
Java Operating Systems: Design and Implementation

G o d m a r B ack Patrick Tullmann L eigh S to ller W ilson C. H sieh Jay L epreau
D epartm en t o f C om puter Science

U niversity o f Utah

Technical Report UUCS-98-015
August, 1998

Abstract

Language-based extensible systems such as Java use
type safety to provide memory safety in a single address
space. Memory safety alone, however, is not sufficient to
protect different applications from each other. Such sys
tems must support a process model that enables the control
and management o f computational resources. In particular,
language-based extensible systems must support resource
control mechanisms analogous to those in standard operat
ing systems. They must support the separation of processes
and limit their use of resources, but still support safe and
efficient interprocess communication.

We demonstrate how this challenge can be addressed in
Java operating systems. First, we describe the technical is
sues that arise when implementing a process model in Java.
In particular, we lay out the design choices for managing
resources. Second, we describe the solutions that we are
exploring in two complementary projects, Alta and GVM.
GVM is similar to a traditional monolithic kernel, whereas
Alta closely models the Fluke operating system. Features
o f our prototypes include flexible control o f processor time
using CPU inheritance scheduling, per-process memory
controls, fair allocation o f network bandwidth, and exe
cution directly on hardware using the OSKit. Finally, we
compare our prototypes with other language-based operat
ing systems and explore the tradeoffs between the various
designs.

1 Introduction
Language-based extensible systems in the form of Java

virtual machines are used to implement execution environ
ments for applets in browsers, servlets in servers, and mo
bile agents. All o f these environments share the property
that they run multiple applications at the same time. For

This research was supported in part by the Defense Advanced Re
search Projects Agency, monitored by the Department of the Army under
contract number DABT63-94-C-0058, and the Air Force Research Lab
oratory, Rome Research Site, USAF, under agreement number F30602—
96-2-0269.

Contact information: { gback,tullmann,stoller,wilson,lepreau} @-
cs.utah.edu. Dept, of Computer Science, 50 S Central Campus
Drive, Room 3190, University of Utah, SLC, UT 84112-9205.
http://www.cs.utah.edu/projects/flux/java/index.html

example, a user may load applets from different Web sites
into a browser; a server may run servlets from different
sources; and an agent server may run agents from across
the Internet. Given the necessity o f supporting multiple
applications, a language-based extensible system must be
able to isolate applications from one another because they
may be buggy or even malicious.

Conventional operating systems provide the abstraction
o f a process, which encapsulates the execution o f a pro
gram. A process model defines what a process is and what
it may do. The following features are necessary in any pro
cess model for safe, extensible systems:

• Protection. A process must not be able to manipulate
or destroy another process’s data in an uncontrolled
manner. For example, an unprivileged process must
not be able to deliberately (or accidentally) interfere
with another process’s forward progress.

• Resource Management. Resources allocated to a pro
cess must be separable from those allocated to other
processes. An unprivileged or untrusted process must
not be able to starve other processes by denying them
resources.

• Communication. Since applications may consist o f
multiple cooperating processes, processes must be
able to communicate with each other. The communi
cation channels must be safe and should be efficient.

These requirements on processes form one o f the pri
mary tradeoffs in building operating systems, as illustrated
in Figure 1. On the right-hand side, processes can be pro
tected from each other most easily if they are on com
pletely separate machines. In addition, managing com
putational resources is much simpler, since the resources
are completely separate. Unfortunately, communication is
more expensive between processes on different machines.
On the left-hand side, communication is much cheaper,
since processes can share memory directly. As a result,
though, protection and accurate resource accounting be
come more difficult.

Operating systems research has spanned the entire range
of these systems, with a primary focus on systems in the
middle. Research in distributed systems and networking

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cs.utah.edu/projects/flux/java/index.html

separate
machines

distributed OS

same machine
separate address spaces

no shared memory

Unix
multiple JVMs

same machine
separate address spaces

shared memory

Unix SVR4
same machine

same address space
shared memory

processes in Java
Opal

communication costs

Figure 1: Trading off sharing and isolation between pro
cesses. On the right, running different processes on sep
arate machines isolates them cleanly, but communication
is more expensive. On the left, in theory a single-address-
space operating system allows the most efficient commu
nication between processes, but isolation is the most diffi
cult.

has focused on the right side o f the figure. Research on
single-address-space operating systems such as Opal [12],
as well as older work on language-based operating sys
tems [39, 44] has focused on the left side o f the figure.
The reemergence [7, 32, 53] o f language-based extensible
systems has focused attention back on the left side of the
diagram. Such systems are single-address-space systems
that use type safety instead o f hardware memory mapping
for protection. In this paper we discuss how resource man
agement can be provided in language-based systems (in
particular, in Java), and how the tradeoff between memory
control and sharing is expressed in these systems.

1.1 Processes in Java
We use Java as the “prototypical” language-based ex

tensible system in our research for several reasons. First,
Java’s use o f load-time bytecode verification removes the
need for a trusted compiler. Second, Java’s popularity
makes it possible for our process model to be used widely.
Third, freely available source code for a Java virtual ma
chine (Kaffe [46]) is available, and it serves as an excellent
foundation for our modifications. Finally, Java is general
enough that the lessons we have learned in developing a
process model for it should apply to other language-based
extensible systems.

oEoo>racraE
0)u
o(A
Ucraco?O0)
owQ.
O<D</>(0<D

While it is possible to run multiple Java applications and
applets in separate Java virtual machines (JVMs), there
are several reasons to run them within one virtual ma
chine. Aside from the overhead involved in starting multi
ple JVMs, the cost o f communication between applications
and applets is greater when applications are run in separate
virtual machines (as suggested by Figure 1). Additionally,
in small systems, such as the PalmPilot, there might not
be OS or even hardware support for multiple processes. In
such environments, the JVM must perform operating sys
tem tasks. A final reason to use a single JVM is that bet
ter performance should be achievable through reduction of
context switching and IPC costs. Unfortunately, standard
Java systems do not readily support multiprogramming,
since they do not support a process abstraction. The re
search issues that we explore in this paper are the design
problems that arise in implementing a process model in
Java.

The hard problems in implementing a process model in
Java revolve around memory management. In a conven
tional operating system, protection is provided through a
memory management unit. Process memory is inherently
separated, and systems must be engineered to provide fast,
efficient communication. In a Java system, protection is
provided through the type safety o f the language. The pri
mary reason that memory management is harder in Java
than in conventional operating systems is that the address
space is shared. We discuss different solutions to this prob
lem (and other secondary problems) and describe the solu
tions that we have used in the systems that we are building.

In this paper we describe two complementary Java op
erating systems being developed at the University of Utah,
and the process models that they support. In these two
prototypes, called GVM and Alta, we are exploring the de
sign space for language-based operating systems in terms
of resource management options and the tradeoff between
sharing and process isolation. GVM is structured much
like a traditional monolithic kernel and focuses on strin
gent and comprehensive resource controls, whereas Alta is
structured much like the Fluke microkernel [21], provides
a hierarchical process model, and focuses on providing
safe, efficient sharing between processes with potentially
different type-spaces. These systems use CPU inheritance
scheduling [22] to provide extensible control o f processor
usage, and different garbage collection strategies to con
trol memory usage. As we show in this paper, it should
not be surprising that language-based operating systems
can be structured like traditional hardware-based operat
ing systems: many o f the design issues and implementa
tion tactics remain the same. Both GVM and Alta support
strong process models: each can limit the resource con
sumption of processes, but still permit processes to share
data directly when necessary.

2

1.2 Contributions
This paper makes the following contributions:

• We describe the important design decisions in build
ing Java operating systems, in terms of allowing pro
cesses to both manage resources and share data.

• We describe two complementary prototypes that we
are building at the University of Utah, GVM and Alta,
that represent two different points in the design space.
Many differences in their designs are analogous to the
differences in traditional OS designs.

• We compare our design choices with those used in
other Java operating systems. A variety of other
systems are being developed in both industry and
academia; we show why our two systems represent
interesting points in the design space.

