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Abstract
E ssen tia lly all distribu ted system s, applications, and  

services at som e level boil down to the problem  of m an
aging distribu ted shared sta te. Unfortunately, while the 
problem  of managing distribu ted shared s ta te  is shared 
by m any applications, there is no com m on means of 
m anaging the data - every application devises its own 
solution. We have developed Khazana, a distribu ted  
service exporting the abstraction of a d istribu ted p er
s is ten t globally shared store that applications can use 
to store their shared state. K hazana is responsible fo r  
perform ing m any of the com m on operations needed by 
distribu ted applications, including replication, consis
tency m anagem ent, fault recovery, access control, and 
location m anagem ent. Using Khazana, as a form, of 
m iddleware, distributed applications can be quickly de
veloped from  corresponding uniprocessor applications 
through the in sertion  of K hazana data access and syn 
chronization opera, tions.

1 In trodu ction
Essentially all distributed systems applications at 

some level boil down to the problem of managing dis
tributed shared state. Consider the following applica
tion areas:

• Distributed file systems (AFS, NFS, NTFS, Web- 
NFS, CIFS, ...)

• Clustered file systems (DEC, Microsoft, ...)
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•  Distributed directory services (Novell’s NDS, Mi
crosoft’s Active Directory, ...)

• Distributed databases (Oracle, SQL Server, ...)

• Distributed object systems (DCOM, CORBA, ...)

• Collaborative groupware (Lotus Notes, Microsoft 
Exchange, ...)

All of these services, and many more, perform essen
tially the same function, albeit in very different set
tings. That function is managing distributed shared 
state and providing a convenient way for users and 
other applications to access, update, and delete the 
information being managed. Unfortunately, while the 
problem of managing distributed shared state is shared 
by all of the above applications, there is no common in
frastructure for managing shared data, so every system 
implements its own solution. The thesis of this paper 
is that it should be possible for distributed clients and 
servers to share state without each instance of sharing 
requiring specially written code. Just as TCP/IP hides 
many complex issues from programmers (e.g., handling 
link failures, routing, and congestion), there should be 
support for distributed state sharing that lets most ap
plications remain oblivious to the many problems asso
ciated with managing shared state (e.g., heterogeneity, 
security, high availability, caching strategies, and co
herence management). We are developing Khazana,, a 
distributed service to provide this support.

Figure 1 illustrates a typical Khazana-based dis
tributed system consisting of five nodes. Applications 
such as those described above can use Khazana to store 
shared data that can be accessed from any node con
nected to Khazana. The Khazana design assumes that 
some or all of the nodes may be connected via slow or 
intermittent WAN links. Khazana will use local stor
age, both volatile (RAM) and persistent (disk), on its 
constituent nodes to store data. In the example illus
trated in Figure 1, the square represents a single piece
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Figure 1: Typical Distributed Systems Based on Kha
zana

of shared data that is physically replicated on Nodes 3 
and 5 (represented by the fact that the square is solid 
in the local Khazana storage on those nodes). When 
Node 1 accesses the data, Khazana is responsible for 
locating a copy of the data and providing it to the 
requester on Node 1. The details of how Khazana op
erates will be discussed in depth in Sections 2 and 3.

We envision Khazana as middleware on top of which 
a variety of distributed applications, servers, and run
time environments will be built. Most distributed ap
plications have common needs (e.g., location trans
parency, high availability, and scalability), and it is 
Khazana’s job to satisfy these needs. Although there 
are standard techniques available to achieve each of 
the above properties (e.g., naming, replication, and 
caching), the logic to deal with distribution usually 
is hardcoded into each application individually. This 
approach to building distributed applications and ser
vices, although capable of providing high performance, 
is suboptimal in several ways, including:

Complexity: The same technique may not perform 
well in all situations, so applications will either 
need to adapt their behavior or perform poorly 
in some environments. For example, a caching 
technique that performs well on fast LANs may 
not perform well on slow WANs.

Correctness: Programs that deal with networking 
and distribution explicitly tend to be complex and 
prone to errors. Requiring each application to 
“roll its own” support for distribution increases 
the amount of effort required to develop or mod
ify a distributed application.

Interoperability: Independently developed services 
and applications cannot easily interoperate, be
cause the way that they manage data differs. This 
has caused serious problems for developers trying

to create unified directory and/or database ser
vices, for example.

