
Mohamed Dekhil, Ganesh Gopalakrishnan, and Thomas C. Henderson

UUSC-95-004

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA .

April 6, 1995

Modeling and Verification of Distributed Control Scheme for Mobile Robots

Abstract
In this report we present a sensor-based distributed control scheme for mobile robots. This scheme

combines centralized and decentralized control strategies. Each group of sensors is considered to be a
process that performs sensing and carries out local control tasks as well. Besides these processes, there
is a central controller that carries out global goals utilizing sensor readings on a need to know bases.
In this scheme, the sensors communicate with the central controller, and also may communicate
with each other. Communication protocols has been defined and an abstract model for the proposed
control scheme was built. Formal verification techniques were used to verify the correctness of these
protocols as well as some desired properties of the proposed scheme. The advantages of this scheme
over the centralized scheme is that it increases system modularity and flexibility and provides graceful
degradation in case of failure of some of the sensors. The results of verifying and simulating this
model are presented with a brief discussion and conclusion on these results.

Contents

1 Introduction 2
1.1 Sensor-based Control 2
1.2 System Verification Techniques.. 4

2 The Proposed Control Scheme 6
2.1 Abstract Sensor Model .. 6

2.2 A Distributed Control Architecture.............. 7
2.3 Communication Protocols.............. ... 9

3 Experiment and Simulation Results 9
3.1 Modeling the System 12
3.2 Commanding Sensors and Reaction C ontrol... 14
3.3 The Priority S ch em e.. 16
3.4 Implementation ... 16
3.5 Simulation Results... 19

4 Verifying the System 21

5 Conclusion and Future W ork 22

6 APPENDIX A 23

1

1 Introduction
This report presents the steps for defining and constructing a model for distributed sensor-based
control scheme, and formally verifying several aspects about the system. The following sub­
sections describe the motivation of this work, and a brief background and the related work in
the areas of sensor-based control and system verification techniques.

1.1 Sensor-based Control

In any closed-loop control system, sensors are used to provide the feedback information that
represents the current status of the system and the environmental uncertainties. The main com­
ponent in such systems is the transformation of sensor outputs to the decision space, then the
computation of the error signals and the joint-level commands (see Figure 1). For example, the
sensor readings might be the current tool position, the error signal the difference between the
desired and current position at this moment, and finally, the joint-level command will be the
required actuator torque/force.

Task-level
commands

Figure 1: Closed loop control system.

The sensors used in the control scheme shown in Figure 1 are considered to be passive
elements that provide raw data to a central controller. The central controller computes the next
command based on the required task and the sensor readings. The disadvantage of this scheme
is that the central controller may become a bottleneck when the number of sensors increases
which may lead to longer response time. By response time we mean the time between two
consecutive commands. In some applications the required response time may vary according
to the required task and the environment status. For example, in autonomous mobile robot
with the task of reaching a destination position while avoiding unknown obstacles, the time to
reach to the required position may not be important, however, the response time for avoiding
obstacles is critical and requires fast response.

Fast response can be achieved by allowing sensors to send commands directly to the phys­
ical system when quick attention is required. This is analogous to human reactions to some

2

events. In the normal cases, the sensory systems in humans (e.g., eye, ear, nerves, etc.) sends
perceived data to the brain (the central controller) which analyze this data and decides the next
action to be taken based on the result of the analysis and the required task to be done. However,
humans have a very fast contracting reaction when touching hot surfaces for example. In such
cases, this reaction behavior is due to commands sent directly from the nerves at the skin spot
where the touch occured to the muscles, bypassing the brain.

There has been a tremendous amount of research in the area of sensor-based control in­
cluding sensor modeling, multisensor integration, and distributed control schemes for robotic
applications in general and mobile robots in particular.

A sensor-based control using a general learning algorithm was suggested by Miller [17].
This approach uses a learning controller that learns to reproduce the relationship between the
sensor outputs and the system command variables. A technique for sensor-based obstruction
avoidance for mobile robots was proposed by Ahluwalia and Hsu [1]. In their technique, the
robot is able to move through an unknown environment while avoiding obstacles. Simulations
were carried out assuming the robot had eight tactile sensors and the world is modeled as a two­
dimensional occupancy matrix with 0 ’s representing empty cells and 1 ’s representing occupied
cells. Another method for sensor-based obstruction avoidance was proposed by Gourley and
Trivedi [5] using a quick and efficient algorithm for obstacle avoidance.

Hagar proposed a novel approach for sensor-based decision making system [6]. His ap­
proach is based on formulating and solving large systems of parametric constraints. These
constraints describe both the sensor data model and the criteria for correct decisions about the
data.

Lin and Tummala [15] described an adaptive sensor integration mechanism for mobile robot
navigation. They divided the navigation process into three phases:

Sensing: firing different sensors then sending the perceived data to the data processor.

Integration: interpreting sensory data of different types into a uniform representation.

Decision: Deciding the action plan based on the current workspace representation.

A distributed decentralized control scheme is proposed by Mutambara and Durrant-Whyte
[18]. This scheme provides flexible, modular and scalable robot control network. This scheme
uses a non-fully connected control components, which reduces the number of interconnec­
tions and thus reducing the number of required communication channels. There has been a fair
amount of research in developing languages for sensor-based control for robot manipulators.
The goal of such languages is to provide an easy tool for writing adaptive robotic controller.
Some of these languages are described in [22]. Several research activities for sensor-based
control for robotic applications can be found in [13].