1.3 Roadmap
Section 2 overviews Java and its terminology. Section 3

describes the technical challenges in addressing resource
management that we have encountered in designing and
building two prototype Java operating systems, GVM and
Alta. Section 4 compares the design and implementation
o f our two systems, as well as that o f Cornell’s J-Kernel.
Section 5 describes related research in traditional operat
ing systems, language-based operating systems, and Java
in particular. Section 6 summarizes our conclusions.

2 Background
Java is both a high-level language [26] and a specifi

cation for a virtual machine that executes bytecodes [32].
The Java programming language supports most modern
programming language features such as type safety, object-
orientation, exception handling, multi-threading, and dy
namic loading. Java gives applications control over the dy
namic linking process through special objects called class
loaders. Class loaders support user-defined, type-safe [31]
loading o f new data types, object types, and code into a
running Java system. Class loaders also determine type
identity: two classes loaded by different loaders are con
sidered distinct. Each class loader provides a separate
name space o f classes. A class can be reloaded by different
class loaders: each reloaded instance is distinct.

A JVM provides a single address space for applications.
It guarantees memory safety by ensuring the type safety of
the programs that it executes. Type safety is enforced by
passing bytecodes through a bytecode verifier and by man
dating automatic memory management. That is, the byte
codes must satisfy certain semantic constraints, and only
the JVM-provided automatic garbage collector can reclaim
storage. A traditional JVM is structured as a trusted kernel,
usually implemented in C, augmented with Java libraries.

Together, the kernel and libraries implement the standard
Java class libraries. Calls to the kernel C code are made
through native methods.

The combination of a well-defined virtual machine,
portable bytecode, and dynamic class loading makes
Java well-suited for executing dynamically acquired client
code. In order to protect the system from potentially buggy
or malicious code, and to protect clients from each other,
Java requires more control over applications than just the
protection afforded by type safety. In particular, a JVM
must also be able to provide security (control over data,
such as information in files) and resource management
(control over computational resources, such as CPU time
and memory).

Java security started with the “sandbox” model, which
provided all-or-nothing privileges to applets, depending on
whether the applet was local or remote. JavaSoft relaxed
the sandbox model in JDK 1.2 [24] by introducing ac
cess control lists and allowing a user to extend the JVM ’s
trust perimeter for signed code. In this model, the calling
principal’s privileges are determined by inspecting the call
stack [50]. Other approaches to Java security include the
use o f capabilities and restricting an applet’s name space.

Although security issues are being addressed in Java,
resource management has not been as thoroughly inves
tigated. For example, a client can abuse its use o f mem
ory (either intentionally or accidentally) to compromise the
overall functionality o f a JVM. The design and implemen
tation o f robust Java operating systems that tightly control
resource usage is therefore an open area o f research.

3 Resource Management
This section discusses the primary design choices for

managing resources in a Java operating system. Since Java
encourages direct sharing o f memory, the primary diffi
culty in supporting a process model in Java is in isolat
ing processes’ resources from one another. We divide the
problems of resource management into three related sub
problems:

• Resource accounting: the ability to track resource us
age. Accounting can be exact or approximate, and
can be fine-grained or coarse-grained.

• Resource reclamation: the ability to reclaim a pro
cess’s resources when it terminates. We discuss how
complex allocation management policies and flexi
ble sharing policies can make reclamation difficult.
Reclamation can be immediate or delayed.

• Resource allocation: the ability to allocate resources
to processes in a way that does not allow processes
to violate imposed resource limits. Allocation mech
anisms should be fair and should not incur excessive
overhead.

3

In the following sections we discuss each of the previ
ous issues with respect to several computational resources:
memory, CPU usage, and network bandwidth. We do not
currently deal with managing the use of persistent storage.

3.1 Memory
The two issues that must be addressed with respect to

managing memory in Java are the following: how mem
ory is shared between processes, and how allocation and
deallocation are managed.

3.1.1 Sharing M odel

Communication between processes is necessary in order
to support flexible applications. A sharing model defines
how processes can share data with each other. In a Java
operating system, three choices are possible: copying, di
rect sharing, and indirect sharing. The sharing model in
standard Java (without processes) is one of direct sharing:
objects contain pointers to one another, and a thread ac
cesses an object’s fields via offsets from the object pointer.
In Java with processes, the choice o f sharing model af
fects how memory accounting and process termination (re
source reclamation) can be implemented.

; Copying. Systems should always support copying as a
f. ’ means of communicating data between processes, where

one process provides data that is copied into another pro
cess’s memory. Copying is the only feasible alternative
when address spaces are not shared: for example, when
two processes are on different machines. Copying was
the traditional approach to communication in RPC sys
tems [8], although research on same-machine RPC [6] has
aimed at reducing the cost o f copying. Mach [1], for ex
ample, used copy-on-write and out-of-line data to avoid
copies.

If data copying is the only means of communication be
tween processes, then memory accounting and process ter
mination are straightforward. Processes do not share any
objects, so a process’s objects can be reclaimed immedi
ately; there can be no ambiguity as to which process owns
an object. O f course, the immediacy of reclamation de
pends on the garbage collector’s involvement in memory
accounting: reclaiming objects in Java could require a full
garbage collection.

In Java, the use o f copying alone as a communication
mechanism is unappealing because it violates the spirit of
the Java sharing model, and because it is slow. On the other
hand, in a system that only supports copying data between
processes, process termination and per-process memory
accounting are much simpler.

D irect Sharing. Since Java is designed to support direct
sharing o f objects within processes, another design point
is to allow direct sharing between processes. Interprocess
sharing o f objects is then the same as intraprocess sharing.

Direct sharing in single-address-space system s is som e
what analogous to shared memory (or shared libraries) in
separate-address-space systems, but the unit o f sharing is
much finer-grained.

If a system supports direct sharing between processes,
then process termination and resource reclamation are
greatly complicated. In particular, if a process can export
a directly shared object, that object cannot be reclaimed
when the exporting process is terminated. The reason that
reclamation is not possible is that all pointers to an ob
ject would have to be located: in the presence o f C code,
it is impossible to do so without extensive compiler sup
port. Therefore, in order to support resource reclamation
when a process is killed, either direct sharing needs to be
restricted or the system must guarantee that all outstanding
references to any object can be located.

Indirect Sharing. An alternative to direct sharing is in
direct sharing, in which objects are shared through a level
of indirection. When communicating a shared object, a
direct pointer to that object is not provided. Instead, the
process creates a proxy object (that internally points to the
shared object) and then passes a pointer to the proxy. Prox
ies are system-protected objects; in order to maintain indi
rect sharing (and prevent direct sharing), the system must
ensure that there is no way for a client to extract a direct
object pointer from a proxy.

Compared to direct sharing, indirect sharing is less effi
cient, since an extra level o f indirection must be followed
whenever an interprocess call occurs. Its advantage, how
ever, is that resource reclamation is straightforward. All
references to a shared object can be revoked, because the
level o f indirection enables the system to track object refer
ences. Therefore, when a process is killed, all o f its shared
objects can be reclaimed immediately. A s with copying,
immediate revocation is subject to the cost o f a full garbage
collection.

3.1.2 A llocation and D eallocation

Without page-protection hardware, software-based
mechanisms are necessary to account for memory in a
Java operating system. Every allocation (or aggregation
o f allocations) must be checked against the allocating pro
cess’s heap limit. Stack frame allocations must be checked
against the executing thread’s stack limits.

Memory is necessarily reclaimed in Java by an auto
matic garbage collector [52], Since a garbage collector
is necessary to reclaim memory, it seems obvious to use
it to do memory accounting. In our systems the JVM and
the garbage collector cooperate to account for all memory.
The simplest mechanism for keeping track o f memory is to
have the JVM debit a process that allocates memory, and
have the garbage collector credit a process when its mem
ory is reclaimed.

In the presence o f object sharing (whether direct or in

4

direct), other memory accounting schemes are possible.
For example, a system could conceivably divide the “cost”
of an object among all the parties that keep the object
alive. This model has the drawback that a process can be
spontaneously charged for memory when it isn’t allocat
ing any memory. For example, suppose a process acquires
a pointer to a large object, and is initially only charged for
a small fraction of the object’s memory because there are
a large number o f sharers. Later on, if the other sharers re
lease their references, the process may asynchronously run
out o f memory, because it will be forced to bear the cost o f
the large (previously shared) object.

