
U niversity of U tah , D ep artm en t of C om pu ter Science, Technical R epo rt UUCS-98-009

Khazana*An Infrastructure for Building Distributed Services^

John Carter Anand Ranganathan Sai Susarla

Department of Computer Science
University of Utah

Salt Lake City, UT 84112

Abstract
E ssen tia lly all distribu ted system s, applications, and

services at som e level boil down to the problem of m an
aging distribu ted shared sta te. Unfortunately, while the
problem of managing distribu ted shared s ta te is shared
by m any applications, there is no com m on means of
m anaging the data - every application devises its own
solution. We have developed Khazana, a distribu ted
service exporting the abstraction of a d istribu ted p er
s is ten t globally shared store that applications can use
to store their shared state. K hazana is responsible fo r
perform ing m any of the com m on operations needed by
distribu ted applications, including replication, consis
tency m anagem ent, fault recovery, access control, and
location m anagem ent. Using Khazana, as a form, of
m iddleware, distributed applications can be quickly de
veloped from corresponding uniprocessor applications
through the in sertion of K hazana data access and syn
chronization opera, tions.

1 In trodu ction
Essentially all distributed systems applications at

some level boil down to the problem of managing dis
tributed shared state. Consider the following applica
tion areas:

• Distributed file systems (AFS, NFS, NTFS, Web-
NFS, CIFS, ...)

• Clustered file systems (DEC, Microsoft, ...)

“Khazana (kd-zd-nd) [Hindi]: Treasury, repository, cache.
^Copyright 1998 IEEE. Published in the Proceedings of

ICDCS’98, May 1998 Amsterdam, The Netherlands. Persona]
use of this material is perm itted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redis
tribution to servers or lists, or to reuse any copyrighted com
ponent of this work in other works, must be obtained from the
IEEE. Contact: M anager, Copyrights and P erm issions, IE EE
Service Center, 445 Hoes Lane , P .O . B ox 1331, Piscalaway,
N .l 08855-1331, USA.

• Distributed directory services (Novell’s NDS, Mi
crosoft’s Active Directory, ...)

• Distributed databases (Oracle, SQL Server, ...)

• Distributed object systems (DCOM, CORBA, ...)

• Collaborative groupware (Lotus Notes, Microsoft
Exchange, ...)

All of these services, and many more, perform essen
tially the same function, albeit in very different set
tings. That function is managing distributed shared
state and providing a convenient way for users and
other applications to access, update, and delete the
information being managed. Unfortunately, while the
problem of managing distributed shared state is shared
by all of the above applications, there is no common in
frastructure for managing shared data, so every system
implements its own solution. The thesis of this paper
is that it should be possible for distributed clients and
servers to share state without each instance of sharing
requiring specially written code. Just as TCP/IP hides
many complex issues from programmers (e.g., handling
link failures, routing, and congestion), there should be
support for distributed state sharing that lets most ap
plications remain oblivious to the many problems asso
ciated with managing shared state (e.g., heterogeneity,
security, high availability, caching strategies, and co
herence management). We are developing Khazana,, a
distributed service to provide this support.

Figure 1 illustrates a typical Khazana-based dis
tributed system consisting of five nodes. Applications
such as those described above can use Khazana to store
shared data that can be accessed from any node con
nected to Khazana. The Khazana design assumes that
some or all of the nodes may be connected via slow or
intermittent WAN links. Khazana will use local stor
age, both volatile (RAM) and persistent (disk), on its
constituent nodes to store data. In the example illus
trated in Figure 1, the square represents a single piece

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Node 2 I O

Figure 1: Typical Distributed Systems Based on Kha
zana

of shared data that is physically replicated on Nodes 3
and 5 (represented by the fact that the square is solid
in the local Khazana storage on those nodes). When
Node 1 accesses the data, Khazana is responsible for
locating a copy of the data and providing it to the
requester on Node 1. The details of how Khazana op
erates will be discussed in depth in Sections 2 and 3.

We envision Khazana as middleware on top of which
a variety of distributed applications, servers, and run
time environments will be built. Most distributed ap
plications have common needs (e.g., location trans
parency, high availability, and scalability), and it is
Khazana’s job to satisfy these needs. Although there
are standard techniques available to achieve each of
the above properties (e.g., naming, replication, and
caching), the logic to deal with distribution usually
is hardcoded into each application individually. This
approach to building distributed applications and ser
vices, although capable of providing high performance,
is suboptimal in several ways, including:

Complexity: The same technique may not perform
well in all situations, so applications will either
need to adapt their behavior or perform poorly
in some environments. For example, a caching
technique that performs well on fast LANs may
not perform well on slow WANs.

Correctness: Programs that deal with networking
and distribution explicitly tend to be complex and
prone to errors. Requiring each application to
“roll its own” support for distribution increases
the amount of effort required to develop or mod
ify a distributed application.

Interoperability: Independently developed services
and applications cannot easily interoperate, be
cause the way that they manage data differs. This
has caused serious problems for developers trying

to create unified directory and/or database ser
vices, for example.