3

The idea of smart sensing was investigated by several researchers. Yakovleff et al. [25]
represented a dual purpose interpretation for sensory information; one for collision avoidance
(reactive control), and the other for path planning (navigation). The selection between the two
interpretation is dynamic depending on the positions and velocities of the objects in the envi­
ronment. Budenske and Gini [3] addressed the problem of navigating a robot through an un­
known environment, and the need for multiple algorithms and multiple sensing strategies for
different situations.

Discrete Event Systems (DES) is used as a platform for modeling the robot behaviors and
tasks, and to represent the possible events and the actions to be taken for each event. A frame­
work for modeling robotic behaviors and tasks using DES formalism was proposed by Kosecka
et al. [11]. In this framework, there are two kinds of scenarios. In the first one, reactive behav­
iors directly connects observations (sensor readings) with actions. In the second, observations
are implicitly connected with actions through an observer.

In our proposed control scheme, the sensory system can be viewed as passive or dumb ele­
ment which provides raw data. It can be viewed as an intelligent element which returns some
“analyzed” information. Finally it can be vised as a commanding element which sends com­
mands to the physical system. Each of these views is used in different situations and for dif­
ferent tasks. A detailed description of the proposed control scheme is presented in Section 2.

1.2 System Verification Techniques

In designing and building systems that have several components communicating with each
other, verifying their communication protocols arises as an essential step in the design process.
Simulation is a widely used method to verify the correctness of a system. The problem with
simulation is that it doesn’t cover all possible cases that might arise in the real world, which
means that simulation can only tell if the system has errors, but it can not determine if the sys­
tem is error-free.

Formal verification is another approach used to verify the correctness of a system. It re­
quires formulating the system in a mathematical model with some level of abstraction. It also
requires a method for specifying system properties to be verified. The problem with this ap­
proach is that it is sometimes very difficult to model the system in a precise way, and some of
the system properties might not be included in the abstract model. Finite state machines (FSM)
and Petri Nets (PN) are the most widely used frameworks to model the system behavior.

In sensory systems with multiple sensors, there must be some protocols to specify the way
of communication between these sensors and the controller(s) which uses the sensor readings
as a feedback component for the underlying control scheme. Some systems may require coor­
dination among the sensors, which imply that more communication protocols has to be defined.
Simulation, and/or formal verification techniques can be used to verify these protocols, and to

4

check some system properties.
The problem becomes more difficult in concurrent sensory systems when each group of

sensors represents a process that can run simultaneously with other processes. Verifying such
systems, and concurrent system in general, has been a research topic for several years, and there
have been great amount of research efforts in this area.

Automated verification of the logical consistency of communication protocols has been hot
research issue for more than two decades, different methodologies has been suggested, and
several tools has been developed to assist in the verification process.

Holzmann [8] presented several algorithms for automated protocol verification, and made
a comparison between these algorithms based on CPU time requirements, memory usage, and
the quality of the search for errors. The four basic types of algorithms he presented are:

1. Exhaustive search.

2. Partial search.

3. Stack search.

4. Memory-less search.

He proposed a new algorithm called super trace, based on partial search which works in
fixed-size memory and is about two order of magnitude faster than the other methods. He also
proposed a framework that combines simulation with formal verification [9,10]. He developed
a tool called SPIN, and a specification language called “PROMELA” which can be used to
design reliable protocols by modeling the system and to simulating its behavior, and also by
specifying some properties of the system to be verified.

Another framework for automatic system verification was proposed by McMillan [16] who
developed another language for this purpose called “Symbolic Model Verification” (SMV).
The main contribution of McMillan’s work is the possibility of checking large systems with
millions of states in a reasonable amount of time and space. In this framework, temporal logic
is used as the basis for reasoning about concurrent and reactive programs. Temporal logic uses
the usual operators of prepositional logic plus other tense operators which are used to reason
about conditions changing across time. More about temporal logic and its applications can
be found in [20, 21]. McMillan used Binary Decision Diagrams [14] to efficiently represent
a class of systems, and this approach simplifies the verification process and allows verifying
large class of complex problems. Naik and Sistla [19] used the SMV tool to model and verify
the Ethernet protocol.

COSPAN is a software system written by Kurshan [12] to assist in the development of
large, control oriented programs. Formal verifications is one of the aspects of this language
Bradakis [2] proposed a framework for rapid design and verification of reactive behaviors for

5

sensor-based autonomous agents. In this framework, the behavior of a reactive system is de­

scribed by a collection of finite state machines which can be implemented to produce real be­
havior. COSPAN was used to implement the reactive behavior and to formally verify some
properties of the system.

An example of a distributed control system of track vehicles was modeled and verified us­
ing the Process Algebra techniques by Fischer [4]. In this example, every vehicle and every
track section has its own control process. These processes are to communicate to ensure col­
lision free movement of vehicles. This example illustrates the use of automatic formal verifi­
cation tools in modeling real problems.

2 The Proposed Control Scheme

The robot behavior can be described as a function T that maps a set of events £ to a set of
actions A . This can be expressed as:

T\ £ — ► A

The task of the robot controller is to realize this behavior. In general we can define the
controller as a set of pairs:

{ (e i , d j), (e2, a2) , (en, an) }

where e, £ £, and a,- e A
The events can be defined as the interpretation of the raw data perceived by the sensors.

