the
simulation results in real time would be valuable in honing the preliminary design

In the detailed design, e.g. of the turbine blades of a single stage, the preliminary design
specifications for the stage would guide the development of blade aerodynamic geometry
which meets the design goals under gas-flow analysis derived from the preliminary
simulations. Then the structural and thermodynamic analysis and simulation of the blade
in the gas-flow environment would interactively guide the development of internal cooling
passage geometry of hollow blades and the mechanical attachment geometry where the
blades are joined to the disk.

40

3.7 References

10.

11.

12.

13.

14.

Armit, A. P, "A Multipatch Design System for Coons' Patches,” IEEE Conference
Publication No. 51, April 1969.

Baer, A.; Eastman, C. M.; and Henrion, M., "Geometric Modelling: A Survey,"”
Computer-Aided Design, Vol. 11, No. 5, September, 1979, pp. 253-272, Also
Research Report No. 66, Institute of Physical Planning, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, March 1977

Barnhill, R E and Riesenfeld, R F (editors), Computer Aided Geometric Design,
Academic Press, 1974.

Bezier, P. E, Mathematical and Practical Possibi/ities of UNISURF, Academic
Press, New York, 1974.

de Boor, C, "On Calculating with B-splines," Journal of Approximation Theory, Vol.
6, No. 1, July, 1972, pp. 50-62.

Boyse, J. W. and Gilchrist, J. E, "GMSolid: Interactive Modeling Tor Design and
Analysis of Solids/' IEEE Computer Graphics and Appiications, Vol. 2, No. 2, March,
1982, pp. 27-40,

Carlson, W. E, "Techniques for the Generation of Three Dimensional Data for Use
in Complex Image Synthesis," Ph.D. dissertation, Ohio State University, 1982.

Clark, J. H.,, "Designing Surfaces in 3-D," Communications of the ACM, Vol. 19, No.
8, August, 1976, pp. 454-460.

Clark, J. H., "Hierarchical Geometric Models for Visible Surface Algorithms,™
Communications of the ACM, Vol. 19, No. 10, October, 1976, pp. 547-554

Cohen, Elaine, 'Some Mathematical Tools For A Modeller's Workbench,” Computer-
Aided Geometry Modeling, Langley Research Center, National Aeronautics And
Space Administration , Hampton, Virginia, 1983, pp 195-200.

Cohen, E; Lyche, T, and Riesenfeld, R F, "Discrete 3-splines and Subdivision
Techniques in Computer-aided Geometric Design and Computer Graphics,'
Computer Graphics and |Image Processing, Vol. 14, No. 2, October, 1980, pp.
87-111, Also Tech. Report No. UUCS-79-117, Department of Computer Science.
University of Utah, October 1979

Coons, S. A, "Surfaces for Computer-Aided Design of Space Forms," Tech
report MAC-TR-41, Project MAC, M.L.T.. Cambridge, Massachusetts, June 1967
Available as AD-663 504 from NTIS, Springfield, Virginia

Dahmen, W., "On Multivariate B-splines,” SIAM Journal of Numerical Analysis. Vol.
17, No. 2, April, 1980, pp. 179-191.

Dahmen, Wolfgang and Micchelli, Charles A., "Multivariate Splines - A New
Constructive Approach,” Conference on CAD - Oberwolfach, Conference on CAD
- Oberwolfach, W. Germany, April 1982.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

41

Eastman, C. M. and Weiler, K J., "Geometric Modelling Using the Euler Operators,"”
Proceedings of the First Annual Conference on Computer Graphics in CAOICAM
Systems, M.L.T., 9-11 April 1979, pp. 248-254, Also Research Report No. 78, Institute
of Physical Planning, Carnegie-Mellon University, Pittsburgh, Pennsylvania, February
1979

Faux, I. D. and Pratt, M. J, Computational Geometry for Design and Manufacture,
Ellis Horwood Ltd., 1979.

Forrest, A. R, "A Unified Approach to Geometric Modelling,” Proceedings of
S/IGGRAPH '78, ACM, August 1978, pp. 264-269.

Gordon, W. J. and Riesenfeld, R F, "Bernstein-Bezier Methods for the Computer-
Aided Design of Free Form Curves and Surfaces,"” Journal of the ACM, Vol. 21, No.
2, April, 1974, pp. 293-310, Also Research Publication GMR-1176, General Motors
Research Laboratories, March 1972

Gordon, W. J. and Riesenfeld, R F, 3-spline Curves and Surfaces, Academic Press,
New York, 1974, pp. 95-126,

Requicha A. A. G. and Voelcker, H. B, "Solid Modeling: A Historical Summary and
Contemporary Assessment,” IEEE Computer Graphics and Applications, Vol. 2, No.
2, March, 1982. pp. 9-24.

Requicha, A. A. G. and Tilove, R B, "Mathematical Foundations of Constructive
Solid Geometry: General Topology of Regular Closed Sets,” Technical Memo 27,
Production Automation Project, University of Rochester, Rochester, NY. March
1978.

A. A Requicha, "Representations for rigid solids: Theory, methods, and systems,"”
Computing Surveys, Vol. 12, No. 4, December, 1980, pp. 437-464.

Riesenfeld, R F, "Applications of B-spline Approximation to Geometric Problems of
Computer-Aided Design,” Ph.D. dissertation, Syracuse University, May 1973.
Available as Tech Report No. UTEC-CSc-73-126. Department of Computer Science,
University of Utah

Riesenfeld, R F, "Aspects of Modelling in Computer Aided Geometric Design,'
Proceedings of the National Computer Conference, AFIPS, May 1975, pp. 597-602.

Riesenfeld, R F, "Homogenous Coordinates and Projective Planes in Computer
Graphics,” IEEE Computer Graphics and Applications, Vol. 1, No. 1, January, 1981
pp. 50-56.

Riesenfeld, R F; Cohen, E; Fish, R D.; Thomas, S. W; Cobb, E S, Barsky, B A;
Schweitzer, D. L; and Lane, J. M, "Using the Oslo Algorithm as a Basis for
CAD/CAM Geometric Modelling," Proceedings of the Second Annual Conference of
the NCGA, Aangeenbrug, R T, ed, National Computer Graphics Association, inc.,
Baltimore, 14-18 June 1981.

Rogers, D. F and Satterfield, S. G, "B-spline Surfaces for Ship Hull Design, '
Proceedings of SIGGPAPH '80, ACM, July 1980, pp. 211-217.

28.

29.

42

Thomas, Spencer Woodlief, "Modelling Volumes Bounded by 8-spline Surfaces,"”
Ph.D. dissertation. University of Utah, Sept 1983.

Voelcker, H. 8.; Requicha, A. A. G.; Hartquist, E; Fisher, W. B.; Metzger, J.; Tilove,
R 8.; Birrell, N.; Hunt, W.; Armstrong, G.; Check, T., Moote, R; and McSweeney, J,
"The PADL-1.0/2 System for Defining and Displaying Solid Objects,” Proceedings of
S/IGGRAPH '78, ACM, August 1978, pp. 257-263.