Khazana is designed to solve these problems. Kha
zana does not interpret the shared data — some clients
may store structured data (e.g., CORBA objects) while
others may simply use Khazana for distribution of raw
data (e.g., files). To improve performance, Khazana
is responsive to guidance from its clients. Applications
that use Khazana can specify their desired consistency,
fault tolerance, security, and other requirements for in
dividual blocks of data, and Khazana adapts the way
that it manages the specified data. For example, a
clustered file server that uses Khazana to store its file
contents can specify that Khazana maintain at least N
copies of each file block to ensure N-l redundancy in
the face of failures, and further specify that its data
be kept strongly consistent. A clustered web server,
on the other hand, would likely require fewer copies be
maintained and allow a weaker (and thus higher per
formance) consistency protocol. A distributed object
system built on top of Khazana might allow individ
ual programmers to specify the sharing and replication
semantics they desire for each of their objects. It also
could use location information exported from Khazana
to decide if it is more efficient to load a local copy of
the object or perform a remote invocation of the object
on a node where it is already physically instantiated.

Our work on Khazana is in its early phases. Our
current focus is identifying the set of services that Kha
zana should support, the amount of flexibility that it
must export, the extent to which it can support a wide
variety of consumers, and the algorithms needed so it
can scale efficiently. In particular, we are exploring the
following questions:

• What interface should Khazana export to appli
cations?

• What are the requirements of various classes
of Khazana clients (e.g., file systems, directory
servers, databases, object systems, etc.)?

• Can applications that use Khazana achieve high
(scalable) performance?

• How much will existing distributed applications
need to be changed to benefit from Khazana? Is
the change worthwhile?

We discuss our current answers to these questions,
and the resulting Khazana system design, in the re
mainder of this paper, which is organized as follows.
In Section 2, we discuss the basic design philosophy
of Khazana, and describe at a high level how a set of

Khazana nodes cooperate to provide the abstraction of
persistent, globally accessible, secure shared state. In
Section 3, we present the major data structures and
inter-node protocols used by Khazana. Section 4 de
scribes two sample uses of Khazana for different kinds
of distributed applications. Section 5 describes the cur
rent implementation status of Khazana. We discuss
the value of a Khazana-like middleware; layer for dis
tributed services in Section 6. Section 7 compares this
work to related efforts. Finally, we draw conclusions
in Section 8.

2 A pproach
As described above, the basic abstraction exported

by Khazana is that of shared state. Specifically, it
exports the abstraction of a flat distributed persis
tent globally shared storage space called global m em
ory. Applications allocate space in the global mem
ory in much the same way that they allocate normal
memory, except that Khazana regions are “addressed”
using 128-bit identifiers, and there is no direct corre
spondence between Khazana addresses and an applica
tion’s virtual addresses. Applications can access global
memory either via explicit readQ and w riteO calls
that specify global addresses (similar to file reads and
writes), or by mapping parts of global memory to their
virtual memory space and reading and writing to this
mapped section (akin to a memory-mapped file). In ef
fect, Khazana can be thought of as a globally accessible
disk against which distributed applications read and
write data, similar to Petal[20]. Unlike Petal, however,
Khazana explicitly supports consistency management
and is designed as a middleware layer for arbitrary dis
tributed applications.

Referring back to Figure 1, the Khazana service is
implemented by a dynamically changing set of coop
erating daemon processes running on some (not nec
essarily all) machines of a potentially wide-area net
work. Note that there is no notion of a “server” in a
Khazana system - all Khazana nodes are peers that
cooperate to provide the illusion of a unified resource.
Typically an application process (client) interacts with
Khazana through library routines. The basic set of
operations exported by Khazana allows clients to re
serve, allocate, and access regions. To Khazana, a
region is simply a block of client data with common
application-level characteristics accessed via contigu
ous Khazana addresses. Khazana also has the notion
of a page, which is the minimum amount of data that
Khazana independently manages. By default, regions
are made up of 4-kilobyte pages to match the most
common machine virtual memory page size. Related
to regions, Khazana provides operations to:

• reserve and unreserve a contiguous range of global
address space (region). A region cannot be ac
cessed until physical storage is explicitly allocated
to it. At the time of reservation, clients can spec
ify that a region be managed in pages larger than
4-kilobytes (e.g., 16 kilobytes, 64 kilobytes, ...).

• allocate and free underlying physical storage for a
given region of reserved global address space.

• lock and unlock parts of regions in a specified mode
(e.g., read-only, read-write etc). The lock opera
tion returns a lock context, which must be used
during subsequent read and write operations to
the region. Lock operations indicate the caller’s
intention to access a portion of a region. These
operations do not themselves enforce any concur
rency control policy on the Khazana. region. The
consistency protocol ultimately decides the con
currency control policy based on these stated in
tentions to provide the required consistency se
mantics.

• read and w rite subparts of a region by presenting
its lock context.

• get and se t attributes of a region. Currently, a
region’s attributes include:

— desired consistency level
— consistency protocol
— access control information
— minimum number of replicas

As can be seen from the list of operations above,
Khazana provides basic data access operations, but
does not provide or enforce any particular program
ming model. In particular, Khazana itself does not
provide a notion of objects, transactions, streams, or
other higher semantic level operations often found in
distributed object systems or object dat,abases[6, 7, 9,
18, 22], We believe that these features of a global
storage system are useful to many applications, but
are heavyweight and unnecessary for many others. In
contrast, Khazana concentrates only on storing and
accessing data efficiently and robustly in a large dis
tributed environment, and leaves higher level seman
tics to other middleware layers. Khazana has been
designed to export a flexible set of operations and con
trols to support just this kind of layered use with other
middleware layers.