Let’s define the function T which maps raw data 1Z to events £:

T : H — > £

2.1 Abstract Sensor Model

We can view a sensory system with three different levels of abstractions (see Figure 2.)

1. Dump sensor: which returns raw data without any interpretation. For example, a range
sensor might return a real number representing the distance to an object in inches.

2. Intelligent sensor: which interprets the raw data into an event using the function T . For
example, the sensor might return something like “will hit an object” .

3. Controlling sensor: which can issue commands based on the received events, for ex­
ample, the sensor may issue the command “ stop” or “turn left” when it finds an obstacle
ahead. In this case, the functions T and T should be included in the abstract model of
the sensor.

6

Figure 2: Three levels to view a sensor module.

The dumb sensor can be used as a source for the feedback information required by the con­
trol system. It can be also used to gather measurements to construct a map for the surrounding
environment. The process that uses a dumb sensor as a source of information needs to know
the type of that sensor, the format of the data the sensor returns, and the location of the sensor,
to be able to interpret the perceived data. The intelligent sensor may be used for monitoring
activities. The process that uses an intelligent sensor, needs to know only the event domain
and maybe the location of the sensor. On the other hand, the commanding sensor is considered
to be a “client” process that issues commands to the system.

2.2 A Distributed Control Architecture

Several sensors can be grouped together representing a logical sensor [7 ,24]. We will assume
that each logical sensor is represented as a client process which sends commands through a
chanel to a multiplexer (the server process) which decides the command to be executed first.
Besides these logical sensors, we might have other processes (general controllers) that send
commands to the server process to carry out some global goals. Figure 3 shows a schematic
diagram for the proposed control scheme.

Let’s call any process that issues commands to the server a em control station. In this figure,
there are three types of control stations:

1. Commanding sensors, that are usually used for reaction control and collision avoidance.

2. General Controllers, that carry out a general goal to be achieved (e.g., navigating from
one position to another.)

3. Emergency exits, which bypass the multiplexer in case of emergencies (e.g., emergency
stop when hitting an obstacle.)

7

Sensor Space

Figure 3: The proposed control scheme.

8

In most cases, the general controllers require feedback information to update their con­
trol parameters. This information is supplied by dumb sensors in a form of raw data. On the
other hand, a monitoring process might use em intelligent sensors as a source of “high-level”
events instead of raw data. All control stations (except for the emergency exists) send the com­
mands to a multiplexer. The multiplexer selects the command to be executed based on a priority
scheme which depends on the current state of the system and the type of control station send­
ing the command. Once a command is selected, all other commands can be ignored, since the
state of the system will change after executing the selected command.

The low-level controller, shown in Figure 3, translates the high-level commands into low-
level instructions which drive the system’s actuators. The low-level controller receives its com­
mands either form the multiplexer or from an emergency exit. After the command is executed,
the system state is updated, and the sensor space is changed. New sensor readings are received
and the cycle keeps iterating.

2.3 Communication Protocols

In the proposed control scheme, there are several control stations that send commands asyn­
chronously to the server. Therefore, we need to define a communication protocol to organize
these commands, and to set a priority scheme for selecting the command to be executed first.

Each command station may send commands to the server (the multiplexer) at any time.
Each command is associated with the signature of the sender. This signature includes the name
and type of the sender, and the priority value. In most cases, the reaction commands (usually
from a commanding sensor to avoid collision) has higher priority than a general controller. The
priority among commanding sensors may be specified by the user and/or by the current state of
the system. Emergency exits should always bypass the server and sends its commands directly
to the low-level controller. The priority of the general controllers usually specified by the user.

The global controllers needs to know the current state of the system and the command his­
tory to update their control strategy. Therefore, the server has to broadcast the selected com­
mand and the current state of the system. The reaction stations might need to communicate
with each other to reach a decision.

3 Experiment and Simulation Results

A simulator has been developed to examine the applicability of the proposed control scheme.
This simulator is based on a mobile robot called “LABMATE” designed by Transitions Re­
search Corporation (TRC). The LABMATE was used for several experiments at the Depart­
ment of Computer Science, University of Utah. It also entered the 1994 A A A I Robot Com­
petition [23]. For that purpose, the LABMATE was equipped with 24 sonar sensors, eight in-

9

Figure 4: The LABMATE robot with its equipments.

frared sensors, a camera and a speaker. 1 Figure 4 shows the LABMATE with its equipment,
and Figure 5 shows a graphical simulator for the LABMATE .2

In all previous experiments, the LABMATE was controlled using a conventional control
strategy in which there is a central process (the controller) that does everything. This controller
receives raw data from the “dumb” sensors, interprets the data, plans for the next move based on
these readings and the global goal it has to achieve, and finally issues the required commands.
Beside that, the central controller may also produce an output for monitoring purposes. The
following are some drawbacks for this scheme:

• The central controller has to know the type and location of each sensor.

• It also needs to know the data format for each sensor type.

1The LABMATE preparations, the sensory equipments, and the software and hardware controllers were done
by L. Schenkat and L. Veigel at the Department of Computer Science, University of Utah.

2This simulator was implemented by A. Efros at the Department of Computer Science, University of Utah.

10

mrnmm

SkSS&S

. . . . j

Figure 5: A graphical simulator for the LABMATE,

• It may take long time to issue the required command. This time depends on the interpre­
tation procedure for the data received from each sensor.