43

4. VLSI Component

4.1 Introduction

This research will be centered on the development of a design methodology known as
"structured tiling™ which can be used to help bridge the gap between system-level
descriptions and the composite layout of an integrated circuit. Structured tiling
incorporates knowledge about the best known implementations of specific integrated
circuit structures in a given technology (such as dynamic NMOS RAM which requires very
specialized design techniques) into an overall scheme for designing and building systems
in VLSI. This methodology permits the design of a set of unified CAD tools which map
system-level descriptions to a set of well-known and throughly tested functional blocks
(tiles). These tiles may themselves be hierarchically constructed from lower-level tiles,
with the lowest level tiles being actual composite layouts. Each level of tiling above the
composite level is an easily understood functional element and requires little knowledge
of transistor level descriptions. This enables system designers to avoid many of th§
problems inherent with transistor and composite level design.

Structured tiling permits the use of advanced technologies by inexperienced designers of
integrated circuits. For example, CMOS requires that substrate and P-well contacts be
placed in specific locations in order to prevent latchup. Another example is the strict
device orientation with respect to crystal lattice orientation in order to prevent back-
gating effects in GaAs devices. The use of tiling hides such layout constraints from the
system designer, reducing the knowledge he must have of the underlying technology.

Some tiles are best described as parameterized modules. For example, an n-bit shift-
register (which at one level is thought of as a single tile) is best thought of as a
collection of single shift-register bits and interconnecting tiles. This n-bit shift-register
tile can be parameterized to meet certain performance, shape, and I/O placement
requirements. Structured tiling permits the development of CAD tools which can
incorporate such parameterized modules in circuit designs.

An analogy can be drawn between programming and circuit design. The binary 1's and
0's used in machine language programming are analogous to the rectangles (CIF
descriptions) used in the composite layout of integrated circuits. Programming in
hexadecimal instead of binary machine language is similar to the placement of more
symbolic circuit structures such as the entire contact hole structure or even an entire
transistor [11]. A significant amount of research at this level is presently being
done [6, 1] that is related to this level of design. Some of the schemes which have been
developed also provide routing (through the addition of wires or stretching of cells) but
are still directly and explicitly concerned with transistor placement and interconnection,
and have not yet moved to the functional level. Integrated systems design is still largely
done at the machine-language or hexadecimal levels.

In the spectrum of programming languages, assembly language programming permits the
development of larger systems than are possible with machine-level programming. The
programmer is no longer concerned with the exact meaning of a single binary 1 or 0 and

44

cart concentrate more on the function of the program. At its lower levels, structured
tiling is analogous to assembly language programming — with the beginning of an
emphasis on function. At this level, however, a reasonable amount of knowledge about
the underlying machine or technology is still required. The Path-Programmable Logic
[14, 7] methodology is an example of this level of design. High-level programming
languages can be thought of as analogous to the higher levels (system levels) of the
structured tiling approach to integrated systems design. At this level, technology and
circuit-level implementation dependencies are completely factored out of the system
description. An example of this is the research on the automatic implementation of
state-machines from behavioral specifications [2, 3],

The development of the structured tiling methodology naturally requires an evolution of
ideas. Just as computer programming began with binary machine code and progressed
to high-level, portable languages, so integrated systems design will progress from
composite layout to true system-level design. The research of the last several years by
the VLSI group at the University of Utah has formed a foundation for the development of
structured tiling. .

The general objectives of this research are to:

* develop structured integrated circuit design techniques for technologies other
than NMOS (i.e. CMOS and/or GaAs),

* implement a structured tiling approach to data-path design through the use
of:

- computational tiles (arithmetic),

- parameterized switching and storage tiles (modules).

4.2 The Definition and Design of Structures in CMOS

The research work on structured tiling for integrated circuit design requires the
development of predefined cells (tiles) for use in current technologies. Present work at
the University of Utah [13, 8, 12] has defined a type of structured logic known as Path
Programmable Logic (PPL) which will be used as the basis for the development of the
new structures. We propose to extend the present techniques to include new static and
dynamic structures in a two-layer metal, short-channel CMOS technology. The basis for
this effort is described in an attached paper [14],

Essentially any general structure can be designed using the present PPL methodology.
This has been demonstrated by designs performed for the Ada-to-Silicon proiect [9] (the
Read Init Parameters Chip) and by a number of student projects here at the University of
Utah in the VLSI design classes (i.e. the design of an area-filling RAM for graphics
applications done by Eric Brunvand whose report is attached). These designs
demonstrate that there are at least two major problems associated with the present

45

techniques which must be addressed in order to successfully implement the proposed
Alpha-1 system. These problems are (1) power and performance of the present NMOS
circuits and (2) the definition of data path modules and special purpose structures to
complement the present structures. The rest of this section is concerned with the
resolution of problem (1). The second problem is dealt with in the following two
sections.

The present PPL cell set is desighed using a four-micron NMOS silicon-gate process with
guasi-static circuits. A 200 by 200 mil chip contains approximately 100 columns and 200
rows of PPL cells and will consume approximately 500 milli-watts of power. This 100
column by 200 row circuit is roughly equivalent to a circuit which contains approximately
15,000 two-input gates [14], These circuits will operate with maximum clock frequencies
of approximately 4 MHz. The extension of these techniques to the CMOS process should
give a factor of 4 decrease in size and an order of magnitude increase in speed.

4.3 The Definition and Design of Structures in GaAs *,

We will choose a few simple circuits from the hardware description of the Alpha 1
machine which require very high speed. These circuits will be designed using the GaAs
process and design rules which are available to DARPA contractors through Rockwell at
Thousand Oaks, Calif. The circuits will be fabricated using the three process runs which
have presently been committed to DARPA. These designs in GaAs will be full custom
circuits designed using our Computervision CAD machine to take advantage of the speed
in the GaAs process as opposed to the use of structured logic which will impose
limitations on high speed performance. One advantage, however of the structured
approach is the development of modules which have been completely verified in previous
experiments. 8ecause of the developmental nature of the GaAs process, the approach of
using predefining structures may be valuable if no significant speed disadvantage is
incurred. This definition of structured logic will probably not be attempted until the GaAs
process is mature (within a few years).

4.4 A Structured Tiling Approach to Arithmetic Unit Design

The successful implementation of the Alpha 1 engine will require hardware
implementations of algorithms (such as the Oslo algorithms) which demand high
precision, efficient arithmetic processing. In order to achieve this, the use of rational

arithmetic will allow for exact representations of numbers, thus solving many of the
arithmetic problems encountered in the current software version of Alpha 1

The development of high precision rational arithmetic processors will most probably
require a digit-slice approach to the problem where the range of the operands can be
easily extended either by parallel interconnections of such processors or by serial
interconnection. In her dissertation [5], Chow has proposed an implementation of a such
a variable precision arithmetic processor capable of arbitrary precision calculation of the
four basic arithmetic computations in essentially constant time. She has also developed
algorithms for using the processor for arbitrary precision floatirg-point operations A

46

similar approach would have to be taken in developing a variable precision rational
arithmetic processor.