Khazana is designed to solve these problems. Kha
zana does not interpret the shared data — some clients 
may store structured data (e.g., CORBA objects) while 
others may simply use Khazana for distribution of raw 
data (e.g., files). To improve performance, Khazana 
is responsive to guidance from its clients. Applications 
that use Khazana can specify their desired consistency, 
fault tolerance, security, and other requirements for in
dividual blocks of data, and Khazana adapts the way 
that it manages the specified data. For example, a 
clustered file server that uses Khazana to store its file 
contents can specify that Khazana maintain at least N 
copies of each file block to ensure N-l redundancy in 
the face of failures, and further specify that its data 
be kept strongly consistent. A clustered web server, 
on the other hand, would likely require fewer copies be 
maintained and allow a weaker (and thus higher per
formance) consistency protocol. A distributed object 
system built on top of Khazana might allow individ
ual programmers to specify the sharing and replication 
semantics they desire for each of their objects. It also 
could use location information exported from Khazana 
to decide if it is more efficient to load a local copy of 
the object or perform a remote invocation of the object 
on a node where it is already physically instantiated.

Our work on Khazana is in its early phases. Our 
current focus is identifying the set of services that Kha
zana should support, the amount of flexibility that it 
must export, the extent to which it can support a wide 
variety of consumers, and the algorithms needed so it 
can scale efficiently. In particular, we are exploring the 
following questions:

• What interface should Khazana export to appli
cations?

• What are the requirements of various classes 
of Khazana clients (e.g., file systems, directory 
servers, databases, object systems, etc.)?

• Can applications that use Khazana achieve high 
(scalable) performance?

• How much will existing distributed applications 
need to be changed to benefit from Khazana? Is 
the change worthwhile?

We discuss our current answers to these questions, 
and the resulting Khazana system design, in the re
mainder of this paper, which is organized as follows. 
In Section 2, we discuss the basic design philosophy 
of Khazana, and describe at a high level how a set of



Khazana nodes cooperate to provide the abstraction of 
persistent, globally accessible, secure shared state. In 
Section 3, we present the major data structures and 
inter-node protocols used by Khazana. Section 4 de
scribes two sample uses of Khazana for different kinds 
of distributed applications. Section 5 describes the cur
rent implementation status of Khazana. We discuss 
the value of a Khazana-like middleware; layer for dis
tributed services in Section 6. Section 7 compares this 
work to related efforts. Finally, we draw conclusions 
in Section 8.

2 A pproach
As described above, the basic abstraction exported 

by Khazana is that of shared state. Specifically, it 
exports the abstraction of a flat distributed persis
tent globally shared storage space called global m em 
ory. Applications allocate space in the global mem
ory in much the same way that they allocate normal 
memory, except that Khazana regions are “addressed” 
using 128-bit identifiers, and there is no direct corre
spondence between Khazana addresses and an applica
tion’s virtual addresses. Applications can access global 
memory either via explicit readQ  and w riteO  calls 
that specify global addresses (similar to file reads and 
writes), or by mapping parts of global memory to their 
virtual memory space and reading and writing to this 
mapped section (akin to a memory-mapped file). In ef
fect, Khazana can be thought of as a globally accessible 
disk against which distributed applications read and 
write data, similar to Petal[20]. Unlike Petal, however, 
Khazana explicitly supports consistency management 
and is designed as a middleware layer for arbitrary dis
tributed applications.

Referring back to Figure 1, the Khazana service is 
implemented by a dynamically changing set of coop
erating daemon processes running on some (not nec
essarily all) machines of a potentially wide-area net
work. Note that there is no notion of a “server” in a 
Khazana system -  all Khazana nodes are peers that 
cooperate to provide the illusion of a unified resource. 
Typically an application process (client) interacts with 
Khazana through library routines. The basic set of 
operations exported by Khazana allows clients to re
serve, allocate, and access regions. To Khazana, a 
region is simply a block of client data with common 
application-level characteristics accessed via contigu
ous Khazana addresses. Khazana also has the notion 
of a page, which is the minimum amount of data that 
Khazana independently manages. By default, regions 
are made up of 4-kilobyte pages to match the most 
common machine virtual memory page size. Related 
to regions, Khazana provides operations to:

• reserve  and unreserve  a contiguous range of global 
address space (region). A region cannot be ac
cessed until physical storage is explicitly allocated 
to it. At the time of reservation, clients can spec
ify that a region be managed in pages larger than 
4-kilobytes (e.g., 16 kilobytes, 64 kilobytes, ...).

• allocate and free underlying physical storage for a 
given region of reserved global address space.