Another potential scheme is to allow processes to pass
memory “credits” to other processes. For example, a server
could require that clients pass several memory credits with
each request to pay for the resources the server allocates.
Such a scheme is analogous to econom ic models that have
been proposed for resource allocation [49]. Alternatively,
a system might permit a process to transfer the right to
allocate under its allowance. The same effect is possible in
a simple allocator-pays model by having the client allocate
objects and pass them to the server to “fill in.”

An important issue in managing memory is the relation
ship between allocation and accounting schemes. In partic
ular, a system that charges per object, but allocates mem
ory in larger chunks, might be subject to a fragmentation
attack. A process with a small budget could accidentally
or maliciously cause the allocation o f a large number of
blocks. One solution is to provide each process with its
own region o f physical or virtual addresses from which to
allocate memory. W hile this solution guarantees accurate
accounting for internal fragmentation, it has the potential
to introduce external fragmentation.

3.2 CPU Usage
The two mechanisms necessary for controlling CPU us

age are accounting and preemption. The system must be
able to account accurately for the CPU time consumed by
a thread. The system must also be able to prevent threads
from exceeding their assigned CPU limits by preempting
(or terminating) them. Desirable additional features of
cpu management are multiple scheduling policies, user-
providable policies, and support for real-time policies.

3.2.1 CPU Accounting

The accuracy of CPU accounting is strongly influenced
by the way in which processes obtain services. If services
are implemented in libraries or as calls to a monolithic ker
nel, accounting simply amounts to counting the CPU time
that a thread accrues.

CPU accounting is difficult with shared system services,
where the process to bill for CPU usage is not easily deter
mined. Examples of such services include garbage col
lection and interrupt processing for network packets. For

both of these services, the system needs to have a means of
deciding what process should be charged.

G arbage Collection. The simplest accounting policy
for garbage collection is to treat it as a global system ser
vice. Unfortunately, such a policy is undesirable because
it opens the system to denial-of-service attacks. For exam
ple, a process could trigger garbage collections frequently
so as to slow down other processes. In addition, treating
garbage collection as a universal service allows priority
inversion to occur. If a low-priority thread allocates and
deallocates large chunks o f memory, it may cause a high-
priority thread to wait for a garbage collection.

We see two approaches that can be taken to solve this
problem. First, the garbage collector could charge its CPU
usage to the process whose objects it is traversing. How
ever, since this solution would require fine-grained mea
surement o f CPU usage, its overhead would likely be pro
hibitive.

The second alternative is to provide each process with
a heap that can be garbage collected separately, such that
the GC time can be charged to the owning process. Inde
pendent collection o f different heaps requires special treat
ment o f inter-heap references if direct sharing is to be al
lowed. In addition, distributed garbage collection algo
rithms might be necessary to collect data structures that
are shared across heaps.

Packet H andling. Interrupt handling is another system
service, but its behavior differs from that o f garbage col
lection, because the “user” o f an external interrupt cannot
be known until the interrupt is serviced. The goal o f the
system should be to minimize the time that is needed to
identify the receiver, as that time cannot be accounted for.

As an example of how interrupt processing should be
handled, Druschel and Banga [18] showed how packets
should be handled by an operating system. They demon
strated that system performance can drop dramatically if
too much packet processing is done at interrupt level,
where normal process resource limits do not apply. They
concluded that systems should perform lazy receiver pro
cessing (LRP), which is a combination o f early packet de
multiplexing, early packet discard, and processing o f pack
ets at the receiver’s priority. They demonstrated that the
use o f LRP improves traffic separation and stability under
overload.

3.2.2 Preem ption and Term ination

Preempting a thread that holds a system lock could lead
to priority inversion. As a result, it is generally better
to let the thread exit the critical section before it is pre
empted. Similarly, destroying a thread that holds a system
lock could lead to consistency or deadlock problems, de
pending on whether the lock is released. Preemption and
termination can only be safe if the system can protect crit
ical sections against these operations.

5

In addition to providing support for non-preemptible
(and non-killable) critical sections, a Java operating sys
tem needs to have a preemption model for its kernel.1 The
design choices are similar to those in traditional systems.
First, the kernel could be single-threaded, and preemption
would only occur outside the kernel. Alternatively, the sys
tem can be designed to allow multiple user threads to enter
the kernel. In the latter case, preemption might be more
immediate, but protecting the kernel’s data structures in
curs additional overhead.

3.3 Network Bandwidth
Although bandwidth is not a resource that many tra

ditional operating systems control explicitly, it is becom
ing increasingly important due to the network-centric na
ture o f Java. For example, the ANTS [51] active network
testbed is written in Java, and needs the ability to control
the amount o f bandwidth that active packets consume.

A basic mechanism to control outgoing bandwidth is
simply to count the number of bytes or packets sent. This
can be done at varying granularity: either on a per-process,
per-socket, or per-session basis. Depending on the level
in the networking stack at which this accounting is in
terposed, it may or may not accurately reflect the actual
physical resources that must be managed. For instance, if
the accounting is done above the level o f protocol process
ing, the actual physical interface on which a packet is sent
might not be known, or protocol overhead might not be
taken into account.

A large body o f research, such as [4], has been invested
in the development of packet scheduling algorithms. These
algorithms often try to combine the guarantee o f delay
bounds for real-time and priority service with link-sharing
guarantees. In order for an operating to provide effective
service guarantees to network streams with varying traffic
properties, a Java operating system should integrate such
scheduling algorithms into its networking infrastructure.

4 Comparison

In this section we describe in detail our two prototype
systems, GVM and Alta, and a third Java operating system,
J-Kernel, that has been built at Cornell. These systems lie
in different parts o f the Java operating system design space,
and represent different sets o f design tradeoffs:

• GVM partitions the Java heap so as to isolate resource
consumption. In addition, restricted direct sharing

'in a traditional, hardware-based system, entry to (and exit from) the
kernel is marked with a trap instruction. The separation between kernel
and user code is not as clear in Java, since making a call into the kernel
might be no different than any other method invocation. Nonetheless, the
distinction needs to be made.

is permitted through the system heap. Garbage col
lection techniques are put to interesting use to sup
port this combination. CPU inheritance scheduling
and H-PFQ are used as frameworks for hierarchical
scheduling of CPU time and network bandwidth, re
spectively.

• Alta uses hierarchical resource management, which
makes processes responsible for (and gives them
the capability of) managing their subprocesses’ re
sources. Direct sharing between sibling processes is
permitted because their parent is responsible for their
use of memory. The hierarchy also is a good match
for CPU inheritance scheduling.

• The J-Kernel disallows direct sharing between pro
cesses, but uses bytecode rewriting to support indi
rect sharing. Because it consists o f Java code only, it
is portable across JVMs. As a result, though, the re
source controls that the J-Kernel provides are approx
imate. J-Kemel IPC does not involve a rendezvous:
a thread migrates across processes, which can delay
termination.

We also provide some low-level microbenchmark mea
surements, which demonstrate that although our proto
types are roughly comparable to the J-Kernel and to each
other in performance, they provide many opportunities for
improvement.

4.1 GVM
G VM ’s design loosely follows that o f a traditional

monolithic kernel. GVM is oriented toward complete re
source isolation between processes, with the secondary
goal o f allowing direct sharing. As in a traditional operat
ing system, each process is associated with a separate heap,
and sharing occurs only through a special, shared system
heap. GVM provides fine-grained hierarchical control over
both CPU scheduling and network bandwidth, and pro
vides accurate accounting for both resources.

GVM can run most JDK 1.1 applications without mod
ification. It cannot run those that assume that they were
loaded by the system class loader.

4.1.1 System M odel

A GVM process consists o f a name space, a heap, and
a set o f threads executing in that heap. GVM relies on
class loaders to provide different processes with separate
name spaces. Each process is associated with its own class
loader, which is logically considered part o f the kernel.
GVM loads classes multiple times to provide different pro
cesses with their own copies o f classes that contain static
members. Unlike other JVMs, GVM allows safe reload
ing o f all but the most essential classes, such as o b j e c t
or T h r o w a b l e . To reduce a process’s memory footprint,

6

classes that do not contain shared data may be shared be
tween processes, akin to how different processes map the
same shared library into their address spaces in a tradi
tional OS. However, since all shared classes must occupy
a single name space, sharing is a privileged operation.