• Adding or removing any sensor requires modifying the central controller.

3.1 Modeling the System

The sensors in the old scheme are used only as dumb sensors, while in the proposed scheme,
sensors are used in three different levels. They are used as dumb sensors to provide feedback
information for a general navigator. They are also used as intelligent sensors providing infor­
mation to a monitoring process with a speaker as an output device. Finally they are used as
commanding stations for collision avoidance. The camera is used as a commanding station
which recognize certain objects and guide the robot to collect them. It also provide informa­
tion to the monitoring process. The emergency exits are hardware bumpers that command the
robot to stop if it touch any object. There is also a general controller for navigation and map
construction. The commands that can be issued are:

• G O -F R W D d: move forward distance d inches, where d is a non-negative real number.
When d — 0, the robot will keep moving forward until other command is issued.

• G O -B K W D d: move backward distance d inches, where d is a non-negative real num­
ber. When d = 0, the robot will keep moving backward until other command is issued.

• T U R N -R IG H T 8 : turn right 0 degrees, where 0 is a positive real number.

• TU R N -LE FT 0: turn left 6 degrees, where 6 is a positive real number.

• STOP: stop moving (or turning).

• RESET: restart operation after a fault.

• P IC K : pick up an object.

The system can be in any of the following states:

• ID LE: the robot is not moving.

• FO R W A R D : the robot is moving forward.

• B A C K W A R D : the robot is moving backward.

• R IG H T: the robot is turning right.

12

• LEFT: the robot is turning left.

• FAULT: the robot hit an obstacle.

Figure 6 shows a state diagram for the system. This figure shows that the robot has to go
to the idle state when the command is changed. For example, if the command GO-FORWARD
is issued, the system will go to the FORWARD state and will remain there as long as the fol­
lowing commands are GO-FORWARD. Once the next command is different, the system will
go to the IDLE state first, then it will go to the state corresponding to the current command.
This is analogous to what happens in controlling the LABMATE. The LABMATE has to stop
first before changing direction. For example, the LABMATE cannot turn left or right while
moving forward or backward. In the simulator, this is accomplished by inserting am implicit
STOP command between any two different commands.

Figure 6: The relation between the system states and the commands.

d_frwd

/
LS-FRWD

N

\

/ \

/ \

/ LS- LS \

LEFT

\

RIGHT

/

\ /

\ /

\ LS-BKWD /

d._bkwd

Figure 7: Dividing the sonar sensors into four logical sensors.

3 .2 C o m m a n d in g S e n s o r s a n d R e a c t io n C o n t r o l

To simplify our model, the 24 sonar sensors are divided into four logical sensors as shown in
Figure 7.

1. LS-FRW D consists of the front 6 sensors.

2. LS-BKWD consists of the rear 6 sensors.

3. LS-RIG H T consists of the right 6 sensors.

4. LS-LEFT consists of the left 6 sensors.

These logical sensors communicate with each other to decide the command to be issued.
This makes the job of the multiplexer easier, since it will deal with the four logical sensors as
one commanding station. The goal of the reactive control is two fold:

14

1. avoid obstacles.

2. Keep the robot in the middle of hallways, specially when moving through narrow corri­
dors.

We will define two abstract values: close (c) and fa r (/) . These two values represent the
distance between the robot and the closest object at any side. The range for c and / are usu­
ally user defined values. The command to be issued as a reaction control depends on the cur­
rent state of the system and the distance value at each side. There are several ways to define a
command function { to achieve the required goal. The assumption here is that there is always
enough space for the robot to rotate left of right, therefore we don’t need to define any reaction
control when the robot is rotating. One such function is shown in Table 1.

d jrigh t d J e f t d .fr w d dJbkwd FORWARD BACKWARD
c c c c STOP STOP
c c c f GO-BKWD —
c c f c — GO-FRWD
c c f f — —
c f c c TURN-RIGHT TURN-LEFT
c f c f TURN-RIGHT TURN-LEFT
c f f c TURN-RIGHT TURN-LEFT
c f f f TURN-RIGHT TURN-LEFT

f c c c TURN-LEFT TURN-RIGHT

f c c f TURN-LEFT TURN-RIGHT

f c f c TURN-LEFT TURN-RIGHT

f c f f TURN-LEFT TURN-RIGHT

f f c c TURN-L/R TURN-L/R

f f c f TURN-LIR —

f f f c — TURN-L/R

f f f f — —

Table 1: An example of a decision function for reaction control.

In this table, TURN -LIR means the command can be either TURN-LEFT or TURN-RIGHT,
and a dash “— ” means no command is issued. Notice that, in case of d J e f t and d_right have
different values, the values for d^frw d and d.bkuid are not important. This is because we need
to balance the distance to the left and to the right of the robot, and if, for example, the distance
in front (d -frw d) is c, and the robot state is FORWARD, then moving to the left (or to the right)
will serve both; avoiding the object in front, and balancing the distance on both sides. In the

15

first case of the table, when the distance is c in all sides, the robot will not be able to move any­
where, and the sensor readings will not change. This will result in a deadlock which requires
external help by moving at least one of the obstacles for the robot to be able to move. Figure 8
shows graphically the different cases when the system state is FORWARD, and Figure 9 shows
the same cases when the system state is BACKWARD.