• lock and unlock parts of regions in a specified mode 
(e.g., read-only, read-write etc). The lock opera
tion returns a lock context, which must be used 
during subsequent read and write operations to 
the region. Lock operations indicate the caller’s 
intention to access a portion of a region. These 
operations do not themselves enforce any concur
rency control policy on the Khazana. region. The 
consistency protocol ultimately decides the con
currency control policy based on these stated in
tentions to provide the required consistency se
mantics.

• read and w rite  subparts of a region by presenting 
its lock context.

• get and se t attributes of a region. Currently, a 
region’s attributes include:

— desired consistency level
— consistency protocol
— access control information
— minimum number of replicas

As can be seen from the list of operations above, 
Khazana provides basic data access operations, but 
does not provide or enforce any particular program
ming model. In particular, Khazana itself does not 
provide a notion of objects, transactions, streams, or 
other higher semantic level operations often found in 
distributed object systems or object dat,abases[6, 7, 9, 
18, 22], We believe that these features of a global 
storage system are useful to many applications, but 
are heavyweight and unnecessary for many others. In 
contrast, Khazana concentrates only on storing and 
accessing data efficiently and robustly in a large dis
tributed environment, and leaves higher level seman
tics to other middleware layers. Khazana has been 
designed to export a flexible set of operations and con
trols to support just this kind of layered use with other 
middleware layers.

One way to implement distributed application ob
jects using Khazana is as follows. All object state is 
kept in global memory. A clustered application can



start multiple instances of itself, each of which can ac
cess and modify the same object(s) by mapping, lock
ing, accessing, and unlocking the object’s constituent 
region(s). Unlike conventional distributed systems, in
stances of a clustered application do not need to in
teract directly with one another to keep their shared 
state consistent. In fact, unless the application ex
plicitly queries Khazana, it will be unaware that there 
are other applications accessing and caching the shared 
state. The application can specify the object’s consis
tency requirements[3]. Currently, Khazana can sup
port strictly consistent objects[19]. The application 
can also specify that a minimum number of replicas be 
maintained for fault-tolerance. Currently all instances 
of an object must be accessed using the same consis
tency mechanisms, but we are exploring ways to relax 
this requirement so that each client can specify its spe
cific requirements for each object that, it maps.

Khazana is free to distribute object state across the 
network in any way it sees fit, subject to resource lim
itations, perceived demand, and the specified replica
tion and consistency policies for the object. In Figure 
1, the square object has been physically replicated on 
two nodes (Node 3 and Node 5), presumably because 
these nodes are accessing the object most frequently, 
are the most stable, and/or had the most available re
sources when the object was last replicated. A major 
goal of this research is to develop caching policies that 
balance the needs for load balancing, low latency access 
to data, availability behavior, and resource constraints.

In summary, the main design goals of Khazana are:

L ocation  transparency: Any client should be able 
access any region regardless of its current loca
tion^) or degree of replication, subject to network 
connectivity and security restrictions.

H igh  availability: If a node storing a copy of a re
gion of global memory is accessible from a client, 
then the data itself must be available to the client. 
This requires that the internal state that Khazana 
needs to access or manage a region, so called meta
data., must be available if the region is available.

Scalability: Performance should scale as nodes are 
added if the new nodes do not contend for access 
to the same regions as existing nodes. Data should 
be cached near where it is used, and the operations 
used to locate and access data must not be heav
ily dependent on the number or configuration of 
nodes in the system.

Flexib ility: Khazana must provide “hooks” so that a 
wide variety of applications and higher-level mid

dleware layers can use its data management facil
ities without undue loss of performance.

R obustness: The system should recover gracefully 
from node or network failures.

3 D esign  o f K hazana
Global memory and the Khazana metadata used to 

locate and manage it are distributed among participat
ing nodes. Machines can dynamically enter and leave 
Khazana and contribute/reclaim local resources (e.g., 
RAM or disk space) to/from Khazana. In this section 
we discuss Khazana’s solution to the following prob
lems:

• Global address space and storage management

• Locating global memory data and metadata

• Keeping shared data and metadata consistent

• Local storage management

• Handling failures gracefully

There are, of course, other issues such as authen
tication, node membership management, handling ap
plication failures, and backup/restore, but space pre
cludes a detailed discussion of Khazana’s solution to 
these problems.
3.1 Global Address Space and Storage 

Management
Each Khazana node attempts to cache copies of 

frequently accessed regions and the associated meta
data nearby, preferably locally. Khazana maintains 
a global region descriptor associated with each region 
that stores various region attributes such as its security 
attributes, page size, and desired consistency protocol. 
In addition, each region has a home node that main
tains a copy of the region’s descriptor and keeps track 
of all the nodes maintaining copies of the region’s data.