The variable precision arithmetic processor makes use of the concept of digit sets.
Building on this concept of digit sets, Robertson has developed a theory of decomposition
of structures for binary addition and subtraction [10]. Using this theory, the variable
precision arithmetic processor is easily designed in terms of much simpler elements
which can be directly and easily implemented as integrated circuit tiles. Some
preliminary work has been done by Carter at the University of Utah on this subject and
has led to an NMOS implementation of the combinational logic portion of the processor
for a single radix-16 digit—slice [4],

Simulations of the combinational logic portion of the digit-slice indicate that integer
addition, subtraction or multiplication can be done in almost constant time over arbitrary
operand widths. A paper, by Carter, entitled "The Implementation of a Radix-16 Digit—

Slice Using a Cellular VLSI Technique" treats some of the aspects of this work and is
attached.

The development of the arithmetic portions of the Alpha 1 architecture is therefore
twofold in nature. First, a detailed understanding of the applications of rational arithmetic
processing must be gamed. This includes both the use of rational arithmetic algorithms
in computations central to Alpha 1 (such as the Oslo algorithms) and the architectural

structure of a variable precision rational arithmetic processor. Second, the physical
implementation of the rational arithmetic processors must be relatively easy and error
free. The application of Robertson's theory of decomposition and a more refined

structured tiling approach to integrated circuit design as described by Carter [4] will
permit the quick and efficient implementation of these processors in integrated circuits.
CMOS implementations of the rational arithmetic processors will receive the primary
emphasis with NMOS serving as a technology for the early prototyping of key structures.

4.5 Parameterized Switching and Storage Tiles in Structured Tiling

In addition to computational tiles, the development of the Alpha 1 engine will require
switching and storage tiles. These include the following general purpose tiles: RAM. ROM,
Registers, multiplexors, etc. These parameterized tiles will be formed in such a way that

they can be integrated directly with the a surrounding PPL program. Some of the
parameterized tiles may be constructed from PPL cells. Others will require new custom
designed cells which may or may not conform to the PPL grid. The tiles will be

considered to be single PPL cells which may be manipulated and placed with existing
tools. Thus, this portion of the research will have three maior thrusts:

* The identification of the parameterized tiles to be implemented and the
definition of a library of low-level cells for each parameterized tile. These will
be designed so that by combining these cells together, a module results
which can be integrated onto a common grid with PPL cells and other
modules.

47

* The development of algorithms and corresponding CAD programs which can
use the low level library of custom and PPL cells to generate the
parameterized switching and storage tiles. ASSASSIN fits into this category.
Other generators might include those for RAM, ROM, etc.

* The modification of the current design tools [8, 13, 7] to allow for the
manipulation of these parameterized tiles as cells for editing, simulation, etc.

EARL and ALl are two currently available procedural ‘layout' languages which could be
used to design the custom low-level cells and the parameterized layouts by not defining
any constraints thereby preventing stretching. However, they are difficult to interface to
our existing symbolic editing, simulation, and compaction tools. The difficulty is primarily
due to EARL and ALl's use of geometric layout data rather than symbolic functional data.

These switching and storage tiles will be parameterized such that the ‘'user' of the cell
(human or machine) will supply the necessary parameters to customize the tile. For
example, such a tile might be a RAM block. The parameters might include: address width,
word width, module shape, output drive requirements, performance requirements, refresh
type (dynamic or static), and location of inputs and outputs. Using these parameters, the
CAD system would generate a RAM tile conforming as closely as possible to the specified
parameters. This could be done by putting together predefined RAM-bit tiles, decoder
tiles, and output drive tiles in an appropriate manner.

The tiles will be designed such that, at each level in the design hierarchy, a common
placement and routing grid will be employed. For example, if the top-level is the PPL-
level then the PPL grid can be used to build the random logic and perform the routing
which glues the other tiles together.

48

4.6 References

10.

11.

12.

13.

14.

R J. Lipton, et al, "ALl: A Procedural Language to Describe VLSI Layouts,"”
Proceedings of the 19th Design Automation Conference, IEEE, Jun. 1982, pp.
467-474.

T. M. Carter, 'ASSASSIN: An Assembly, Specification and Analysis System for
Speed-Independent Control-Unit Design in Integrated Circuits Using PPL," Master's
thesis, Department of Computer Science, University of Utah, June 1982.

T. M. Carter, "ASSASSIN: A CAD System for Self-Timed Control-Unit Design,"”
Technical Report UTEC-82-020, Department of Computer Science, University of
Utah, October 1982, A version of this paper has been accepted for publication in
IEEE Transactions on Computer-Aided Design of Circuits and Systems.

T. M. Carter and L A. Hollaar, "Implementation of a Radix-16 Digit—Slice Using a
Cellular VLSI Technique," Proceedings of the 1983 /nternationai Conference on
Computer Design, IEEE, Oct. 1983, pp. to be determined. -

C. V. E Chow. "A Variable Precision Processor Module,” Ph.D. dissertation,
University of lllinois at Urbana-Champaign, July 1980.

C. Kingsley, "Earl: An Integrated Circuit Design Language,” Tech. report #5021,
California Institute of Technology, 1982.

B. E Nelson, "ASYLIM: A Simulation and Placement Checking System for Path-
Programmable Logic Integrated Circuits,” Masters thesis, University of Utah,
October 1982.

B. E Nelson; K FE Smith; and T. M. Carter, "Cost Effective VLSI Design System,"
IEEE Internationai Symposium on Circuits and Systems. May 1983.

Organick, El., Keller, R M, Lindstrom, G., Smith, KF., Subrahmanyam, P.A.. Carter, T,
Klass, D, Maloney, M. P, Nelson, BE. Purushothaman, S, Rajopadhye, S,
"Transformation of Ada Programs into Silicon. Third SemiAnnual Technical Report,”
Tech. report UTEC-83-026, University of Utah, April 1983.

J. E Robertson, A Theory of Decomposition of Structures for Binary Addition and
Subtraction, This is a document in preparation for publication from the University of
Illinois at Urbana-Champaign.

D. Gorman, "Trace and Compare," Proceedings of the 1982 Custom Integrated
Circuits Conference, IEEE, May 1982.

K FE Smith; T. M. Carter; and C. £ Hunt, "Structured Logic Design of Integrated
Circuits Using the Stored Logic Array,” IEEE Transactions on Electron Devices. Vol.
ED-29, No. 4, April, 1982, pp. 765-776.

K FE Smith; B.. E Nelson; T. M. Carter; A. B. Hayes, "Computer-Aided Design of
Integrated Circuits Using Path-Programmable Logic,” IEEE Electro 33 Professional
Program Session Record, New York, New York, April 1983.

K F Smith, "Design of Regular Arrays Using CMOS in PPL," Proceed/ngs of the

49

1983 /nternationa/ Conference on Computer Design, IEEE, Oct. 1983, pp. to be
determined.