3 .3 T h e P r i o r i t y S c h e m e

In this system, there are three commanding stations competing for the server:

1. The four logical sensors representing one commanding station.

2. The camera which guides the robot to pick certain objects.

3. A general controller for navigation.

Beside these commanding stations, there is an emergency exit represented by two bumpers,
one on the front and one on the back. As mentioned before, the emergency exits does not com­
pete for the server, rather it sends its commands directly to the low-level controller.

The priority scheme in our application is very simple. The logical sensors have the highest
priority, followed by the camera, and finally the general controller. The server checks first for
any commands issued by the logical sensors. If there is commands, it will execute them and will
keep iterating until no commands from the logical sensors. If no commands form the logical
sensors, the server will check for commands issued by the camera commanding station, if there
are commands, it will execute one command, then back to check for the logical sensors again,
if not, it will check for commands from the general controller, execute one command (if any)
then go back for the logical sensors. This routing strategy is shown in Figure 10.

3 .4 I m p le m e n ta t io n

This model was implemented in PROMELA. This language was selected because it is very
convenient for simulation and it is easy to add some assertions and verification statements later
on after realizing the model.

As a first step in simulating this model, we will consider the four logical sensors as one
process that issues commands based on the current state of the system, and the location of the
robot with respect to the surrounding objects. In this case, we have four concurrent processes:

1. The multiplexer (the server).

2. The logical sensor commanding station.

16

STOP GO-BKWD

TURN-RIGHT TURN-LEFT

TURN-L/R

W *

TURN-L/R

Figure 8: The reaction control when the system state = FORWARD.

17

STOP

GO-FRWD

* TURN-LEFT TURN-RIGHT

' s
/ms

TURN-L/R

TURN-L/R

Figure 9: The reaction control when the system state = BACKWARD.

18

1 : FORWARD

2 : BACKWARD

3 : RIGHT

4 : LEFT

5 : FAULT

---- The road is clear ... General controller in charge

The Controller issued the command GO-BKWD

---- The road is clear ... General controller in charge

The Controller issued the command TURN-LEFT

---- The road is clear ... General controller in charge

The Controller issued the command TURN-LEFT

---- The road is clear ... General controller in charge

The Controller issued the command TURN-RIGHT

@@@@ Object recognized by the camera

The Camera issued the command GO-FRWD

**** Avoiding obstacles ... Front=l, Back=l, Right=l, Left=0

Logical Sensors issued the command TURN-RIGHT

---- The road is clear ... General controller in charge

The Controller issued the command TURN-RIGHT

@@@@ Object recognized by the camera

The Camera issued the command GO-FRWD

---- The road is clear ... General controller in charge

The Controller issued the command TURN-LEFT

@@@@ Object recognized by the camera

The Camera issued the command GO-BKWD

@@@@ Object recognized by the camera

The Camera issued the command PICK

---- The road is clear ... General controller in charge

The Controller issued the command TURN-RIGHT

@@@@ Object recognized by the camera

The Camera issued the command PICK

@@@@ Object recognized by the camera

The Camera issued the command GO-BKWD

**** Avoiding obstacles ... Frontal, Back=0, Right=0, Left=l

Logical Sensors issued the command TURN-RIGHT

---- The road is clear ... General controller in charge

The Controller issued the command GO-FRWD

@@@@ Object recognized by the camera

The Camera issued the command TURN-RIGHT

@@@@ Object recognized by the camera

The Camera issued the command GO-FRWD

---- The road is clear ... General controller in charge

The Controller issued the command TURN-RIGHT

---- The road is clear ... General controller in charge

The Controller issued the command GO-FRWD

20

@@@@ Object recognized by the camera

The Camera issued the command GO-FRWD

@@@@ Object recognized by the camera

The Camera issued the command TURN-RIGHT

---- The road is clear ... General controller in charge

The Controller issued the command GO-BKWD #

@@@@ Object recognized by the camera

The Camera issued the command TURN-RIGHT

@@@@ Object recognized by the camera

The Camera issued the command TURN-LEFT

---- The road is clear ... General controller in charge

The Controller issued the command TURN-RIGHT

@@@@ Object recognized by the camera

**** END OF SIMULATION ****

4 V e r i f y i n g t h e S y s t e m

The PROMELA language and its compiler “SPIN” provide two modes for running a program:
simulation mode, and verification mode. In the previous section, we showed the output of the
program under the simulation mode. Now, we need to add some verification statements to the
program and run the program under the verification mode.

The following properties of the system will be verified:

• Existence of deadlocks.

• The progress of the server in executing commands.

• Correctness of the commands selected by the logical sensors (See Table 1.)

• Correctness of the server process by checking the selected commanding station.

Checking the progress of the server process as accomplished by adding a “progress” label
where the server start executing a command. Checking the correctness of the server in selecting
the right commanding station is done by adding the following assertion right after the selection
code.

assert ((logical_sensor_command != EMPTY &&

current_command == logical_sensor_command)

I I (camera_command != EMPTY &&

current_command == camera_command)

I I (controller_command != EMPTY &&

current_command == controller_command)

I I (current_coramand == EMPTY))

21

Checking the correctness of the commands issued by the logical sensors is achieved by
adding the following assertion at the end of the logical sensors process. Note that this part of
code does not check for all the cases, however we can add more conditions to cover all possible
cases.

assert ((d_left != d_right && "

(logical_sensor_command == TURN_LEFT I I

logical_sensor_command == TURN_RIGHT))