Threads access kernel services by calling into kernel
code. The kernel returns references to kernel objects that
act as capabilities to such things as open files and sock
ets. In order to support the stopping or killing o f threads,
GVM provides a primitive that defers the delivery o f asyn
chronous exceptions until a well-defined cancellation point
within the kernel is reached. This primitive does not auto
matically solve the problems with thread termination, but
it enables the kernel programmer to safely cancel user pro
cesses without compromising the integrity o f the kernel.

Each GVM process is associated with its own heap. Ker
nel objects, shared classes, and other shared data reside
in a distinct heap called the system heap. GVM supports
comprehensive accounting that takes internal allocations
by the JVM into account. Because GVM controls inter
heap references, it is able to support independent collection
of individual heaps and it is able to charge garbage collec
tion time to the appropriate processes. The use of sepa
rate heaps has the additional benefit o f allowing GVM to
avoid priority inversions: it is not necessary to stop higher-
priority threads in other processes when performing a col
lection.

4.1.2 R esource M anagem ent

M em ory M anagem ent. The use o f separate heaps sim
plifies memory accounting because each heap is subject
to its own memory budget, and simplifies CPU account
ing because each heap can be collected separately. In or
der to preserve these benefits while still allowing for ef
ficient process communication, GVM provides limited di
rect sharing between heaps. If two processes want to share
an object, two criteria must be met. First, the processes
must share the type o f the object. Second, the object must
be allocated in the system heap. The creation o f a shared
object is a privileged operation, and all shared objects re
side in the system heap. An object in a process heap can
refer to a shared object, and a shared object can refer to an
object in a process heap. However, GVM explicitly disal
lows direct sharing between objects in separate processes’
heaps and uses write barriers [52] to enforce this restric
tion.

Acquiring a reference to a shared object is only possible
by invoking the system, and GVM ensures that resources
allocated within the system heap on behalf o f an process
are subject to a specific limit. For instance, each process
may only open a certain number o f files, since the kernel
part o f a file descriptor is allocated in system space. GVM
must be careful to not hand out references to objects that
have public members, or objects it uses for internal syn

Shared objects have a restricted programming model.
During their construction, they have the opportunity to al
locate objects on the system heap. After the objects are
constructed, threads invoking methods on them are sub
ject to normal segmentation: if a thread attempts to use a
shared object to write a reference to a foreign heap into its
own heap, a segmentation violation error will be triggered.

To allow for separate garbage collection o f individual
heaps, GVM implements a form of distributed GC [37].
For each heap, GVM keeps a list o f entry items for objects
to which external references exist. An entry item consists
o f a pointer to the local object and a reference count. The
reference count denotes the number o f foreign heaps that
have links to that object. The garbage collector o f a heap
treats all entry items as roots. For each heap, GVM also
keeps a list of exit items for non-local objects to which the
heap refers. An exit item contains a pointer to the entry
item of the object to which it refers. At the end o f a garbage
collection cycle, unreferenced exit items are collected and
the reference counts in the corresponding entry items are
decremented. An entry item can be reclaimed if its refer
ence count reaches zero.

Write barriers are used to automatically create and up
date exit and entry items, as well as to maintain the heap
reference invariants described previously. If a write bar
rier detects a reference that is legal, it will lookup and cre
ate the corresponding exit item for the remote object. In
turn, the corresponding entry item in the foreign heap is
updated. The same write barrier is used to prevent the pass
ing of illegal cross-heap references. If the reference that
would be created by a write is illegal, a segmentation vio
lation error is thrown. The use o f a write barrier is similar
to the use of write checks in Omniware [48]. Although it
may seem odd to use another protection mechanism (soft
ware fault isolation) in a type-safe system, the motivation
is resource management, not memory safety.

Finally, to improve the use o f the JVM’s memory as a
whole, GVM does not reserve disjoint, contiguous mem
ory regions for each heap. Instead, memory accounting is
done on a per-block basis, with 4KB blocks. Heaps receive
new memory in blocks, and the garbage collector only re
imburses a heap if it frees a whole block.

CPU M anagem ent. In traditional Java, each thread be
longs to a thread group. Thread groups form a hierarchy
in which each thread group has a parent group. The ini
tial thread group is the root o f the group hierarchy. GVM
adapts the thread group classes such that all threads be
longing to a process are contained in a subtree. Process
threads cannot traverse this tree past the root o f this sub
tree.

More importantly, GVM combines the thread group hi
erarchy with CPU inheritance scheduling [22], CPU in
heritance scheduling is based on a directed yield primitive:

chronization .

7

a scheduler thread donates CPU time to a specific thread
by yielding to it, which effectively schedules that thread.
Since the receiver thread may in turn function as a sched
uler thread, scheduler hierarchies can be built. Each non
root thread has an associated scheduler thread that is noti
fied when that thread is runnable. A scheduler may use a
timer to revoke its donation, which preempts a scheduled
thread. Using CPU inheritance scheduling allows GVM to
do two things. First, GVM can provide each process with
its own scheduler that may implement any process-specific
policy to schedule the threads in that process. Second,
thread groups within processes may hierarchically sched
ule the threads belonging to them.

Each thread group in GVM is associated with a sched
uler, which is an abstract Java class in GVM. Different
policies are implemented in different subclasses. At the
root of the scheduling hierarchy, GVM uses a fixed prior
ity policy to guarantee that the system heap garbage col
lector is given the highest priority. At the next level, a
stride scheduler divides CPU time between processes. To
provide compatibility with traditional Java scheduling, the
root thread group o f each process by default is associated
with a fixed-priority scheduler that is a child o f the stride
scheduler.

Netw ork M anagem ent. GVM is intended to be used
as a testbed for research on active networks [45]. For that
reason, GVM incorporates a scheduling framework that is
hierarchical, supports link-sharing service, and has good
delay bound properties. GVM implements the H-PFQ [4]
algorithm, which allows packet schedulers to be stacked
on top of each other in a scheduling hierarchy.

4.1.3 Im plem entation Status

The GVM kernel is composed o f the modified JVM,
based on Kaffe l.Obetal, supplemented by classes in bi
nary format from JavaSoft’s JDK 1.1.5, and a package of
privileged classes that replace part o f the core java pack
ages. GVM runs both as a stand-alone kernel based on the
OSKit [20] and in user mode with libraries that simulate
certain OSKit components such as interrupt handling and
raw device access. We have implemented separate heaps,
as well as write barriers, but per heap garbage collection
still needs to be debugged and tested. In addition, because
our underlying Kaffe VM does not support it, we cannot
currently garbage collect classes.

Although CPU inheritance scheduling is implemented in
GVM via a new, separable OSKit component, it currently
only support schedulers implemented as native methods in
C. We will eventually wrap the CPU inheritance API in
Java, which will allow schedulers to be implemented in
Java. We have implemented four different policies: fixed-
priority, rate-monotonic scheduling, lottery, and stride-
scheduling.

The current implementation of H-PFQ, another new,

separable OSKit component, only supports smallest start
time first (SSF) and smallest finish time first (SFF) sched
ulers. However, more complicated policies should easily
fit in the framework. Standard TCP or UDP sockets use a
standard networking stack whose transmissions are subject
to a summary budget; this is accomplished by connecting
them a single leaf node. GVM supports an alternate data
gram socket implementation for unfragmented UDP pack
ets, like those used for video or audio streams. We believe
this model is appropriate for active networks, which focus
on experimentation with non-traditional protocols.

4.1.4 Sum m ary
G VM ’s design is oriented towards complete resource

isolation between processes, with the secondary goal of
allowing direct sharing. By giving each process a sepa
rate heap, many memory and CPU management resource
issues become simpler. Sharing occurs through a shared
system heap, and distributed garbage collection techniques
are used to safely maintain sharing information.

4.2 Alta
Alta [47] is an extended Java Virtual Machine that pro

vides a hierarchical process model and system API mod
eled after that provided by the Fluke microkernel. Fluke
supports a nested process model [21], in which a process
can manage all of the resources o f child processes in much
the same way that an operating system manages the re
sources o f its processes. Memory management and CPU
accounting are explicitly supported by the system API.
“Higher-level” services such as network access and file
systems are managed by servers, with which applications
communicate via IPC. Capabilities provide safe, cross
process references for communication.