50

5. Portable Symbol Manipulation Systems Subproject

5.1 Problem Statement and Objectives

We are standing on the threshold of a potential revolution in computing. Personal
machines are finally appearing with sufficient power to support sophisticated symbol
manipulation systems. Large research programs now maturing in the areas of computer
aided instruction, VLSI, expert systems, computer algebra and general knowledge
engineering have the potential for dramatic impact when delivered on widely available
personal machines. There is great potential for exciting synergy in the combination of
several of these systems into a unified environment. Traditionally, LISP and LISP-based
systems have been the vehicle used for the rapid prototyping of these and similar
applications. New LISP implementations on VAX's and personal machines are attracting
the attention of "dyed-in-the-wool* FORTRAN and C programmers.

However, impediments exist to the successful realization of this revolution. The power of'
symbolic computing comes at the price of significantly more complex programs. A large
variety of incompatible LISP dialects have developed on different machines, each with an
avid following. This confusing state of affairs has caused many potential LISP users to
avoid LISP for "real" applications, citing the the lack of an accepted, transportable and
efficient implementation. Unless we can find new ways to reduce the plethora of
incompatible alternatives, and manage this complexity in a uniform, coherent manner, we
will fail to realize the potential inherent in this new role for computers.

For many years research at Utah has focused on automating the rapid prototyping of
efficient and portable symbol manipulation systems, and encouraging their use in non-
traditional environments. Our most recent system, PSL, is recognized as an interesting
and effective new LISP implementation. PSL has become a significant component of
experimental CAD systems for CAGD and VLSI. The current version of PSL runs on most
of the machines in the department, providing a uniform language and multi-machine
environment to host these applications. The essential ingredients for its success are the
writing of a much larger portion of the language in itself than has been done for previous
LISP systems, and the development of an optimizing compiler driven by tables describing
the target hardware and software environment.

As diverse application areas continue to develop, demands are made for continued
improvements and evolution of PSL into a more powerful LISP. This may result in the
evolution of PSL into the newly developed Common Lisp [2Cl] dialect. Greater execution
efficiency; improved storage management.and additional data-typing capabilities are a
common need. Therefore, we propose to direct our research toward investigation in the
following areas:]

* High quality, portable compilation of LISP and SYSLISP (the LISP-like
implemention language);

* More efficient handling of "traditional® data types like floating point numbers,
matrices and strings; and

51

* Further improvement of the capabilities of the SYSLISP level, through
additional data-typing facilities.

5.1.1 Long Range Objectives

The primary long-term goal of this work is the production of a portable symbol
manipulation system capable of supporting powerful engineering applications. Such
systems would run on large address space, personal workstations and would permit the
combination of graphics, screen editing and browsing paradigms, computer algebra and Al
technology. Besides this integration of these various disciplines into one coherent
environment, of prime consideration is efficiency. The systems must be of sufficient
efficiency to permit fast user interaction. Another goal is to continue to maintain this
LISP compatibility across a wide variety of machines.

With a single dialect (or family) available on a range of machines from 68000-based
workstations to Cray-1 super computers, a number of multi-machine experiments can be,
explored. CAD "workbenches' can be built using reactive, user friendly workstations for
rapid design, and a back-end "symbol-cruncher" on the larger machines such as a
CRAY-1 to do rapid simulation.

Portions of the desired environment for CAD and CAl are now being prototyped on top of
the 68000 PSL systems. Work at Utah, HP and Rand has lead to the recent bootstrap of
the REDUCE computer algebra system onto the 68000 PSL. The ensuing environment
could also include LISP-based graphics packages, EMACS-like screen editor (NMODE,
successor to EMODE [8]), an Al representation language (HPRL, successor to FRL [19]) and
an object oriented LISP extension (GLISP [17]) all running well on PSL. A number of these
sub-systems have begun to interact effectively, and will in the future permit the
exploration of exciting applications. Earlier experiments in a less than ideal environment
have indicated the importance of the 'synergistic" combinations. An initial application
involving algebraic computation to be explored at Utah will include incorporating a
computer algebra facility into the ALPHA-1 system to do analytic surface manipulations,
followed by immediate interactive rendering. This continues the Feng and Riesenfeld [5]
experiments into the new discrete B-spline regime. CAGD is a highly mathematically
oriented application which requires sophisticated mathematical tools. The REDUCE
algebra system [12] which runs on PSL is a perfect match for providing algebraic
operations and would be well suited for applications like analytic surface analysis in
CAGD. Further exploitation of the NMODE screen editor/browser paradigm will lead to a
powerful interactive graphics system, with the potential of a graceful merging of menu
driven approaches with linguistic approaches.

5.1.2 State-of-the-Art

5.1.2.1 External to Utah

There are many different varieties of LISP, and the environments they provide and
availability on current machines vary greatly. There is very little compatibility between
the various versions, prompting the need for a portable approach, and related family of

52

implementations. Most noteworthy has been the recent attempt to merge the various
MACLISP derived dialects (SPICE LISP, NIL. LISP-MACHINE LISP, etc.) into a common
dialect or at least a common subset of these LISP's, called Common LISP [20]. In the
coming years, we will see the maturing of a number of independent Common LISP (or
Common LISP compatible) implementations; some of these will use common code, others
will be created by modifying existing LISP implementations or loading "compatibility"
packages. The current CMU SLISP system sources (using a byte code for a micro-coded
implementation) are being used by CMU to do a VAX implementation, and by Rutgers to
do an extended addressing DEC-20 version. An S-1 implementation of Common LISP [1]
uses a different set of sources and compiler technology [2]. The new Scheme-like dialect
of LISP under development at Yale [18] is also of great interest.

S.1.2.2 Internal to Utah

Utah has been involved with portable symbol manipulation systems for over a decade. A
previous portable “interchange" dialect, Standard LISP [15], has been widely used to
transport significant application programs in the area of computer algebra and computer
aided instruction. An efficient portable LISP compiler was used with these systems [10]
with great success on a number of machines. In early 1981, a new LISP development
began. Its two main goals were: to further improve the portability and efficiency of LISP
systems; and to permit applications to portably exploit machine oriented features not
available in the subset LISP visible via Standard LISP.

Our latest system, PSL (Portable Standard Lisp [11. 21]) provides a single portable dialect
of LISP, with a fairly rich environment typical of modern LISP's, yet is directly portable to
a wide variety of target machines. PSL has a machine oriented 'mode™ for Systems
programming in LISP (SYSLISP) [11] which permits access to the target machine about as
efficiently as in C or PASCAL, o As a consequence, PSL has an execution speed quite
comparable to that of Franz LISP (written in C) or MACLISP (kernel hand-coded in
assembly code). This uniform interface (PSL) to LISP and "Fast Systems LISP" is an
advantage for computationally bound applications typical of CAGD and VLSI, which can
directly exploit SYSLISP to dramatically speed up applications. Also, with the entire
system and application written in PSL. it is quite easy to "flow" between the various levels
thus saving implementation and debugging times.