I I (d_left == c && d_right == c && d_frwd == c && d_bkwd == c

&& logical_sensor_coiranand == STOP)

I I (d_left == c ScSc d_right == c && d_frwd == f && d_bkwd == f
&& logical_sensor_command == EMPTY)

I| (d_left == f && d_right == f && f_frwd == c && d_bkwd == c

&& (logical_sensor_coiranand == TURN_LEFT

I I logical_sensor_command == TURN_RIGHT))

I I (d_left == f && d_right == f && f_frwd == f && d_bkwd == f

ScSc logical_sensor_command == EMPTY)
I I (d_left == d_right && d_frwd != d_bkwd))

5 C o n c l u s i o n a n d F u t u r e W o r k

In this report, a distributed sensor-based control scheme was proposed. In this scheme, each
sensor can be viewed with three different levels of abstraction; dumb sensors which provide
raw data, intelligent sensors which provides high level information in a form of events, and
finally, commanding sensors which can issue commands representing a reaction behavior for
the system. Commands can be issued by different processes called commanding stations. Each
commanding station may issue commands at any time, and a multiplexer (the server) is needed
to select the command to be executed. A priority scheme has to be defined as a bases for selec­
tion. An example for applying this control scheme to a mobile robot was described along with
the simulation results. Finally, several aspects of the model was verified using formal verifica­
tion tools provided by PROMELA, the language used to implement the model. We believe that
this control scheme provides more flexible and robust control systems, and allows more mod­
ular design for the whole control system. It also provides fast response for reaction behavior
which is an essential requirement in real-time systems.

The next step to this work is to implement a distributed controller for the “real” LAB MATE
using the proposed control scheme. This requires using Unix machines to drive the robot in­
stead of a PC. A more detailed decision function for the logical sensors may be defined and the
communication protocols among the sonar sensors needs to be explicitly defined.

22

6 A P P E N D I X A

T h e P R O M E L A C o d e f o r th e S im u la to r

/***/
/* Program: labmate */

/* */
/* Author: Mohamed Dekhil. */

/* , */
/* Date: December 12, 1994. */

/* */
/* Description: This is a simulation for the a sensor-based */

/* distributed control scheme for mobile robots. The robot used */

/* for this simulation is the LABMATE, a mobile robot made by */

/* Transitions Research Corp. */

/* */
/* The program consists of four concurrent processes: */

/* (1) The server process. */

/* (2) The logical sensor process. */

/* (3) The Camera process. */

/* . (4) The general controller process. */

/* */
/* Some specs are added to each module to check some of the */

/* system's properties. */
/★★★•A-* j

#define RIGHT 3
#define BACKWARD 2

/* Defining some constants */
/* ======================= */

#define TRUE 1

#define FALSE 0

#define p 0 /* U;

#define v 1 /* U

#define EMPTY -1

#define SIMULATION_LEN 3 0 /*

/* Defining the states of the system */

#define IDLE 0

#define FORWARD 1

23

#define LEFT 4

ttdefine FAULT 5

#define STOP 0

ttdefine GO_FRWD 1

ttdefine GO_BKWD 2

ttdefine TURN_RIGHT 3

ttdefine TURN_LEFT 4

ttdefine RESET 5

ttdefine PICK 6

/* Defining the commands of the system */

/* Defining the abstract distances "close" c, and "far" f */

ttdefine c 0 /* Close distance */

ttdefine f 1 /* Far distance */

/* ============================== */
/* Defining some global variables */
/* ============================== */

int d_frwd; /* The distance from front */

int d_bkwd; /* The distance from back */

int d_right; /* The distance from right */

int d_left; /* The distance from left */

int logical_sensor_command; /*

int camera_command; /*

int controller_command; /*

int current_command; /*

int state; /*

chan logical_sensor_mutex = [0] of

chan camera_mutex = [0] of { bit }

chan controller_mutex = [0] of { b

chan state_mutex = [0] of { bit };

command from logical sensors */

command from the camera */

command from the general controller */

the selected command */

Current system state */

{ bit };

t } ;

/* == */
/* Semaphore procedure that mantains several semaphores used in the */

/* program for mutual execlusion of some variables. */
/* == */

proctype Sema4 (chan Ch)

24

{
e n d :

do

:: Chip

: : Ch?V

od

/* == */
/* The logical sensor module. It sends commands to the server based on */

/* the current readings and the current state of the system. */
/* == */

proctype logical_sensors()

{

e n d :

do

:: if /* Measure the distance at the four sides */

:: d_frwd = f

:: d_frwd = c

:: d_bkwd = f

:: d_bkwd = c

:: d_right = f

:: d_right = c

:: d_left = f

:: d_left = c

f i ;

/* Decide on next command based on the distances and system state */

logical_sensor_mutex?p;

state_mutex?p ;

logical_sensor_command = EMPTY;