Processes in Alta provide the illusion o f a dedicated vir
tual machine to Java applications. Each process has its
own root thread group, its own threads, and private copies
o f all static member data. Per-process memory account
ing in Alta is comprehensive: including Java objects, JIT’d
methods, class objects, and VM-internal locks. For access
control purposes, Alta expands the Fluke model by provid
ing processes with the ability to control the classes used
by a sub-process. Alta also extends the Java class model
in that it allows a process to rename the classes that a sub
process sees. As a result, a process can interpose on all o f
a subprocess’ interfaces.

The Alta virtual machine does not change any of the
interfaces or semantics defined by the JVM specification.
Existing Java applications, such as ja v a c (the Java com
piler), can run unmodified as processes within Alta.

4.2.1 System M odel
Communication in Alta is done through an IPC system

that mimics the Fluke IPC system. Inter-process commu
nication is based on a half-duplex, reversible, client-server

8

connection between two threads (which may reside in dif
ferent processes). Additionally, Alta IPC provides imme
diate notification to the client or server if its “other-half” is
terminated or disconnects.

Alta permits sibling processes to share objects directly.
Objects can be shared by passing them through IPC. Shar
ing is only permitted for objects where the two processes
have consistent views o f the class name space. Enforc
ing this requirement efficiently requires that the classes
involved are all final. W hile this is somewhat restrictive,
all o f the primitive types — such as b y t e [] (an array of
bytes) and j a v a . l a n g . s t r i n g — and many of the core
Alta classes meet these requirements.

4.2.2 Resource M anagem ent

The strongest feature o f the nested process model is the
ability to “nest” processes: every process can manage child
processes in the same way the system manages processes.
Resource management in Alta is strictly hierarchical. Any
process can create a child process and limit the memory
allowance o f that process.

M em ory M anagem ent. The system supports memory
management explicitly, through a simple allocator-pays
scheme. The garbage collector credits the owning pro
cess when an object is eventually reclaimed. Because Alta
allows cross-process references, when a process is termi
nated, any existing objects are “promoted” into the parent
memory. Thus, it the responsibility of the parent process
to make sure that cross-process references are not created
if full memory reclamation is necessary upon process ter
mination.

Memory reclamation is also simple if a process only
passes references to its children. In the nested process
model, when a process is terminated all o f its child pro
cesses are necessarily terminated also. Therefore, refer
ences that are passed to a process’ children will bccomc
unused. It is important to note that Alta enables a process
to prevent child processes from passing Java object refer
ences through IPC.

To support clean thread and process termination, Alta
uses standard operating system implementation tricks to
prevent the problem o f threads terminated while execut
ing critical system code, just like in GVM. For example,
to avoid stack overflows while executing system code, the
entry layer will verify sufficient space is available on the
current thread stack. This is analogous to the standard
technique o f pre-allocating an adequate size stack for in
kernel execution in traditional operating systems. Addi
tionally, Alta is structured to avoid explicit memory alloca
tions within “system code.” A system call can allocate ob
jects before entering the system layer so that all allocation
effectively happens in “user mode.” Since the notion o f the
system code entry layer is explicit, some system calls, for
example T h r e a d . c u r r e n t T h r e a d () never need call the

system enter or exit routines.
CPU M anagem ent. CPU time will be controlled

through the CPU inheritance scheduling model [22]. Cur
rently, Alta provides garbage collection as a “system ser
vice.” This leaves Alta open to denial-of-service attacks
that generate large amounts of garbage— which will cause
the garbage collector to run. Given the memory limits on
processes, and limits on the CPU usage o f a process, GC
problems like this can be mitigated.

N etw ork M anagem ent. Alta can provide access con
trol to the network through a kernel-external server pro
cess, but does not currently provide any specific support
for network bandwidth management.

4.2.3 Im plem entation Status
Alta’s implementation is based on a JDK 1.0.2-

equivalent JVM and core libraries (Kore [13] version 0.0.7
and Kaffe [46] version 0.9.2). The bulk of the system is im
plemented entirely in Java. The internals o f the VM were
enhanced to support nested processes. A number o f the
core library classes were modified to use Alta primitives
and to make class substitution more effective.2 In addition
to ja v a c , Alta supports simple applications that nest mul
tiple children and control their class name spaces, along
with a basic shell and other simple applications.

In terms o f code sharing, a process in Alta is analogous
to a statically linked binary in a traditional systems — each
process has its own JIT’d version o f a method. We be
lieve the Kaffe JIT could be modified to provide “process-
independent”, sharable code, just as compilers can gen
erate position-independent code for shared libraries. Ad
ditionally, like Kaffe, Alta does not yet support garbage
collection o f classes.

Alta does not yet implement CPU inheritance schedul
ing. Because Alta and GVM share a common code base,
the CPU inheritance scheduling that is implemented in the
GVM should be easy to migrate to Alta. In addition, like
GVM, Alta runs as a regular process on a normal operat
ing system, and will run on top of bare hardware using the
OSKit.

4 .2.4 Sum m ary
Alta implements the Fluke nested process model and

API in a Java operating system. It demonstrates that the
nested process model can provide Java processes with flex
ible control over resources. Because o f the hierarchical
nature o f the model, direct sharing between siblings can be
supported without resource reclamation problems.

4.3 J-Kernel
The J-Kernel [14, 29] is a Java microkernel. It supports

multiple protection domains that are called tasks. Names

2The Alta API is documented at http://www.cs.utah.edu/projects/-
flux/java/alta.

9

http://www.cs.utah.edu/projects/-

are managed in the J-Kernel through the use of resolvers,
which map names onto Java classes. When a task creates a
subtask, it can specify which classes the subtask is allowed
to access. Class loaders are used to give tasks their own
name spaccs.

4.3.1 System M odel

Communication in the J-Kernel is based on capabilities.
Java objects can be shared indirectly by passing a pointer
to a capability object through a “local RMI” call. The ca
pability is a trusted object containing a direct pointer to the
shared object. Because of the level o f indirection through
capabilities to the shared object, the capabilities can be re
voked. A capability can only be passed if two tasks share
the same class. Making a class shared is an explicit action
that forces two class loaders to share the class.

All arguments to inter-task invocations must either be
capabilities, or be deep-copied. By default, standard Java
object serialization is used, which involves marshaling into
and unmarshaling from a linear byte buffer. To decrease
the cost o f copying, a fast copy mechanism is also pro
vided. Specialized code for a class creates a direct copy
o f an object’s fields. Both the specialized fast copy code
and the stubs needed for cross-domain calls are generated
automatically by dynamically creating bytecode.

The J-Kernel supports thread migration between tasks:
cross-task communication is not between two threads. In
stead, a single thread makes a method call that logically
changes protection domains. Therefore, a full context
switch is not required. To prevent malicious callers from
damaging a callee’s data structures, each task is only al
lowed to stop a thread when it is executing code in its own
process. This choice o f system structure requires that a
caller trust all o f its callees, because a malicious or erro
neous callee might never return.

4.3.2 Resource M anagem ent

The J-Kernel designers made the explicit decision not to
build their own JVM. Instead, the J-Kernel is written en
tirely in Java. As a result o f this decision, the J-Kernel
designers limited the precision o f their resource control
mechanisms. The lack o f precision occurs because the
JVM that runs under the J-Kernel cannot know about pro
cesses. As a result, it cannot account for the resources that
it consumes on behalf o f a process.

M em ory M anagem ent. In order to account for mem
ory, the J-Kernel rewrites the bytecode o f constructors and
finalizers to charge and credit for memory usage. Such a
scheme does not take fragmentation into account. In addi
tion, memory such as that occupied by just-in-time com
piled code is hard to account for.

CPU M anagem ent. The NT version o f the J-Kernel
uses a kernel device driver to monitor the CPU time con
sumed by a thread. This mechanism is reactive: threads

can only be prevented from consuming further resources
after they already exceeded their limits. In addition, it is
difficult to add custom scheduling policies for tasks.