In addition to the per-region data structures, Kha
zana maintains a globally distributed data structure 
called the address map that maintains global informa
tion about the state of regions. The address map is 
used to keep track of reserved and free regions within 
the global address space. It is also used to locate the 
home nodes of regions in much the same way that di
rectories are used to track copies of pages in software 
DSM systems [21]. The address map is implemented 
as a distributed tree where each subtree describes a 
range of global address space in finer detail. Each tree 
node is of fixed size and contains a set of entries de
scribing disjoint global memory regions, each of which 
contains either a non-exhaustive list of home nodes for 
a reserved region or points to the root node of a subtree



describing the region in finer detail. The address map 
itself resides in Khazana. A well-known region begin
ning at address 0 stores the root node of the address 
map tree. The address map is replicated and kept con
sistent using a relaxed consistency protocol, as it is not 
imperative that its contents be completely accurate. If 
the set of nodes specified in a given region’s address 
map entry is stale, the region can still be located using 
a cluster-walk algorithm described below.

For scalability, the design of Khazana organizes 
nodes into groups of closely-connected nodes called 
clusters. A large-scale version of Khazana would in
volve multiple clusters, organized into a hierarchy, al
though the current prototype supports only a single 
cluster. Each cluster has one or more designated clus
ter managers, nodes responsible for being aware of 
other cluster locations, caching hint information about 
regions stored in the local cluster, and representing 
the local cluster during inter-cluster communication (if 
there are multiple clusters). Given the current lack of 
support for multiple clusters, we concentrate on the 
single-cluster design in this paper.

Khazana daemon processes maintain a pool of lo
cally reserved, but unused, address space. In response 
to a client request to reserve a new region of memory, 
the contacted Khazana daemon first attempts to find 
enough space in unreserved regions that it is manag
ing locally. If it has insufficient local unreserved space, 
the node contacts its local cluster manager, requesting 
a large (e.g., one gigabyte) region of unreserved space 
that it will then locally manage. Each cluster manager 
maintains hints of the sizes of free address space (total 
size, maximum free region size, etc) managed by other 
nodes in its cluster. Once space is located to satisfy the 
reserve request, reserving a region amounts to modify
ing address map tree nodes so that they reflect that the 
region is allocated and where. Unreserving a region in
volves reclaiming any storage allocated for that region. 
For simplicity, we do not defragment (i.e., coalesce ad
jacent free) ranges of global address space managed 
by different Khazana nodes. We do not expect this 
to cause address space fragmentation problems, as we 
have a huge (128-bit,) address space at our disposal.
3.2 Locating Khazana Regions

To initiate most operations, Khazana must obtain 
a copy of the region descriptor for the region enclosing 
the requested global range. The region descriptor is 
used to identify the region’s home node(s). To avoid 
expensive remote lookups, Khazana maintains a cache 
of recently used region descriptors called the region di
rectory. The region directory is not kept globally con
sistent, and thus may contain stale data, but this is not 
a problem. Regions do not migrate home nodes often,

so the cached value is most likely accurate, but even 
if the home node information is out of date, the use 
of a stale home pointer will simply result in a message 
being sent to a node that no longer is home to the ob
ject. If the region directory does not contain an entry 
for the desired region or the home node contacted as a 
result of the cache lookup is no longer a home node for 
the region, a node next queries its local cluster man
ager to determine if the region is cached in a nearby 
node. Only if this search fails does it search the address 
map tree, starting at the root tree node and recursively 
loading pages in the tree until it locates the up to date 
region descriptor. If the region descriptor cannot be 
located, the region is deemed inaccessible and the op
eration fails back to the client. Otherwise Khazana 
checks the region’s access permissions and (optionally) 
obtains copies of the relevant region pages. The loca
tion of data pages can be obtained by querying one of 
the region’s home nodes.
3.3 Consistency management

Replicating global data and metadata introduces 
the problem of keeping the replicas consistent. Kha
zana maintains consistency as follows. Each Khazana 
node can independently choose to create a local replica 
of a data item based on its resource constraints. Pro
gram modules called Consistency Managers (CMs) run 
at each of the replica sites and cooperate to implement 
the required level of consistency among the replicas as 
is done by Brun-Cottan[4], A Khazana node treats lock 
requests on an object as indications of intent to access 
the object in the specified mode (read-only, read-write, 
write-shared, etc.). It obtains the local consistency 
manager’s permission before granting such requests. 
The CM, in response to such requests, checks if they 
conflict with ongoing operations. If necessary, it delays 
granting the locks until the conflict is resolved.