°SL Version 31 now runs successfully on the Digital Equipment Corporations
DecSystem-20 (recently including extended addressing) and Vax Series computers
(running Berkeley 4.1 Unix), the Hewlett-Packard 9836 computer and the Apollo Domain
68000 based computer. Some limited distributions to the outside community have been
made. All four versions are completely compatible, allowing software developed on one
system to be run directly on any of the others. This system-wide compatibility is the
strongest feature of the PSL system. Previous versions of PSL running under VAX/VMS
with Eunice and under TENEX are in use by collaborators, and may be upgraded for
distribution. Implementations are underway for CRAY-1 and IBM-370.

53

5.1.3 Present Objectives

The major objectives for this proposal are to expand the range and efficiency of the
technology developed for our current implementations, in preparation for the more
sophisticated and demanding applications to come. The work detailed in the following
sections is directed at:

* Research into improved compiler efficiency and portability - development of
improved techniques for register allocation; study methods to exploit
declarations in Lisp systems; investigate ways of improving the handling of
numeric code; comparison of various Lisp compilers with careful studies of
emitted code and performance; research into improved source-to-source and
target-code transformations; development of architectural description
languages in the context of compilers.

* Development of a more powerful SYSLISP model that would permit the
implementation of untyped data structure access - this could be accomplished
by adding a strong typing capability, to interface with the declaration phase in
compilation; modules and packages. This improved model would permit the
replacement of some C or PASCAL used in some applications by efficient
SYSLISP code.

* Extended family of LISP-like systems - the PSL language is a fairly old dialect
of LISP. Research will be performed to determine how to extend PSL with
features derived from Common LISP; object oriented programming facilities,
derived from Flavors, Scheme, GLISP, etc.; interface static typing of SYSLISP
with dynamic typing; isolate common-kernel to support PSL, Common LISP
and successor systems.

5.2 Method of Approach

5.2.1 Overview

The key to PSL's current popularity as a "lean and mean" LISP is the careful combination
of efficiency and portability. The current PSL compiler represents a compromise between
size and efficient compilation of LISP and SYSLISP for a portable system. This has
permitted us to move PSL to a number of different machines, and bootstrap off an older
LISP with reasonable cost. The relatively small size of the compiler permits it to be run
resident, incrementally compiling LISP (with SYSLISP extensions) to quite efficient machine
code. This permits interactive testing of machine oriented code that will later be added
to the PSL kernel, and also has encouraged users to exploit optimizations that result in
5-10 times speed up over "normal” compiled LISP code. Using SYSLISP for this purpose
is MUCH easier than_trying to write the equivalent code as machine code, C or Pascal
procedures to be called from LISP.

During the early PSL development and bootstrap period, most of the work on the compiler
was directed at those constructs that were needed to write a LISP in itself portably. Little

54

attention has been given so far to efficiently compiling things that are important only to
applications; thus, for example, integer, string and vector operations are currently well
compiled, but floating point operations are poor. It was also an important engineering
decision that once acceptable efficiency in an area was achieved (measured by the speed
of current LISP systems), we moved on to other more pressing problems. Unsystematic
examinations of output code have revealed a number of places where quite significant
improvements are still possible in either the basic compilation, the final code-generation,
or even decisions related to the efficiency/portability trade-off.

Therefore, the primary research goal of this project will be directed toward developing
techniques for improving Lisp compilation strategies. Our secondary goal will be focused
upon research into the techniques for adding sophisticated data-typing/declaration
mechanisms to Lisp and the effects of adding this type of mechanism on the power and
expressiveness of the language. We believe that such a mechanism will permit improved
efficiency of the CAGD and VLSI applications which make heavy use of floating point
numbers and matrices.

5.2.2 New Compilation Strategies

A major component of the proposed work is to develop newer compilation strategies than
that which is used in the current PSL system. These strategies could be incorporated
into the current PSL compiler, and along with a better interface to the machine oriented
constructs would dramatically improve the performance of applications that are now
turning to PSL (robotics, graphics and geometric design, VLSI, some high-performance Al
systems). The current PSL compiler was constructed upon an earlier portable LISP
compiler, and so uses rather old compiler technology and (quite successful) heuristic
optimization techniques.

We will investigate the newer compiler technologies (based on Bliss, PQCC, S-1 LISP and
PL.8), and determine what areas are relevant considering that portability and the relative
ease of maintenance are important issues. The goal is to develop strategies that would
make the compiler even easier to retarget to a wider range of architectures. In particular
we want to prepare for the powerful RISC-like machines that seem already to favor the
register oriented model used by the PSL system. Despite its current success, we now
believe the target machine parameterization used in PSL is not powerful enough for
symbol manipulation systems of the future. The system must be capable of managing
simultaneous experimentation with alternative compilation strategies; and handle multiple
target machines and evolving evaluation models. Symbol manipulation systems will
rapidly evolve from a standard LISP dialect, such as PSL, under the influence of new
object-oriented programming styles and the desire to exploit available machine power

The research will involve'the following steps:

5.2.2.1 Extensive measurement of PSL performance and code generation

Much of the current PSL development has been guided by a number of static and
dynamic measurements (including many measurements performed in previous LISP

55

implementations that lead to the current PSL However, most of these measurements
were from either earlier Standard Lisp systems or collected from LISP's external to Utah.
It is quite important that these measurements accurately reflect the current system as
they show possible weakness in design or bad choices for particular implementation
strategies. The results of the measurements will also allow us to give guidance to the
designers of new hardware, and to understand the compiler/hardware trade-off in greater
detail. Therefore, we will spend considerable time first determining what is appropriate to
measure, performing the measurement and finally analyzing the data provided.

Most measurements done so far by us, and others, have studied the target (abstract)
machine statistics, and were mostly used to improve micro-coded LISP machines [7].
These already reflect the compilation strategy. We need to analyze both the interpreted
LISP level (using an instrumented EVAL for the dynamic measurements), as well as the
current Intermediate Level (the ALM or CMACRO level in PSL) and target machines. We
will measure a number of significant LISP programs, such as the REDUCE algebra system,
the PSL compiler, an Al representation language (the new FRL, HPRL is a candidate), the
8IGNUM package, the NMODE screen editor and the PSL kernel sources. Another area
that we will measure concerns a significant set of graphics modules that were written in
C and translated to PSL Their execution in LISP is quite inefficient (for example, matrix
operations on floating point numbers), therefore their study should provide some insight
into some inefficiencies in PSL/SYSLISP.

We will inspect the output of the current PSL compiler, and other LISP compilers that
seem appropriate for a variety of machines. The goal is to understand what is wrong
with the emitted code, and to what degree small changes and additions to the current
compiler will have significant effects. (This exercise itself will in fact result in some
improvement to the PSL code-generators). We have some initial hypotheses about the
need for an improved register allocator [3] and changes in the current PSL abstract LISP
machine; we need to be sure how important that is before embarking on a major re-write
of the compiler.