Netw ork M anagem ent. To account for network usage,
the NT version o f the J-Kernel uses a custom WinSock
DLL. This DLL counts the number of bytes transmitted
by a particular socket.

4.3.3 Im plem entation Status
A version o f the J-Kernel that does not support resource

controls is freely available from Cornell’s Web site. The
advantage o f their implementation approach is a high de
gree o f portability: the J-Kernel can run on most JVMs.
Since it uses class reloading, there are some dependen
cies on the specific interpretation of gray areas in the Java
language specification. In fact, the recent introduction of
application-specific class loaders in JDK 1.2beta4 breaks
the J-Kernel’s loading mechanism.

The J-Kernel is distributed with two additional pieces
o f software. The first is JOS, which uses the J-Kernel to
provide support for servers. The second is JServer, a Web
server that safely runs client-provided Java code.

4.3.4 Sum m ary

The J-Kernel adopts a capability-based model that disal
lows direct sharing between tasks. As a result, its capabili
ties are directly revocable, and memory can be completely
reclaimed upon task termination. In addition, the J-Kemel
exploits the high-level nature of Java’s bytecode represen
tation to support the automatic creation of communication
channels.

4.4 Performance Evaluation
We ran several microbenchmarks on our two prototype

systems, Alta and GVM, and a port o f the J-Kernel to Kaffe
to measure their baseline performance. These benchmarks
demonstrate that no undue performance penalties are paid
in any o f these systems for supporting processes. In addi
tion, they show that the IPC facilities and Java processes
are lightweight (and comparable) in all three systems.

The Alta, J-Kernel, and basic Kaffe tests were per
formed on a 300M Hz Intel Pentium II system with 128MB
o f SDRAM. The system ran FreeBSD version 2.2.6, and
was otherwise idle. The GVM tests were performed on
the same machine, but GVM was linked to the OSKit and
running without FreeBSD.

Table 1 shows the average time for a simple null in
stance method invocation, the average cost o f allocating
a j a v a . la n g .O b j e c t , the average overhead of creating
and starting a Thread object, and the average cost o f creat
ing a Throwable object. All o f the benchmarks were writ
ten to avoid invocation of the GC (intentional or uninten
tional) during timing. For GVM and Alta the benchmarks
were run as the root task in the system. For the J-Kernel,

10

Virtual Machine M ethod Invocation Object Creation Null Thread Test Exception Creation
Kaffe l.Obetal 0.16/xs 1.9/ts 480/us 1 2/js

GVM 0.16/xs 3.1/is 725/is 18/us
Alta 0.16//S 2.5/us 1030/ts 15ps
Kaffe 0.10.0 0.1 If is 1,8/iS 470/is 10/us
J-Kernel 0 .17 /is 1.8/is 480/us 29/j.s

T able 1: Despite the fact that we have five distinct Java virtual machines based around different versions o f the Kaffe virtual machine,
base performance o f the versions are not very different. The J-Kemel is run on Kaffe 0.10.0, because o f deficiencies in object
serialization in Kaffe l.Obetal.

the benchmarks were run as children o f the J-Kernel Root-
Task, C o r n e l l . s l k . j k e r n e l . s td .M a in .

None o f the systems significantly disrupt any o f the ba
sic features o f the virtual machine. (Previously published
results about the J-Kernel [29] used M icrosoft’s Java vir
tual machine, which is significantly faster than Kaffe.) The
Alta null thread test is significantly more expensive than
the basic Kaffe test because Alta threads maintain addi
tional per-thread state for IPC, process state, and blocking.

Table 2 measures the two critical costs o f adding a pro
cess model to Java. The first column lists the overhead of
creating a new process, measured from the time the par
ent creates the new process to the time at which the new
process begins its m ain function. The Kaffe row lists the
time required for Kaffe to fork and exec a new Kaffe pro
cess in FreeBSD. The J-Kernel supports a more limited
notion o f process— J-Kernel processes do not require an
active thread— so the J-Kernel test simply creates a pas
sive Task and seeds it with a simple initial object.

The subsequent columns o f Table 2 show the time re
quired for cross-task communication. Alta IPC is sig
nificantly slower because it is a rendezvous between two
threads, whereas J-Kernel IPC is simply cross-process
method invocation. GVM IPC is implemented using a
shared rendezvous object and is based on wait/notify. The
weaker times reflect its unoptimized thread package that is
different than the thread package in the other four JVMs.

Our performance results indicate that our systems need
substantial optimization in order to realize the performance
potential o f language-based operating systems. The per
formance benefits from fine-grained sharing in software
can be dominated by inefficiencies in the basic JVM im
plementation. A s the difference to previously published
J-Kernel results demonstrates, the future performance of
Java systems will likely be spurred by advances in just
in-time compilation, which is orthogonal to the research
issues we are exploring.

To analyze the implementation costs o f our decision to
build our own JVM, we examined each system in terms of
useful lines o f code (i.e., non-blank, non-comment lines of
source). As a reference point, the original version o f Kaffe
vO.9.2 contains 10,000 lines o f C, while Kaffe vl.Obetal is

comprised of just over 14,000 lines of C and 14,000 lines
of Java. (Much o f this increase is due to the move from
JDK 1.0 to JDK 1.1.) Alta is comprised o f 5,000 lines
of Java and adds approximately 5,000 lines o f C to Kaffe
vO.9.2 (a significant fraction of this C code consists o f fea
tures from later versions o f Kaffe that we ported back to
Kaffe vO.9.2). GVM adds approximately 1,000 lines of C
code to the virtual machine and almost 2,000 lines o f Java
code to the basic libraries. The additional C code consisted
of changes to the garbage collector to support GVM ’s sep
arate heaps.

In comparison, the J-Kernel consists of approximately
9.000 lines o f Java. Building the J-Kernel as a layer on
top o f a JVM was probably an easier implementation path
than building a new JVM. The primary difficulty in build
ing the J-Kernel probably lay in building the dynamic stub
generator.

5 Related Work
Several lines o f research are related to our work. First,

the development of single-address-space operating sys
tems — with protection provided by language or by hard
ware — is a direct antecedent o f work in Java. Second, a
great deal o f research today is directed at building operat
ing system services in Java.

5 .1 P r io r R ese a rc h

A great deal o f research has been done on hardware-
based single-address-space operating systems, such as
Opal [12], In Opal communication was accomplished by
passing 256-bit capabilities among processes: a process
could attach a memory segment to its address space so that
it could address the memory segment directly. Because
Opal was not based on a type-safe language, resource allo
cation and reclamation was coarse-grained, and based on
reference counting of segments.

Several operating systems projects have focused on
quality-of-service issues and real-time performance guar
antees, such as Nem esis and Eclipse. Nem esis [30] is a
single-address-space OS that focuses on quality-of-service
for multimedia applications. Eclipse [10], a descendant

11

Virtual Machine Process Creation Null IPC 3-integer request 100-byte String request
Alta 120ms lO^s 12/xs 22jus
GVM 89ms 57/us 57//s 183/^s
J-Kernel 235m s 2.1us 2.1 Hi 27/iS
Kaffe 300m s N/A N/A N/A

Table 2: Process Tests. Note that numbers in the first column are reported in ms, while the other columns are reported in /is . Alta and
GVM IPC is between separate threads while the J-Kernel IPC uses cross-process thread migration. The 3-integer request and 100-byte
String request operations include the time to marshal and unmarshal the request. The J-Kernel uses object serialization to transmit a
String while GVM and Alta use hand-coded String marshal and unmarshal codc.

o f Plan9 [38], introduced the concept o f a reservation do
m a in which is a pool o f guaranteed resources. Eclipse pro
vides a guarantee o f cumulative service, which means that
processes execute at a predictable rate. It manages CPU,
disk, and physical memory. Our work is orthogonal, be
cause we are examining the low-level mechanisms that are
necessary to manage resources in a Java operating system.

Many research projects have explored operating systems
issues within the context o f programming languages. For
example, Argus [33] and Clouds [15] explored the use
of transactions within distributed programming languages.
Other important systems that studied issues o f distribution
include Eden [2], Emerald [9], and Amber [11], These sys
tems explored the concepts underlying object migration,
but did not investigate resource management.

