
Using Utilization Pro�les in Allocation and Partitioning
for Multiprocessor Systems

John D� Evans
Robert R� Kessler

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ����� USA

October �������

Abstract
The problems of multiprocessor partitioning and program allocation are interdependent and critical
to the performance of multiprocessor systems� Minimizing resource partitions for parallel programs
on partitionable multiprocessors facilitates greater processor utilization and throughput� The pro�
cessing resource requirements of parallel programs vary during program execution and are allocation
dependent� Optimal resource utilization requires that resource requirements be modeled as variable
over time� This paper investigates the use of program pro�les in allocating programs and parti�
tioning multiprocessor systems� An allocation method is discussed� The goals of this method are
to 	�
 minimize program execution time� 	�
 minimize the total number of processors used� 	�

characterize variation in processor requirements over the lifetime of a program� 	�
 to accurately
predict the impact on run time of the number of processors available at any point in time and 	�
 to
minimize
uctuations in processor requirements to facilitate e�cient sharing of processors between
partitions on a partitionable multiprocessor� An application to program partitioning is discussed
that improves partition run times compared to other methods�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using Utilization Pro�les in Allocation and Partitioning for

Multiprocessor Systems

John D� Evans and Robert R� Kessler

April �������

Abstract

The problems of multiprocessor partitioning and program allocation are interdependent and critical
to the performance of multiprocessor systems� Minimizing resource partitions for parallel programs on
partitionable multiprocessors facilitates greater processor utilization and throughput� The processing
resource requirements of parallel programs vary during program execution and are allocation dependent�
Optimal resource utilization requires that resource requirements be modeled as variable over time� This
paper investigates the use of program pro�les in allocating programs and partitioning multiprocessor
systems� An allocation method is discussed� The goals of this method are to ��� minimize program
execution time� ��� minimize the total number of processors used� ��� characterize variation in processor
requirements over the lifetime of a program� ��� to accurately predict the impact on run time of the
number of processors available at any point in time and �	� to minimize
uctuations in processor require�
ments to facilitate e�cient sharing of processors between partitions on a partitionable multiprocessor�
An application to program partitioning is discussed that improves partition run times compared to other
methods�

� Introduction

Program Allocation� is the process of distributing work among the processors of a multiprocessor

system� E�ective program allocation is essential in achieving the goal of increased computation speed�

Multiprocessor partitioning is the process of subdividing a multiprocessor system into separate subsys�

tems �partitions� of processors� Partitionable multiprocessor systems have several advantages� Multiple

programs or multiple subsystems within a single program may use the multiprocessor systems resources

simultaneously and thereby serve an increased number of users and obtain increased system utilization

and throughput� Multiprocessor partitioning and program allocation are interdependent� Multiprocessor

partitioning determines the resources available for program allocation� Program allocation information is

used in partitioning to estimate the run times for di�erent sized partitions� The e�ective use of partition�

able multiprocessor systems requires both e�ective partitioning and e�ective allocation� General problems

of multiprocessor partitioning and program allocation have been shown to be NP�Hard problems���� ��	�

Because of this� e
cient suboptimal approaches have been the primary avenue of progress�

In this paper we investigate the interaction between processor utilization patterns determined by al�

location and the number of processors available to a partition determined by partitioning� We discuss

�The terminology of partitioning and allocation varies� The operational de�nitions used here are given�

�

the use of utilization pro�les in allocating programs for parallel computation to facilitate multiprocessor

partitioning� An allocation method is presented that addresses several basic goals�

�� Minimize program execution time�

� Minimize the total number of processors used�

�� Characterize variation in processor requirements over the lifetime of a program�

�� Accurately predict the impact on run time of variation in the number of processors available at any

point in program execution�

�� Minimize �uctuations in processor requirements to facilitate e
cient sharing of processors between

partitions on a partitionable multiprocessor�

An application of the allocation method is presented that optimizes partitions generated by existing multi�

processor partitioning algorithms and improves on the run times and e
ciency produced by these methods�

Section
 discusses background and related work� Section � discusses observed relationships between

utilization pro�les and program allocation� Section � presents a new allocation method using utilization

pro�les� In Section � we review simulation tests of the pro�ling�allocation method� Section � presents an

application of the pro�ling�allocation method to optimize parallel multiprocessor partitions� Conclusions

are presented in Section ��

� Background and Related Work

The work reported here makes use of several concepts that have wide application in parallel processing�

The following working de�nitions are used here�

Tasks are single threaded sequences of instructions� Task execution can begin when all required input

data is ready� and result data becomes ready for subsequent tasks when execution completes� Tasks

may run to completion without interruption or synchronization�

Work is the amount of computation carried out by a task or program�

Task precedence graphs �or simply task graphs� are often used to represent data driven parallel pro�

grams ��� �� ��	 �see Figure ��� Graph nodes represent units of computational work �tasks� while arcs

represent data dependencies between the tasks� Tasks are weighted to indicate the amount of work

they represent�

Utilization� The number of processors in use at a point in time�

Utilization Pro�les characterize the execution of a task graph� Figure
�b� shows an allocation of the

task graph from Figure � on four processors and Figure
�a� shows the corresponding utilization

pro�le� The utilization pro�le indicates the number of processors used at any point in time during

execution� Pro�le shape is dependent on allocation and task graph characteristics� The pro�le

representation used here is a list of segment pairs �U�W � where U is processor utilization per unit

a

b

c

d

e

f

g

h

i

j

k

l

m n

10

10

10

10

2020

10

50

10 20

p

2020 10

40

20

Figure �� Precedence Graph

m

a b

c

d

e

f

g

h i j

k l

n p

(b)

(a)

p
ro

c
e
s
s
o

rs

Time

W U

Time

Figure
� Utilization Pro�le and Gannt Chart

time and W is the work done during the segment� The relationship between Time� W and U is

given by the following equation�

Time �
W

U
���

Critical Path of a task graph is the longest precedence related sequence of tasks in the graph�

Average Parallelism ��	 is the ratio of the total work of a task graph divided by the critical path length

of the task graph�

Paravg �
W

cpl
�
�

Speedup is the graph execution time on a single processor divided by the execution time on the multi�

processor system� Equivalently� speedup equals the average pro�le segment utilization�

Su �
Timeseq

Timepar
�

Pmaxseg
i�� WiPmaxseg

i�� Timei
� Uaverage ���

E�ciency is the speedup divided by the number of processors used�

Efficiency �
Su

N
���

��� Prediction and Allocation

Several researchers have approached the problem of performance prediction directly� The concept of av�

erage parallelism was used by Eager� Zahrojan and Lazowska��	 to analyze task graph performance and

�

to determine performance bounds such as speedup and e
ciency� Jaing� Bhuyan and Ghosal���	 and Jaing

and Bhuyan��	 used average parallelism and the concept of variation of parallelism in performance

analysis for multiprocessing task graphs� The variation of parallelism model evaluates a task graph by

determining the degree of parallelism at successive stages �levels� and subsequently weighting the levels to

determine piecewise execution times� The results are then combined to produce overall run times� This

approach employs a queue based processor model and relies on the First Come First Served scheduling

model to assign tasks to levels� Mak and Lundstrom���	 developed a somewhat more costly algorithm

which employed similar processor and scheduling models� These methods have attempted to accurately

predict task graph execution time at minimal computational cost� but rely on FCFS scheduling and have

not addressed patterns of utilization directly�

The program allocation problem has been widely studied ���� �� �� ��� �	� Graham��	 derived reasonable

performance bounds for a class of allocation algorithms often referred to as list scheduling algorithms� List

scheduling algorithms build schedules of tasks for each processor� A simple simulation of execution is carried

out by tracking predicted task completion times�� During the simulation� the algorithms allocate tasks to

processors by selecting an available task �one whose parents have completed� whenever there is an available

processor� These algorithms are shown to produce results within a factor of
 of optimal allocations� The

�rst come �rst served heuristic �FCFS� leads to one of the simplest list scheduling algorithms where tasks

are selected in �rst come �rst served order� The CPM allocation algorithm���	 prioritises tasks based

on their exit path lengths� and has been shown to produce superior results �often within � percent of

optimal�� These algorithms address execution speed but largely ignore system utilization patterns�

Wilson and Gonzalez�
�	 have addressed the utilization aspect of allocation� They estimate the exe�

cution time� simply� based on the critical path length of the task graph� Their approach uses utilization

pro�les to characterize the utilization of processors over time� Their algorithm seeks to minimize the total

number of processors used and if possible to reduce the maximum number of processors active at any time

to equal the average parallelism of the graph� They accomplish this by shifting tasks at peak load times

to execute later at lower load times whenever this can be done without violating precedence constraints�

As an example� task g in Figure
�b� could be delayed until after task e blunting the pro�le peak� When

successful� this method produces allocations that approach ��� percent e
ciency� The model� however�

requires unit length execution times for all tasks and an adequate number of processors to achieve optimum

run time�

��� Partitioning

A number of researchers have addressed the problems of partitioning multiprocessor systems into subsets

�partitions� of processors to accommodate the allocation of multiple programs or program fragments�

Partitioning problems in general are NP�Hard� however� polynomial time complexity algorithms are known

for special cases ���	� Static approaches have been developed that restrict partitioning to a predetermined

�This method� therefore� incorporates time prediction�
�The exit path length of a task is the longest precedence related sequence of tasks from the task to the end of the graph�

�

size partition����
�	 for each program� The required partition size is input to the partitioning algorithm�

Static approaches have also been developed that allow the partitioning algorithm to select from a number

of partition sizes for each program ���� �
� ���
� ��	� Partitioning algorithm input data indicates the run

time of each program for each partition size in these algorithms�

Among these partitioning approaches are algorithms that consider independent programs only ��
�

���
� ���
�	� Alternately� precedence relationships between programs are considered in several ap�

proaches ���� ��	� Techniques similar to list scheduling allocation algorithms are often used to resolve

precedence relationships� Using these techniques� a single partition of processors runs multiple programs

one following the other� All of these approaches are appropriate for shared memory model multiprocessor

systems��

Taken as a group� the common goal of these algorithms is to reduce total run time for the collection of

partitions� The completion times of partitions� however� are not uniform� All of the partitioning algorithms

may generate sets of partitions whose completion times vary by as much as �� percent� The reassignment

of processors after termination from partitions that terminate early to longer partitions is not considered�

These algorithms produce uniform partitions� each consisting of a �xed number of processors for the

duration of the program� Processors within one partition may be unused for signi�cant periods� While at

the same time other partitions may be using all assigned processors and be capable of using more processors

if they were available� The temporary reassignment of the unused processors to partitions that could use

them is not considered�

��� Discussion

Previous research in performance prediction has seriously restricted the applicable allocation model and has

not adequately addressed patterns of utilization� Allocation research has generally not addressed problems

of utilization with the exception of �
�	 which severely restricts the problem domain�

In program allocation� increasing the number of processors increases speedup� but it also reduces

e
ciency� The concept of �number of processors�� directly corresponds to the concept of partition size

used in the partitioning algorithms discussed above� All the partitioning algorithms reviewed produce

allocations based on uniform partition size� The e
ciency and utilization pattern of individual partitions

is not considered� although it is a potentially signi�cant factor�

The goal of this paper is to discuss the potential for partitioning multiprocessor systems in a way that

takes advantage of the potential for sharing underutilized processors between partitions� The pattern of

processor utilization for a given allocation and multiprocessor con�guration may vary signi�cantly� however�

with slight changes in system parameters� Because of this� sharing of processors between partitions may also

signi�cantly alter the pattern of processor utilization� We present algorithms that conceptually combine

task shifting �
�	 with level analysis ���� �	� Our allocation method enjoys the performance bene�ts of the

CPM heuristic while minimizing the number of processors used and stabilizing �uctuations in utilization�

�Several algorithms address distributed memory models� at least to some extent���� ���

�

We demonstrate the application of this method to optimize the uniform partitions produced by ��
	 in

Section �� Our optimization is done by temporarily reassigning processors from one partition to another

when this can improve overall run time�

� Observed Utilization Patterns

Wilson and Gonzalez noted that for a task graph with uniform length tasks executed in optimal �critical

path length� time� there are many potential allocations corresponding to di�erent pro�les� They also

noted that the total number of processors used could often be reduced and e
ciency increased by shifting

task�processor assignments and task ordering� We observe that similar task shifting is produced by known

allocation algorithms under more general circumstances� In particular� this occurs when CPM or FCFS

allocation is used for graphs without uniform task length and with a suboptimal number of processors�

Limiting the number of processors causes task execution to be shifted �delayed� until processors become

available� For example� CPM allocation using � processors blunts the utilization peak in Figure
 as

described previously�

Variation in utilization patterns is observed when the number of processors varies� Figure � shows

the utilization pro�le for the execution of a task graph using �� � and � processor systems allocated using

CPM scheduling� The shaded area of each pro�le indicates the total work carried out over time� The

total shaded area of each pro�le is the same� The completion times using � and � processors are the

same� The processor utilization �and corresponding allocations� are very similar during intervals T��T�

and T
�T�� Signi�cant task shifting and di�erent utilization occurs in interval T��T
 due to the variation

in the number of processors� The peak in Figure ��a� is �atter and the valley is partially �lled in Figure

��b�� A �uctuation in utilization has occurred with decrease from � to � processors but there is no overall

slowdown� We call this kind of �uctuation �attening �i�e� the � processor pro�le is �attened in this

region�� In anomalous situations there may actually be speedup in �attened regions�

Reducing the number of processors further �in Figure ��c�� extends the execution time� The run time in

Figure ��b� during interval T��T��a� is approximately equal to the workW of that interval divided by the

number of processors ��� while in Figure ��c� it is approximately W
�
� This accounts for the time extension�

During the interval T�a�T
a �attening occurs� The time extension in T��T�a is consistent with that

reported in ���	 for the execution time of levels where FCFS scheduling is used� The �attening e�ect

occurs in CPM scheduling because tasks with shorter exit path lengths are postponed to accommodate

critical path tasks �similar to �
�	�� Flattening occurs much less using FCFS scheduling� however� where

only entrance path length is considered�

The e�ect of �attening on the pro�les illustrated is local� Only the interval T��T
a is a�ected� The

remaining intervals may be shifted in time �i�e� T
a�T�� but are otherwise unchanged�

The relationships between these pro�les has been observed to be typical of programs allocated to shared

memory multiprocessors using the CPM allocation heuristic when the number of processors varies between

pro�les� In general� regions may �atten to some extent determined by graph precedence relationships

�

T1 T2T0 T3

T2a

T1a

TIME

W

W

Time = W/4

Time = W/3

(a) P=5

(b) P=4

(c) P=3

Figure �� Processor Utilization Pro�les

and beyond this the run time is extended� In pro�les where all regions have been �attened� the run

time extension of �attened segments may be approximated to a high degree of accuracy by dividing the