5.2.2.2 Introduction of Architectural Description Languages

The PSL compiler currently uses a quite successful, but "ad hoc" interpretive pattern
matching method to describe the target machine code generators. Like many other
"interpretive"” code-generator schemes in use in current portable compilers [9], it requires
the programmer retargeting the compiler to express a "macro'l for each of the abstract
LISP machine forms in terms of one or more of the available target machine instructions.
This has made it harder to get maximum efficiency as we begin to use more instructions,
since it is quite hard to understand or exploit the interactions of the various instructions.
Recent work at Utah [13] and elsewhere [9] indicate that it should be economically
feasible to derive the code-generator tables mechanically from a description of the target
machine. A different variant of these techniques is being used in the PQCC proiect to
produce high quality, retargetable compilers with some success. This same input can
then also be used to derive appropriate code optimizers [4, 14], We will study these
systems and determine their applicability toward Lisp compilation.

The current state of the art of this work has resulted in a variety of incompatible machine

56

description forms (some derived from ISP, others more LISP—ike), and many different
methods for actually generating the code generators from the machine tables; some are
rather slow and bulky. We will review the current state of these systems, and explore to
what degree we can incorporate the benefits of such an approach in a production quality
compiler for LISP and other symbol manipulation systems, without losing the current
speed and compactness of the PSL/SYSLISP compilation strategy. The benefits are
enormous: higher quality code, fewer errors in writing the code generators, and more
rapid retargeting. Automated tests (and greater initial confidence) of the code-generators
will replace laborious hand coding and testing.

Once we have gained some experience with the architectural description driven code
generation, we will explore the possibility of extending this approach into other target
machine dependent areas. We may be able to use the architectural description to specify
some of the operating system and loader interfaces, and automate the generation of the
assembler portion of LAP and FASL (now coded by hand by modifying an "almost"
standard version). It is quite possible that we could develop a complete compiler and
loader system automatically from a tabular description of the target machine.

5.2.2.3 Appropriate Level of Compiler Source-to-Source Transformations

Recent work on LISP compilation [2] and other systems suggest the practicality of using
some ‘algebraic™ simplification of the input program. This is performed by a powerful
rule based transformation system which can do many of the important compilation and
optimization tasks as source-to-source manipulations. This would make the subsequent
code-generation phases do a better job with less effort, and make it easier to share
optimizations between systems. An interesting future goal is to explore the use of a
more general purpose Al-ish representation language and powerful rule interpreter. We
might be able to approach complete Rule based compilation; the interesting question will
be the true practicality for a "real" compiler.

It is important to combine information from the data-definition level and an appropriate
architectural description level in the compiler. This will permit many new source-to-
source transformations during compilation, and perhaps permit rule-based compilation all
the way from the source to target code. There are considerable opportunities for
extensive algebraic' simplification of expressions generated during compilation, yet most
current compilers have not been able to avail themselves of the (mostly LISP based)
general purpose algebra systems, and make do with weaker substitutes. We therefore
believe that it is important to be able to experiment with a Lisp system that includes a
running algebra package. Thus we will initially exploit a subset of REDUCE running in PSL
for this purpose. We will also use this subset for symbolic execution in assessing
program costs and complexity analytically, and exploration of algorithm and
transformation complexity.

5.2.3 Data-Typing and Declarations

We will investigate the effects of adding data-typing and declarations to Lisp. This will
be couched in the current version of SYSLISP which is similar to BCPL except that there

57

are very few declarations and no variable typing. The lack of a sophisticated type
management facility will increasingly hamper the rapid development of improved versions
of PSL and successors. Even now we are encountering problems with confusing code,
inconsistent software packages and inability to exercise precise control over machine-
oriented data-types in as flexible and portable a manner as we desire. The ability to
declare variables and data-structures to be WORD, BYTE, S-EXPR, POINTER, etc. will lead
to a mors secure and efficient system. As far as possible, we desire the declarations to
work at the most abstract level, informing the system of an intended type, and leaving to
the compiler or preprocessor to do whatever it sees fit for efficiency. The compiler can
generally produce better code if variable and expression types are known. Types can
often be deduced from the form of expressions and constants, but declarations will be
required to resolve some ambiguities, or give added security by confronting deduced
types with declared types.

We propose to that such a facility could be implemented as a module independent of the
actual compiler, much in the nature of a FLAVORS or Object oriented package. The goal
is to transform “typed" LISP, decorated with declarations, data-type and module’
definitions, using "generic" procedure names, into type-specific LISP that can be compiled
more effectively, but can also be interpreted. The correct design will permit the
interpretive use of SYSLISP and the free intermixing of SYSLISP and LISP code. In fact,
we expect the distinction between SYSLISP and LISP to disappear, merging into a
continuous spectrum from untyped interpreted LISP at one end to efficient C-like code at
the other. The addition of typing information will provide an efficiency mode to the LISP
level that is easily invoked by the appropriate declarations. Thus, the LISP level can be
viewed as a highly reactive development environment that will support continuously
varying capabilities from generic LISP to very efficient typed LISP. This environment will
support very machine oriented applications that can be ultimately "excised" from the LISP
environment for standalone execution and export.

There have been many attempts to incorporate these well known benefits of data
abstraction, security and efficiency of data-typing/data-description, object-oriented
languages into a LISP—Hke language [17], including two experiments at Utah [16]. Many
LISP systems have record declaration packages, user defined type systems, and type-
declarations that the compiler can take advantage of to select more machine specific
operations. However, in all current systems, there is no checking that declared variables
and procedures are in fact used in correctly typed expressions, leading to rather subtle
bugs in the name of efficiency. Efforts to add a static-typing facility without losing the
benefits of dynamic-typing essential to the interactive environment have met with varying
degrees of success. A correct solution will permit a smooth transition from high-level
algebraic specifications down to efficient machine implementation. This will correctly
handle the detection of legal generic operator/operand combinations and their
transformation into more machine specific operators and data-structures.

Our research will begin by investigating the recent ADA-like typing system (with simple
type inference and hierarchies) developed at Utah [16], It runs within the current PSL
environment, but has not been fully integrated or exploited to write "real" code. As it
evolves, we expect to see some influence from more object-oriented programming styles
recently implemented in PSL.

58

5.3 References

10:

11.

12.

13.

Brooks, R A.; Gabriel, R P. and Steele, G. L J., "S-1 Common LISP
Implementation,” The Proceedings of the 1982 ACM Symposium on LISP and
Functional Programming, Carnegie-Mellon University, Pittsburgh, August 1982, pp.
108-113.

Brooks, R A.; Gabriel, R P; and Steele, G. L. Jr, "An Optimizing Compiler for
Lexically Scoped LISP,” The Proceedings of the 1982 ACM Symposium on
Compiler Construction, Boston, MASS, June 1982, pp. 261-275.

Chaitin, G. J., "Register Allocation and Spilling via Graph Coloring," Proceedings of
the SIGPLAN '82 Symposium on Compiler Construction, ACM SIGPLAN, January
1982, pp. 98-105.

Davidson, J. W. and Fraser, C. W., "Eliminating Redundant Object Code," Conference
Record of Ninth Annual ACM Symposium on Principles of Programming
Languages. ACM, New York, ACM, January 1982, pp. 128-132.