:: (!(state == FORWARD) II (state == BACKWARD)) -> skip

:: (state == FORWARD) -> skip;

if

:: (d_left == c && d_right == c) -> skip;

if

:: (d_frwd == c && d_bkwd == c) ->

logical_sensor_command = STOP

:: (d_frwd == c && d_bkwd != c) ->

logical_sensor_command = GO_BKWD

25

:: (d_frwd != c && d_bkwd == c) -> skip

:: (d_frwd != c && d_bkwd != c) -> skip

fi

:: (d_left == c && d_right != c) ->

logical_sensor_command = TURN_RIGHT

:: (d_left != c && d_right == c) ->

logical_sensor_command = TURN_LEFT

:: (d_left != c && d_right != c) -> skip;

if

:: (d_frwd == c && d_bkwd = = c) ->
logical_sensor_command = TURN_RIGHT

:: (d_frwd == c && d_bkwd != c) ->

logical_sensor_command = TURN_RIGHT

:: (d_frwd != c && d_bkwd == c) -> skip

:: (d_frwd != c && d_bkwd != c) -> skip

fi

fi

:: (state == BACKWARD) -> skip;

if

:: (d_left == c && d_right == c) -> skip;

if

:: (d_frwd == c && d_bkwd == c) ->

logical_sensor_command = STOP

:: (d_frwd == c && d_bkwd != c) -> skip

:: (d_frwd != c && d_bkwd == c) ->

logical_sensor_command = GO_FRWD

:: (d_frwd != c && d_bkwd != c) -> skip

fi

:: (d_left == c && d_right != c) ->

logical_sensor_coitimand = TURN_LEFT

:: (d_left != c && d_right == c) ->

logical_sensor_command = TURN_RIGHT

:: (d_left != c && d_right != c) -> skip;

if

:: (d_frwd == c && d_bkwd == c) ->

logical_sensor_command = TURN_LEFT

:: (d_frwd == c && d_bkwd != c) -> skip

:: (d_frwd != c && d_bkwd == c) ->

logical_sensor_command = TURN_LEFT

:: (d_frwd != c && d_bkwd != c) -> skip

fi

fi

f i ;

state_mutex!v;

logical_sensor_mutex!v

26

*/
*/
*/

od
}

/* ===
/* The camera module. It sends commands to the server.
/* ===

proctype camera()

{
end:

do

:: camera_mutex?p;

if

camera_command

camera_command

camera_command

camera_command

camera_command

camera_command

camera_command

camera_command

camera_c omma n d

camera_c omma n d

f i;
camera_mutex!v

od

}

GO_FRWD

GO_BKWD

TURN_RIGHT

TURN_LEFT

PICK

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

/* == */

/* The controller module. It sends commands to the server. */
/* == */

proctype controller()

(
e n d :

do

controller_mutex?p;

if

controller_command

control ler__command

controller_command

controller_command

fi;
control1er_mutex!v

GO_FRWD

GO_BKWD

TURN_RIGHT

TURN LEFT

od

27

/* == */
/* The server module. It checks for commands coming from different */

/* commanding stations and selects the commands to be executed based on */

/* a pre-defined priority scheme. */
/* == */

}

proctype server()

{ ’
int counter = 0 ;

printf ("\nThe System can be in one of the following states :\n\n11) ;

printf (" 0: IDLE\n 1: FORWARD\n 2: BACKWARD\n“);

printf (" 3: RIGHT\n 4: LEFT\n 5: FAULT\n\n");

do

:: (counter < SIMULATION_LEN) ->

counter = counter + 1;

current_command = EMPTY;

logical_sensor_mutex?p;

camera_mutex?p;

controller_mutex?p;

state_mutex?p;

atomic{

if

:: (logical_sensor_command != EMPTY) ->

current_command = logical_sensor_command ;

printf(" **** Avoiding obstacles ... Front=%d, Back=%d, Right=%d, Left=%d\n"

printf (" Logical Sensors issued the command 11)

:: (logical_sensor_command == EMPTY) -> skip;
if

:: (camera_command != EMPTY) ->

current_command = camera_command;

printf (11 @@@@ Object recognized by the camera\n");

printf(" The Camera issued the command ")

:: (camera_command == EMPTY) -> skip;

if

:: (controller_command != EMPTY) ->

current_command = controller_command;

printf(" ---- The road is clear ... General controller in charge\n");

printf (" The Controller issued the command ")

:: (controller_command == EMPTY) ->

28

};
logical_sensor_com m and = EMPTY;
camera_command = EMPTY;
controller_com m and = EMPTY;

/* Execute th e s e le c te d command */

i f
:: (current_command == EMPTY) ->

p r i n t f (" EMPTY \n")
:: (current_command == GO_FRWD) ->

s t a t e = FORWARD ;
p r i n t f (" GO-FRWD \n")

:: (current_command == GO_BKWD) ->
s t a t e = BACKWARD ;
p r i n t f (“ GO-BKWD \ n ”)

:: (current_command == TURN_RIGHT) ->
s t a t e = RIGHT ;
p r i n t f (" TURN-RIGHT \n")

:: (current_command == TURN_LEFT) ->
s t a t e = LEFT ;
p r i n t f (" TURN-LEFT \n")

:: (current_command == STOP) ->
s t a t e = IDLE ;
p r i n t f (" STOP \n")

:: (current_command == RESET) ->
s t a t e = IDLE ;
p r i n t f (" RESET \n")

:: (current_command == PICK) ->
s t a t e = IDLE ;
p r i n t f (" PICK \n ")

f i ;

s ta te_ m u te x !v;
lo g ica l_ sen so r_ m u tex !v;

camera_mutex!v;
c o n tro lle r_ m u te x !v

:: (coun ter >= SIMULATION_LEN) ->
p r i n t f (“\n**** END OF SIMULATION ****\n ") ;
break

od

printf(" !!!! No Command was issued !! \n")
fi

fi
fi

29

}

/* == */
/* The main procedure which will create the required modules. */

/* and also initializes some global variables. */
/* == */

init (

state = IDLE;

logical_sensor_command = EMPTY;

camera_command = EMPTY;

control1er_command = EMPTY;

current_command = EMPTY;

d_frwd = f;

d_bkwd = f;

d_left = f;