�attened pro�le area by the number of processors �similar to ���� �	�� The simulation tests in Section �

provide empirical validation of these observations�

� Flattened Pro�le Generation and Allocation

In this section we discuss a program pro�ling�allocation method� Two algorithms are presented� First� a

pro�le �attening algorithm that seeks to generate pro�les with all segments �attened� Second� we present

an allocation algorithm� The goal of this algorithm is to produce allocations that conform to the �attened

pro�les�

GEN COMPOSITE generates �attened utilization pro�les �see Figures � and ��� Input is a list of

allocation pro�les ordered by increasing number of processors� The algorithm iteratively compares pairs

of pro�les using procedure COMPARE� It begins with the fewest number of processors �
� and builds a

�attened composite pro�le to be used for subsequent comparisons�

�

PROCEDURE� GEN COMPOSITE
INPUT� L� A sequence of pro�les ordered in

ascending number of processors
FUNCTION� produce a composite pro�le
L� 	 POP
L�
While L is not empty�

L� 	 POP
L�
L� 	 COMPARE
L��L��

Return L�

Figure �� Generate Composite

PROCEDURE� COMPARE
INPUT� LOWP�HIGHP� Utilization pro�les
DATA� SEG��SEG��END��END�� Pro�le pointers
OUTPUT� RES� result pro�le
FUNCTION�

produce a composite pro�le by comparing
LOWP with HIGHP

SEG� 	 end segment of LOWP
SEG� 	 end segment of HIGHP
�� While SEG� is not at beginning of LOWP
��a While SEG��nprocs 		 SEG��nprocs

set RES to match shorter of SEG� and SEG�
subtract shorter segment length from

longer segment
decrement shorter segment to next

pro�le segment
��b If SEG��nprocs � SEG��nprocs then

f �atten the peak in this interval g
END� 	 SEG�
END� 	 SEG�
sweep SEG� and SEG� maintaining uniform

time shift until
work
 SEG�� END� � 		 work
 SEG�� END� �
set RES to match LOWP over

interval
SEG�� END��
��c else if SEG��nprocs � SEG��nprocs then

f SEG� is showing real speedup g
sweep SEG� and SEG� maintaining uniform

work progress f time shift will vary g
until
SEG��nprocs �	 SEG��nprocs�
set RES to match HIGHP during this interval

Return RES

Figure �� COMPARE

COMPARE compares pairs of pro�les� It sweeps the pro�les from back to front identifying regions

which may be �attened and produces a composite pro�le with these regions �attened� Figure � illustrates

this process for pro�les �b� and �c� of Figure �� In the pro�le with more total processors� HIGHP�

the pattern of underutilization followed by overutilization is seen in intervals that may be �attened� An

example of this is the interval Tb�Tc in Figure �� The �attenable region extends from the beginning

of underutilization until overutilization causes both pro�les to sweep the same area� The new composite

pro�le matches the pro�le with fewer total processors LOWP in these intervals� In the remaining intervals

�

TaTbTcTdTe

LOWP (old composite)

HIGHP

TIME

SWEEP DIRECTION

New Composite

Figure �� Pro�le Comparison

either pro�le HIGHP shows true speedup as in interval Tc�Td or both are the same as in Ta�Tb� The

new composite pro�le matches pro�le HIGHP in these intervals�

��� Allocation Using Flattened Pro�les

A modi�ed CPM allocation algorithm has been developed that uses a �attened pro�le to regulate processor

utilization� The modi�ed algorithm produces allocations that conform to the pro�le� In addition to task

execution times� the modi�ed algorithm tracks the total work �WORK � completed during the simulated

execution� When allocating a new task the pro�le is consulted using WORK to determine the pro�le

segment�s� during which the task will execute� The function FEASIBLE determines whether the task can

be allocated� FEASIBLE returns FALSE if executing the task will cause processor utilization to exceed

dUe for any segment� The algorithm is outlined in Figure ��

FEASIBLE
TASKi � procs needed� 	

���
��

TRUE if the number of processors allowed by PRF for interval�

WORK� WORK

procs needed � length of
TASKi��� is
greater than or equal to procs needed

FALSE otherwise

��

�

PROCEDURE� MODIFIED CPM ALLOCATE
INPUT�

G� exit path length prioritized task graph
PRF� composite pro�le generated by

gen composite

OUTPUT� A Schedule of tasks for each PE
FUNCTION� allocate task graph
Prioritize tasks by exit path length
assign task� to PE�

insert completion event for task� into EQ
procs used 	 �
time 	 �
WORK 	 �
While
 not empty
 EVENT Q � �
��a last time 	 time

time 	 next event time
 EVENT Q �
WORK
	 procs used �
last time � time�

f PROCESS TASK COMPLETIONS g

��b while
 next event time
 EVENT Q � 		 time �
E 	 pop
 EVENT Q �
insert E�processor in PROCESSOR Q
procs used ��
foreach child of E�task