Once a lock is granted, Khazana performs the sub
sequent permitted operations (e.g., reads and writes) 
on the local replica itself, notifying the CM of any 
changes. The CM then performs consistency-protocol- 
specific communication with CMs at other replica sites 
to inform them of the changes. Eventually, the other 
CMs notify their Khazana daemon of the change, caus
ing it to update its replica. Given this consistency 
management framework, a variety of consistency pro
tocols can be implemented for use by the Khazana to 
suit various application needs. For example, for the 
address map tree nodes, we use a release consistent 
protocol[15]. We plan to experiment with even more 
relaxed models for applications such as web caches and 
some database query engines for which release consis
tency is overkill. Such applications typically can tol
erate data that is temporarily out-of-date (i.e., one or



two versions old) as long as they get fast response.
3.4 Local storage management

Node-local storage is treated as a cache of global
data indexed by global addresses. The local storage 
subsystem on each node maintains a page directory, 
indexed by global addresses, that contains information 
about individual pages of global regions including the 
list of nodes sharing this page. If a region’s pages are 
locally cached, the page directory lists the local node 
as a sharer. The page directory maintains persistent 
information about pages homed locally, and for perfor
mance reasons it also maintains a cache of information 
about pages with remote homes. Like the region direc
tory, the page directory is node-specific and not stored 
in global shared memory.

The local storage system provides raw storage for 
pages without knowledge of global memory region 
boundaries or their semantics. There may be differ
ent kinds of local storage - main memory, disk, local 
filesystem, tape, etc., organized into a storage hierar
chy based on access speed, as in xFS[27].

The local storage system handles access to global 
pages stored locally. In response to allocation requests, 
the local storage system will attempt to locate avail
able storage for the specified range of addresses. If 
available, it will simply allocate available local stor
age. If local storage is full, it can choose to victim
ize unlocked pages. In the prototype implementation, 
there are two levels of local storage: main memory and 
on-disk. When memory is full, the local storage system 
can victimize pages from RAM to disk. When the disk 
cache wants to victimize a page, it must invoke the 
consistency protocol associated with the page to up
date the list of sharers, push any dirty data to remote 
nodes, etc.

In response to data access requests, the local stor
age system simply loads or stores the requested data 
from or to its local store (either RAM or disk). It 
is the responsibility of the aforementioned consistency 
management routines to ensure that all of the locally 
cached copies of a region are kept globally consistent. 
The local storage subsystem simply provides backing 
store for Khazana.
3.5 Failure handling

Khazana is designed to cope with node and network 
failures. Khazana operations are repeatedly tried on all 
known Khazana nodes until they succeed or timeout. 
All errors encountered while acquiring resources (e.g., 
reserve, allocate, lock, read, write) are reflected back 
to the original client, while errors encountered while 
releasing resources (unreserve, deallocate, unlock) are 
not. Instead, the Khazana system keeps trying the 
operation in the background until it succeeds.

Nude A NikIcB

Figure 2: Sequence of actions on a lock and fetch re
quest

Since the first step of many Khazana operations is 
address lookup, the success of many operations de
pends on the availability of the relevant address map 
tree nodes. To make Khazana less sensitive to the 
loss of address map nodes, the local region directory is 
searched first and then the cluster manager is queried, 
before an address map tree search is started. That way, 
if a lookup for a nearby address has recently been per
formed by another node in the same cluster, the tree 
search is avoided. If a tree search is unavoidable, a 
region’s availability depends on the availability of the 
address map tree nodes in the path of the tree search. 
Such availability is also required to reserve and unre
serve regions.

Finally, Khazana allows clients to specify a mini
mum number of primary replicas that should be main
tained for each page in a Khazana region. This func
tionality further enhances availability, at a cost of re
source consumption.
3.6 Example Operation

Figure 2 show's the steps involved in servicing a sim
ple <lock, fetch> request pair for a page p at Node 
A, when Node B owns the page.

Step 1 Node A obtains the region descriptor for p’s 
enclosing region.

Steps 2, 3 (O ptional) Obtaining the region descrip
tor might involve an address map lookup.

Step 4 After sanity checks, p is looked up in the page 
directory. The page directory entry holds location 
and consistency information for that page.

Step 5 The Consistency Manager (CM) is invoked to 
grant the lock on p in specified mode.

Step 6 The CM requests its peer on Node B for cre
dentials to grant the lock in the specified mode.



S teps 7, 8, 9 Node B’s CM directs the local daemon 
to supply a. copy of p to Node A, which caches it 
in its local storage.

Step  10 The CM gi ants ownership of p to Node A.

Step  11 The CM on node A then grants the lock.

S teps 12, 13 Node A supplies a copy of p locked in 
the requested mode to the requestor out of its local 
storage.

4 E xam ple U ses o f  K hazana
In this section, we discuss two example applications 

that have been designed to run using Khazana. The 
first is a wnde area distributed filesystem and the sec
ond a distributed object system. The discussion fo
cuses on both the implementation issues involved and 
on how Khazana enables each application to be un
aware of the fact that it is distributed.
4.1 W ide Area D istributed Filesystem

Recently the notion of Internet-wide file systems has 
become popular[5, 11]. Some of the desirable charac
teristics of such a filesystem are simplicity, support for 
efficient handling of files with diverse access patterns 
(e.g., temporary files, system files, program develop
ment files), scalability, availability, and easy load bal
ancing. Ideally, the amount of effort required to modify 
a single-node filserver to make it a clustered file server 
should be small. In addition, it should be possible to 
alleviate server load by starting up additional instances 
of the server and transparently redirecting some of the 
load to these new instances. Using Khazana, we have 
designed a filesystem that takes a first step towards 
achieving these goals. A brief description follows.

The filesystem treats the entire Khazana space as 
a single disk, limited in size only by the size of the 
Khazana address space. At the time of file system cre
ation, the creator allocates a superblock and an inode 
for the root of the filesystem. Mounting this filesystem 
only requires the Khazana address of the superblock. 
Creating a file involves the creation of an inode and di
rectory entry for the file. Each inode is allocated as a 
region of its owm. Parameters specified at file creation 
time may be used to specify the number of replicas 
required, consistency level required, access modes per
mitted, and so forth. In the current implementation, 
each block of the filesystem is allocated into a sepa
rate 4-kilobyte region. An alternative wrould be for the 
filesystem to allocate each file into a single contiguous 
region, which would require the filesystem to resize the 
region whenever the file size changes.

Opening a file is as simple as finding the inode ad
dress for the file by a recursive descent of the filesystem

directory tree from the root and caching that address. 
Reads and writes to a file involve finding the Khazana 
address for the page to be read or written, locking the 
page in the appropriate mode, mapping it into local 
memory, and executing the actual operation. Closing 
a file releases the region containing the corresponding 
inode. To truncate a file, the system deallocates re
gions no longer needed.

This approach to designing a clustered file system 
satisfies all the criteria outlined above, with the pos
sible exception of scalable performance. The same 
filesystem can be run on a stand-alone machine or in 
a distributed environment without the system being 
aware of the change in environment. Khazana takes 
care of the consistency, replication, and location of the 
individual regions. Specifying appropriate attributes 
at creation time allows the system to efficiently support 
different types of files. The default handling for each 
type of file can be changed if access patterns dictate a 
change in predicted behavior. Khazana provides high 
availability guarantees. The failure of one filesystem 
instance will not cause the entire filesystem to become 
unavailable, as is the case in a conventional distributed 
file system when the file server crashes. The filesystem 
maintainer can specify the desired degree of fault toler
ance. New instances of the filesystem can be initiated 
without changes to existing instances of the filesystem, 
which enables external load balancing when the system 
becomes loaded. The initial prototype of Khazana per
forms poorly, but we have not yet spent enough time 
tuning performance to make a judgement about the in
herent cost of building distributed systems on top of a 
Khazana-like middleware layer.
4.2 Distributed Objects

Another of the motivating applications for Khazana 
is an efficient implementation of a distributed objects 
runtime layer (e.g., CORBA[16] or DCOMflO]). To 
build a distributed object runtime system on top of 
Khazana, we plan to use Khazana as the repository 
for object data and for maintaining location informa
tion related to each object. The object runtime layer 
is responsible for determining the degree of consistency 
needed for each object, ensuring that the appropri
ate locking and data access operations are inserted 
(transparently) into the object code, and determin
ing w'hen to create a local replica of an object rather 
than using RPC to invoke a remote instance of the 
object. The Khazana-based distributed object system 
abstracts away many implementation issues that would 
arise, such as the need to keep replicated object con
tents consistent and ensuring availability in the face of 
failures. The object veneer wrould implement the more 
powerful semantics expected by users of distributed ob



ject systems, such as reference counting (or garbage 
collection) and transactional behavior. Khazana pro
vides the hooks needed to support these higher level 
semantics, but does not implement them directly, since 
we anticipate that, many users of Khazana will not re
quire this level of support or be willing to pay the per
formance or resource overhead they will entail.