One way to implement distributed application ob
jects using Khazana is as follows. All object state is
kept in global memory. A clustered application can

start multiple instances of itself, each of which can ac
cess and modify the same object(s) by mapping, lock
ing, accessing, and unlocking the object’s constituent
region(s). Unlike conventional distributed systems, in
stances of a clustered application do not need to in
teract directly with one another to keep their shared
state consistent. In fact, unless the application ex
plicitly queries Khazana, it will be unaware that there
are other applications accessing and caching the shared
state. The application can specify the object’s consis
tency requirements[3]. Currently, Khazana can sup
port strictly consistent objects[19]. The application
can also specify that a minimum number of replicas be
maintained for fault-tolerance. Currently all instances
of an object must be accessed using the same consis
tency mechanisms, but we are exploring ways to relax
this requirement so that each client can specify its spe
cific requirements for each object that, it maps.

Khazana is free to distribute object state across the
network in any way it sees fit, subject to resource lim
itations, perceived demand, and the specified replica
tion and consistency policies for the object. In Figure
1, the square object has been physically replicated on
two nodes (Node 3 and Node 5), presumably because
these nodes are accessing the object most frequently,
are the most stable, and/or had the most available re
sources when the object was last replicated. A major
goal of this research is to develop caching policies that
balance the needs for load balancing, low latency access
to data, availability behavior, and resource constraints.

In summary, the main design goals of Khazana are:

L ocation transparency: Any client should be able
access any region regardless of its current loca
tion^) or degree of replication, subject to network
connectivity and security restrictions.

H igh availability: If a node storing a copy of a re
gion of global memory is accessible from a client,
then the data itself must be available to the client.
This requires that the internal state that Khazana
needs to access or manage a region, so called meta
data., must be available if the region is available.

Scalability: Performance should scale as nodes are
added if the new nodes do not contend for access
to the same regions as existing nodes. Data should
be cached near where it is used, and the operations
used to locate and access data must not be heav
ily dependent on the number or configuration of
nodes in the system.

Flexib ility: Khazana must provide “hooks” so that a
wide variety of applications and higher-level mid

dleware layers can use its data management facil
ities without undue loss of performance.

R obustness: The system should recover gracefully
from node or network failures.

3 D esign o f K hazana
Global memory and the Khazana metadata used to

locate and manage it are distributed among participat
ing nodes. Machines can dynamically enter and leave
Khazana and contribute/reclaim local resources (e.g.,
RAM or disk space) to/from Khazana. In this section
we discuss Khazana’s solution to the following prob
lems:

• Global address space and storage management

• Locating global memory data and metadata

• Keeping shared data and metadata consistent

• Local storage management

• Handling failures gracefully

There are, of course, other issues such as authen
tication, node membership management, handling ap
plication failures, and backup/restore, but space pre
cludes a detailed discussion of Khazana’s solution to
these problems.
3.1 Global Address Space and Storage

Management
Each Khazana node attempts to cache copies of

frequently accessed regions and the associated meta
data nearby, preferably locally. Khazana maintains
a global region descriptor associated with each region
that stores various region attributes such as its security
attributes, page size, and desired consistency protocol.
In addition, each region has a home node that main
tains a copy of the region’s descriptor and keeps track
of all the nodes maintaining copies of the region’s data.

In addition to the per-region data structures, Kha
zana maintains a globally distributed data structure
called the address map that maintains global informa
tion about the state of regions. The address map is
used to keep track of reserved and free regions within
the global address space. It is also used to locate the
home nodes of regions in much the same way that di
rectories are used to track copies of pages in software
DSM systems [21]. The address map is implemented
as a distributed tree where each subtree describes a
range of global address space in finer detail. Each tree
node is of fixed size and contains a set of entries de
scribing disjoint global memory regions, each of which
contains either a non-exhaustive list of home nodes for
a reserved region or points to the root node of a subtree

describing the region in finer detail. The address map
itself resides in Khazana. A well-known region begin
ning at address 0 stores the root node of the address
map tree. The address map is replicated and kept con
sistent using a relaxed consistency protocol, as it is not
imperative that its contents be completely accurate. If
the set of nodes specified in a given region’s address
map entry is stale, the region can still be located using
a cluster-walk algorithm described below.

For scalability, the design of Khazana organizes
nodes into groups of closely-connected nodes called
clusters. A large-scale version of Khazana would in
volve multiple clusters, organized into a hierarchy, al
though the current prototype supports only a single
cluster. Each cluster has one or more designated clus
ter managers, nodes responsible for being aware of
other cluster locations, caching hint information about
regions stored in the local cluster, and representing
the local cluster during inter-cluster communication (if
there are multiple clusters). Given the current lack of
support for multiple clusters, we concentrate on the
single-cluster design in this paper.