Language-based operating systems have existed for
many years. We describe a number o f these systems. Most
of them were not designed to protect against malicious
users, although a number o f them support strong security
features. None of them, however, provide strong resource
controls.

Pilot [39] and Cedar [44] were two o f the earliest
language-based systems. Their development at Xerox
PARC predates a flurry o f research in the 1990’s on such
systems.

Oberon [53] is a language-based system that shares
many o f Java’s features (such as garbage collection, object-
orientation, strong type-checking, and dynamic bind
ing). Oberon is a non-preemptive, single-threaded sys
tem. Background tasks like the garbage collector are im
plemented as calls to procedures, where “interruption” can
only occur between top-level procedure calls.

A related project, Juice [23] provides an execution envi
ronment for downloaded Oberon code (just as a JVM pro
vides an execution environment for Java). Juice is a virtual
machine that executes “binaries” in its own portable for
mat: it compiles them to native code during loading, and
executes the native code directly. The advantage of Juice
is that its portable format is faster to decode and easier to
compile than Java’s bytecode format.

SPIN [7] is an operating system kernel that lets appli
cations load extensions written in Modula-3 that can ex

tend or specialize the kernel. As with Java, the type safety
o f Modula-3 ensures memory safety. SPIN supports dy
namic interposition on names, so that extensions can have
different name spaces.

Inferno [17] is an operating system for building dis
tributed services that has its own virtual machine called
Dis and its own programming language called Limbo. In
ferno is a small system that has been ported to many ar
chitectures: it has been designed to run in resource-limited
environments, such as set-top boxes. In order to minimize
garbage collection pauses, Inferno uses reference counting
to reclaim memory.

VINO is a software-based (but not language-based) ex
tensible system [41] that addresses resource control issues
by wrapping kernel extensions within transactions. When
an extension exceeds its resource limits, it can be safely
aborted (even if it holds kernel locks), and its resources
can be recovered.

5.2 Java-Based Research
Besides Alta, GVM, and the J-Kernel, a number of other

research systems have explored (or are exploring) the prob
lem o f supporting processes in Java.

Balfanz and Gong [3] describe a multi-processing JVM
developed to explore the security architecture ramifications
o f protecting applications from each other, as opposed to
just protecting the system from applications. They identify
several areas of the JDK that assume a single-application
model, and propose extensions to the JDK to allow mul
tiple applications and to provide inter-application secu
rity. The focus of their multi-processing JVM is to ex
plore the applicability of the JDK security model to multi
processing, and they rely on the existing, limited JDK in
frastructure for resource control.

E [19] is a set o f extensions to Java that support the use
o f object references as capabilities. They check these ca
pabilities at load-time. Hagimont and Ismail [27] describe
a different implementation o f capabilities that uses an IDL
to define protection views on objects. The implementation
of capabilities in their design is similar to that used in the J-
Kernel. The Echidna system [25] is a freely available class
library that supports multiple processes in Java. It does not

12

support resource controls in general, but it does support
registration o f resources so that they can reclaimed upon
process termination.

One approach to resource control is to dedicate an en
tire machine to the execution of client code. For instance,
AT&T’s “Java Playground” [34] and Digitivity’s “CAGE”
Applet Management System [16] define special Java ap
plet execution models that require applets to run on ded
icated, specially protected hosts. This execution model
imposes extremely rigid limits on mobile code, by quar
antining applets on isolated hosts. As a result, richer ac
cess is completely disallowed. Also, note that although
the above-mentioned systems guarantee the integrity of the
JVM, protecting it from foreign code, they do not pro
vide any inter-applet guarantees, with respect to security
or resources, beyond that offered by the underlying nearly
“stock” JDK. In this way, these systems are similar to
Kimera [42], which uses dedicated servers to protect crit
ical virtual machine resources (e.g., the bytecode verifier)
but not to protect applications from each other.

Sun’s original JavaOS [43] was a standalone OS written
almost entirely in Java. It is described as a first-class OS
for Java applications, but appears to provide a single JVM
with little separation between applications. It is being re
placed by a new implementation termed “JavaOS for Busi
ness” that also only runs Java applications. “JavaOS for
Consumers” is built on the Chorus microkernel OS [40] in
order to achieve real-time properties needed in embedded
systems. Both o f these systems require a separate JVM for
each Java application, and all run in supervisor mode.

Joust [28], a JVM integrated into the Scout operating
system [35], provides control over CPU time and network
bandwidth. To do so, it uses Scout’s path abstraction.
However, it does not provide control over memory.

Several projects support real-time performance guar
antees in Java, which is beyond the scope o f our re
search. The Open Group’s Conversant system [5] is an
other project that modifies a JVM to provide processes.
It provides each process with a separate address range
(within a single Mach task), a separate heap, and a separate
garbage collection thread. Conversant does not support
sharing between processes, unlike our systems and the J-
Kernel. Since its threads are native Mach threads support
ing POSIX real-time semantics augmented with an adap
tive mechanism, Conversant provides some real-time ser
vices. Another real-time system, PERC [36], extends Java
to support real-time performance guarantees. The PERC
system analyzes Java bytecodes to determine memory re
quirements and worst-case execution time, and feeds that
information to a real-time scheduler.

In order to support multiple applications, a Java oper
ating system must control computational resources. We
have outlined the major technical challenges that must be
addressed in building such a system: in particular, the chal
lenges o f managing CPU usage, network bandwidth and,
most importantly, memory. Some of these challenges can
be dealt with by importing techniques from conventional
systems into language-based systems. For example, we
have shown that the Fluke nested process model and CPU
inheritance scheduling can be implemented in Java. Other
challenges can be dealt with by adapting language tech
nology, such as garbage collection, to fit into an operating
system framework.

We have described two prototype Java operating sys
tems that are being built at Utah: Alta and GVM. These
two prototypes and Cornell’s J-Kernel represent different
choices in the design space and illustrate the tradeoffs that
can be made in terms of system structure, resource man
agement, and implementation strategies. We have shown
that many design issues from conventional operating sys
tems resurface in the structural design o f Java operating
systems. Java operating systems can be built with mono
lithic designs, as GVM; or they can be built with micro
kernel designs, as Alta or the J-Kernel. Finally, we have
shown how garbage collection techniques can be used to
support resource management for Java processes.

Acknowledgments

We thank Bart Robinson for implementing the H-PFQ
algorithm in the OSKit. We thank Kristin Wright, Stephen
Clawson, and James Simister for their efforts in helping
us with the results. We thank Eric Eide for his great help
in editing and improving the presentation o f this material,
and Massimiliano Poletto for his comments on drafts of
this paper. Finally, we thank the Flux group for their work
in making the OSKit, without which much o f this work
would not have been possible.

References
[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Teva-

nian, and M. Young. Mach: A new kernel foundation for UNIX
development. In Proc. o f Summer USENIX ’86, pp. 93-112, June
1986.

[2] G. T. Aimes, A. P. Black, E. D. Lazowska, and J. D. Noe. The Eden
system: A technical review. IEEE Trans, on Software Engineering,
SE-11(1):43—59, Jan. 1985.

[3] D. Balfanz and L. Gong. Experience with secure multi-processing
in Java. In Proc. o f the Eighteenth ICDCS, May 1998.

[4] J. C. R. Bennett and H. Zhang. Hierarchical packet fair queueing
algorithms. In Proc. o f SIGCOMM '96, San Francisco, CA, Aug.
1996.

6 C o n c l u s i o n s

13

[5] P. Bemadat, L. Feeney, D. Lambright, and F. Travostino. Java sand
boxes meet service guarantees: Secure partitioning of CPU and
memory. TR TOGRI-TR9805, The Open Group Research Institute,
June 1998.

[6] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy.
Lightweight remote procedure call. ACM TOCS, 8(1):37—55, Feb.
1990.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility, safety, and
performance in the SPIN operating system. In Proc. o f the 15th
SOSP, pp. 267-284, Copper Mountain, CO, Dec. 1995.

[8] A. D. Birrell and B. J. Nelson. Implementing remote procedure
calls. ACM TOCS, 2(1), Feb. 1984.