”

Feng, D. Y, and R FE Riesenfeld, "A Symbolic System for Computer Aided
Development of Surface Interpolants,” Software- Practice and Experience, Vol. 8§,
1978, pp. 461-481.

Fenichel, R R, "An On-line System for Algebraic Manipulation,” Ph.D. dissertation,
Harvard University, 1966.

Gabriel, R P.. and Masinter, L M, "LISP Evaluation and Timing," The Proceedings of
the 1982 ACM Symposium on LISP and Functional Programming, Carnegie-Mellon
University, Pittsburgh, August 1982, pp. 123-142.

Galway, W; and Griss, M. L. "An Editor Interface for a Portable Lisp Programming
Environment." Utah Symbolic Computation Group, Opnote 64, University of Utah,
Department of Computer Science, January 1982.

Ganapathi, M,; Fischer, C. N.; and Hennessy, J. L, "Retargetable Compiler Code
Generation,"” ACM Computing Surveys. Vol. 14, No. 4, December, 1982. pp. 348-375.

Griss. M. l..; Benson. E; and Hearn, A. C., 'Current Status of a Portable LISP
Compiler,” Proceedings of the SIGPLAN 1982 Symposium on Compiler
Construction, ACM SIGPLAN. June 1982, pp. 276-283.

Griss, M. L; E Benson and G. Q. Maguire Jr, "PSL: A Portable LISP System,"

Proceedings of the 1982 ACM Symposium on LISP and Functional Programmt ng,
ACM, Carnegie-Mellon University, Pittsburgh, Pa., 1982, pp. 88,97, (Also available as
Utah Symbolic Group Report UCP-83)

Hearn, A. C. "REDUCE 2 Users Manual - Third Edition,” Tech. report. The Rand
Corporation, Santa Monica, Ca., 1983.

Kessler, R R, "COG: An Architectural-Description-Driven Compile'- Generator
Ph.D. dissertation. Department of Computer Science, University of Utah, January
1981.

14.

15.

16.

17.

18.

19.

20.

21.

59

Kessler, R R, "Peephole Optimization in COG," Utah Symbolic Computation Group,
OpNote 76, University of Utah, Department of Computer Science, June 1983.

Marti, J. B, et al, "Standard LISP Report,” S/CPLAN Notices, Vol. 14, No. 10,
October, 1979, pp. 48-68.

Morrison, D., "Betty: A Type Analysis Program for LISP,” Master's thesis, Department
of Computer Science, University of Utah, August 1982.

Novak, G. S, Jr., "GLISP User's Manual," Heuristic Programming Project
Report HPP-82-1, Computer Science Department, Stanford University, November
1982.

Rees, J. A. and Adams, N. I, "T: A Dialect of LISP or, LAMBDA: The Ultimate
Software Tool,” The Proceedings of the 1982 ACM Symposium on LISP and
Functional Programming, Carnegie-Mellon University, Pittsburgh, August 1982, pp.
114-122.

Roberts, R B. and I P. Goldstein, "The FRL Manual,” Memo 409, M.L.T A.l.
Laboratory, June 1977.

Steele, G. L Jr, "An Overview Of Common LISP," The Proceedings of the 1982 ACM
Symposium on LISP and Functional Programming, Carnegie-Mellon University,
Pittsburgh, August 1982, pp. 98-107.

The Utah Symbolic Computation Group, "The Portable Standard LISP Users Manual,
Utah Symbolic Computation Group Technical Report TR-10, University of Utah,
Department of Computer Science, March 1981, (PSL version 3.1, 7 Feb 1983)

60

6. Contract Specifics

6.1 Deliverables

At the conclusion of this contract we will have developed a hardware prototype system of
the selected geometric processes and demonstrate it. In order to demonstrate this part
of a total geometric design system, it will be integrated into the experimental geometric
modelling testbed Alpha 1 and applied to a selected model. The results of supporting
and related research into computer geometry, geometric modelling, VLSI, and Portable
Symbol Manipulation, as well as the integration of these areas, will be reported.

6.2 Coordination Between VLSI and Geometry Research

This project involves the close coordination of research efforts in computer geometry and
special purpose VLS| designs. The target algorithms for casting in VLSl will come from,
the computer geometry milieu, and intensive dialogue and cooperation will have to ensue
in order to assure a clear specification and protocol. The following correlation of
intermediate results will accord each effort the necessary time for planning strategy and
for implementing the tools required to complete the work. As the activity chart indicates,
both the VLSI and geometry groups will engage in continuous interaction throughout the
contract period.

6.3

61

Year | First Year I Second Year | Third Year |
Quarter | 1 | 2 | 1 2 | 1 1 2 1
Analyze Algorithms | | | | | 1 1
(Subdivision and I <— > 1 | | | 1
Intersection) | | | | | 1 1
Hardware/Software | | I | 1
Interfaces | < > | | | 1 1
I | | I 1 1
Select Portion of I | I |
Algorithm for Hwe I | < > | |
Subsys Implement. | | |
Emulate Subsys | | | <o > |
IC Implementation | | I
(2 or 3 chips to be | | | <
Used in Subsystem)l | | 1 1
Subsystem Eval. | I | 1 1
(Performance — | | | | | 1 <o > 1
Speed/Accuracy) | | | I | 1 1

Geometry

6.3.1 Statement of Work

1 Design mathematical spline representations and corresponding data structures
to be used internally to the Alpha 1 modeller. Considerable experience has
An

been accumulated with the initial requirements of such a modeller.
evaluation will be made of data structures which are too costly to maintain
our current prototype software hosted on a general purpose computer,

implementation.

in

but
which might be viable in the context of a higher performance custom

. Demonstrate the power of the unified spline approach by modelling difficult

mechanical pieces in the Alpha_1 testbed.. One example part which the
modeller will address is a typical molded plastic or structural foam housing
for a piece of electronic equipment. These parts are composed of primitive
volumetric shapes with sculptured junctions between them, a class of object
which is currently beyond the state-of-the-art. Other examples will include

62

composite objects which are more complex because they have many simple
components ‘and also because they 'include difficult” freeform Surfaces.
Challenging modelling candidates, like"a modern truck or a personnel carrier, "
will be chosen to be of interest to the DoD community. Demonstration wil
result after creating and implementing the necessary modelling tools. The
result will be a three dimensional mathematical representation.

3. Develop and demonstrate an exact arithmetic algorithm appropriate for use in
the intersection operation. Analyze candidate algorithms for suitability with
regard to specialized hardware implementation.

4. Specify a functional architecture of thetestbed Alpha 1 modeller which shows
relationships between candidate algorithms and data components to allow
initial determination of an architecture for a VLSI implementation. This
analysis ~ should allow initial estimation of local memory and
processor/memory bandwidth requirements. Specialized characteristics of the
algorithms which are amenable to VLSI implementation techniques will be !
identified if they exist.

5. Develog a semiautomatic methodology for extracting a finite element model
from the proposed spline based master geometry representation which will
allow us to interface to a large body of existing sophisticated finite element
analysis packages like Adina. Demonstrate the methodology on a selected
testcase.