Khazana daemon processes maintain a pool of lo
cally reserved, but unused, address space. In response
to a client request to reserve a new region of memory,
the contacted Khazana daemon first attempts to find
enough space in unreserved regions that it is manag
ing locally. If it has insufficient local unreserved space,
the node contacts its local cluster manager, requesting
a large (e.g., one gigabyte) region of unreserved space
that it will then locally manage. Each cluster manager
maintains hints of the sizes of free address space (total
size, maximum free region size, etc) managed by other
nodes in its cluster. Once space is located to satisfy the
reserve request, reserving a region amounts to modify
ing address map tree nodes so that they reflect that the
region is allocated and where. Unreserving a region in
volves reclaiming any storage allocated for that region.
For simplicity, we do not defragment (i.e., coalesce ad
jacent free) ranges of global address space managed
by different Khazana nodes. We do not expect this
to cause address space fragmentation problems, as we
have a huge (128-bit,) address space at our disposal.
3.2 Locating Khazana Regions

To initiate most operations, Khazana must obtain
a copy of the region descriptor for the region enclosing
the requested global range. The region descriptor is
used to identify the region’s home node(s). To avoid
expensive remote lookups, Khazana maintains a cache
of recently used region descriptors called the region di
rectory. The region directory is not kept globally con
sistent, and thus may contain stale data, but this is not
a problem. Regions do not migrate home nodes often,

so the cached value is most likely accurate, but even
if the home node information is out of date, the use
of a stale home pointer will simply result in a message
being sent to a node that no longer is home to the ob
ject. If the region directory does not contain an entry
for the desired region or the home node contacted as a
result of the cache lookup is no longer a home node for
the region, a node next queries its local cluster man
ager to determine if the region is cached in a nearby
node. Only if this search fails does it search the address
map tree, starting at the root tree node and recursively
loading pages in the tree until it locates the up to date
region descriptor. If the region descriptor cannot be
located, the region is deemed inaccessible and the op
eration fails back to the client. Otherwise Khazana
checks the region’s access permissions and (optionally)
obtains copies of the relevant region pages. The loca
tion of data pages can be obtained by querying one of
the region’s home nodes.
3.3 Consistency management

Replicating global data and metadata introduces
the problem of keeping the replicas consistent. Kha
zana maintains consistency as follows. Each Khazana
node can independently choose to create a local replica
of a data item based on its resource constraints. Pro
gram modules called Consistency Managers (CMs) run
at each of the replica sites and cooperate to implement
the required level of consistency among the replicas as
is done by Brun-Cottan[4], A Khazana node treats lock
requests on an object as indications of intent to access
the object in the specified mode (read-only, read-write,
write-shared, etc.). It obtains the local consistency
manager’s permission before granting such requests.
The CM, in response to such requests, checks if they
conflict with ongoing operations. If necessary, it delays
granting the locks until the conflict is resolved.

Once a lock is granted, Khazana performs the sub
sequent permitted operations (e.g., reads and writes)
on the local replica itself, notifying the CM of any
changes. The CM then performs consistency-protocol-
specific communication with CMs at other replica sites
to inform them of the changes. Eventually, the other
CMs notify their Khazana daemon of the change, caus
ing it to update its replica. Given this consistency
management framework, a variety of consistency pro
tocols can be implemented for use by the Khazana to
suit various application needs. For example, for the
address map tree nodes, we use a release consistent
protocol[15]. We plan to experiment with even more
relaxed models for applications such as web caches and
some database query engines for which release consis
tency is overkill. Such applications typically can tol
erate data that is temporarily out-of-date (i.e., one or

two versions old) as long as they get fast response.
3.4 Local storage management

Node-local storage is treated as a cache of global
data indexed by global addresses. The local storage
subsystem on each node maintains a page directory,
indexed by global addresses, that contains information
about individual pages of global regions including the
list of nodes sharing this page. If a region’s pages are
locally cached, the page directory lists the local node
as a sharer. The page directory maintains persistent
information about pages homed locally, and for perfor
mance reasons it also maintains a cache of information
about pages with remote homes. Like the region direc
tory, the page directory is node-specific and not stored
in global shared memory.

The local storage system provides raw storage for
pages without knowledge of global memory region
boundaries or their semantics. There may be differ
ent kinds of local storage - main memory, disk, local
filesystem, tape, etc., organized into a storage hierar
chy based on access speed, as in xFS[27].

The local storage system handles access to global
pages stored locally. In response to allocation requests,
the local storage system will attempt to locate avail
able storage for the specified range of addresses. If
available, it will simply allocate available local stor
age. If local storage is full, it can choose to victim
ize unlocked pages. In the prototype implementation,
there are two levels of local storage: main memory and
on-disk. When memory is full, the local storage system
can victimize pages from RAM to disk. When the disk
cache wants to victimize a page, it must invoke the
consistency protocol associated with the page to up
date the list of sharers, push any dirty data to remote
nodes, etc.

In response to data access requests, the local stor
age system simply loads or stores the requested data
from or to its local store (either RAM or disk). It
is the responsibility of the aforementioned consistency
management routines to ensure that all of the locally
cached copies of a region are kept globally consistent.
The local storage subsystem simply provides backing
store for Khazana.
3.5 Failure handling

Khazana is designed to cope with node and network
failures. Khazana operations are repeatedly tried on all
known Khazana nodes until they succeed or timeout.
All errors encountered while acquiring resources (e.g.,
reserve, allocate, lock, read, write) are reflected back
to the original client, while errors encountered while
releasing resources (unreserve, deallocate, unlock) are
not. Instead, the Khazana system keeps trying the
operation in the background until it succeeds.