[9] A. P. Black, N. Huchinson, E. Jul, H. Levy, and L. Carter. Dis
tribution and abstract types in Emerald. IEEE Trans, on Software
Engineering, SE-13(l):65-76, 1987.

[10] J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz. The Eclipse
operating system: Providing quality of service via reservation do
mains. In Proc. o f USENIX ’98, pp. 235-246, New Orleans, LA,
June 1998.

[11] J. Chase, F. Amador, E. Lazowska, H. Levy, and R. Littlefield. The
Amber system: Parallel programming on a network of multiproces
sors. In Proc. o f the 12th SOSP, pp. 147-158, December 1989.

[12] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing
and protection in a single-address-space operating system. ACM
TOCS, 12(4):271—307, 1994.

[13] G. Clements and G. Morrison. Kore — an implementation of the
Java(tm) core class libraries, ftp://sensei.co.uk/misc/kore.tar.gz OR
http://www.cs.utah.edu/projects/flux/java/kore/.

[14] G. Czajkowski, C.-C. Chang, C. Hawblitzel, D. Hu, and T. von
Eicken. Resource management for extensible internet servers. In
Proc. o f the Sth ACM SIGOPS European Workshop, Sintra, Portu
gal, Sept. 1998. To appear.

[15] P. Dasgupta et al. The design and implementation of the Clouds dis
tributed operating system. Computing Systems, 3(1), Winter 1990.

[16] Digitivity Corp. Digitivity CAGE, 1997. http://-
www.digitivity.com/overview.html.

[17] S. Dorward, R. Pike, D. L. Presotto, D. Ritchie, H. Trickey, and
P. Winterbottom. Inferno. In Proc. o f the 42nd IEEE COMP CON,
San Jose, CA, Feb. 1997.

[18] P. Druschel and G. Banga. Lazy receiver processing (LRP): A net
work subsystem architecture for server systems. In Proc. o f the
Second OSDI, pp. 261-275, Seattle, WA, Oct. 1996.

[19] The E extensions to Java, http://www.communities.com/products/-
tools/e/e.white-paper.html.

[20] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers.
The Flux OSKit: A substrate for OS and language research. In
Proc. o f the 16th SOSP, pp. 38-51, St. Malo, France, Oct. 1997.

[21] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Claw
son. Microkernels meet recursive virtual machines. In Proc. o f the
Second OSDI, pp. 137-151, Seattle, WA, Oct. 1996.

[22] B. Ford and S. Susarla. CPU inheritance scheduling. In Proc. o f the
Second OSDI, pp. 91-105, Seattle, WA, Oct. 1996.

[23] M. Franz. Beyond Java: An infrastructure for high-performance
mobile code on the World Wide Web. In S. Lobodzinski and
I. Tomek, editors, Proc. of'WebNet '97, pp. 33-38, Oct. 1997.

[24] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going
beyond the sandbox: An overview of the new security architecture
in the Java development kit 1.2. In Proc. o f USENIX Symp. on
Internet Technologies and Systems, pp. 103-112, Monterey, CA,
Dec. 1997.

[25] L. Gorrie. Echidna — a free multiprocess system in Java.
http://www.javagroup.org/echidna/.

[26] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
The Java Series. Addison-Wesley, 1996.

[27] D. Hagimont and L. Ismail. A protection scheme for mobile agents
on Java. In Proc. o f the Workshop on Persistence and Distribution
in Java, Lisbon, Portugal, Oct. 1997.

[28] J. H. Hartman et al. Joust: A platform for communication-oriented
liquid software. TR 97-16, Univ. of Arizona, CS Dept., Dec. 1997.

[29] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and T. von
Eicken. Implementing multiple protection domains in Java. In Proc.
o f USENIX '98, pp. 259-270, New Orleans, LA, 1998.

[30] I. M. Leslie, D. McAuley, R. J. Black, T. Roscoe, P. R. Barham,
D. M. Evers, R. Fairbaims, and E. A. Hyden. The design and imple
mentation of an operating system to support distributed multimedia
applications. IEEE Journal on Selected Areas in Communications,
14(7): 1280-1297, Sept. 1996.

[31] S. Liang and G. Bracha. Dynamic class loading in the Java virtual
machine. In Proc. o f OOPSLA '98, Vancouver, BC, Oct. 1998. To
appear.

[32] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
The Java Series. Addison-Wesley, Jan. 1997.

[33] B. Liskov. Distributed programming in Argus. CACM, 31 (3):300—
312, Mar. 1988.

[34] D. Malkhi, M. K. Reiter, and A. D. Rubin. Secure execution of Java
applets using a remote playground. In Proc. o f the 1998 IEEE Symp.
on Security and Privacy, pp. 40-51, Oakland, CA, May 1998.

[35] D. Mosberger and L. L. Peterson. Making paths explicit in the Scout
operating system. In Proc. o f the Second OSDI, pp. 153-167, Seat
tle, WA, Oct. 1996.

[36] K. Nilsen. Java for real-time. Real-Time Systems Journal, 11(2),
1996.

[37] D. Plainfosse and M. Shapiro. A survey of distributed garbage col
lection techniques. In Proc. o f the 1995IWMM, Kinross, Scotland,
Sept. 1995.

[38] D. Presotto, R. Pike, K. Thompson, and H. Trickey. Plan 9, a
distributed system. In Proc. o f the USENIX Workshop on Micro
kernels and Other Kernel Architectures, 1992.

[39] D. D. Redell, Y. K. Dalai, T. R. Horsley, H. C. Lauer, W. C. Lynch,
P. R. McJones, H. G. Murray, and S. C. Purcell. Pilot: An operating
system for a personal computer. CACM, 23(2):81-92, 1980.

[40] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,
M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois, P. Leonard,
and W. Neuhauser. The Chorus distributed operating system. Com
puting Systems, 1(4):287—338, Dec. 1989.

[41] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with
disaster: Surviving misbehaved kernel extensions. In Proc. o f the
Second OSDI, pp. 213-227, Seattle, WA, Oct. 1996.

[42] E. G. Sirer, R. Grimm, B. N. Bershad, A. J. Gregory, and
S. McDirmid. Distributed virtual machines: A system architec
ture for network computing. In Proc. o f the Eighth ACM SIGOPS
European Workshop, Sept. 1998.

[43] Sun Microsystems, Inc. JavaOS: A standalone Java envi
ronment, Feb. 1997. http://www.javasoft.com/products/javaos/-
javaos.white.html.

[44] D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann.
A structural view of the Cedar programming environment. ACM
TOPLAS, 8(4):419-490, October 1986.

[45] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,
and G. J. Minden. A survey of active network research. IEEE
Communications Magazine, 35C1):80—86, Jan. 1997.

14

ftp://sensei.co.uk/misc/kore.tar.gz
http://www.cs.utah.edu/projects/flux/java/kore/
http://-
http://www.digitivity.com/overview.html
http://www.communities.com/products/-
http://www.javagroup.org/echidna/
http://www.javasoft.com/products/javaos/-

[46] Transvirtual Technologies Inc. http://www.transvirtual.com/.

[47] P. Tullmann and J. Lepreau. Nested Java processes: OS structure
for mobile code. In Proc. o f the Eighth ACM SIGOPS European
Workshop, Sintra, Portugal, Sept. 1998.

[48] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient
software-based fault isolation. In Proc. o f the 14th SOSP, pp. 203
216, Asheville, NC, Dec. 5-8, 1993.

[49] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and
S. Stometta. Spawn: A distributed computatational economy. IEEE
Trans, on Software Engineering, 18(2):103—117, Feb. 1992.

[50] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Extensible
security architectures for Java. In Proc. o f the 16th SOSP, pp. 116
128, Oct. 1997.

[51] D. J. Wetherall, J. Guttag, and D. L. Tennenhouse. ANTS: A toolkit
for building and dynamically deploying network protocols. In Proc.
o f IEEE OPENARCH '98, San Francisco, CA, Apr. 1998.

[52] P. R. Wilson. Uniprocessor garbage collection techniques. In Proc.
o f the 1992IWMM, St. Malo, France, Sept. 1992.

[53] N. Wirth and J. Gutknecht. Project Oberon. ACM Press, New York,
NY, 1992.

15

http://www.transvirtual.com/