6.3.2 Approximate Milestones

The following are milestones to be demonstrated for the computer geometry and
modelling component:

L Implement an interactive design editor capable of modelling parts with unions
and intersections of both simple primitive geometry and sculptured surfaces
on a currently available general purpose computer. The objective of this
editor is to avail to the user a richer variety of geometric representations, B-
spline bounded solid objects, than has been heretofore available. Such an
editor would permit the user to define a more faithful geometric model,
particularl y when sculptured surfaces are involved. (24 mos)

2. Complete an analysis of the algorithms used by the modeller to determine
which areas require improvement in order to make the modeller perform well
enough for practical use. There are known complications with both
reproducibility of floating point arithmetic operations and their time
requirements which limit the practicality of the present approach. If exact and
efficient computations were available, then the crucial intersection and
rendering algorithms could be implemented and executed in a manner that is
more closely related to the governing theory. It currently contains many
extraneous adaptations to account for the disparity between the theory and its
implementation. (12 mos)

63

3. Complete the design of a hardware/software environment suitable for testing
the performance of the prototype design editor in concert with special
function VLSI processors that have been built to enhance performance of the
computationally intensive operations like subdivision, intersection of surfaces,
or ray casting. (12 mos)

4, Comglete a pr_oltotrpe VLSl implementation of special purpose processors
capable of a critical geometric function like subdivision, intersection, or exact
arithmetic, (30 mos)

5. Complete a graphical simulation showing the process of generating a
manufacturing prototypmg capability. This requires calculating offset surfaces
and parallel generating surface cuts on a family of successive approximations
the final part surface. The simulation will be demonstrated as a graphical
anin;ation sequence involving a modelled part and a modelled cutter. (24
mos

6. Complete an interface from the Alpha 1 representation with that of some
standard and appropriate finite element analysis package like Adina. That is,
we will have the ability to subject a geometric object defined by a spline
boundary to a standard finite element package to see the results of a finite
element analysis. (24 mos)

64 VLS|

64.1 Statement of Work

a. Formalize the structured tiling integrated circuit layout methodology and the
structured arithmetic tiling design methodology.

b. Develop static and dynamic PPL cell libraries using the CMOS technology.
This will involve circuit design, simulation, layout, and testing. We expect to
use the MOSIS 3-micron technology.

C. Design, implement and test selected CMOS PPL circuits for the special
purpose geometric processors to be integrated into the Alpha 1 testbed.
These circuits will be fabricated through MOSIS and will include circuits which
implement portions of the intersection and subdivision algorithms used in
Alpha 1

d. Define, design, implement and test several high-speed full-custom GaAs
circuits of interest in geometric modelling. This will be done in conjuction
with Rockwell, 'using their design rules, and fabrication capabilities. Circuit
simulation will be done using an elementary model developed at Rockwell.

e. Identify, design, implement (in NMOS and CMOS) and test a group of

64

parameterized tiles (other than arithmetic tiles) which will be required in the
Implementation geometric ~ processors. Since VLSI-based arithmetic
computations will be a key g_o_rtlon, of the project a specialized arithmetic
integrated circuit design capability will be developed, based on the structured
arithmetic t|||ng?_ design methodology. Test structures will be fabricated using
the MOSIS faciltty.

. Design, implement and test a variable-precision fixed-point (or rational)
arithmetic processor for the geometric processors. This will be done using
the structured arithmetic tiling capability developed in the previous point.
Preliminary discussions have led to a tentative consideration of a design done
at the University of Illinois at Urbana-Champaign by Chow, under the direction
of Dr. James E Robertson.

. Develop algorithms and tools for the automatic generation of parameterized
tiles and arithmetic structures. ~ The parameterized tiles which will be
considered include RAM. ROM, multiplexors, and data switches. Arithmetic
structures will be developed directly from arithmetic set equations as
developed by Robertson.

. Develop a unified set of tools which, in conjunction with the existing set of
PPL design tools, will be used for the design, verification and implementation
of the circuits described above. These tools will be built on a relational
database system and will include a hierarchical structured tiling design editor,
a hierarchical, mixed-level simulator, an advanced state-machine generator, an
arithmetic module generator, and test sequence generators.

6.4.2 Approximate Milestones

Year I First Year | Second Year | Third Year |
Half 1 1 1 2 1 1 1 2 |1 119121
a. Formalize tiling I <—-—> 1 [| | 1 1
b. Static CMOS PPL | <—=——-- -—=> 1 [[1 1
Dynamic CMOS PPL N ... > | [1 1
c. CMOS PPL Circuits | [

d. GaAs Custom Circuits |

e. Arith. Tiling Meth. | S | | | 1 1

f. Arith. Tiling NMOS | | <-mmmmmmmmmmmmmee- > | 1 1
Arith. Tiling CMOS |1 I | <---—--mmm- o> 1 1

g* Var. Prec. Proc. I | <

h. ldentify Parm. Tiles | <-———- —> 1 [[1 1
Design, etc. Parm. T| l <—— ——— - > | 1 1

i. Parm. Algorithms [| <-—===—mmmmmmm e I | 1
Parm. Generators [|

J Unified Design Sys. 1 mmmmmm——m——o >]

k. VLSI for Geom. Proc.l | I | <——--

6.5 Graphical Support Software Environment

6.5.1 Statement of Work

Study and develop a graphical support software environment capable of efficiently
supporting VLSl and CAGD applications. This environment and programming language
must have the following characteristics:

66

L The environment must be portable across many different workstations and be
easily transported to the new workstations soon to appear. Therefore, we
plan “on utilizing architectural description language techniques to transport the
environment to each new workstation;

2. A language interpreter for program development to aid in the rapid
prototyping of the VLSI and CAGD applications;

3. Highly optimizing compiler for the incremental development of efficient
production quality code.

The following outlines the steps necessary to produce the graphical support system as
described above:

a Integrate the architectural description language techniques into the current
environment used for VLS| and CAGD to provide enhanced optimization
techniques.

b. Expand the architectural description techniques to include code gensration
that will allow more flexible and efficient production code. This enhanced
environment will be released to the CAGD and VLSI groups for testing.

C. Research into the integration of the architectural description techniques into
the entire environment. These new techniques will allow the graphical
support software environment to be transported to a new target architecture
simply by writing a new machine description.

d. Research and development into techniques for the specification of data types
and declarations in an environment which includes both interpretive and
compiled program development.

e. Investigate the extension of the data type and declaration mechanism to
provide efficient floating point and matrices as needed in VLS| and CAGD

f. Release the advanced portable graphical support environment for testing by
the VLSI and CAGD projects.

6.S.2 Approximate M ilestones

Year

. Arch Desc/Opt

. Arch Desc/Code Gen

. Arch Desc/Environ

Declare/Data Types

. New Constructs

. Release System

1 First Year

1 1 1 2

1 1 <-
1 1

I | <-——--
1 1

1 1

Second Year

11 1 2

1 1

1 1
e e
>1 1

I<— —————>

1 1<~

1 Third Year

1

1