= f;

printf

printf ("\t* *\n“

printf (" \ t* The LABMATE Simulation program *\n“

printf ("\t* *\n“

printf ("\t* Department of Computer Science * \ n“

printf ("\t* University of Utah * \n“

printf ("\t* *\n"

printf

printf ("\n");

atomic {

/* Start some semaphores */

run Sema4 (logical_sensor_mutex);

run Sema4 (camera_mutex);

run Sema4 (controller_mutex);

run Sema4 (state_mutex);

/* Start simulation */

run server();

run logical_sensors();

run camera();

30

run controller()

}
}

31

R e f e r e n c e s

[1] A h l u w a l i a , R. S., a n d H su, E. Y. Sensor-based obstruction avoidance technique for
a mobile robot. Journal o f Robotic Systems 1 ,4 (Winter 1984), 331-350.

[2] B r a d a k i s , M. J. Reactive behavior design tools. Master’s thesis, University of Utah,
Mar. 1992.

[3] B u d e n s k e , J., a n d G i n i , M. Why is it difficult for a robot to pass through a door­
way using altrasonic sensors? In IEEE Int. Conf. Robotics and Automation (May 1994),
pp. 3124-3129.

[4] F i s c h e r , S., AND SCHOLZ, A. Verivication in Process Algebra of the distributed con­
trol of track vehicles - a case study. International Journal o f Formal Methods in System
Design, 4 (Feb. 1994), 99-122.

[5] G o u r l e y , C., a n d T r i v e d i , M. Sensor-based obstacle avoidance and mapping for
fast mobile robots. In IEEE Int. Conf. Robotics and Automation (1994).

[6] H a g a r , G. D. Task-directed computation of qualitative decisions from sensor data.
IEEE Trans. Robotics and Automation 10, 4 (August 1994), 415-429.

[7] H e n d e r s o n , T. C., a n d S h il c r a t , E. Logical sensor systems. Journal o f Robotic
Systems (Mar. 1984), 169-193.

[8] HOLZMANN, G. Algorithms for automated protocol verification. AT&T Technical Jour­
nal 69, 1 (Jan. 1990), 32-44.

[9] HOLZMANN, G. Design and validation o f computer protocols. Prentice Hall, 1991.

[10] HOLZMANN, G. Design and validation of protocols: a tutorial. Computer Networks and
ISDN Systems 25 (1993), 981-1017.

[11] K o s e c k a , J., a n d BOGONI, L. Application of discrete event systems for modeling
and controlling robotic agents. In IEEE Int. Conf. Robotics and Automation (May 1994),
pp. 2557-2562.

[12] K u r s h a n , R. P. Discrete Event Systems: Models and Applications. Springer-Verlag,
1990.

[13] L e e , C. S. G. Sensor-based robots: algorithms and architecture. Springer-Verlag, 1991.

[14] Lee, C. Y. representation of switching circuits by binary-decision programs. Bell Sys­
tems Technical Journal 38, 4 (July 1959), 985-999.

32

[15] L i n , C. C., AND T u m m a l a , R. L. Adaptive sensor integration for mobile robot nav­
igation. In IEEE International Conference on Multisensor Fusion and Integration (Oct.
1994).

[16] M c M i l l a n , K. L. Symbolic model checking. Kluwer Academic Publishers, 1993.

[17] M i l l e r , W. T. Sensor-based control of robotic manipulators using a general learing
algorithm. IEEE Journal o f Robotics and Automation (Nov. 1987), 157-165.

[18] M u t a m b a r a , A. G. O., a n d D u r r a n t -W h y t e , H. F. Modular scalable robot con­
trol. In IEEE International Conference on Multisensor Fusion and Integration (Oct.
1994).

[19] N a i k , V. G., a n d S i s t l a , A. P. Modeling and verification of a real life protocol using
symbolic model checking. In Computer Aided Verification, 6th International Conference,
CAV’94 (1994), Springer-Verlag, pp. 195-206.

[20] PNUELI, A. The temporal semantics of concurrent programs. In 18th Symposium on
Foundations o f Computer Science (1977).

[21] P n u e l i , A. Applications of temporal logic to the specification and verification of reac­
tive systems: a survey of current trends. In Lecture Notes in Computer Science (1986),
vol. 224, Springer-Verlag, pp. 510-584.

[22] R e m b o l d , U., AND HORMANN, K. Languages fo r Sensor-Based Control in Robotics.
Springer-Verlag, 1987.

[23] S c h e n k a t , L., VEIGEL, L., AND HENDERSON, T. C. Egor: Design, development,
implementation - an entry in the 1994 aaai robot competition. Tech. Rep. UUCS-94-034,
University of Utah, Dec. 1994.

[24] S h il c r a t , E. D. Logical sensor systems. Master’s thesis, University of Utah, August
1984.

[25] Y a k o v l e f f , A., N g u y e n , X. T., B o u z e r d o u m , A., M o i n i , A., B o g n e r , R. E.,

AND E s h r a g h i a n , K. Dual-purpose interpretation of sensory information. In IEEE
Int. Conf. Robotics and Automation (1994).

33