decrement arc count of child
if arc count 		 � then insert child

in TASK Q
f SCHEDULE TASKS g

��c done 	 not empty
 TASK Q �
while
 not done �

T 	 top
TASK Q�
done 	

not FEASIBLE
 T� procs used
 � �� or
empty
 PROCESSOR Q �

if not done then
P 	 pop
PROCESSOR Q�
assign T to P
insert completion event for T in EVENT Q
procs used

pop
TASK Q�
done 	 not empty
 TASK Q �

Figure �� ALLOCATION PROCEDURE

��� Performance Relationships in Flattened Pro�les

The observations of Section � apply to pro�les generated using the methods of this section� In particular�

all segments of the composite pro�les generated by GEN COMPOSITE are �attened segments� Because

of this� segment performance characteristics can be easily predicted� In addition� the e�ect of variations

in the number of processors P available during segment execution can be predicted� For the purpose of

dealing with variations in the number of processors� a third �eld P is added to each pro�le segment� P

indicates the number of processors available to the program during the segment� We refer to the modi�ed

pro�les as partition pro�les� For a given segment i estimated performance characteristics are�

��

Processors usedi � min�dUie� Pi� ���

Speedupi � Uactual�i � min�Ui� Pi� ���

Timei �
Wi

Uactual�i

���

Efficiencyi �
Uactual�i

Pi

���

The estimated run time� work and e
ciency for the entire program are�

Timetotal �
maxsegX
i��

Timei ����

Wtotal �
maxsegX
i��

Wi ����

Efficiencytotal �

Pmaxseg
i�� Efficiencyi � Timei

Timetotal
��
�

Ui

Pi

segment i

(b) After adding 3 processors during interval (a1-a2).

a1 a2a0 a3

Time
Shift

Ui’ = Pi’ = Pi + 3

Wi’

Segment i’

(a) Partition Profile before adding processors

Figure �� Adding Processors to a Segment

The e�ect of a change in the number of available processors P over a portion of a segment is estimated

by subdividing the segment� Each subsegment has the same U value as the original and each has a portion

of the work W� P values vary according to the change in number of available processors� Figure � shows

the e�ect of adding � processors to a segment i for a period of time a� � a�� When the segment is modi�ed�

��

preceding segments are unchanged� Subsequent segments are unchanged also except that they are shifted

in time� For the modi�ed subsegment i��

Time shifti� �
Wi�

Uactual�i�
�

Wi�

Uactual�i

����

� Simulation Tests

Tests were conducted to determine the e�ectiveness of our allocation method� Over one thousand test

graphs were constructed� For a given graph and multiprocessor con�guration� Popt is the minimum number

of processors such that� Time�Popt� � ���� � Critical Path Length� For each graph a set of allocations

was produced with the number of processors P ranging from
 to Popt� E
ciency for an optimum run time

allocation may vary from ��� to ��� depending on task graph characteristics� The graph set used� averaged

approximately �� percent e
ciency �for CPM allocation� representing reasonably e
cient task graphs�

The pro�ling�allocation algorithm was compared against the CPM allocation algorithm in several areas�

Run time� Run times of the allocated graphs produced by CPM using Popt processors and by the pro�le

driven allocator were compared� The average ratio of Pro�le driven allocation time to CPM allocation

execution time was� ���
�

Resource Utilization� Average ratio of resources allocated to resources used was compared�

U ratiocpm �
P � Timetotal�cpm

Wtotal

����

U ratioprofiled �

Pmaxseg
i�� processors usedi � Timei

Wtotal

����

CPM Pro�led CPM � Pro�le

����� ����� �����

Temporarily reassigning processors that are temporarily idle to partitions that could use them can

improve resource utilization and decrease run time� The di�erence in resource utilization ratios rep�

resents the limit in resource utilization improvement that can be achieved by reassigning processors��

Run times were compared against predicted times for the pro�le�allocation method with � � Pi � Popt

processors� The prediction Error was calculated as�

Error �

����simulated run time

Timetotal
� ���

���� ����

�Very short reassignment intervals can rarely be used� Segments shorter than ��� percent of program length were merged
for all tests�

�

When more than Popt processors are available the run time is stable and within � percent of predicted time

for Popt processors� When one processor is used� predicted time matches actual time�

Popt � P Processors

P Test Cases Avg� Error
� ���� ������
� ���� ������
� ��� ������
� ��� ������
� �� ������
� �� ������
� � ������

� Application� Partition Optimization

In this section we demonstrate the use of utilization pro�les to optimize the run time of multiprocessor

partitions generated by the partitioning algorithms discussed in Section
�
� All of these algorithms generate

uniform sized partitions� Our algorithm optimizes partitions by temporarily reassigning unused processors

from one partition to another that can use them�

Reassignment will improve system run time whenever a processor can be reassigned to the partition

with the longest running time� The feasibility of processor reassignment is dependent on multiprocessor

parameters and the duration of the reassignment� We refer to the minimum feasible reassignment interval as