Depending on the size of the object, it might be al
located as a whole region or as part of a larger region. 
Khazana provides location transparency for the object 
by associating with each object a unique identifying 
Khazana address. All methods associated with the ob
ject need to be translated to the Khazana interface of 
reads and writes to the data contained within the ob
ject. Methods are invoked by downloading the code 
to be executed along with the object instance, and in
voking the code locally. Khazana is useful in that it 
maintains consistency across all copies and replicas of 
the same object and provides caching to speed access. 
Currently, Khazana does not recognize object bound
aries within a page. As a result, consistency manage
ment on fine-grain objects (small enough that many of 
them fit on a single region-page) is likely to incur a sub
stantial overhead if false sharing is not addressed, al
though there are known techniques for addressing this 
problem[4, 9]. Khazana’s CM interface adopts the ap
proach of Brun-Cottan and Makpangou[4] to enable 
better application-specific conflict detection to address 
false sharing.

5 Im p lem en tation  S ta tu s
We currently have a working, single-cluster proto

type of Khazana ready. Cluster hierarchies are yet to 
be implemented. We have been able to test the al
gorithms and infrastructure. We are currently port
ing the BSD Fast File System available as part of the 
0SKit[14] to use Khazana. Concurrently, a simplified 
distributed object system is being implemented using 
Khazana.

The only consistency model we currently sup
port, is a Concurrent Read Exclusive Write (CREW) 
protocol[19]. However, the system was designed so that 
plugging in new protocols or consistency managers is 
only a matter of registering them with Khazana, pro
vided they export the required functionality.

While the current implementation runs in a Unix 
environment, only the messaging layer is system de
pendent. Therefore, we expect that, Khazana system 
can be ported to other platforms with little effort, but 
no ports are currently underway.

6 D iscu ssion
One major concern that developers of distributed 

services have is that, infrastructures that hide the dis

tribution of data remove a lot of useful system-level 
information needed to efficiently control distribution. 
This is a valid concern, although we believe the trade
offs to be reasonable, similar to the way in which high 
level languages and communication protocols are the 
norm. Even though services written on top of our in
frastructure may not perform as well as the hand-coded 
versions, we believe that Khazana’s flexible interface 
allows a lot of room for application-specific optimiza
tions for performance, in addition to considerably sim
plifying their development. The extent of performance 
degradation compared to the hand-coded version de
pends on how well distributed services can translate 
their optimizations to shared state access optimiza
tions. The widespread use of high level languages rep
resents the tradeoff that developers are willing to make 
for rapid development and hiding of complexity. We 
are currently experimenting with various classes of ap
plications using Khazana to validate this belief.

7 R ela ted  W ork
Building distributed applications and services on 

top of Khazana is analogous to building shared memory 
parallel applications on top of a software distributed 
shared memory system (DSM) [1, 8, 17, 21], Just as 
parallelizing compute-intensive scientific programs us
ing DSM simplifies the task of building and maintain
ing the parallel program, building distributed applica
tions and services on top of Khazana will make them 
easier to build and maintain. Conventional DSM sys
tems, however, lack several key features required to 
support distributed applications and services. In par
ticular, conventional DSM systems are built for a sin
gle application, where all shared data persists only as 
long as the program is running, all data is mapped at 
the same address in every process accessing the data, 
failures generally lead to total system failure, and het
erogeneity is not handled. Khazana addresses these 
limitations of conventional DSM systems.

Distributed object systems such as C0RBA[16] and 
DCOMflO] provide uniform location-transparent nam
ing and access to heterogeneous networked objects. Al
though these systems provide a convenient way for ap
plications to access information in well-defined ways, 
they do not by themselves provide the basic function
ality of managing shared state. In contrast, Khazana 
provides a more basic infrastructure of distributed stor
age on top of which distributed object systems and 
other less structured applications can be built. One 
drawback of the object abstraction is that it is dif
ficult to provide efficient replication, fault-tolerance, 
caching, and consistency management for arbitrary ap
plication objects in an application-independent man
ner. The notion of state is hidden within the objects



and cannot be made visible to the lower layer except 
by explicit object serialization, which can be costly and 
cumbersome in many applications. This argument ap
plies equally to object systems that provide replication 
management[4, 23], but some of the techniques devel
oped for explicitly managing replication and caching of 
individual objects would work well in a Khazana-like 
environment. For example, Brun-Cottan’s approach to 
separating application-specific conflict-detection from 
generic consistency management [4] is used in Khazana 
as a modular consistency management framework. Ob
ject databases[6, 7, 9, 18, 22] provide the necessary 
distributed storage abstraction, but most are imple
mented in a client-server environment and the systems 
we know of were not implemented with wide-area net
works and high scalability in mind. Therefore, they do 
not have the degree of aggressive caching and replica
tion provided by Khazana.

There are many projects that closely resemble Kha
zana. Globe[26] provides functionality similar to Kha
zana but uses distributed shared objects as its base 
abstraction. We did not choose the same abstrac
tion for the reasons outlined above. WebFS[25] is a 
global cache coherent file system to provide a common 
substrate for developing (distributed) Internet appli
cations. Its goals are similar to those of Khazana, 
but it exports a file system as its base abstraction. 
It uses URLs for naming, and supports application- 
specific coherency protocols. In contrast, Khazana ex
ports a shared global cache coherent shared storage 
abstraction. For many distributed services with fine
grained objects like object systems, a file abstraction 
may be too heavyweight. Petal[20] exports the no
tion of a distributed virtual disk. It has been used 
to implement Frangipani[24] which is similar to the 
filesystem we envisage in Section 4.1. Petal works at 
a lower level than Khazana, in particular it provides 
no means of consistency management. Petal was con
ceived as a globally accessible, distributed storage sys
tem. On the other hand, Khazana attempts to provide 
infrastructure for the development and deployment of 
distributed services. However, it is conceivable that 
Khazana could use Petal for storage management — 
in such a scenario, Khazana would be the middleware 
between Petal and the distributed service. GMS[13] al
lows the operating system to utilize cluster-wide main 
memory to avoid disk accesses, which could support 
similar single-cluster applications as Khazana. How
ever, GMS was not designed with scalability, persis
tence, security, high availability, or interoperability in 
mind, which will limit its applicability.

Bayou [12] is a system designed to support data shar
ing among mobile users. Bayou focuses on providing

a platform to build collaborative applications for users 
who are likely to be disconnected more often than not. 
It is most useful for disconnected operations and uses a 
very specialized weak consistency protocol. In the cur
rent implementation, Khazana does not support dis
connected operations or such a protocol, although we 
are considering adding a coherence protocol similar to 
Bayou’s for mobile data.

Serverless file systems[2] utilize workstations on a 
closely coupled network, cooperating as peers to pro
vide filesystem services. Like Khazana, serverless file 
systems reject the use of servers and instead use a col
lection of peer processes to support a distributed sys
tem service. xFS[27] is a wide area mass storage filesys
tem with similar scalability goals as Khazana. Both 
systems are designed to meet the restricted goals of a 
filesystem, and as such are inappropriate for support
ing general system services and applications.

8 C onclusions
In this paper, we have motivated the need for devel

oping a common infrastructure for building distributed 
applications and services. Most distributed applica
tions require some form of distributed shared state 
management, but currently applications tend to spin 
their own mechanisms. We have developed Khazana, 
a distributed service that allows uniprocessor applica
tions and services to be made into distributed appli
cations and services in a straightforward fashion. We 
believe that this will greatly increase the number of 
distributed programs that are generated -  Khazana 
handles many of the hardest problems associated with 
distribution, leaving application developers to concen
trate on their real application needs.

Khazana exports the abstraction of 128-bit- 
addressable persistent shared storage that transpar
ently spans all nodes in the system. It handles repli
cation, consistency management, fault recovery, ac
cess control, and location management of shared state 
stored in it. It does so through a collection of cooperat
ing Khazana nodes that use local storage, both volatile 
(RAM) and persistent (disk), on its constituent nodes 
to store data near where it is accessed. Our initial ex
perience with Khazana indicates that it can support a 
variety of distributed services effectively. We will con
tinue to refine Khazana and extend its API as we gain 
experience building applications and services based on 
the globally shared storage paradigm.

The work discussed herein represents only the be
ginning of this line of research. Among the topics 
we plan to explore are scalability to multiple clus
ters, resource- and load-aware migration and replica
tion policies, more efficient region location algorithms, 
more sophisticated fault tolerance schemes, flexible se



curity and authentication mechanisms, and a number 
of possible performance optimizations.
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