Nude A NikIcB

Figure 2: Sequence of actions on a lock and fetch re
quest

Since the first step of many Khazana operations is
address lookup, the success of many operations de
pends on the availability of the relevant address map
tree nodes. To make Khazana less sensitive to the
loss of address map nodes, the local region directory is
searched first and then the cluster manager is queried,
before an address map tree search is started. That way,
if a lookup for a nearby address has recently been per
formed by another node in the same cluster, the tree
search is avoided. If a tree search is unavoidable, a
region’s availability depends on the availability of the
address map tree nodes in the path of the tree search.
Such availability is also required to reserve and unre
serve regions.

Finally, Khazana allows clients to specify a mini
mum number of primary replicas that should be main
tained for each page in a Khazana region. This func
tionality further enhances availability, at a cost of re
source consumption.
3.6 Example Operation

Figure 2 show's the steps involved in servicing a sim
ple <lock, fetch> request pair for a page p at Node
A, when Node B owns the page.

Step 1 Node A obtains the region descriptor for p’s
enclosing region.

Steps 2, 3 (O ptional) Obtaining the region descrip
tor might involve an address map lookup.

Step 4 After sanity checks, p is looked up in the page
directory. The page directory entry holds location
and consistency information for that page.

Step 5 The Consistency Manager (CM) is invoked to
grant the lock on p in specified mode.

Step 6 The CM requests its peer on Node B for cre
dentials to grant the lock in the specified mode.

S teps 7, 8, 9 Node B’s CM directs the local daemon
to supply a. copy of p to Node A, which caches it
in its local storage.

Step 10 The CM gi ants ownership of p to Node A.

Step 11 The CM on node A then grants the lock.

S teps 12, 13 Node A supplies a copy of p locked in
the requested mode to the requestor out of its local
storage.

4 E xam ple U ses o f K hazana
In this section, we discuss two example applications

that have been designed to run using Khazana. The
first is a wnde area distributed filesystem and the sec
ond a distributed object system. The discussion fo
cuses on both the implementation issues involved and
on how Khazana enables each application to be un
aware of the fact that it is distributed.
4.1 W ide Area D istributed Filesystem

Recently the notion of Internet-wide file systems has
become popular[5, 11]. Some of the desirable charac
teristics of such a filesystem are simplicity, support for
efficient handling of files with diverse access patterns
(e.g., temporary files, system files, program develop
ment files), scalability, availability, and easy load bal
ancing. Ideally, the amount of effort required to modify
a single-node filserver to make it a clustered file server
should be small. In addition, it should be possible to
alleviate server load by starting up additional instances
of the server and transparently redirecting some of the
load to these new instances. Using Khazana, we have
designed a filesystem that takes a first step towards
achieving these goals. A brief description follows.

The filesystem treats the entire Khazana space as
a single disk, limited in size only by the size of the
Khazana address space. At the time of file system cre
ation, the creator allocates a superblock and an inode
for the root of the filesystem. Mounting this filesystem
only requires the Khazana address of the superblock.
Creating a file involves the creation of an inode and di
rectory entry for the file. Each inode is allocated as a
region of its owm. Parameters specified at file creation
time may be used to specify the number of replicas
required, consistency level required, access modes per
mitted, and so forth. In the current implementation,
each block of the filesystem is allocated into a sepa
rate 4-kilobyte region. An alternative wrould be for the
filesystem to allocate each file into a single contiguous
region, which would require the filesystem to resize the
region whenever the file size changes.

Opening a file is as simple as finding the inode ad
dress for the file by a recursive descent of the filesystem

directory tree from the root and caching that address.
Reads and writes to a file involve finding the Khazana
address for the page to be read or written, locking the
page in the appropriate mode, mapping it into local
memory, and executing the actual operation. Closing
a file releases the region containing the corresponding
inode. To truncate a file, the system deallocates re
gions no longer needed.

This approach to designing a clustered file system
satisfies all the criteria outlined above, with the pos
sible exception of scalable performance. The same
filesystem can be run on a stand-alone machine or in
a distributed environment without the system being
aware of the change in environment. Khazana takes
care of the consistency, replication, and location of the
individual regions. Specifying appropriate attributes
at creation time allows the system to efficiently support
different types of files. The default handling for each
type of file can be changed if access patterns dictate a
change in predicted behavior. Khazana provides high
availability guarantees. The failure of one filesystem
instance will not cause the entire filesystem to become
unavailable, as is the case in a conventional distributed
file system when the file server crashes. The filesystem
maintainer can specify the desired degree of fault toler
ance. New instances of the filesystem can be initiated
without changes to existing instances of the filesystem,
which enables external load balancing when the system
becomes loaded. The initial prototype of Khazana per
forms poorly, but we have not yet spent enough time
tuning performance to make a judgement about the in
herent cost of building distributed systems on top of a
Khazana-like middleware layer.
4.2 Distributed Objects

Another of the motivating applications for Khazana
is an efficient implementation of a distributed objects
runtime layer (e.g., CORBA[16] or DCOMflO]). To
build a distributed object runtime system on top of
Khazana, we plan to use Khazana as the repository
for object data and for maintaining location informa
tion related to each object. The object runtime layer
is responsible for determining the degree of consistency
needed for each object, ensuring that the appropri
ate locking and data access operations are inserted
(transparently) into the object code, and determin
ing w'hen to create a local replica of an object rather
than using RPC to invoke a remote instance of the
object. The Khazana-based distributed object system
abstracts away many implementation issues that would
arise, such as the need to keep replicated object con
tents consistent and ensuring availability in the face of
failures. The object veneer wrould implement the more
powerful semantics expected by users of distributed ob

ject systems, such as reference counting (or garbage
collection) and transactional behavior. Khazana pro
vides the hooks needed to support these higher level
semantics, but does not implement them directly, since
we anticipate that, many users of Khazana will not re
quire this level of support or be willing to pay the per
formance or resource overhead they will entail.

Depending on the size of the object, it might be al
located as a whole region or as part of a larger region.
Khazana provides location transparency for the object
by associating with each object a unique identifying
Khazana address. All methods associated with the ob
ject need to be translated to the Khazana interface of
reads and writes to the data contained within the ob
ject. Methods are invoked by downloading the code
to be executed along with the object instance, and in
voking the code locally. Khazana is useful in that it
maintains consistency across all copies and replicas of
the same object and provides caching to speed access.
Currently, Khazana does not recognize object bound
aries within a page. As a result, consistency manage
ment on fine-grain objects (small enough that many of
them fit on a single region-page) is likely to incur a sub
stantial overhead if false sharing is not addressed, al
though there are known techniques for addressing this
problem[4, 9]. Khazana’s CM interface adopts the ap
proach of Brun-Cottan and Makpangou[4] to enable
better application-specific conflict detection to address
false sharing.

5 Im p lem en tation S ta tu s
We currently have a working, single-cluster proto

type of Khazana ready. Cluster hierarchies are yet to
be implemented. We have been able to test the al
gorithms and infrastructure. We are currently port
ing the BSD Fast File System available as part of the
0SKit[14] to use Khazana. Concurrently, a simplified
distributed object system is being implemented using
Khazana.

The only consistency model we currently sup
port, is a Concurrent Read Exclusive Write (CREW)
protocol[19]. However, the system was designed so that
plugging in new protocols or consistency managers is
only a matter of registering them with Khazana, pro
vided they export the required functionality.

While the current implementation runs in a Unix
environment, only the messaging layer is system de
pendent. Therefore, we expect that, Khazana system
can be ported to other platforms with little effort, but
no ports are currently underway.

6 D iscu ssion
One major concern that developers of distributed

services have is that, infrastructures that hide the dis

tribution of data remove a lot of useful system-level
information needed to efficiently control distribution.
This is a valid concern, although we believe the trade
offs to be reasonable, similar to the way in which high
level languages and communication protocols are the
norm. Even though services written on top of our in
frastructure may not perform as well as the hand-coded
versions, we believe that Khazana’s flexible interface
allows a lot of room for application-specific optimiza
tions for performance, in addition to considerably sim
plifying their development. The extent of performance
degradation compared to the hand-coded version de
pends on how well distributed services can translate
their optimizations to shared state access optimiza
tions. The widespread use of high level languages rep
resents the tradeoff that developers are willing to make
for rapid development and hiding of complexity. We
are currently experimenting with various classes of ap
plications using Khazana to validate this belief.

7 R ela ted W ork
Building distributed applications and services on

top of Khazana is analogous to building shared memory
parallel applications on top of a software distributed
shared memory system (DSM) [1, 8, 17, 21], Just as
parallelizing compute-intensive scientific programs us
ing DSM simplifies the task of building and maintain
ing the parallel program, building distributed applica
tions and services on top of Khazana will make them
easier to build and maintain. Conventional DSM sys
tems, however, lack several key features required to
support distributed applications and services. In par
ticular, conventional DSM systems are built for a sin
gle application, where all shared data persists only as
long as the program is running, all data is mapped at
the same address in every process accessing the data,
failures generally lead to total system failure, and het
erogeneity is not handled. Khazana addresses these
limitations of conventional DSM systems.

Distributed object systems such as C0RBA[16] and
DCOMflO] provide uniform location-transparent nam
ing and access to heterogeneous networked objects. Al
though these systems provide a convenient way for ap
plications to access information in well-defined ways,
they do not by themselves provide the basic function
ality of managing shared state. In contrast, Khazana
provides a more basic infrastructure of distributed stor
age on top of which distributed object systems and
other less structured applications can be built. One
drawback of the object abstraction is that it is dif
ficult to provide efficient replication, fault-tolerance,
caching, and consistency management for arbitrary ap
plication objects in an application-independent man
ner. The notion of state is hidden within the objects

and cannot be made visible to the lower layer except
by explicit object serialization, which can be costly and
cumbersome in many applications. This argument ap
plies equally to object systems that provide replication
management[4, 23], but some of the techniques devel
oped for explicitly managing replication and caching of
individual objects would work well in a Khazana-like
environment. For example, Brun-Cottan’s approach to
separating application-specific conflict-detection from
generic consistency management [4] is used in Khazana
as a modular consistency management framework. Ob
ject databases[6, 7, 9, 18, 22] provide the necessary
distributed storage abstraction, but most are imple
mented in a client-server environment and the systems
we know of were not implemented with wide-area net
works and high scalability in mind. Therefore, they do
not have the degree of aggressive caching and replica
tion provided by Khazana.

There are many projects that closely resemble Kha
zana. Globe[26] provides functionality similar to Kha
zana but uses distributed shared objects as its base
abstraction. We did not choose the same abstrac
tion for the reasons outlined above. WebFS[25] is a
global cache coherent file system to provide a common
substrate for developing (distributed) Internet appli
cations. Its goals are similar to those of Khazana,
but it exports a file system as its base abstraction.
It uses URLs for naming, and supports application-
specific coherency protocols. In contrast, Khazana ex
ports a shared global cache coherent shared storage
abstraction. For many distributed services with fine
grained objects like object systems, a file abstraction
may be too heavyweight. Petal[20] exports the no
tion of a distributed virtual disk. It has been used
to implement Frangipani[24] which is similar to the
filesystem we envisage in Section 4.1. Petal works at
a lower level than Khazana, in particular it provides
no means of consistency management. Petal was con
ceived as a globally accessible, distributed storage sys
tem. On the other hand, Khazana attempts to provide
infrastructure for the development and deployment of
distributed services. However, it is conceivable that
Khazana could use Petal for storage management —
in such a scenario, Khazana would be the middleware
between Petal and the distributed service. GMS[13] al
lows the operating system to utilize cluster-wide main
memory to avoid disk accesses, which could support
similar single-cluster applications as Khazana. How
ever, GMS was not designed with scalability, persis
tence, security, high availability, or interoperability in
mind, which will limit its applicability.

Bayou [12] is a system designed to support data shar
ing among mobile users. Bayou focuses on providing

a platform to build collaborative applications for users
who are likely to be disconnected more often than not.
It is most useful for disconnected operations and uses a
very specialized weak consistency protocol. In the cur
rent implementation, Khazana does not support dis
connected operations or such a protocol, although we
are considering adding a coherence protocol similar to
Bayou’s for mobile data.

Serverless file systems[2] utilize workstations on a
closely coupled network, cooperating as peers to pro
vide filesystem services. Like Khazana, serverless file
systems reject the use of servers and instead use a col
lection of peer processes to support a distributed sys
tem service. xFS[27] is a wide area mass storage filesys
tem with similar scalability goals as Khazana. Both
systems are designed to meet the restricted goals of a
filesystem, and as such are inappropriate for support
ing general system services and applications.

8 C onclusions
In this paper, we have motivated the need for devel

oping a common infrastructure for building distributed
applications and services. Most distributed applica
tions require some form of distributed shared state
management, but currently applications tend to spin
their own mechanisms. We have developed Khazana,
a distributed service that allows uniprocessor applica
tions and services to be made into distributed appli
cations and services in a straightforward fashion. We
believe that this will greatly increase the number of
distributed programs that are generated - Khazana
handles many of the hardest problems associated with
distribution, leaving application developers to concen
trate on their real application needs.

Khazana exports the abstraction of 128-bit-
addressable persistent shared storage that transpar
ently spans all nodes in the system. It handles repli
cation, consistency management, fault recovery, ac
cess control, and location management of shared state
stored in it. It does so through a collection of cooperat
ing Khazana nodes that use local storage, both volatile
(RAM) and persistent (disk), on its constituent nodes
to store data near where it is accessed. Our initial ex
perience with Khazana indicates that it can support a
variety of distributed services effectively. We will con
tinue to refine Khazana and extend its API as we gain
experience building applications and services based on
the globally shared storage paradigm.

The work discussed herein represents only the be
ginning of this line of research. Among the topics
we plan to explore are scalability to multiple clus
ters, resource- and load-aware migration and replica
tion policies, more efficient region location algorithms,
more sophisticated fault tolerance schemes, flexible se

curity and authentication mechanisms, and a number
of possible performance optimizations.

A ck n ow led gem en ts
We would like to thank those individuals who helped

improve the quality of this paper, and in particular
the anonymous reviewers and members of the Com
puter Systems Laboratory seminar at the University
of Utah.

R eferences
[1] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu,

R. Rajamony, W. Yu, and W. Zwaenepoel. Tread-
marks: Shared mem ory com puting on networks of
workstations. In IE E E C om puter , January 1996.

[2] T .E. Anderson, M .D. Dahlin, J.M. Neefe, D .A. Patter
son, D .S. Roselli, and R .Y. Wang. Serverless network
file system s. In Proceedings o f the 15th Symposium, on
Operating S y s te m s P r in c ip le s , December 1995.

[3] J.K. B ennett, J.B. Carter, and W . Zwaenepoel. Adap
tive software cache managem ent for distributed shared
mem ory architectures. In Proceedings o f the 17th A n
nual In te rn a t io n a l S y m p o s iu m on C o m p u ter A rch i tec
ture, May 1990.

[4] G. B run-C ottan and M. Makpangou. Adaptable
replicated objects in distributed environments. 2nd
B R O A D C A S T Open Workshop, June 1995.

[5] B. Callaghan. W ebNFS: The filesystem for the Inter
net. h ttp ://su n .com /w eb n fs/w p -w eb n fs/, 1997.

[6] M. Carey, D. D ew itt, D. Frank, G. Graefe, J. Richards,
E. Shekita, and M. Muralikrishna. The architecture
of the EX O D U S extensible DBM S. In Proceedings
of the 1st In te rn a t io n a l W orkshop on O b jec t-O rien ted
D atabase Sys tem s , September 1996.

[7] M. Carey, D. D ew itt, D. Naughton, J. Solomon, et al.
Shoring up persistent applications. In Proceedings, of
the 1994 A C M S I G M O D C o n f May 1994. '

[8] J.B. Carter, J.K. B ennett, and W. Zwaenepoel. Tech
niques for reducing consistency-related comm unica
tion in distributed shared memory system s. A C M
T ransactions on C o m p u te r Sys tem s, August 1995.

[9] M. Castro, A. Adya, B. Liskov, and A.C. Myers. HAC:
Hybrid adaptive caching for distributed storage sys
tem s. In Proceedings o f the 16th A C M Sym p o siu m on
O perating S y s te m s Princ ip les , October 1997.

[10] Microsoft Corp. DCOM technical overview,
http: / / m icrosoft.com /ntserver/library / dcointec. exe.

[11] Microsoft Corp. Common Internet File System
(CIFS). h ttp ://m icroso ft.com /in td ev /c ifs , 1997.

[12] A. Dem ers, K. Petersen, M. Spreitzer, D. Terry,
M. Theimer, and B. Welch. The Bayou architecture:
Support for data sharing among mobile users. In P ro
ceedings o f the Workshop on Mobile C om putin g S y s
tem s and A ppl ica t ions , December 1994.

[13] M.J. Feeley, W .E. Morgan, F.H. Pighin, A.R. Karlin,
H.M. Levy, and C.A. Thekkath. Im plem enting global
mem ory m anagem ent in a workstation cluster. In P ro
ceedings o f the 15th A C M S ym p o s iu m on Operating
S y s te m s P rinc ip les , December 199-5.

[14] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
0 . Shivers. The Flux OSKit: A substrate for OS and
language research. In Proceedings of the 16th A C M
S y m p o s iu m on Operating System,s P rinc ip les , Decem
ber 1995.

[15] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and
event ordering in scalable shared-memory multiproces
sors. In Proceedings o f the 17th A nn ua l In terna t iona l
Sym p o siu m on C o m p u te r Architecture , May 1990.

[16] Object M anagement Group. The Common Object Re
quest Broker: Architecture and Specification, 1996.

[17] K.L. Johnson, M.F. Kaashoek, and D .A. Wal-
lach. CRL: High performance all-software distributed
shared memory. In Proceedings o f the 15th A C M S y m
p o s ium on Operating S y s te m s Princ ip les , 1995.

[18] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb.
The Objectstore database system . C om m u nica t ions
of the A C M , October 1991.

[19] L. Lamport. How to make a multiprocessor com
puter that correctly executes nndtiprocess programs.
IE E E Transactions on C om puters , C-28(9):690 691,
September 1979.

[20] E.K. Lee and C.A. Thekkath. Petal: D istributed vir
tual disks. In Proceedings 7th In tern a t ion a l Conf. on
Architectural Support f o r P ro g ra m m in g Languages o,nd
Operating System s , October 1996.

[21] K. Li and P. Hudak. M emory coherence in shared
virtual memory system s. A C M Transactions on C o m
p u te r Sys tem s , November 1989.

[22] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat,
R. Gruber, U. Maheshwari, A. C. Myers, and L. Shrira.
Safe and efficient sharing of persistent objects in Thor.
In Proceedings o f S I G M O D ’96, June 1996.

[23] M. Makpangou, Y. Gourhant, J.L. Narzul, and
M. Shapiro. F ragm ented Objects f o r D is tr ibu ted A b
stractions. IEEE Computer Society Press, 1994.

[24] C.A. Thekkath, T. Mann, and E.K. Lee. Frangi-
pani: A scalable distributed file system . In Proceedings
16th A C M S y m p o s iu m on Operating System s , October
1997.

[25] A. Vahdat, P. Eastham , and T. Anderson.
WebFS: A global cache coherent filesystem,
h ttp ://w w w .cs.b erk eley .ed u /'vahdat/w ebfs/w ebfs.htm l,
1996.

[26] M. van Steen, P. Homburg, and A.S. Tanenbaum. Ar
chitectural design of globe: A wide-area distributed
system . Technical Report IR-422, Vrije Universiteit,
Departm ent of M athem atics and Computer Science,
March 1997.

[27] R.Y. W ang and T.E. Anderson. xFS: A wide area mass
storage file system . In 4th, Workshop on W orksta tion
Operating S ystem s , October 1993.

http://sun.com/webnfs/wp-webnfs/
http://microsoft.com/intdev/cifs
http://www.cs.berkeley.edu/'vahdat/webfs/webfs.html