�� In the limit as � approaches zero� processor reassignment approaches the processor sharing discipline�

however� in practice� � less than the average task length is impractical�

��� Reassignment

Procedure REASSIGN optimizes a set of parallel partitions using partition pro�les� REASSIGN is outlined

in Figure �� The algorithm uses an event queue to traverse the segments of all partitions simultaneously�

Event times are the predicted times at segment boundaries� During the interval between each two events

�segment boundaries� the algorithm assigns available processors to needy partitions that have higher U

than P values� A greedy heuristic is used to prioritize the needy partitions based on longest completion

time� The algorithm assigns the maximum possible number of available processors to the highest priority

needy partition� Figure �� illustrates reassignment for �Partition ��Segment i� of a
 partition system�

For the given partitions the procedure will reassign two processors from Partition � to Partition � for the

interval �E	time
 Top� Event Q �	time�� The modi�ed Partition � is shown in Figure ���b�� Reas�

signing processors shifts the completion time for the partition segment and requires modifying NEEDY Q

and EVENT Q entries and may require splitting the segment for the modi�ed partition �as shown��

��� Allocation

The allocation method uses a set of communicating processes in simulated time� There is one allocation

process for each partition and a central processor manager process �see Figure ���� A global request

��

PROCEDURE� REASSIGN
INPUT�PART� set of partition pro�les

�� minimum interval allowed
DATA�

NEEDY Q� priority queue of

index�segment num�procs needed�
with priority 	 partition completion time

EVENT Q� priority queue of

partition num� segment num�
with priority 	 segment completion time

FUNCTION�
��a foreach partition i

insert
i��� in EVENT Q
if
 Ui�� � Pi�� � insert
i� �� Ui�� � Pi��� in NEEDY Q
if
 Ui�� � Pi�� � procs avail
	 Ui�� � Pi��

��a while
 not empty
 EVENT Q � �
E 	 POP
 EVENT Q �
insert
E�i� E�segment
�� in EVENT Q
adjust NEEDY Q entry and procs avail for E

��b if

 TIME
 TOP
 EVENT Q �� � TIME
 E � � � � �
while
 not empty
 NEEDY Q � and

procs avail � �� �
P 	 POP
 NEEDY Q �
cnt 	 min
 procs avail� p�procs needed �
temporarily reassign cnt processors to PART
p�i�
adjust PART
p�i�� NEEDY Q and

EVENT Q as needed
procs avail �	 cnt

Figure �� REASSIGNMENT PROCEDURE

queue and global processor queue are used for communication�� The allocation processes use a modi�ed

version of the algorithm in Figure �� The procedure is modi�ed to request needed processors and relinquish

unused processors as speci�ed by the pro�le via the processor manager� The modi�cation is accomplished

by adding the program fragment in Figure �
 before position �	a in Figure ��

��� Evaluation

The reassignment potential for a given set of partitions depends on task graph and multiprocessor parame�

ters� In this section we present an analysis of the probability that the reassignment algorithm can improve

performance and show experimental test results�

The potential for reassignment from �Partition i�Segment a� to �Partition j�Segment b� exists

whenever Ui�a � Pi�a and Uj�b � Pj�b� The probability pi that no processors are available on a k processor

partition i at a given point in time is equal to the average utilization of kth processor of that partition� The

probability that no processors may be reassigned to partition j of an M partition system is the product

of probabilities of the remaining partitions� The probability qj that at least one processor is available for

�Queue operation POP
Q� blocks when Q is empty�

��

Needy_q: (1,j,2)

Part(1,i+1)

Partition 1

Part(1,i’’)

Part(1,i’)

(a) Initial State

Part(0,j)

Partition 0

Partition size

E.time Top(Event_q).time

E.segment Part(1,i+1)

Partition 1

Part(1,i)

(b) After Reassignment

Time

procs_avail = 2

procs_needed = 2

reassignment interval

U1,i

P1,i

U1,i’ = P1,i’ = U1,i

Event_q: (0,j), (1,i+1)

Time_shift = W1,i’/P1,i’ - W1,i’/P1,i

procs avail
 = 2

Figure ��� REASSIGN Procedure State Relationships

PROCEDURE� PROCESSOR MANAGER
while TRUE

request 	 POP
 global request q �
processor 	 POP
 global processor q �
insert processor in PROCESSOR Q of request�process
wake up request�process

Figure ��� Processor Manager

reassignment at a given point in time� then� is

qj � ��
MY
i��

pi� where i �� j ����

when no partitions have terminated� When the shortest partition terminates Tmin the probability becomes

��

The expected percentage of the time that at least one processor is available to the longest partition j

��

sleep until
 next event time
 EVENT Q � �
f May wake up early with extra processors in queue g

procs avail 	 procs used
 size of
 PROCESSOR Q �
if
 procs avail � old procs avail �

procs requested � 	
procs avail � old procs avail�
f relinquish processors g

while

procs allowed
 PRF � �
procs avail
 procs requested� �
and
size of
 PROCESSOR Q � � ���

P 	 pop
 PROCESSOR Q �
procs avail ��
insert P in global processor q

f request processors g

while
 procs allowed
 PRF � �
procs avail
 procs requested ��
insert request in global request q
procs requested

old procs avail 	 procs avail

Figure �
� Allocation Procedure Modi�cations

is equal to the probability Qj that one is available at any point�

Qj � ��
Tmin

Timetotal�j

�
MY
i��

pi

�
� where i �� j ����

Since pi is at most �� Qj increases with increasing number of partitions and decreasing pi values� Optimizing

shorter partitions also decreases the average pi value and increases Qj �

�	
	� Experimental Results

Simulation tests were used to evaluate the performance of the pro�le optimization method� Sets of
 to

� random graphs were used and initial multiprocessor partitions were generated using the algorithm of

Krishnamurti and Ma ��
	� The corresponding system speedups Skm and run times Tkm were calculated�

The REASSIGN procedure was then used to produce optimized partition pro�les�� The optimized parti�

tion pro�les were input to the modi�ed allocation procedure which produced optimized allocations� The

optimized system speedups Sop and run times Top were calculated�

Determining the maximum possible system speedup Smax and minimum possible system run time Tmin

for an N processor system are NP�Hard problems� The amount of speedup and run time improvement

possible by reassignment is dependent on the relative optimality of the initial partitions� In Figure ���

S �
max is an upper bound on the maximum possible speedup Smax �

S�
max � min

�
N�

T�

Tlim

�
� Smax� ����

where T� is the time for the entire system to run on a uniprocessor and Tlim is the maximum time for any

one partition to run if given all N processors�

Tlim � max
i

�Ti�N�� �
��

�using � 	 average task size�

��

SPEEDUP

N

Su = N

Smax

Sopt

Skm

(number of processors)

Su = T1/Tlim

S’max = min(N,T1/Tlim)

S’max

Figure ��� Speedup Graph

Tmin

Time

Tkm

Topt

N
T’min = max(T1/N,Tlim)

Figure ��� Runtime Graph

In Figure ��� T �
min is a lower bound on the minimum run time Tmin�

T �
min � max

�
T�

N
� Tlim

�
� Tmin �
��

Lower bounds on the achieved percentage of the maximum possible improvement in speedup and run

time are�

S�
imp �

Sop � Skm

S�
max � Skm

� Simp �

�

T �
imp �

Tkm � Top

Tkm � T �
min

� Timp �
��

Improvements were correlated against S �
avail� an upper bound on Savail� the percentage of total possible

speedup improvement still unachieved after initial partitioning�

S�
avail � ��

Skm

S�
max

� Savail �
��

S �
initial a lower bound on the initial percentage of maximum possible speedup achieved

S �
initial � �� S�

final �
Skm

S �
max

� Sinitial �
��

��

S�

initial S�

avail Cases T �

imp S�

imp S�

final

����� ���� �� ���� ���� �����
����� ���� �� ���� ���� �����
����� ���� ��� ���� ���� �����
����� ���� �� ���� ���� �����
����� ���� �� ���� ���� �����
����� ���� �� ���� ���� �����
����� ���� �� ���� ���� �����
����� ���� � ���� ���� �����
����� ���� � ���� ���� �����

Figure ��� Performance Improvement

and S�
final� a lower bound on the �nal percentage of maximum possible speedup achieved Sfinal

S �
final � �� S�

avail��� S�
imp� � Sfinal �
��

are also given�

Results are given in Figure ��� Experiments revealed that when the upper bound on possible improve�

ment S�
avail was very low� S �

imp and T �
imp tended to be relatively lower� The � to � percent inaccuracy of

the pro�le time estimation method becomes a signi�cant factor in the low range� and makes the results

unstable when S�
avail is below �����

S�
imp tended to increase rapidly� however� as Savail increased� The method is highly successful when

the potential improvement is more signi�cant� Because of this� combining partition optimization with the

initial partitioning algorithm results in �nal speedups that average above �� percent of optimal�

� Conclusions

In this paper we have studied the relationship between program allocation and multiprocessor partitioning�

We have presented a new approach to allocation using utilization pro�les� This approach e�ectively mini�

mizes program execution time and addresses several concerns of importance to multiprocessor partitioning

that have not been well addressed previously�

�� Minimize the total number of processors used�

� Characterize variation in processor requirements over the lifetime of a program�

�� Accurately predict the impact on run time of variation in the number of processors available at any

point in program execution�

�� Minimize �uctuations in processor requirements to facilitate e
cient dynamic reassignment of pro�

cessors between partitions on a partitionable multiprocessor�

We have also presented algorithms for the application of the allocation method to the problem of

optimizing parallel multiprocessor partitions that have shown signi�cant improvement in performance over

existing methods� Analysis of this method shows that the expected performance increases with increases

in the number of partitions and with degradation in initial partition utilization� Test results using this

��

method show average performance consistently above �� percent of maximum possible speedup and show

average improvement consistently increases with decreasing initial partition performance�

References

��	 Ackerman� W� B� Data Flow Languages� Computer �February ���
�� ���
��

�
	 Belkhale� K� P�� and Banerjee� P� Approximate Algorithms for the Partionable Independent

Task Scheduling Problem� In Proceedings of the ���� International Conference on Parallel Processing

������� International Conference on Parallel Processing� The Pennsylvania State University Press�

pp� I��
 � I����

��	 Campbell� M� L� Static Allocation for a Data Flow Multiprocessor� In Proceedings of the ���� Inter�

national Conference on Parallel Processing �University Park� Pennsylvania� ������ IEEE International

Conference on Parallel Processing� The Pennsylvania State University Press� pp� ��������

��	 Davis� A� L�� and Keller� R� M� Data Flow Program Graphs� Computer �February ���
��
�����

��	 Eager� K� L�� Zahorjan� J�� and Lazowska� E� D� Speedup Versus E
ciency in Parallel Systems�

IEEE Transactions on Computers C���� � �March ������ �����
��

��	 Evans� J� D�� and Kessler� R� R� A Communication�Ordered Task Graph Allocation Algorithm�

Submitted to� IEEE Transactions on Parallel and Distributed Systems� ���
�

��	 Graham� R� L� Bounds on Multiprocessing Timing Anomalies� SIAM Journal on Applied Mathe�

matics ���
 �March ������ �����
��

��	 Ho� L� Y�� and Irani� K� B� An Algorithm For Processor Allocation in a Data�ow Multiprocessing

Environment� In Proceedings of the ���� International Conference on Parallel Processing ������� IEEE

International Conference on Parallel Processing� The Pennsylvania State University Press� pp� ����

����

��	 Jiang� H�� and Bhuyan� L� N� Performance Analysis of Layered Task Graphs� In Proceedings of

the ���� International Conference on Parallel Processing ������� International Conference on Parallel

Processing� The Pennsylvania State University Press� pp� III�
�� � III�
���

���	 Jiang� H�� Bhuyan� L� N�� and Ghosal� D� Approximate Analysis of Multiprocessing Task

Graphs� In Proceedings of the ���� International Conference on Parallel Processing ������� Inter�

national Conference on Parallel Processing� The Pennsylvania State University Press� pp� III�

� �

III�
���

���	 Kaufman� M� T� An Almost�Optimal Algorithm for the Assembly Line Scheduling Problem� IEEE

Transactions on Computers C���� �� �November ������ ����������

��

��
	 Krishnamurti� R�� and Ma� E� The Processor Partitioning Problem in Special�Purpose Parti�

tionable Systems� In Proceedings of the ���� International Conference on Parallel Processing �������

International Conference on Parallel Processing� The Pennsylvania State University Press� pp� ����

���� Vol� ��

���	 Lee� B�� Hurson� A� R�� and Feng� T� Y� A Vertically Layered Allocation Scheme for Data Flow

Systems� Journal of Parallel and Distributed Computing ��� � �November ������ ��������

���	 Li� K�� and Cheng� K� H� Job Scheduling in Partitionable Mesh Connected Systems� In Proceed�

ings of the ���� International Conference on Parallel Processing ������� International Conference on

Parallel Processing� The Pennsylvania State University Press� pp� II��� � II��
�

���	 Mak� V� W�� and Lundstrom� S� F� Predicting Performance of Parallel Computations� IEEE

Transactions on Parallel and Distributed Systems �� � �July ������
���
���

���	 Narahari� B�� and Choi� H��A� Allocating Partitions to Task Precedence Graphs� In Proceedings of

the ���� International Conference on Parallel Processing ������� International Conference on Parallel

Processing� The Pennsylvania State University Press� pp� I��
� � I��
��

���	 Polychronopoulos� C� D�� and Banerjee� U� Processor Allocation for Horizontal and Vertical

Parallelism and Related Speedup Bounds� IEEE Transactions on Computers C��	� � �April ������

�����
��

���	 Preiss� B� R�� and Hamacher� V� C� Semi�Static Data�ow� In Proceedings of the ���� International

Conference on Parallel Processing ������� IEEE International Conference on Parallel Processing� The

Pennsylvania State University Press� pp� �
������

���	 Turek� J�� Wolf� J� L�� Pattipati� K� R�� and Yu� P� S� Scheduling Parallelizable Tasks�

Putting it All on the Shelf� Performance Evaluation Review ��� � �June ���
��

��
���

�
�	 Wilson� L� F�� and Gonzalez� M� J� Manipulation of Parallel Algorithms to Improve Performance�

In Proceedings of the ���� International Conference on Parallel Processing ������� International Con�

ference on Parallel Processing� The Pennsylvania State University Press� pp� I���� � I��

�

�
�	 Zhu� Y�� and Ahuja� M� Preemptive Job Scheduling on a Hypercube� In Proceedings of the

���� International Conference on Parallel Processing ������� International Conference on Parallel

Processing� The Pennsylvania State University Press� pp� I���� � I�����

�

