
The Communication Semantics of

the Message Passing Interface

Robert Palmer, Ganesh Gopalakrishnan, and

Robert M. Kirby

UUCS-06-012

School of Computing

University of Utah

Salt Lake City, UT 84112 USA

31 October 2006

Abstract

The Message Passing Interface (MPI) standard is a natural language document that de-

scribes a software library for interprocess communication. Automatic reasoning about the

reactive nature of programs communicating via MPI libraries is not possible without also

analizing the library being used. Many distributed programs that use MPI are relatively

brief compared to the libraries that implement MPI. A formal specification of the commu-

nication semantics of the MPI standard (i) enables modular automatic reasoning of MPI

based parallel programs independent of the library implementation, (ii) provides a mathe-

matically precise declaration of the natural language intent of the MPI specification, (iii)

enables mathematical reasoning about libraries that implement the standard, and (iv) allows

for reasoning about the standard itself. We have created such a specification of the point to

point operations and present it in this report. We also discuss some preliminary efforts to

accomplish (i) above.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer: While the semantics have been proof-read once, the actual se-

mantics document is continually evolving. We are developing a tool–MPIC–that

can be used to verify programs against this semantic specification. When the

MPIC tool is released there will be a new version. The MPIC tool will also have

an accompanying technical report.

Although every effort has been made to correctly model the intent of the

MPI 1.1 specification, we make no claim regarding the correctness of the model

contained herein. Please notify the authors if a discrepancy is found.

1

The Communication Semantics of the

Message Passing Interface ∗

Robert Palmer Ganesh Gopalakrishnan Robert M. Kirby

31 October 2006

Abstract

The Message Passing Interface (MPI) standard is a natural language doc-

ument that describes a software library for interprocess communication. Au-

tomatic reasoning about the reactive nature of programs communicating via

MPI libraries is not possible without also analyzing the library being used.

Many distributed programs that use MPI are relatively brief compared to the

libraries that implement MPI. A formal specification of the communication

semantics of the MPI standard (i) enables modular automatic reasoning of

MPI based parallel programs independent of the library implementation, (ii)

provides a mathematically precise declaration of the natural language intent

of the MPI specification, (iii) enables mathematical reasoning about libraries

that implement the standard, and (iv) allows for reasoning about the standard

itself. We have created such a specification of the point to point operations

and present it in this report. We also discuss some preliminary efforts to

accomplish (i) above.

1 Introduction

Standards documents are one of the powerful tools for developing portable, reusable,

and correct implementations of complex systems. In almost all cases, they are

initially created as semi-formal documents, often containing gaping holes and po-

tentially ambiguous statements. Over time, thanks to the experience gained from

∗Supported in part by NSF award CNS-0509379 and a grant from Microsoft Corporation.

2

the widespread use of systems built according to the standard, they evolve to be-

come much more rigorous and coherent. Yet, without a mathematical (formal)

description, they still leave much room for misinterpretation – often unfortunately

coinciding with the increased scale of design and deployment of systems built

according to the standard.

The IEEE Floating Point standard [6] is a resounding success story in this

area. It was initially conceived as a standard that helped minimize the danger

of non-portable floating point implementations. As a fortunate side effect of the

infamous Intel Pentium division bug, it now has incarnation in various higher

order logic specifications (e.g., [5]), and routinely finds applications in formal

proofs of modern microprocessor floating point hardware circuits. We strongly

believe that the MPI communication standard – one of the most widely used in

high performance computing – has the vast potential of being solidified in a similar

fashion.

MPI is already a success story in the area of software library standardization,

in that a collection of primitives that support message passing based communi-

cation for high performance computing has been widely adopted. Unfortunately,

the MPI standard [10] uses natural language descriptions, as well as examples

to communicate definitions, semantics, and other important details. Experience

shows that this can lead to errors that result from unstated assumptions, ambigui-

ties, and unclear causal dependencies. Some of the recent additions to MPI, such

as one-sided communication constructs, are so tricky to understand that even sim-

ple algorithms using them have been shown to be incorrect (e.g., [9, 12]). These

errors can be progressively eliminated by relying on formal (mathematical) de-

scriptions of MPI, and employing modern formal verification techniques such as

model checking [3].

1.1 Related Work

Significant inroads have been made in formalizing the MPI standard. The earliest

work we are aware of is that of Georgelin et. al. [4] where the authors create a LO-

TOS description of MPI BSEND, MPI SSEND, MPI RSEND, and MPI RECV

along with the collective operations MPI BROADCAST, MPI GATHER, and MPI SCATTER.

The MPI ANY SOURCE and MPI ANY TAG wild-cards are modeled. The above

operations are modeled using the channel primitives of the LOTOS description

language. They then apply the model to verification of some MPI programs.

More recent work by Siegel and Avrunin includes:

3

• In [13, 15] the authors create a mathematically precise model of MPI SEND,

MPI RECV, MPI SENDRECV, and MPI BARRIER. The MPI ANY SOURCE

and MPI ANY TAG wild-cards are expressly disallowed due to the addi-

tional non-determinism that are introduced with their use. The process uni-

verse is a fully connected graph where edges in the graph are a pair of FIFO

channels. Synchronous communications are modeled as an interleaved ex-

ecution of two processes where a send is followed immediately by the cor-

responding receive in an execution trace. A number of theorems and their

proofs are presented with regards to synchronous communication in the pro-

posed model.

• In [14] the authors model a simple MPI based 2D diffusion simulation

and verify the model using both SPIN and INCA. Models of MPI SEND,

MPI RECV, MPI BARRIER, and MPI SENDRECV are used in connec-

tion with the diffusion simulation. Some of the results from [13] are also

presented.

• In [16] the authors verify the output of a distributed numerical program

using a model checker and a sequential version of the same program.

Other work in modeling MPI related programs includes [12] where model

checking is applied to a program using the one-sided locking routines of MPI 2.

We have also modeled MPI SEND, MPI RECV and MPI BARRIER for use

with both SPIN [2] and Zing [11].

1.2 Motivations

With several existing models of MPI one may naturally ask, why have another?

To answer this question, consider the following points.

1. There are 35 operations related to point to point communication described

in chapter 3 of the MPI 1.1 standard [10]. The most aggressive modeling

effort we are aware of contains four (4) of these operations.

2. There is no tool based reasoning support for any mathematically rigorous

model of MPI. The only rigorous model we are aware of is the one de-

scribed in [13]. Models created in languages such as SPIN and Zing are

4

dependent upon the model checker implementation for a formal description

of the language semantics.1

3. Many of the errors that are seen in MPI programs are derived not in the use

of the blocking sends, rather in the translation from the use of these simple

send primitives to the more aggressive counterparts in the ongoing effort to

optimize. None of the existing models have representations of these more

aggressive operations.

4. A mathematically precise representation of a larger subset of the MPI oper-

ations is necessary to create an industrially useful tool for reasoning about

programs that communicate using MPI libraries.

5. To serve as a specification, the MPI standard does not mandate implementa-

tion details beyond the function signatures and the existence of some sym-

bols. No mention is made of how messages are to be transmitted from one

process to another. To make a sufficiently complete model of any MPI pro-

gram, these details must be filled in. Existing models make no distinction

between what is specified in the standard and what is added to support tool

based reasoning.

A mathematically precise specification the MPI standard can serve, not only

to reason about programs that employ the MPI libraries, it can be used to reason

about the various MPI library implementations and the standard itself.

1.3 A Formal Model

Our formal model of the MPI specification is expressed using the Temporal Logic

of Actions [7, 1]. TLA is a formal logic containing standard ZF set theory, an

action operator that induces a transition relation, and some limited temporal logic.

It’s semantics are well understood by mathematicians and computer scientists,

independent of any verification tool. Implementation details can be abstracted

using set theoretic operations in combination with the action operator.

A program that uses MPI can be specified as a formula in TLA representing

a distributed computation. The MPI operations are modeled as operators on vari-

ables in the formula. Comments accompany individual logical clauses referencing

1While this may not necessarily be the case for LOTOS or INCA, any language developed as

input for a verification tool that is undergoing active development could deviate from the previ-

ously published semantics.

5

the page and line number of the MPI standard that requires the given clause where

possible.

The action operator of TLA induces a transition relation on logical formulas.

Variables that are primed (i.e., foo′) indicate the value of that variable in the next

state of the system. Every transition specifies the values of all variables in the next

state. Transitions are total functions from valuations of variables to valuations of

variables. New operators can be defined for any finite arity as a combination of

the existing operators, user defined variables and constants, and parameters to the

operator.

1.3.1 Transition Granularity

Using a TLA operator to represent an MPI operation implies that such operations

will require exactly one transition to complete. Our model assumes that only one

MPI operation will be applied in a given transition. Although 28 of the operations

related to point to point communication are modeled in this way, we could see no

way to model some of the point to point operations using only one transition. In

particular, MPI SEND, MPI SSEND, MPI BSEND, MPI RSEND, MPI RECV,

MPI SENDRECV, and MPI SENDRECV REPLACE could not be modeled in a

single transition. The reason for this is quite simple: Each of these operations

writes some variable and then waits for some other variable to be written by an-

other process. The specification of which explicitly requires at least two (2) tran-

sitions. We will demonstrate in this paper how to model the remaining operations

as a sequential composition of the provided operators.

To model operations requiring more than one transition we adopt the same

convention described in [13] noting that the sequential composition of MPI ISEND

and MPI WAIT on a single process is semantically equivalent to MPI SEND and

that a transition sequence with a MPI SEND followed immediately by the corre-

sponding MPI RECV can be considered synchronous. Although it is possible to

apply sequential and operator composition in such a way that all 35 operations

can be derived using a minimal subset of the MPI operations, to facilitate cross

referencing the MPI standard, all 28 single transition operations in our model are

modeled separately.

1.4 What is and is not modeled

Before diving into all the details, it is important to note that not everything in MPI

1.1 is present in the model. In particular, the following are either not present, are

6

limited in their current modeling, or are currently only placeholders:

• Data. Data, such as arrays of floating point values, objects, etc., could be

modeled using TLA. It is, however, not necessary in most cases to retain

the actual data of the distributed simulation to verify reactive properties

of nodes participating in the distributed simulation. Therefore we allow a

placeholder for data such that it can be included when necessary.

• Data manipulation operations. There are many operations specified by MPI

to pack and manipulate data. These are not currently modeled, but could be

if there were sufficient interest.

• Operations on communicators and topologies. These are modeled to a lim-

ited extent to enable point to point communications on intra-communicators.

We currently model the operations shown in Figure 2 in addition to the point

to point operations of chapter 3 of MPI 1.1 shown in Figure 1. Such opera-

tions on communicators and topologies should be a strait forward extension

of this work.

• Implementation details. To the greatest extent possible we have avoided

asserting implementation details that might constrain an implementation.

One obvious ramification of this omission is that modeling return codes of

MPI operations is completely eliminated (see Pg 11 of [10]).

• Transient buffering of messages created by the standard mode send (MPI SEND,

MPI ISEND, MPI SEND INIT). We require the system to either eventually

buffer these send requests or to never buffer them. It is not clear at the time

of this writing how to model the situation where a buffer may be available

for some but not all of the program execution.

Our model includes the point to point operations shown in figure 1 as single

transition TLA operators. The argument order and meaning is as specified in the

MPI standard for each operator, adding the pid of the process that is applying the

operator as the last argument.

2 Conventions

In TLA, the whitespace in the document is significant. Sequences of logical con-

juncts can become quite large and are therefore formatted as bulleted lists, the

bullet being the logical and (∧) or the logical or (∨) operator.

7

MPI GET COUNT MPI REQUEST FREE MPI TEST CANCELED

MPI BUFFER ATTACH MPI WAITANY MPI SEND INIT

MPI BUFFER DETACH MPI TESTANY MPI BSEND INIT

MPI ISEND MPI WAITALL MPI SSEND INIT

MPI IBSEND MPI TESTALL MPI RSEND INIT

MPI ISSEND MPI WAITSOME MPI RECV INIT

MPI IRSEND MPI TESTSOME MPI START

MPI IRECV MPI IPROBE MPI STARTALL

MPI WAIT MPI PROBE

MPI TEST MPI CANCEL

Figure 1: Point to point operations included in the TLA specification.

MPI BARRIER MPI GROUP SIZE MPI GROUP RANK

MPI COMM SIZE MPI COMM RANK MPI COMM COMPARE

MPI INIT MPI FINALIZE MPI INITIALIZED

MPI ABORT

Figure 2: Additional MPI operations modeled to enable tool based reasoning on

MPI based parallel programs.

8

Our modeling is influenced by the desire to model SPMD style programs in

connection with the TLA MPI specification. As such, all program variables are

assumed to be arrays of variables (one for each process in the computation).

When specifying the next state of a variable, it is necessary to completely

specify that next state. As an example suppose variable rank ∈ [0..(N − 1) →
0..(N − 1)] is the rank variable declared by a process. When a process calls

MPI COMM RANK the rank variable would be passed into the function. Our model

of MPI COMM RANK requires that the rank be passed to the operator, not rank[pid].
As such, we assume that any parameter that might be written by an operator is an

array a : 0..(N− 1) → α where only the ith element (i.e., a[i]) is ever accessed by

the applying process.

When using the action operator, the value of all variables in the next state must

be specified. The specification of the MPI operations includes sometimes many

UNCHANGED commands which are short hand for f ′ = f . The MPI operators

completely specify all of the MPI variables. In addition, those user variables that

may be changed by application of the operator are also either updated or marked

as UNCHANGED.

Comments of the form n.m indicate the corresponding page (n) and line (m)

numbers that require the particular feature. All comments are enclosed in shaded

regions.

3 Data Structures

This section presents the elements of the model that are introduced to mathemat-

ically specify the constructs of MPI. Appendix A contains the entire model. We

will refer to it throughout the remainder of the presentation.

3.1 Constants

Symbols that are defined in the MPI standard are modeled as constant values.

We have included the subset of symbols that are necessary for the point to point

communications on intra-communicators.

In addition to these symbols, we introduce four (4) additional constants. These

constant values are useful to (i) make an instantiated program model finite, and

(ii) to provide some information that is implicitly available to the MPI system.

The additional constants are:

• N. The number of processes in the distributed computation.

9

• MAX COMM. The maximum number of communicators.

• TYPES. The set of strings representing user specified types.

• TAGS. The set of integers representing user specified tags.

• SEND IS BUFFERED. A flag to indicate whether a send can be buffered

by the MPI system.

3.2 Variables

Variables are functions. Functions need not have homogeneous domains or ranges.

The elements of the domains or ranges need not be numbers (they could be other

functions, or strings, or values). The variables in the model are group, communi-

cator, requests, initialized, bufsize, message buffer, and collective.

Functions therefore model data structures such as records, arrays, and se-

quences. Functions can represent a sequence in that elements can be modified,

added, or deleted in the range or domain using the action operator. For example,

a sequence 〈3, 2, 1〉 can be modeled by the function

s(x) =

3 if x = 1,

2 if x = 2,

1 if x = 3, and

undefined otherwise

If we wish to append 〈4, 5〉 to this sequence we would let 〈3, 2, 1〉 ◦ 〈4, 5〉 =
〈3, 2, 1, 4, 5〉 as

s′(x) =

4 if x = 4
5 if x = 5
s(x) otherwise

As a shorthand we write x = a..b for x = {y ∈ N : a ≤ y ≤ b}. If x is a set,

TLA denotes SUBSETx to be the power-set or the set of all possible subsets of

x.

3.2.1 Groups and Communicators:

A group is a set of integers representing process IDs members ∈ SUBSET (0..(N−
1)) and the size of members, size = |members|. If foo is a Group then

10

foo.members is the set of pids in the group and foo.size is the number of ele-

ments in foo.members (i.e., foo[members] ∈ SUBSET (0..N−1) and foo[size] =
|foo(members)|).

A ranking function and inverse ranking function are maps ranking : 0..(N −
1) → 0..(N−1), invranking : 0..(N−1) → 0..(N−1) such that ∀k ∈ Dom(ranking) :
∃n ∈ 0..(N−1) : ranking[k] = n∧invranking[n] = k∧∀m ∈ Dom(ranking) :
ranking[k] = ranking[m] ⇒ k = m. A ranking and inverse ranking function

are associated with each group.

A communication universe is record containing a group handle group and a

collective context handle collective. Groups and Communicators are referenced

by handles on processes. Thus the mapping from handles to group or communi-

cator records may be different on any process.

3.2.2 The collective context

Each communicator has a collective context associated with it. The collective

context is not directly accessible to the user program, only through the handle in

the associated communicator.

Our model currently includes MPI BARRIER as two transitions:

MPI BARRIER INIT and MPI BARRIER WAIT. The collective context is

a record having

participants → x ∈ SUBSET (0..(N − 1))
root → 0..(N− 1)
type → {”barrier”}
state → {”in”, ”out”, ”vacant”}

All processes in the communicator’s group must participate in the collec-

tive communication. Collective operations operate under a simple state machine.

When no process is in the communication the state is “vacant” and the participants

set is empty. As processes enter the operation their pid is added to the participants

set and the first process changes the state from “vacant” to “in” and sets the type

of the communication to “barrier”. Processes are only allowed to enter the com-

munication when the state is “in”. MPI BARRIER INIT performs the addition of

a process to the participant set when the state is “vacant” or “in” and the process

is not represented in the set of participants; blocking the process applying this

operator otherwise.

When all processes in the group are in the participant set then the state of the

operation changes from “in” to “out” and processes are allowed to exit. MPI BARRIER WAIT

11

blocks the calling process until the state is “out”, removes the process applying

the operator from the participant set, and sets the state to “vacant” if the process

is the last to leave the communication.

Additional collective operations can be implemented by adding additional col-

lective message types to the range of collective.type and appropriate checks on

the parameters that are passed to the operators.

3.2.3 Requests

The set of requests represent the point to point contexts of all communicators.

Messages are paired only if they have the same communicator handle (which in

our model are unique across space and time).

A message is represented by the envelope that includes all information needed

to pair and transmit point to point communication operations. We model messages

as a record (i.e., a function having character strings as elements of the domain) as

follows:
data → Buffers

src → 0..(N− 1) ∪ {MPI ANY SOURCE}
dest → 0..(N− 1)
msgtag → TAGS ∪ {MPI ANY TAG}
dtype → TYPES ∪ {MPI TYPES}
num → N

universe → 0..(MAX COMM− 1)
state → {“send′′, “recv′′}

Where Buffers is a placeholder for future inclusion of data in a model.

A request is the bookkeeping information needed to manage messages within

a process. Request objects are required to be opaque to the user process and

are therefore represented by a function requests : N → Request where the

set Request is the set of all possible request objects. The request handle is the

element of the domain of the requests function which returns the associated

request object.

With Seq(N) as the set of all sequences of natural numbers, we model request

12

objects as records as follows:

error → N

active → {TRUE,FALSE}
transmitted → {TRUE,FALSE}
buffered → {TRUE,FALSE}
started → {TRUE,FALSE}
canceled → {TRUE,FALSE}
deallocated → {TRUE,FALSE}
ctype → {”send”, ”bsend”, ”ssend”, ”rsend”, ”recv”}
persist → {TRUE,FALSE}
match → Seq(N)
message → Messages

A new request is appended to the requests function as described above. Each

request record is accessible by the user process through its associated handle until

that record is marked as deallocated either by successful application of a message

completion operator such as MPI WAIT or MPI REQUEST FREE. The handles

are set to MPI REQUEST NULL at this time and become unaccessible to the user

process.

3.2.4 Message buffers and buffer size

Users may wish to provide buffer space to the MPI system and allow the MPI

system to manage that buffer space. Calls to MPI BSEND, MPI IBSEND, and

MPI BSEND INIT use this buffer that is specified through MPI BUFFER ATTACH.

Not modeling data, the buffers are represented by a counting semaphore to

track resource availability. Only one buffer can be attached to the MPI system

for a process at a time. We approximate the use of the buffer space as follows.

The user specifies how many messages can be stored in the buffer by the call

to MPI BUFFER ATTACH. When a message is activated one buffer slot is con-

sumed until the message is transmitted or canceled. Accordingly, MPI BUFFER DETACH

blocks the process applying the operator until all buffered messages have either

been transmitted or canceled.

message buffer : 0..(N− 1) → N

bufsize : 0..(N− 1) → N

13

The message buffer variable is a function that represents the counting semaphore

for each process. The bufsize variable is a function that represents the maximum

values for each of the associated message buffer variables.

3.3 Statuses

MPI operations return information to the user program in two ways. The first is

the return value of a function. We do not model this. The second way information

is returned to the user program is via the status object.

We model a status as a record with members as follows:

state → {”defined”, ”undefined”, ”empty”}
MPI SOURCE → 0..(N− 1) ∪ {MPI PROC NULL, MPI ANY SOURCE}
MPI TAG → TAGS ∪ {MPI ANY TAG}
MPI ERROR → N

count → N

canceled → {TRUE, FALSE}

4 Collective Communications

5 Closing the model for use with model checking

Many things are left and specified by MPI. Among these are details on how mes-

sages are communicated between processes. So far we’ve introduced the request,

status, and communicator records. Using the temporal logic of actions we now

have sufficient structure in our model to specify the pairing, buffering, transmit-

ting, and completing of messages.

5.1 Completing messages

5.1.1 Envelope matching

Envelopes match according to the operator Match shown in appendix A.

5.1.2 Pairing messages

Messages are paired together as a send request and a receive request. Program

order must be observed on both the send and receive process when matching two

14

requests. To enforce this policy, the operator that performs message pairing spec-

ifies the earliest active message in the sequence that has not been canceled, trans-

mitted, or paired previously. Operator Pair contains the logic of this operation.

Pairs of messages that have been started, not matched, not canceled, not transmit-

ted, and where one message is a send and the other message is a receive can be

paired. In addition we require messages to have matching envelopes.

5.1.3 Transmitting messages

Once messages are paired appropriately they may complete in any order. Thus it

is not enough to model communication as the pairing of messages. The Transmit

operator contains the logic involved in passing data from one process to another.

Only messages that have been started, have not been canceled, have not previously

been transmitted, and have been previously paired can be transmitted. The request

is updated to reflect that the corresponding message has been transmitted.

5.1.4 Buffering messages

Message buffering can happen under two circumstances. The first is when the

user specifically requests MPI to buffer the outgoing messages using commands

such as MPI IBSEND. These messages may be buffered at any time after the mes-

sage is started and before the message has transmitted. The operator Buffer bsend

contains the logic to mark requests when messages have been buffered appropri-

ately. Thereby allowing the sending process to continue when the corresponding

message completion operator is applied.

When using MPI SEND this system may choose to buffer the outgoing mes-

sage. We allow this to happen at any time after the message is posted up until the

message is transmitted or canceled. However it may also be the case that the MPI

system will never buffer such a message. The operator Buffer send performs this

operation.

It is possible, from the user’s perspective, for the message to be buffered and

transmitted before the user program regains control. For this reason we allow the

message to be buffered up to the point where the message is actually transmitted

or canceled by the user.

15

6 Modeling MPI Programs

There are many ways to model programs in TLA. The +CAL tool makes it signif-

icantly easier to take this step [8]. We will describe a similar modeling paradigm

that suites our needs.

In modeling MPI programs in connection with the TLA MPI specification,

we assume for simplicity that all programs are written in the SPMD style. Al-

though this is not required, it is required that all variables be declared as arrays as

described in section 2.

It is also convenient to assume that all programs make only MPI function calls,

although adding procedure calls is a relatively trivial extension. Closing the envi-

ronment and making available other standard system procedures is an important

area of research but is beyond the scope of this work.

6.1 Sequential execution

Let PC be an array [0..(N − 1) → Labels] such that each process i ∈ 0..(N −
1) in the distributed computation has a program counter represented by PC[i].
The transition relation of a sequential program can be specified as a disjunct of

conjuncts where each conjunct has (i) a current PC guard, (ii) the specified next

PC after executing the conjunct, and (iii) an action associated with the current PC

that modifies the state – perhaps only the PC itself.

All control statements can be modeled using the explicit PC and an IF con-

struct provided by TLA.

6.2 Multiple step MPI procedures

As mentioned before, when using a multi-step MPI operator these can be compiled

into some sequence of single-step operators. We present possible solutions for the

seven contained in MPI that are not present in our TLA model.

The MPI operations can be modeled using a sequence of transitions with proc

being the pid of the process, “in”2 being the starting PC of the call to MPI SEND,

“intermediate” being the middle PC, and “out” being the return PC, and the vari-

able req ∈ [0..(N − 1) → Request]. We also consider the status variable

stat : [0..(N− 1) → Status] as defined in the appendix.

2Strings are valid PC values in TLA. Recall that the PC is a function whose domain is the set

of pids and the range is in this case a string.

16

6.2.1 MPI SEND

Applying MPI SEND in a program having sequential execution can be imple-

mented follows:

∨ ∧ pc[proc] = “in′′

∧ pc = [pc EXCEPT ![proc] = “intermediate′′]
∧ MPI Isend(buf, count, datatype, dest, tag, com, req, proc)

∨ ∧ pc[proc] = “intermediate′′

∧ pc′ = [pc EXCEPT ![proc] = “out′′]
∧ MPI Wait(req, stat, proc)

6.2.2 MPI BSEND

Applying MPI BSEND is as follows:

∨ ∧ pc[proc] = “in′′

∧ pc = [pc EXCEPT ![proc] = “intermediate′′]
∧ MPI Ibsend(buf, count, datatype, dest, tag, com, req, proc)

∨ ∧ pc[proc] = “intermediate′′

∧ pc′ = [pc EXCEPT ![proc] = “out′′]
∧ MPI Wait(req, stat, proc)

The restrictions on attaching buffers and managing the buffer space are iden-

tical.

6.2.3 MPI SSEND

Applying MPI SSEND is as follows:

∨ ∧ pc[proc] = “in′′

∧ pc = [pc EXCEPT ![proc] = “intermediate′′]
∧ MPI Issend(buf, count, datatype, dest, tag, com, req, proc)

∨ ∧ pc[proc] = “intermediate′′

∧ pc′ = [pc EXCEPT ![proc] = “out′′]
∧ MPI Wait(req, stat, proc)

17

6.2.4 MPI RSEND

Applying MPI RSEND is as follows:

∨ ∧ pc[proc] = “in′′

∧ pc = [pc EXCEPT ![proc] = “intermediate′′]
∧ MPI Irsend(buf, count, datatype, dest, tag, com, req, proc)

∨ ∧ pc[proc] = “intermediate′′

∧ pc′ = [pc EXCEPT ![proc] = “out′′]
∧ MPI Wait(req, stat, proc)

6.2.5 MPI RECV

Applying MPI RECV is as follows:

∨ ∧ pc[proc] = “in′′

∧ pc = [pc EXCEPT ![proc] = “intermediate′′]
∧ MPI Irecv(buf, count, datatype, source, tag, com, req, proc)

∨ ∧ pc[proc] = “intermediate′′

∧ pc′ = [pc EXCEPT ![proc] = “out′′]
∧ MPI Wait(req, stat, proc)

18

6.2.6 MPI SENDRECV

Overloading req and stat to be arrays of records appropriately, MPI SENDRECV

could be implemented as follows:

∨ ∧ pc[proc] = “in′′

∧ pc′ = [pc EXCEPT ![proc] = “intermediate
r
ecv′′

∧ MPI Isend(sendbuf, sendcount, sendtype, dest, sendtag, com, req1, proc)
∨ ∧ pc[proc] = “intermediate

r
ecv′′

∧ pc′ = [pc EXCEPT ![proc] = “wait′′

∧ MPI Irecv(recvbuf, recvcount, recvtype, source, recvtag, com, req2, proc)
∨ ∧ pc[proc] = “in′′

∧ pc′ = [pc EXCEPT ![proc] = “intermediate
s
end′′

∧ MPI Irecv(recvbuf, recvcount, recvtype, source, recvtag, com, req2, proc)
∨ ∧ pc[proc] = “intermediate

s
end′′

∧ pc′ = [pc EXCEPT ![proc] = “wait′′

∧ MPI Isend(sendbuf, sendcount, sendtype, dest, sendtag, com, req1, proc)
∨ ∧ pc = “wait′′

∧ pc′ = [pc EXCEPT ![proc] = “out′′

∧ MPI Waitall(2, [req EXCEPT ![proc] = [0 7→ req1[proc], 1 7→ req2[proc]]], stat, proc)

6.2.7 MPI SENDRECV REPLACE

In addition to overloading req and stat to be arrays of records appropriately we

add a temporary variable for receiving the results. MPI SENDRECV REPLACE

19

could be implemented as follows:

∨ ∧ pc[proc] = “in′′

∧ pc′ = [pc EXCEPT ![proc] = “intermediate
r
ecv′′

∧ MPI Isend(buf, sendcount, sendtype, dest, sendtag, com, req1, proc)
∨ ∧ pc[proc] = “intermediate

r
ecv′′

∧ pc′ = [pc EXCEPT ![proc] = “wait′′

∧ MPI Irecv(tempbuf, recvcount, recvtype, source, recvtag, com, req2, proc)
∨ ∧ pc[proc] = “in′′

∧ pc′ = [pc EXCEPT ![proc] = “intermediate
s
end′′

∧ MPI Irecv(tempbuf, recvcount, recvtype, source, recvtag, com, req2, proc)
∨ ∧ pc[proc] = “intermediate

s
end′′

∧ pc′ = [pc EXCEPT ![proc] = “wait′′

∧ MPI Isend(sendbuf, sendcount, sendtype, dest, sendtag, com, req1, proc)
∨ ∧ pc = “wait′′

∧ pc′ = [pc EXCEPT ![proc] = “copy′′

∧ MPI Waitall(2, [req EXCEPT ![proc] = [0 7→ req1[proc], 1 7→ req2[proc]]], stat, proc)
∨ ∧ pc = “copy′′

∧ pc′ = [pc EXCEPT ![proc] = “out′′]
∧ sendbuf ′ = [buf EXCEPT ![proc] = temp[proc]]

6.3 An example

An example program is included in Appendix A. This program exercises the

immediate mode synchrnous send, along with the immediate mode receive. Pro-

cesses are conceptually placed in a ring. Even ranked processes send to the neigh-

bor with higher rank (mod ring size), synchronize on the barrier, and then receive

from the neighbor having lower rank (again mod ring size). Odd ranked processes

receive from the neighbor with lower rank, synchronize on the barrier and then

send to the neighbor with higher rank.

The program is represented as a disjunct of conjuncts similar in style to Section

6.2. This operator has one parameter which is the process id of the process that

is currently executing–therein we model the SPMD style where every process

executes the same program image.

The next state relation for the entire system is the initial state of the model

Init and henceforth () the Next relation that performs either a Pair, Transmit,

Buffer, or Proc move for some pid at any step.

20

7 Conclusions

The TLA model of MPI in connection with this paper describes the reactive be-

havior of all 35 point to point communication operations from chapter 3 of the

MPI 1.1 standard.

We have closed the model for model checking single threaded programs that

communicate via MPI point to point operations. We have provided the additional

MPI operations necessary to initialize, determine the rank of a process, the size of

a communicator’s group, and exit according to the MPI standard.

References

[1] Martı́n Abadi, Leslie Lamport, and Stephan Merz. A TLA solution to the

RPC-Memory specification problem. In M. Broy, S. Merz, and K. Spies,

editors, Formal System Specification: The RPC-Memory Specification Case

Study, volume 1169 of Lecture Notes in Computer Science, pages 21–66.

Springer-Verlag, Berlin, 1996.

[2] Steven Barrus, Ganesh Gopalakrishnan, Robert M. Kirby, and Robert

Palmer. Verification of MPI programs using SPIN. Technical Report UUCS-

04-008, The University of Utah, 2004.

[3] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,

1999.

[4] Philippe Georgelin, Laurence Pierre, and Tin Nguyen. A formal specifi-

cation of the MPI primitives and communication mechanisms. Technical

report, LIM, 1999.

[5] John Harrison. Formal verification of square root algorithms. Formal Meth-

ods in System Design, 22(2):143–154, March 2003. Guest Editors: Ganesh

Gopalakrishnan and Warren Hunt, Jr.

[6] IEEE standard for radix-independent floating-point arithmetic, ANSI/IEEE

Std 854-1987.

[7] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for

Hardware and Software Engineers. Addison Wesley Professional, 2002.

21

[8] Leslie Lamport. A +CAL user’s manual.

http://research.microsoft.com/users/lamport/tla/p-manual.pdf, April 2006.

[9] Glenn R. Luecke, Silvia Spanoyannis, and Marina Kraeva. The performance

and scalability of SHMEM and MPI-2 one-sided routines on a SGI Origin

2000 and a cray T3E-600. Concurrency and Computation: Practice and

Experience, 16(10):1037–1060, 2004.

[10] MPI: A Message-Passing Interface Standard. http://www.mpi-

forum.org/docs/mpi-11-html/mpi-report.html.

[11] Robert Palmer, Steven Barrus, Yu Yang, Ganesh Gopalakrishnan, and

Robert M. Kirby. Gauss: A framework for verifying scientific computing

software. In SoftMC: Workshop on Software Model Checking, number 953

in ENTCS, August 2005.

[12] Salman Pervez. Byte-range-locks using mpi-one-sided communication: a

report. Technical report, The University of Utah, 2006. Submitted.

[13] Stephen F. Siegel and George Avrunin. Analysis of mpi programs. Technical

Report UM-CS-2003-036, Department of Computer Science, University of

Massachusetts Amherst, 2003.

[14] Stephen F. Siegel and George S. Avrunin. Verification of mpi-based software

for scientific computation. In Proceedings of the 11th International SPIN

Workshop on Model Checking Software, volume 2989 of LNCS, pages 286–

303, Barcelona, April 2004. Springer.

[15] Stephen F. Siegel and George S. Avrunin. Modeling wildcard-free MPI pro-

grams for verification. In ACM SIGPLAN Symposium on Principles and

Practices of Parallel Programming, pages 95–106, Chicago, June 2005.

[16] Stephen F Siegel, Anastasia Mironova, and George S Avrunin nad Lori

A Clarke. Using model checking with symbolic execution to verify parallel

numerical programs. In Lori Pollock and Mauro Pezz, editors, Proceed-

ings of the ACM SIGSOFT International Symposium on Software Testing

and Analysis, pages 157–168, Portland, ME, July 2006.

A The Full Specification

22

module mpi base

The formal MPI library specification.

Robert Palmer

The University of Utah

School of Computing

Some notes : − Need to split the buffer rule into rules - one for user specified buffering and one

for system provided buffering. – don’t really know how

- Need to add deallocation of requests to the model as in mpi wait .

- Need to add more sematnics.

- Need to cause buffers to be freed appropriately when a message is sent.

- Need to add a return code to indicate success or error and error handling.

- Need to fix the buffering of standard mode sends such that they might block forever.

extends Naturals, TLC , Sequences, FiniteSets

Constants are given values in the configuration file that accompanies this document: mpi base.cfg

constants

N , The number of processes in the computation.

MAX COMM , The highest allowed handle value for a

communicator. This is not in the standard but

makes our model finite.

MAX GROUP , The highest allowed handle value for a group.

TYPES , The set of user defined types.

TAGS , The set of user defined tags.

SEND IS BUFFERED , A flag to indicate whether sends are to be buffered.

RANK ORDERINGS SIGNIFICANT , a flag to indicate whether all possible

ranking orders should be considered in verification

MPI COMM WORLD , The handle for MPI COMM WORLD .

MPI ANY SOURCE , The wildcard source rank.

MPI ANY TAG , The wildcard tag value.

MPI PROC NULL, Section 3.11 Null Processes

MPI REQUEST NULL, A special handle value for requests.

1

Set this to 0 in the configuration file

and make the initial values of the requests

occupied to avoid an array out-of-bounds error.

MPI SUCCESS , The return value of a successful call to

an MPI procedure.

MPI IDENT , 5.4: Two communicator handles refer to the

same communicator.

MPI CONGRUENT , The communicator handles are different;

communicators differ only in context.

MPI SIMILAR, The communicator handles are different;

communicators have the same group,

however both context and ranking differ.

MPI UNEQUAL, The communicator handles are different;

communicators have different groups,

contexts, and rankings.

MPI UNDEFINED , A special rank returned to a process that

is not a member of the queried communicator.

MPI INT , MPI defined datatype for integers

MPI FLOAT , MPI defined datatype for floating point numbers

UB The upper bound on the tag range 19.27 − 19.31

MPI GROUP EMPTY \ ∗ The empty group

Variables represent the state of the MPI system at any given time. None of these state elements
are specified by the standard. However they are useful to describe what is specified. In particular
mention is made of handles that reference opaque objects. The communicator and requests arrays
are such opaque objects that are referenced by integer handles that in our model are unique across
both space and time (i .e., the same value is used for MPI COMM WORLD on all processes for

the entire execution etc.).

variables

communicator , An array of communication universe objects.

bufsize, The size of the user attached message buffer .

message buffer , The user attached buffer.

requests, A array of message requests lists, one per process.

Although we do model the allocation of request objects by adding

a structure to a list of requests, we are not modeling the freeing

of requests more than setting the associated handle to MPI REQUEST NULL.

initialized , An array of flags that indicate whether MPI Init

2

has been called by a given process.

collective, The collective contexts for all communicators

group, The array of groups

Memory A model of memory for individual processes.

Type invariant

Memory is considered a program var

mpi vars
∆

= 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

Messages
∆

= [src : (0 . . (N − 1)) ∪ {MPI ANY SOURCE}, 21.24 − 21.25

dest : (0 . . (N − 1)), 19.39

msgtag : 0 . . UB ∪ {MPI ANY TAG}, 19.28

dtype : TYPES ∪ {MPI FLOAT , MPI INT},
numelements : Nat ,
universe : (MPI COMM WORLD . . (MPI COMM WORLD + MAX COMM)),
state : {“send”, “recv”},
addr : Nat]

Message types
∆

= {“send”, “bsend”, “ssend”, “rsend”, “recv”}

Collective types
∆

= {“barrier”}

Collective states
∆

= {“in”, “out”, “vacant”}

Request
∆

= [error : Nat ,
active : boolean ,
transmitted : boolean ,
buffered : boolean ,
started : boolean ,
cancelled : boolean ,
deallocated : boolean ,
ctype : Message types,
persist : boolean ,
match : Seq(Nat),
message : Messages]

Requests
∆

= [(0 . . (N − 1)) → Seq(Request)]

22.1 − 22.8

Statuses
∆

= [state : {“defined”, “undefined”, “empty”},

MPI SOURCE : (0 . . (N − 1)) ∪ {MPI PROC NULL, MPI ANY SOURCE},

MPI TAG : TAGS ∪ {MPI ANY TAG},

MPI ERROR : Nat ,

3

count : Nat ,

cancelled : boolean]

Refactored into Memory to allow for a uniform treatment of the model of memory and to facilitate

modelling using pointer arithmetic for member accesses.

21.45 − 21.48

Status variables are explicitly allocated by the user. Therefore they are present in the Memory

of individual processes. We will use a simple offset mechanism to return the individual member
addresses within Memory.

22.1 − 22.8

Status Cancelled(base)
∆

= base

Status Count(base)
∆

= base + 1
Status Source(base)

∆

= base + 2
Status Tag(base)

∆

= base + 3
Status Err(base)

∆

= base + 4

Initialized
∆

= [0 . . (N − 1) → {“initialized”, “uninitialized”, “finalized”}]

MessageBuffers
∆

= [0 . . (N − 1) → Nat]

BufferSizes
∆

= [0 . . (N − 1) → Nat]

Groups can be different on different processes.

Group
∆

= [0 . . (N − 1) → 138.37 − 138.38

[MPI COMM WORLD . . (MPI COMM WORLD + MAX GROUP) →
[members : subset (0 . . (N − 1)),
size : 0 . . N ,
ranking : [0 . . (N − 1) → 0 . . (N − 1)],
invranking : [0 . . (N − 1) → 0 . . (N − 1)]]]]

Communicator
∆

= [0 . . (N − 1) →
[MPI COMM WORLD . . (MPI COMM WORLD + MAX COMM) →

[group : MPI COMM WORLD . . (MPI COMM WORLD + MAX GROUP),
collective : MPI COMM WORLD . . (MPI COMM WORLD + MAX COMM)]]]

Collective
∆

= [(MPI COMM WORLD . . (MPI COMM WORLD + MAX COMM)) →
[participants : subset (0 . . (N − 1)),
root : (0 . . (N − 1)),
type : Collective types,
state : Collective states]]

Comm inv
∆

= communicator ∈ Communicator

Buff inv
∆

= bufsize ∈ BufferSizes

Msg buf inv
∆

= message buffer ∈ MessageBuffers

Initialized inv
∆

= initialized ∈ Initialized

Request inv
∆

= requests ∈ Requests

4

Col inv
∆

= collective ∈ Collective

group inv
∆

= group ∈ Group

MPI Type Invariant
∆

=
∧ communicator ∈ Communicator

∧ bufsize ∈ BufferSizes

∧ message buffer ∈ MessageBuffers

∧ initialized ∈ Initialized

∧ requests ∈ Requests

∧ collective ∈ Collective

Make request is a rule to simplify the expressions that create a new request object. Section 3.7.1

Make request(err , act , com, sta, buf , cty , per , mat , can, mes)
∆

=
[error 7→ err , The error code associated with this request

active 7→ act , The message was initiated

transmitted 7→ com, Data was transmitted by this message

started 7→ sta, Start this request

buffered 7→ buf , The data was copied from the input address

cancelled 7→ can, Whether the request was cancelled

deallocated 7→ false, A new request is created in an allocated state

ctype 7→ cty , The type of message (send, bsend , rsend , or ssend)

persist 7→ per , Whether the request is a persistent communication

match 7→ mat , The matching < process,handle >

message 7→ mes] The message envelope associated with this request

The initial values for the MPI specification state variables. These are not specified by the standard,
however these initial values make the TLA+ representation complete such that it can be verified
using TLC .

MPI Specification Init
∆

=
∧ requests = [i ∈ (0 . . (N − 1)) 7→ Create an instance of MPI REQUEST NULL

〈Make request(0, false, false, false, false, for each process.

“send”, false, 〈〉, true,
[src 7→ 0,
dest 7→ 0,
msgtag 7→ MPI ANY TAG ,
dtype 7→ 0,
numelements 7→ 0,
universe 7→ MPI COMM WORLD ,
state 7→ “send”,
addr 7→ 0])〉]

∧ bufsize = [i ∈ (0 . . (N − 1)) 7→ 0] Each process starts with no user attached buffer.

∧ message buffer = [i ∈ (0 . . (N − 1)) 7→ 0] Each process starts with no messages buffered.

∧ initialized = [i ∈ (0 . . (N − 1)) 7→ “uninitialized”] Each process starts uninitialized.

5

∧ communicator = [a ∈ 0 . . (N − 1) 7→ [i ∈ MPI COMM WORLD . . (MPI COMM WORLD + MAX

∧ collective = [i ∈ (MPI COMM WORLD . . (MPI COMM WORLD + MAX COMM)) 7→
[participants 7→ {},
root 7→ 0,
type 7→ “barrier”,
state 7→ “vacant”]]

∧ ∨ ∧ ¬RANK ORDERINGS SIGNIFICANT \ ∗ In this case, choose an arbitrary ordering

∧ choose f ∈ [0 . . (N − 1) → 0 . . (N − 1)] : \ ∗ 12.41 − 12.42 order is not specified.

choose finv ∈ [0 . . (N − 1) → 0 . . (N − 1)] : \ ∗ The inverse of f

∀ k ∈ domain f :

∃n ∈ 0 . . (N − 1) :

∧ f [k] = n

∧ finv [n] = k

∧ ∀m ∈ domain f : f [k] = f [m] ⇒ k = m

∧ group = [a ∈ 0 . . (N − 1) 7→ [i ∈ (MPI COMM WORLD . .

((MPI COMM WORLD + MAX GROUP))) 7→

if i = MPI COMM WORLD

then

[members 7→ {x ∈ 0 . . (N − 1) : true},

size 7→ N ,

ranking 7→ f ,

invranking 7→ finv]

else

[members 7→ {},

size 7→ 0,

ranking 7→ [j ∈ 0 . . (N − 1) 7→ 0],

invranking 7→ [j ∈ 0 . . (N − 1) 7→ 0]]]]

∨ ∧ RANK ORDERINGS SIGNIFICANT \ ∗ in this case, try all orderings

∧ ∃ f ∈ [0 . . (N − 1) → 0 . . (N − 1)] : 12.41 − 12.42 order is not specified.

∃finv ∈ [0 . . (N − 1) → 0 . . (N − 1)] : The inverse of f

∀ k ∈ domain f :
∃n ∈ 0 . . (N − 1) :
∧ f [k] = n

∧ finv [n] = k

∧ ∀m ∈ domain f :
∧ f [k] = f [m] ⇒ k = m

∧ group = [a ∈ 0 . . (N − 1) 7→
[i ∈ (MPI COMM WORLD . . ((MPI COMM WORLD + MAX GROUP))) 7→
if i = MPI COMM WORLD

then

[members 7→ {x ∈ 0 . . (N − 1) : true},
size 7→ N ,
ranking 7→ f ,
invranking 7→ finv]

else

[members 7→ {},
size 7→ 0,

6

ranking 7→ [j ∈ 0 . . (N − 1) 7→ 0],
invranking 7→ [j ∈ 0 . . (N − 1) 7→ 0]]]]

A correct MPI program is one in which all messages that are posted are eventually transmitted
or cancelled . A message that is posted but never transmitted is in error. It seems that a message
that is transmitted but never completed locally may also be in error . . . I should check on this.

Messages sent are received and completed
∆

=
∀ i ∈ (0 . . (N − 1)) :
∀m ∈ (1 . . Len(requests[i])) :

let r
∆

= requests[i][m]in
r .active ❀

∧ ∨ r .transmitted

∨ r .cancelled

∧ ¬r .active

There is some issue with regards to where the unchanged identifiers should be living. I am using
the following protocol:

1.Rules that have parameters that might be changed will declare the unchanged value ap-
propriately inside the rule for those parameters.

2.Variables that are passed as parameters to rules must be declared as unchanged appro-
priately outside the rule unless the parameter might be modified by the rule when the rule
is used.

3.Constants (such as a literal number, 0 for example) or constant values need not be declared
as unchanged .

4.MPI based rules always indicate the unchanged terms for MPI state variables. Program
models also indicate unchanged for MPI variables only when no MPI rule is fired in that
transition.

Conventions on parameters.

1.Parameters that are set (i .e., OUT or INOUT) are all arrays from 0 . . (N − 1) with one
instance of each object for each process in the model.

2.All other parameters (i .e., in) are the single instance of the variable value being passed,
or are constant.

These rules perform the communication or “matching” of messages that is necessary to complete
the MPI communication infrastructure. They are in no way specified in the standard, except that
messages are spoken of as being transmitted from one process to another and matching.

α → β → boolean

No change in state

7

Match(a, b)
∆

=
∧ Assert((a.state = “recv” ∧ b.state = “send”) ∨

(a.state = “send” ∧ b.state = “recv”),
“Error: Match attempted with two send or receives.”)

∧ (a.src = b.src ∨ a.src = MPI ANY SOURCE ∨ b.src = MPI ANY SOURCE) 21.14 − 21.15

∧ a.dest = b.dest
∧ a.dtype = b.dtype 23.17, 23.24 − 23.27

∧ (a.msgtag = b.msgtag ∨ a.msgtag = MPI ANY TAG ∨ b.msgtag = MPI ANY TAG) 21.15 − 21.16

∧ a.universe = b.universe 19.34 − 19.37

∧ ¬a.src = MPI PROC NULL 60.48 − 61.1

∧ ¬a.dest = MPI PROC NULL

∧ ¬b.src = MPI PROC NULL

∧ ¬b.dest = MPI PROC NULL

21.13 − 21.14 count need not be matched in point to point messages.

Messages match in program order pairwise between processes, however they

may complete in a nondeterministic order on both the sender and receiver. This tends to imply
that Communicate should in fact be two rules. And it also seems to imply that completion of a
message can happen on one side and then on the other also in a non-deterministic way. Therefore
Transmit should complete only one side of the communication.

Pairs messages together such that they result in a communication eventually.

Pair
∆

=
∧ ∃ i ∈ 0 . . (N − 1) :

∃ j ∈ 0 . . (N − 1) :
∃m ∈ 1 . . Len(requests[i]) :
∃n ∈ 1 . . Len(requests[j]) :
let a

∆

= requests[i][m]in
let b

∆

= requests[j][n] in
∧ a.started
∧ b.started
∧ ¬a.cancelled

∧ ¬b.cancelled

∧ ¬a.transmitted

∧ ¬b.transmitted

∧ ∨ ∧ a.message.state = “send”

∧ b.message.state = “recv”

∨ ∧ a.message.state = “recv”

∧ b.message.state = “send”

∧ a.match = 〈〉
∧ b.match = 〈〉
∧ Match(a.message, b.message)
∧ ∀ r ∈ 1 . . Len(requests[i]) : This conjunct enforces the fifo

∀ s ∈ 1 . . Len(requests[j]) :
let c

∆

= requests[i][r]in
let d

∆

= requests[j][s]in

8

∧ ∨ ∧ c.message.state = “send”

∧ d .message.state = “recv”

∨ ∧ c.message.state = “recv”

∧ d .message.state = “send”

∧ Match(c.message, d .message)
∧ a.started
∧ b.started
∧ ¬c.cancelled

∧ ¬c.transmitted

∧ ¬d .cancelled

∧ ¬d .transmitted

∧ c.match = 〈〉
∧ d .match = 〈〉
⇒ ∧ m ≤ r Section 3.7.4

∧ n ≤ s

∧ requests ′ = [requests except

![i] =
[@ except ![m] =

[@ except !.match = 〈j , n〉]],
![j] =
[@ except ![n] =

[@ except !.match = 〈i , m〉]]]
∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

Causes the communication that is already paired to complete.

Need to move arrays of data too.

Transmit
∆

=
∧ ∃ i ∈ 0 . . (N − 1) :

∃ j ∈ 1 . . Len(requests[i]) :
let m

∆

= requests[i][j]in
∧ m.started
∧ ¬m.cancelled

∧ ¬m.transmitted

∧ m.match 6= 〈〉
∧ requests ′ = [requests except ![i] =

[@ except ![j] =
[@ except !.transmitted = true]]]

∧ if ¬requests[m.match[1]][m.match[2]].transmitted

then

if m.message.state = “recv”

then Memory ′ = [Memory except ![i] = [@ except ![m.message.addr] = Memory [m.match

else Memory ′ = [Memory except ![m.match[1]] = [@ except ![requests[m.match[1]][m.match

else

unchanged 〈Memory〉

9

∧ if m.ctype = “bsend”

then

message buffer ′ = [message buffer except ![i] = @ − 1]
else

unchanged 〈message buffer〉
∧ unchanged 〈group, communicator , bufsize, initialized , collective〉

The specification indicates that messages are buffered in an asyncronous manner. The rule Buffer

is not part of the standard but necessary to allow buffering to complete asynchronously.

Buffer
∆

=
∨ ∧ ∃ i ∈ (0 . . (N − 1)) :

∃m ∈ 1 . . Len(requests[i]) :
∧ requests[i][m].started
∧ requests[i][m].active
∧ ¬requests[i][m].buffered

∧ ¬requests[i][m].cancelled

∧ ¬requests[i][m].transmitted

∧ ∨ ∧ requests[i][m].ctype = “bsend” Buffering is provided explicitly by the user.

∧ requests ′ =
[requests except ![i] =

[@ except ![m] =
[@ except !.buffered = true]]]

∨ ∧ requests[i][m].ctype = “send” Buffering may be provided by the system.

∧ ∨ requests ′ =
[requests except ![i] =

[@ except ![m] =
[@ except !.buffered = true]]]

∨ unchanged requests

∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

General Comments:

1.19.23 − 19.24 The message source is provided in the envelope implicitly. Operators in our
model must be passed this information as a parameter. As such we extend the argument
list to include proc, being the unique identity of the applying process.

Section 3.2 Blocking Send and Receive Operations

Section 3.2.1 Blocking send

Can these really be done in a single transition? I am thinking that it is not possible under an
interleaving semantics. In particular, either the send must be two transitions or the receive must
be two transitions, it cannot be the case that they are both only one transition.

10

MPI Send(buf , count , datatype, dest , tag, comm, proc)
∆

=

MPI Isend ; MPI Wait

Section 3.2.4 Blocking receive If receive is modeled using only one transition, it is just a combi-

nation of the MPI Irecv and Communicate rules.

MPI Recv(buf , count , datatype, source, tag, comm, status)
∆

=

MPI Irecv ; MPI Wait

Section 3.2.5 Return status

Returns in count the number of data elements in the message represented by status.

MPI Get count(status, datatype, count , return, proc)
∆

= 22.24 − 22.37

∧ Assert(Memory [proc][Status Cancelled(status)] = false, 54.47

“Error: count is undefined on a status from a cancelled message.”)
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Get count called before process was initialized.”)
∧ Memory ′ = [Memory except ![proc] = [@ except ![count] = Memory [proc][Status Count(status)]]]
∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

Section 3.4 Communication Modes

Notes: These, like the above blocking communications really should be modeled using two transi-
tions. In this way, the interleaving semantics is able to schedule another process to complete the
communications.

MPI Bsend(buf , count , datatype, dest , tag, comm, proc)
∆

=

MPI Ssend(buf , count , datatype, dest , tag, comm, proc)
∆

=

MPI Rsend(buf , count , datatype, dest , tag, comm, proc)
∆

=

Section 3.6 Buffer allocation and usage

We ignore the buffer argument as data is abstracted away in our model. Buffering is modeled as a
counting semaphore, keeping track of the resources available but not exactly which resources are
used or what is done with those resources.

Return value is unspecified.

MPI Buffer attach(buffer , size, return, proc)
∆

= < 34.17 − 34.33 >

∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Buffer attach called with proc not in initialized state.”)
∧ Assert(bufsize[proc] = 0, 34.32

“Error: MPI Buffer attach called when processes buffer is non-zero.”)

11

∧ bufsize ′ = [bufsize except ![proc] = size[proc]] < /34.17 − 34.33 >

∧ unchanged 〈group, communicator , message buffer , requests, initialized , collective〉
∧ unchanged Memory

Again we ignore the buffer addr argument as we are abstracting data.

The standard does not indicate what the result is when there is no buffer

currently attached.

MPI Buffer detach(buffer addr , size, return, proc)
∆

= < 34.36 − 35.2 >

∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Buffer detach called with proc not in initialized state.”)
∧ Assert(bufsize[proc] 6= 0,

“Error: MPI Buffer detach called when no buffer is currently associated with this process.”)
∧ bufsize ′ = [bufsize except ![proc] = 0] 34.46

∧ ∀ j ∈ 1 . . Len(requests[proc]) : 34.47

requests[proc][j].ctype = “bsend” ⇒ requests[proc][j].transmitted

< /34.36 − 35.2 >

∧ Memory = [Memory except ![proc] = [@ except ![size] = bufsize[proc]]] 34.47

∧ unchanged 〈group, communicator , message buffer , requests, initialized , collective〉

Section 3.7.2 Communication initiation

Notes: I am not sure how to model this construct. The main problem lies in the nondeterministic
buffering scheme that the standard referrs to. For a correct program one must expect no buffering,
however is it possible to write a program in such a way as to require synchronous handshakes?

Start a non-blocking standard send. 38.17 − 38.35, 58.13 − 58.18

MPI Isend(buf , count , datatype, dest , tag , comm, request , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Isend called with proc not in initialized state.”)
∧ Assert(proc ∈ group[proc][communicator [proc][comm].group].members,

“Error: MPI Isend called on a communicator which this process is not a member of.”)
∧ let msg

∆

=
[addr 7→ buf ,
src 7→ group[proc][communicator [proc][comm].group].ranking [proc],
dest 7→ dest ,
msgtag 7→ tag ,
dtype 7→ datatype,
numelements 7→ count ,
universe 7→ comm,
state 7→ “send”]

in

requests ′ = [requests except ![proc] = 40.40, 35.37 − 35.39

@ ◦ 〈Make request(0, true, false, true, true, “send”, false, 〈〉, false, msg)〉]
∧ Memory ′ = [Memory except ![proc] = [@ except ![request] = Len(requests[proc]) + 1]] 40.41

12

∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

Set up a non-blocking buffered send. 39.1 − 39.19, 58.13 − 58.18

MPI Ibsend(buf , count , datatype, dest , tag , comm, request , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Ibsend called with proc not in initialized state.”)
∧ Assert(message buffer [proc] < bufsize[proc], 28.6, 35.34 − 35.35

“Error: MPI Ibsend called when insufficient buffering was available.”)
∧ Assert(proc ∈ group[proc][communicator [proc][comm].group].members,

“Error: MPI Ibsend called on a communicator which this process is not a member of.”)
∧ let msg

∆

=
[addr 7→ buf ,
src 7→ group[proc][communicator [proc][comm].group].ranking [proc],
dest 7→ dest ,
msgtag 7→ tag ,
dtype 7→ datatype,
numelements 7→ count ,
universe 7→ comm,
state 7→ “send”]

in

requests ′ = [requests except ![proc] = 40.40

@ ◦ 〈Make request(0, true, false, true, true, “bsend”, false, 〈〉, false, msg)〉]
∧ Memory ′ = [Memory except ![proc] = [@ except ![request] = Len(requests[proc]) + 1]] 40.41

∧ message buffer ′ = [message buffer except ![proc] = @ + 1] 28.6 Consume necessary buffer space

∧ unchanged 〈group, communicator , bufsize, initialized , collective〉

Tested

Set up a non-blocking synchronous send. 39.21 − 39.39, 58.13 − 58.18

MPI Issend(buf , count , datatype, dest , tag , comm, request , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Issend called with proc not in initialized state.”)
∧ Assert(proc ∈ group[proc][communicator [proc][comm].group].members,

“Error: MPI Issend called on a communicator which this process is not a member of.”)
∧ let msg

∆

=
[addr 7→ buf ,
src 7→ group[proc][communicator [proc][comm].group].ranking [proc],
dest 7→ dest ,
msgtag 7→ tag ,
dtype 7→ datatype,
numelements 7→ count ,
universe 7→ comm,
state 7→ “send”]

in

requests ′ = [requests except ![proc] = 40.40

@ ◦ 〈Make request(0, true, false, true, false, “ssend”, false, 〈〉, false, msg)〉]

13

∧ Memory ′ = [Memory except ![proc] = [@ except ![request] = Len(requests[proc]) + 1]] 40.41

∧ unchanged 〈group, communicator , message buffer , bufsize, initialized , collective〉

Set up a non-blocking ready send. 40.1 − 40.19, 58.13 − 58.18

MPI Irsend(buf , count , datatype, dest , tag , comm, request , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Irsend called with proc not in initialized state.”)
∧ Assert(proc ∈ group[proc][communicator [proc][comm].group].members,

“Error: MPI Irsend called on a communicator which this process is not a member of.”)
∧ Assert(∃ k ∈ (1 . . Len(requests[dest])) : 37.6 − 37.8

∧ requests[dest][k].active
∧ ¬requests[dest][k].transmitted

∧ ¬requests[dest][k].cancelled

∧ Match(requests[proc][request].message, requests[dest][k].message),
“Error: MPI Start tried to start a rsend request when no matching message exists.”)

∧ requests ′ = [requests except ![proc] = 40.40

let msg
∆

=
[addr 7→ buf ,
src 7→ group[proc][communicator [proc][comm].group].ranking [proc],
dest 7→ dest ,
msgtag 7→ tag ,
dtype 7→ datatype,
numelements 7→ count ,
universe 7→ comm,
state 7→ “send”]

in

@ ◦ 〈Make request(0, true, false, true, false, “rsend”, false, 〈〉, false, msg)〉]
∧ Memory ′ = [Memory except ![proc] = [@ except ![request] = Len(requests[proc]) + 1]] 40.41

∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

Set up a non-blocking receive. 40.21 − 40.39, 58.13 − 58.18

MPI Irecv(buf , count , datatype, source, tag , comm, request , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Irecv called with proc not in initialized state.”)
∧ Assert(proc ∈ group[proc][communicator [proc][comm].group].members,

“Error: MPI Irecv called on a communicator which this process is not a member of.”)
∧ let msg

∆

=
[addr 7→ buf ,
src 7→ source,
dest 7→ group[proc][communicator [proc][comm].group].ranking [proc],
msgtag 7→ tag ,
dtype 7→ datatype,
numelements 7→ count ,
universe 7→ comm,

14

state 7→ “recv”]
in

requests ′ = [requests except ![proc] = 40.40

@ ◦ 〈Make request(0, true, false, true, false, “recv”, false, 〈〉, false, msg)〉]
∧ Memory ′ = [Memory except ![proc] = [@ except ![request] = Len(requests[proc]) + 1]] 40.41

∧ unchanged 〈group, communicator , message buffer , bufsize, initialized , collective〉

Section 3.7.3 Communication Completion

Would if . . . then . . . else be a better, more readable form here? Maybe not because we need to

block.

Wait for request to complete. Return information about the message in status. 41.23 − 42.6

No specification on what the status value is when a send is posted with MPI PROC NULL

Specifies next state for status and request

MPI Wait(request , status, return, proc)
∆

=
let r

∆

= requests[proc][Memory [proc][request]]in
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Wait called with proc not in initialized state.”)
∧ ∨ ∧ Memory [proc][request] 6= MPI REQUEST NULL 41.32 − 41.39 The request handle is not the null handle.

∧ r .active The request is active.

∧ ∨ ∧ r .message.src 6= MPI PROC NULL The message source is not null

∧ r .message.dest 6= MPI PROC NULL The message destination is not null

41.32 − Blocks until complete

∧ ∨ r .transmitted The communication actually happened or

∨ r .cancelled the communication got cancelled by the user program or

∨ r .buffered the communication got buffered either into explicit user provided

buffer space or into system provided buffer space (if regular send is used).

A status object for a completed communication.

∧ Memory ′ =
[Memory except ![proc] = 41.36

[@ except ![Status Cancelled(status)] = r .cancelled ∧ ¬r .transmitted , 54.46

![Status Count(status)] = r .message.numelements,
![Status Source(status)] = r .message.src,
![Status Tag(status)] = r .message.msgtag ,
![Status Err(status)] = r .error ,
![request] = if r .persist then @ else MPI REQUEST NULL]] 41.32 − 41.35,

∨ ∧ ∨ r .message.src = MPI PROC NULL The source or destination was actually

∨ r .message.dest = MPI PROC NULL the null process

∧ Memory ′ = [Memory except ![proc] = 41.36

[@ except ![Status Cancelled(status)] = r .cancelled ,
![Status Count(status)] = 0,
![Status Source(status)] = MPI PROC NULL,
![Status Tag(status)] = MPI ANY TAG ,

15

![Status Err(status)] = 0,
![request] = if r .persist then @ else MPI REQUEST NULL]] 41.32 − 41.35,

∧ requests ′ = [requests except ![proc] = 58.34

[@ except ![Memory [proc][request]] =
if r .persist
then

[@ except !.active = false]
else

[@ except

!.active = false,
!.deallocated = true]]]

∨ ∧ ∨ ¬r .active 41.40 − 41.41 The request is not active

∨ Memory [proc][request] = MPI REQUEST NULL or the request handle is null

∧ Memory ′ = [Memory except ![proc] = 41.36

[@ except ![Status Cancelled(status)] = false,
![Status Count(status)] = 0,
![Status Source(status)] = MPI ANY SOURCE ,
![Status Tag(status)] = MPI ANY TAG ,
![Status Err(status)] = 0]]

∧ unchanged 〈requests〉
∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

Test whether the request referenced has completed.

Specifies next state for request, flag, and status.

MPI Test(request , flag , status, return, proc)
∆

=
let r

∆

= requests[proc][Memory [proc][request]]in
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Test called with proc not in initialized state.”)
∧ ∨ ∧ Memory [proc][request] 6= MPI REQUEST NULL The request handle is not the null handle.

∧ r .active The request is active.

∧ ∨ ∧ r .message.src 6= MPI PROC NULL The message source is not null

∧ r .message.dest 6= MPI PROC NULL The message destination is not null

42.20 − 42.21

∧ if ∨ r .transmitted The communication actually happened or

∨ r .cancelled the communication got cancelled by the user program or

∨ r .buffered the communication got buffered either into explicit user provided

buffer space or into system provided buffer space (if regular send is used).

then

∧ Memory ′ = [Memory except ![proc] =
[@ except ![Status Cancelled(status)] = r .cancelled ∧ ¬r .transmitted ,

![Status Count(status)] = r .message.numelements,
![Status Source(status)] = r .message.src,
![Status Tag(status)] = r .message.msgtag ,
![Status Err(status)] = r .error ,

16

![flag] = true,
![request] = if r .persist then @ else MPI REQUEST NULL]]

∧ requests ′ =
[requests except ![proc] =

[@ except ![Memory [proc][request]] =
[@ except !.active = false]]] 42.22 − 42.23, 58.34 Not modeling deallocation

else 42.23 − 42.24

∧ Memory ′ = [Memory except ![proc] = [@ except ![flag] = false]] status is undefined 42.25

∧ unchanged 〈requests〉
∨ ∧ ∨ r .message.src = MPI PROC NULL The source or destination were actually

∨ r .message.dest = MPI PROC NULL the null process 42.29 − 42.31

∧ Memory ′ = [Memory except ![proc] =
[@ except ![Status Cancelled(status)] = false,

![Status Count(status)] = 0,
![Status Source(status)] = MPI PROC NULL,
![Status Tag(status)] = MPI ANY TAG ,
![Status Err(status)] = 0,
![flag] = true,
![request] = if r .persist then @ else MPI REQUEST NULL]]

∧ requests ′ =
[requests except ![proc] =

[@ except ![Memory [proc][request]] =
[@ except !.active = false]]] 42.22 − 42.23, 58.34 Not modeling deallocation

∨ ∧ ∨ ¬r .active The request is not active or the request

∨ Memory [proc][request] = MPI REQUEST NULL handle is null 42.29 − 42.31

∧ Memory ′ = [Memory except ![proc] =
[@ except ![Status Cancelled(status)] = false,

![Status Count(status)] = 0,
![Status Source(status)] = MPI ANY SOURCE ,
![Status Tag(status)] = MPI ANY TAG ,
![Status Err(status)] = 0,
![flag] = true]]

∧ unchanged 〈requests〉
∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

Frees the request specified.

Modifies request.

MPI Request free(request , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“MPI Request free called with proc not in initialized state.”)
∧ Assert(¬requests[proc][Memory [proc][request]].active, 43.37 − 43.39

“MPI Request free called with an inactive request.”)
∧ Memory ′ = [Memory except ![proc] = [@ except ![request] = MPI REQUEST NULL]] 43.20 Not mo

∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

17

Section 3.7.5 Multiple Completions

Wait for one of the requests referenced in array of requests to complete.

Specifies next state for index and status

MPI Waitany(count , array of requests, index , status, return, proc)
∆

=
let r(v)

∆

= requests[proc][Memory [proc][array of requests + v]]in
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Waitany called with proc not in initialized state.”)
∧ ∨ ∃ i ∈ (0 . . (count − 1)) : 45.44 − 45.46 Blocks–chooses arbitrarily one that satisfies the following:

∧ Memory [proc][array of requests + i] 6= MPI REQUEST NULL The request handle is not the null handle.

∧ r(i).active The request is active.

∧ ∨ ∧ r(i).message.src 6= MPI PROC NULL The message source is not null

∧ r(i).message.dest 6= MPI PROC NULL The message destination is not null

∧ ∨ r(i).transmitted The communication actually happened or

∨ r(i).cancelled the communication got cancelled by the user program or

∨ r(i).buffered the communication got buffered either into explicit user provided

buffer space or into system provided buffer space (if regular send is used).

∧ Memory ′ = [Memory except ![proc] = 45.46 − 45.47

[@ except

! [Status Source(status)] = r(i).message.src, 45.47 − 45.48

! [Status Tag(status)] = r(i).message.msgtag ,
! [Status Err(status)] = r(i).error ,
! [Status Count(status)] = r(i).message.numelements,
! [Status Cancelled(status)] = r(i).cancelled ∧ ¬r(i).transmitted , 54.46

! [array of requests + i] = if r(i).persist then @ else MPI REQUEST NULL, 46.1 −

! [index] = i]] 45.46

∨ ∧ ∨ r(i).message.src = MPI PROC NULL The source or destination was actually

∨ r(i).message.dest = MPI PROC NULL the null process

∧ Memory ′ = [Memory except ![proc] = [@ except

![Status Source(status)] = MPI PROC NULL,
![Status Tag(status)] = MPI ANY TAG ,
![Status Err(status)] = 0,
![Status Count(status)] = 0,
![Status Cancelled(status)] = r(i).cancelled ,
![array of requests + i] = if r(i).persist then @ else MPI REQUEST NULL, 46.2,

![index] = i]] 45.46

∧ requests ′ = [requests except ![proc] = 46.1, 58.34

[@ except ![Memory [proc][array of requests + i]] =
[@ except !.active = false]]]

∨ ∀ i ∈ (0 . . (count − 1)) : 46.3 − 46.4

∧ ∨ ¬r(i).active The request is not active or the request

∨ Memory [proc][array of requests + i] = MPI REQUEST NULL handle is null

∧ Memory ′ = [Memory except ![proc] = 46.5

18

[@ except

! [Status Source(status)] = MPI ANY SOURCE ,
! [Status Tag(status)] = MPI ANY TAG ,
! [Status Err(status)] = 0,
! [Status Count(status)] = 0,
! [Status Cancelled(status)] = false,
! [index] = MPI UNDEFINED]] 46.5

∧ unchanged 〈requests〉
∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

Test whether one of the requests referenced in array of requests has completed.

MPI Testany(count , array of requests, index , flag , status, return, proc)
∆

=
let r(v)

∆

= requests[proc][Memory [proc][array of requests + v]]in
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Testany called with proc not in initialized state.”)
∧ ∨ ∃ i ∈ (0 . . (count − 1)) : 46.28 − 46.29

∧ array of requests[proc][i] 6= MPI REQUEST NULL The request handle is not the null handle.

∧ r(i).active The request is active.

∧ ∨ ∧ r(i).message.src 6= MPI PROC NULL The message source is not null

∧ r(i).message.dest 6= MPI PROC NULL The message destination is not null

∧ if ∨ r(i).transmitted The communication actually happened or

∨ r(i).cancelled the communication got cancelled by the user program or

∨ r(i).buffered the communication got buffered either into explicit user provided

buffer space or into system provided buffer space (if regular send is used).

then

∧ Memory ′ = [Memory except ![proc] = [@ except

![flag] = true, 46.29

![Status Source(status)] = r(i).message.src, 46.30

![Status Tag(status)] = r(i).message.msgtag ,
![Status Err(status)] = r(i).error ,
![Status Count(status)] = r(i).message.numelements,
![Status Cancelled(status)] = r(i).cancelled ∧ ¬r(i).transmitted , 54.46

![index] = i , 46.29

![array of requests + i] = if r(i).persist then @ else MPI REQUEST NULL]] 46.31

∧ requests ′ = 46.30 − 46.31, 58.34

[requests except ![proc] =
[@ except ![Memory [proc][array of requests + i]] =

[@ except !.active = false]]]
else

∧ Memory ′ = [Memory except ![proc] = [@ except status is explicitly undefined.

![flag] = false, 46.33

![index] = MPI UNDEFINED]] 46.33 − 46.34

∧ unchanged 〈requests〉
∨ ∧ ∨ r(i).message.src = MPI PROC NULL The source or destination were actually

19

∨ r(i).message.dest = MPI PROC NULL the null process 61.3 − 61.4

∧ Memory ′ = [Memory except ![proc] = [@ except

![flag] = true, 46.29

![Status Source(status)] = MPI PROC NULL,
![Status Tag(status)] = MPI ANY TAG ,
![Status Err(status)] = 0,
![Status Count(status)] = 0,
![Status Cancelled(status)] = r(i).cancelled ,
![index] = i , 46.29

![array of requests + i] = if r(i).persist then @ else MPI REQUEST NULL]] 46.31 −

∧ requests ′ = 46.31 − 46.32, 58.34

[requests except ![proc] =
[@ except ![Memory [proc][array of requests + i]] =

[@ except !.active = false]]]
∨ ∀ i ∈ (0 . . (count − 1)) : 46.35 − 46.37

∧ ∨ ¬r(i).active The request is not active or the request

∨ array of requests[proc][i] = MPI REQUEST NULL handle is null

∧ Memory ′ = [Memory except ![proc] = [@ except

![flag] = true, 46.36

![Status Source(status)] = MPI ANY SOURCE , 46.36

![Status Tag(status)] = MPI ANY TAG ,
![Status Err(status)] = 0,
![Status Count(status)] = 0,
![Status Cancelled(status)] = false,
![index] = MPI UNDEFINED]] 46.36

∧ unchanged 〈requests〉
∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

A long version of MPI Waitall – includes the line by line reference.

Specifies the next state for array of requests and array of statuses.

MPI Waitall(count , array of requests, array of statuses, return, proc)
∆

=
let r(v)

∆

= requests[proc][Memory [proc][array of requests + v]]in
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Waitall called with proc not in initialized state.”)
∧ ∨ ∀ i ∈ (0 . . (count − 1)) : 47.18

∧ Memory [proc][array of requests + i] 6= MPI REQUEST NULL The request handle is not the null handle.

∧ r(i).active The request is active.

∧ ∨ ∧ r(i).message.src 6= MPI PROC NULL The message source is not null

∧ r(i).message.dest 6= MPI PROC NULL The message destination is not null

∧ ∨ r(i).transmitted The communication actually happened or

∨ r(i).cancelled the communication got cancelled by the user program or

∨ r(i).buffered the communication got buffered either into explicit user provided

buffer space or into system provided buffer space (if regular send is used).

∨ ∧ ∨ r(i).message.src = MPI PROC NULL The source or destination was actually

20

∨ r(i).message.dest = MPI PROC NULL the null process

∧ array of requests ′ =
[array of requests except ![proc] = 47.22 − 47.23

[j ∈ 0 . . (count − 1) 7→
if r(j).persist
then

array of requests[proc][j]
else

MPI REQUEST NULL]]
∧ array of statuses ′ = [array of statuses except ![proc] = 47.18 − 47.21

[j ∈ (0 . . count − 1) 7→
if ∨ r(j).message.src = MPI PROC NULL

∨ r(j).message.dest = MPI PROC NULL

then 61.3 − 61.4

[state 7→ “defined”, A status object for a communication

MPI SOURCE 7→ MPI PROC NULL, with a null process

MPI TAG 7→ MPI ANY TAG ,
MPI ERROR 7→ 0,
count 7→ 0,
cancelled 7→ r(j).cancelled]

else

[state 7→ “defined”, A status object for a completed communication.

MPI SOURCE 7→ r(j).message.src,
MPI TAG 7→ r(j).message.msgtag ,
MPI ERROR 7→ r(j).error ,
count 7→ r(j).message.numelements,
cancelled 7→ r(j).cancelled ∧ ¬r(i).transmitted]]] 54.46

∧ requests ′ = [requests except ![proc] = 47.22, 58.34 Not modeling deallocation

[j ∈ 1 . . Len(@) 7→
if ∃ k ∈ 0 . . (count − 1) : j = array of requests[proc][k]
then

[requests[proc][j] except !.active = false]
else

requests[proc][j]]]
∨ ∀ i ∈ 0 . . (count − 1) : 47.23 − 47.24

∧ ∨ Memory [proc][array of requests + i] = MPI REQUEST NULL The request handle is null or

∨ ¬r(i).active not active

∧ Memory ′ = [Memory except ![proc] =
[j ∈ 1 . . Len(Memory [proc]) 7→
if j ∈ array of statuses . . (array of statuses + ((count ∗ 5) − 1))
then

if (j − array of statuses)%5 = 0
then false

else

if (j − array of statuses)%5 = 1

21

then 0
else

if (j − array of statuses)%5 = 2
then MPI ANY SOURCE

else

if (j − array of statuses)%5 = 3
then MPI ANY TAG

else

if (j − array of statuses)%5 = 4
then 0
else Assert(false, “Internal Error: Cannot have any other cases.”)

else Memory [proc][j]]]
∧ unchanged 〈array of requests, requests〉

∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

Test whether all reqeusts referenced in array of requests have completed.

MPI Testall(count , array of requests, flag , array of statuses, return, proc)
∆

=
let r(v)

∆

= requests[proc][array of requests[proc][v]]in
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Testall called with proc not in initialized state.”)
∧ if ∨ ∀ i ∈ (0 . . (count − 1)) : 48.15

∨ ∧ array of requests[proc][i] 6= MPI REQUEST NULL The request handle is not the null handle.

∧ r(i).active The request is active.

∧ ∨ ∧ r(i).message.src 6= MPI PROC NULL The message source is not null

∧ r(i).message.dest 6= MPI PROC NULL The message destination is not null

∧ ∨ r(i).transmitted The communication actually happened or

∨ r(i).cancelled the communication got cancelled by the user program or

∨ r(i).buffered the communication got buffered either into explicit user provided

buffer space or into system provided buffer space (if regular send is used).

∨ ∧ ∨ r(i).message.src = MPI PROC NULL The source or destination were actually

∨ r(i).message.dest = MPI PROC NULL the null process

∨ ∀ i ∈ (0 . . (count − 1)) : 48.16

∨ array of requests[proc][i] = MPI REQUEST NULL

∨ ¬r(i).active
then

∧ array of statuses ′ = [array of statuses except ![proc] =
[i ∈ (0 . . (count − 1)) 7→
if ∨ r(i).message.src = MPI PROC NULL

∨ r(i).message.dest = MPI PROC NULL

then 61.3 − 61.4

[state 7→ “defined”, A status object for a communication

MPI SOURCE 7→ MPI PROC NULL, with a null process

MPI TAG 7→ MPI ANY TAG ,
MPI ERROR 7→ 0,

22

count 7→ 0,
cancelled 7→ false]

else

if ∨ array of requests[proc][i] = MPI REQUEST NULL 48.21

∨ ¬r(i).active
then

[state 7→ “empty”, The resultant empty status.

MPI SOURCE 7→ MPI ANY SOURCE ,
MPI TAG 7→ MPI ANY TAG ,
MPI ERROR 7→ 0,
count 7→ 0,
cancelled 7→ false]

else 48.17 − 48.18

[state 7→ “defined”, A status object for a completed communication.

MPI SOURCE 7→ r(i).message.src,
MPI TAG 7→ r(i).message.msgtag ,
MPI ERROR 7→ r(i).error ,
count 7→ r(i).message.numelements,
cancelled 7→ r(i).cancelled ∧ ¬r(i).transmitted]]] 54.46

∧ requests ′ = 48.18 − 48.19, 58.34 Not modeling deallocation

[requests except ![proc] =
[i ∈ 1 . . Len(@) 7→
if ∃ j ∈ 0 . . (count − 1) : array of requests[proc][j] = i

then

[requests[proc][i] except !.active = false]
else

requests[proc][i]]]
∧ array of requests ′ = [array of requests except ![proc] =

[i ∈ 0 . . (count − 1) 7→
if r(i).persist
then

array of requests[proc][i] 58.34 − 58.35

else

MPI REQUEST NULL]] 48.19 − 48.21

∧ flag ′ = [flag except ![proc] = true] 48.15

else

∧ flag ′ = [flag except ![proc] = false] 48.21 − 48.22

∧ array of statuses ′ = [array of statuses except ![proc] =
[i ∈ 0 . . (count − 1) 7→

[array of statuses[proc][i] except !.state = “undefined”]]]
∧ unchanged 〈array of requests, requests〉

∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

23

Wait for some subset of the requests referenced in array of requests to complete.

The ordering of array of indices or array of statuses is not specified.

Not modeling the possibility of arbitrary ordering of the array of indices or array of statuses.

MPI Waitsome(incount , array of requests, outcount ,
array of indices, array of statuses, return, proc)

∆

=
let r(v)

∆

= requests[proc][array of requests[proc][v]]in
let msgs

∆

=
{x ∈ (0 . . (incount − 1)) : The messages that have completed in the array of requests

∧ array of requests[proc][x] 6= MPI REQUEST NULL The request handle is not the null handle.

∧ r(x).active The request is active.

∧ ∨ r(x).transmitted The communication actually happened or

∨ r(x).cancelled the communication got cancelled by the user program or

∨ r(x).buffered} the communication got buffered either into explicit user provided

buffer space or into system provided buffer space (if regular send is used).

in

∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Waitsome called with proc not in initialized state.”)
∧ ∨ ∧ Cardinality(msgs) > 0 48.45

∧ outcount ′ = [outcount except ![proc] = Cardinality(msgs)] 48.46

∧ ∃ seq ∈ Seq(msgs) : from FiniteSets.tla module!

∧ ∀ s ∈ msgs :
∃n ∈ 1 . . Len(seq) :

∧ seq [n] = s

∧ ∀m ∈ 1 . . Len(seq) : seq [n] = seq [m] ⇒ m = n

∧ array of indices ′ = [array of indices except ![proc] =
[i ∈ 0 . . (incount − 1) 7→
if i < Len(seq)
then seq [i + 1]
else array of indices[proc][i]]]

∧ array of statuses ′ = [array of statuses except ![proc] =
[i ∈ 0 . . (incount − 1) 7→
if i < Len(seq)
then

[state 7→ “defined”, A status object for a completed communication.

MPI SOURCE 7→ r(seq [i + 1]).message.src,
MPI TAG 7→ r(seq [i + 1]).message.msgtag ,
MPI ERROR 7→ r(seq [i + 1]).error ,
count 7→ r(seq [i + 1]).message.numelements,
cancelled 7→ r(seq [i + 1]).cancelled ∧ ¬r(seq [i + 1]).transmitted] 54.46

else

array of statuses[proc][i]]]
∧ requests ′ = [requests except ![proc] =

[i ∈ 1 . . Len(requests[proc]) 7→
if ∃m ∈ msgs : i = array of requests[proc][m]

24

then [r(i) except !.active = false]
else r(i)]]

∧ array of requests ′ = [array of requests except ![proc] =
[i ∈ 0 . . (incount − 1) 7→ 49.2 − 49.4

if ∧ ∃m ∈ msgs : i = array of requests[proc][m]
∧ r(i).persist

then

array of requests[proc][i]
else

MPI REQUEST NULL]]
∨ ∧ ∀ i ∈ (0 . . (incount − 1)) : 49.5

∨ array of requests[proc][i] = MPI REQUEST NULL

∨ ¬requests[proc][array of requests[proc][i]].active
∧ outcount ′ = [outcount except ![proc] = MPI UNDEFINED] 49.5 − 49.6

∧ unchanged 〈array of indices, array of statuses, requests, array of requests〉
∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

Test for some subset of the requests referenced in the array of requests to complete.

Defined in terms of MPI Waitsome.

MPI Testsome(incount , array of requests, outcount ,
array of indices, array of statuses, return, proc)

∆

=
let r(v)

∆

= requests[proc][array of requests[proc][v]]in
let msgs

∆

=
{x ∈ (0 . . (incount − 1)) : The messages that have completed in the array of requests

∧ array of requests[proc][x] 6= MPI REQUEST NULL The request handle is not the null handle.

∧ r(x).active The request is active.

∧ ∨ r(x).transmitted The communication actually happened or

∨ r(x).cancelled the communication got cancelled by the user program or

∨ r(x).buffered} the communication got buffered either into explicit user provided

buffer space or into system provided buffer space (if regular send is used).

in

∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Testsome called with proc not in initialized state.”)
∧ ∨ ∃ i ∈ (0 . . (incount − 1)) : 49.35 − 49.36, 49.5

∧ array of requests[proc][i] 6= MPI REQUEST NULL

∧ r(i).active
∧ if Cardinality(msgs) > 0 number of completed messages

then

∧ outcount ′ = [outcount except ![proc] = Cardinality(msgs)] 48.46

∧ ∃ seq ∈ Seq(msgs) : from FiniteSets.tla module!

∧ ∀ s ∈ msgs :
∃n ∈ 1 . . Len(seq) :

∧ seq [n] = s 48.47 − 49.2

∧ ∀m ∈ 1 . . Len(seq) : seq [n] = seq [m] ⇒ m = n

25

∧ array of indices ′ = [array of indices except ![proc] =
[j ∈ 0 . . (incount − 1) 7→
if j < Len(seq)
then seq [j + 1]
else array of indices[proc][j]]]

∧ array of statuses ′ = [array of statuses except ![proc] =
[j ∈ 0 . . (incount − 1) 7→
if j < Len(seq)
then

[state 7→ “defined”, A status object for a completed communication.

MPI SOURCE 7→ r(seq [j + 1]).message.src,
MPI TAG 7→ r(seq [j + 1]).message.msgtag ,
MPI ERROR 7→ r(seq [j + 1]).error ,
count 7→ r(seq [j + 1]).message.numelements,
cancelled 7→ r(seq [j + 1]).cancelled ∧ ¬r(seq [j + 1]).transmitted] 54.46

else

array of statuses[proc][j]]]
∧ requests ′ = [requests except ![proc] =

[j ∈ 1 . . Len(requests[proc]) 7→
if ∃m ∈ msgs : j = array of requests[proc][m]
then [r(j) except !.active = false] 58.34

else r(j)]]
∧ array of requests ′ = [array of requests except ![proc] =

[j ∈ 0 . . (incount − 1) 7→ 49.2 − 49.4

if ∧ ∃m ∈ msgs : j = array of requests[proc][m]
∧ r(j).persist 49.2 − 49.4

then

array of requests[proc][j] 58.34 − 58.35

else

MPI REQUEST NULL]]
else 49.35

∧ outcount ′ = [outcount except ![proc] = 0]
∧ unchanged 〈array of indices, array of statuses, requests, array of requests〉

∨ ∧ ∀ i ∈ (0 . . (incount − 1)) : 49.5

∨ array of requests[proc][i] = MPI REQUEST NULL

∨ ¬requests[proc][array of requests[proc][i]].active
∧ outcount ′ = [outcount except ![proc] = MPI UNDEFINED] 49.5 − 49.6, 49.36

∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

Section 3.8 Probe and Cancel

What happens in the following scenerio: 1: send 2: probe 1: cancel 2: recv

26

Probe for a message. Nonblocking; note the leading if

MPI Iprobe(source, tag , comm, flag , status, return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Testany called with proc not in initialized state.”)
∧ if ∃ i ∈ (0 . . (N − 1)) : 51.39 − 51.41

∃ j ∈ (1 . . Len(requests[i])) :
let m

∆

= requests[i][j].messagein

∧ ∨ m.src = source

∨ source = MPI ANY SOURCE

∧ ∨ m.msgtag = tag

∨ tag = MPI ANY TAG

∧ m.universe = comm unique across space/time – not required by standard

∧ m.state = “send” 51.41 − 51.42 must match

∧ requests[i][j].active 51.41 − 51.42

∧ ¬requests[i][j].transmitted

∧ ¬requests[i][j].cancelled

then

∃ i ∈ (0 . . (N − 1)) : 51.39 − 51.41

∃ j ∈ (1 . . Len(requests[i])) :
let m

∆

= requests[i][j].messagein

∧ ∨ m.src = source

∨ source = MPI ANY SOURCE

∧ ∨ m.msgtag = tag

∨ tag = MPI ANY TAG

∧ m.universe = comm unique across space/time – not required by standard

∧ m.state = “send” 51.41 − 51.42 must match

∧ requests[i][j].active 51.41 − 51.42

∧ ¬requests[i][j].transmitted

∧ ¬requests[i][j].cancelled

∧ ∀ k ∈ (1 . . Len(requests[i])) : least match

∧ requests[i][k].active
∧ ¬requests[i][k].cancelled

∧ ¬requests[i][k].transmitted

⇒ j ≤ k

∧ Memory ′ = [Memory except ![proc] =
[[loc ∈ 1 . . Len(Memory [proc]) 7→ 51.42

if loc = Status Cancelled(status)
then false

else

if loc = Status Count(status)
then m.numelements

else

if loc = Status Source(status)
then m.src
else

27

if loc = Status Tag(status)
then m.msgtag

else

if loc = Status Err(status)
then requests[i][j].error
else Memory [proc][loc]]

except ![flag] = true]] 51.39

else

∧ Memory ′ = [Memory except ![proc] = [@ except ![flag] = false]] 51.44 Status is undefined

∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

Wait on a probe for a message. 52.24 − 52.25

MPI Probe(source, tag , comm, status, return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Testany called with proc not in initialized state.”)
∧ ∃ i ∈ (0 . . (N − 1)) :
∃ j ∈ (1 . . Len(requests[i])) :
let m

∆

= requests[i][j].messagein

∧ ∨ m.src = source

∨ source = MPI ANY SOURCE

∧ ∨ m.msgtag = tag

∨ tag = MPI ANY TAG

∧ m.universe = comm unique across space/time – not required by standard

∧ m.state = “send”

∧ requests[i][j].active
∧ ¬requests[i][j].transmitted

∧ ¬requests[i][j].cancelled

∧ ∀ k ∈ (1 . . Len(requests[i])) :
∧ requests[i][k].active
∧ ¬requests[i][k].cancelled

∧ ¬requests[i][k].transmitted

⇒ j ≤ k

∧ Memory ′ = [Memory except ![proc] =
[loc ∈ 1 . . Len(Memory [proc]) 7→ 51.42

if loc = Status Cancelled(status)
then requests[i][j].cancelled ∧ ¬requests[i][j].transmitted

else

if loc = Status Count(status)
then m.numelements

else

if loc = Status Source(status)
then m.src
else

if loc = Status Tag(status)

28

then m.msgtag

else

if loc = Status Err(status)
then requests[i][j].error
else Memory [proc][loc]]]

∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

Cancel an active request.

What do you do when the request is MPI REQUEST NULL?

MPI Cancel(request , return, proc)
∆

= 54.8 − 54.10

∧ requests ′ = [requests except ![proc] =
[@ except ![Memory [proc][request]] =

[@ except !.cancelled = true]]]
∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉
∧ unchanged 〈Memory〉

Test whether a request was cancelled successfully.

MPI Test cancelled(status, flag , return, proc)
∆

= 54.46 − 55.1

∧ Memory ′ = [Memory except ![proc] = [@ except ![flag] = Memory [proc][Status Cancelled(status)]]]
∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

Section 3.9 Persistent communication requests

Create a persistant standard mode send request.

MPI Send init(buf , count , datatype, dest , tag , comm, request , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Send init called with proc not in initialized state.”)
∧ requests ′ = [requests except ![proc] = 56.4 − 56.5

let msg
∆

= [addr 7→ buf ,
src 7→ group[proc][communicator [proc][comm].group].ranking [proc],
dest 7→ dest ,
msgtag 7→ tag ,
dtype 7→ datatype,
numelements 7→ count ,
universe 7→ comm,
state 7→ “send”]

in

@ ◦ 〈Make request(0, false, false, false, false, “send”, true, 〈〉, false, msg)〉]
57.42 − 57.46

∧ Memory ′ = [Memory except ![proc] = [@ except ![request] = Len(requests[proc]) + 1]]
∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

Create a persistant buffered mode send request.

29

MPI Bsend init(buf , count , datatype, dest , tag , comm, request , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Bsend init called with proc not in initialized state.”)
∧ requests ′ = [requests except ![proc] = 56.26

let msg
∆

= [addr 7→ buf ,
src 7→ group[proc][communicator [proc][comm].group].ranking [proc],
dest 7→ dest ,
msgtag 7→ tag ,
dtype 7→ datatype,
numelements 7→ count ,
universe 7→ comm,
state 7→ “send”]

in

@ ◦ 〈Make request(0, false, false, false, false, “bsend”, true, 〈〉, false, msg)〉]
57.42 − 57.46

∧ Memory ′ = [Memory except ![proc] = [@ except ![request] = Len(requests[proc]) + 1]]
∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

Create a persistant synchronous mode send request.

MPI Ssend init(buf , count , datatype, dest , tag , comm, request , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Ssend init called with proc not in initialized state.”)
∧ requests ′ = [requests except ![proc] = 56.46

let msg
∆

= [addr 7→ buf ,
src 7→ group[proc][communicator [proc][comm].group].ranking [proc],
dest 7→ dest ,
msgtag 7→ tag ,
dtype 7→ datatype,
numelements 7→ count ,
universe 7→ comm,
state 7→ “send”]

in

@ ◦ 〈Make request(0, false, false, false, false, “ssend”, true, 〈〉, false, msg)〉]
57.42 − 57.46

∧ Memory ′ = [Memory except ![proc] = [@ except ![request] = Len(requests[proc]) + 1]]
∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

Create a persistant ready mode send request.

MPI Rsend init(buf , count , datatype, dest , tag , comm, request , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Rsend init called with proc not in initialized state.”)
∧ requests ′ = [requests except ![proc] = 57.18

let msg
∆

= [addr 7→ buf ,
src 7→ group[proc][communicator [proc][comm].group].ranking [proc],

30

dest 7→ dest ,
msgtag 7→ tag ,
dtype 7→ datatype,
numelements 7→ count ,
universe 7→ comm,
state 7→ “send”]

in

@ ◦ 〈Make request(0, false, false, false, false, “rsend”, true, 〈〉, false, msg)〉]
57.42 − 57.46

∧ Memory ′ = [Memory except ![proc] = [@ except ![request] = Len(requests[proc]) + 1]]
∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

Create a persistant receive request.

MPI Recv init(buf , count , datatype, source, tag , comm, request , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Recv init called with proc not in initialized state.”)
∧ requests ′ = [requests except ![proc] = 57.39

let msg
∆

= [addr 7→ buf ,
src 7→ source,
dest 7→ group[proc][communicator [proc][comm].group].ranking [proc],
msgtag 7→ tag ,
dtype 7→ datatype,
numelements 7→ count ,
universe 7→ comm,
state 7→ “recv”]

in

@ ◦ 〈Make request(0, false, false, false, false, “recv”, true, 〈〉, false, msg)〉]
57.42 − 57.46

∧ Memory ′ = [Memory except ![proc] = [@ except ![request] = Len(requests[proc]) + 1]]
∧ unchanged 〈group, communicator , bufsize, message buffer , initialized , collective〉

Start a persistant communication.

What happens when a ready mode send is started and then the receive is cancelled before the

communication has a chance to transmit?

MPI Start(request , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Start called with proc not in initialized state.”)
∧ Assert(¬requests[proc][Memory [proc][request]].active, 58.9

“Error: MPI Start tried to start a request that is already active.”)
∧ Assert(Memory [proc][request] 6= MPI REQUEST NULL,

“Error: MPI Start tried to start a request that is null.”)
∧ Assert(requests[proc][Memory [proc][request]].ctype = “rsend” ⇒ 58.10 − 58.11

∃ j ∈ (0 . . (N − 1)) :
∃ k ∈ (1 . . Len(requests[j])) :

31

∧ requests[j][k].active
∧ ¬requests[j][k].transmitted

∧ ¬requests[j][k].cancelled

∧ Match(requests[proc][Memory [proc][request]].message, requests[j][k].message),
“Error: MPI Start tried to start a rsend request when no matching message exists.”)

∧ Assert(requests[proc][Memory [proc][request]].ctype = “bsend” ⇒
message buffer [proc] < bufsize[proc],
“Error: MPI Start tried to start a bsend request when insufficient buffering was available.”)

∧ Assert(requests[proc][Memory [proc][request]].persist , 57.44 − 57.45, 58.8

“Error: MPI Start tried to start a non-persistant request.”)
∧ requests ′ = [requests except ![proc] =

[@ except ![Memory [proc][request]] =
[@ except

!.active = true, 58.9

!.started = true,
!.transmitted = false,
!.cancelled = false]]]

∧ if requests[proc][Memory [proc][request]].ctype = “bsend”

then

message buffer ′ = [message buffer except ![proc] = @ + 1]
else

unchanged 〈message buffer〉
∧ unchanged 〈group, communicator , bufsize, initialized , collective〉
∧ unchanged 〈Memory〉

Start a list of persistant communications.

Can you start many rsends with only one matching receive posted? –maybe yes

Can you start many bsends with only enough buffering for a subset of the sends? –maybe no

MPI Startall(count , array of requests, return, proc)
∆

=
let m

∆

= {x ∈ (0 . . (count − 1)) : requests[proc][Memory [proc][array of requests + x]].ctype = “bsend”}in
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Startall called with proc not in initialized state.”)
∧ Assert(∀ i ∈ (0 . . (count − 1)) : ¬requests[proc][array of requests[i]].active,

“Error: MPI Startall called with some request already active.”)
∧ Assert(∀ i ∈ (0 . . (count − 1)) : array of requests[i] 6= MPI REQUEST NULL,

“Error: MPI Startall called with some request null.”)
∧ Assert(∀ i ∈ (0 . . (count − 1)) :

requests[proc][array of requests[i]].ctype = “rsend” ⇒ 58.10 − 58.11

∃ j ∈ (0 . . (N − 1)) :
∃ k ∈ (1 . . Len(requests[j])) :

∧ requests[j][k].active
∧ ¬requests[j][k].transmitted

∧ ¬requests[j][k].cancelled

∧ Match(requests[proc][array of requests[i]].message, requests[j][k].message),

32

“Error: MPI Start tried to start a rsend request when no matching message exists.”)
∧ Assert(∀ i ∈ (0 . . (count − 1)) :

requests[proc][array of requests[i]].ctype = “bsend” ⇒
message buffer [proc] + Cardinality(m) < bufsize[proc],
“Error: MPI Start tried to start a bsend request when insufficient buffering was available.”)

∧ Assert(∀ i ∈ (0 . . (count − 1)) :
requests[proc][array of requests[i]].persist , 57.44 − 57.45, 58.8

“Error: MPI Start tried to start a non-persistant request.”)
∧ requests ′ = [requests except ![proc] =

[i ∈ (1 . . Len(requests[proc])) 7→
if ∃ j ∈ (0 . . (count − 1)) : array of requests[j] = i

then 58.9

[requests[proc][i] except

!.active = true,
!.started = true,
!.transmitted = false,
!.cancelled = false]

else

requests[proc][i]]]
∧ message buffer ′ = [message buffer except ![proc] = @ + Cardinality(m)]
∧ unchanged 〈group, communicator , bufsize, initialized , collective〉
∧ unchanged 〈Memory〉

Section 3.10 Send-receive

Can this be done with only one transition? I don’t think so.

MPI Sendrecv(sendbuf , sendcount , sendtype, dest ,

sendtag, recvbuf , recvcount , recvtype,

source, recvtag, comm, status)
∆

=

Section 4.3 Barrier

MPI Barrier init(comm, return, proc)
∆

=
∧ ∨ ∧ collective[communicator [proc][comm].collective].state = “vacant”

∧ collective ′ = [collective except ![communicator [proc][comm].collective] =
[@ except

!.participants = @ ∪ {proc},
!.type = “barrier”,
!.state = “in”]]

∨ ∧ collective[communicator [proc][comm].collective].state = “in”

∧ proc /∈ collective[communicator [proc][comm].collective].participants

∧ collective ′ = [collective except ![communicator [proc][comm].collective] =
[@ except !.participants = @ ∪ {proc}]]

∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized〉

33

∧ unchanged 〈Memory〉

MPI Barrier wait(comm, return, proc)
∆

=
∧ ∨ ∧ collective[communicator [proc][comm].collective].participants = group[proc][communicator [proc][comm

∧ proc ∈ collective[communicator [proc][comm].collective].participants

∧ collective[communicator [proc][comm].collective].state = “in”

∧ collective ′ = [collective except ![communicator [proc][comm].collective] =
[@ except

!.participants = @ \ {proc},
!.state = “out”]]

∨ ∧ proc ∈ collective[communicator [proc][comm].collective].participants

∧ collective[communicator [proc][comm].collective].state = “out”

∧ if collective[communicator [proc][comm].collective].participants = {proc}
then

collective ′ = [collective except ![communicator [proc][comm].collective] =
[@ except

!.participants = {},
!.state = “vacant”]]

else

collective ′ = [collective except ![communicator [proc][comm].collective] =
[@ except !.participants = @ \ {proc}]]

∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized〉
∧ unchanged 〈Memory〉

Section 5.3.1 Group Accessors

No text description.

MPI Group size(gr , size, return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Group size called with proc not in initialized state.”)
∧ Memory ′ = [Memory except ![proc] = [@ except ![size] = group[proc][gr].size]]
∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

No text description.

MPI Group rank(gr , rank , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Group rank called with proc not in initialized state.”)
∧ Memory ′ = [Memory except ![proc] =

[@ except ![rank] =
if proc ∈ group[proc][gr].members then group.ranking [proc] else MPI UNDEFINED]]

∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

MPI Group translate ranks(group1, n, ranks1, group2, ranks2, return, proc)
∆

=

34

∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Group translate ranks called before MPI Init.”)
∧ Assert(group1 ∈ MPI COMM WORLD . . (MPI COMM WORLD + MAX GROUP),

“Error: MPI Group translate ranks called with invalid handle for group1.”)
∧ Assert(group2 ∈ MPI COMM WORLD . . (MPI COMM WORLD + MAX GROUP),

“Error: MPI Group translate ranks called with invalid handle for group2.”)
∧ Assert(n = Cardinality(domain ranks1), 138.3

“Error: MPI Group translate ranks called with invalid n.”)
∧ Memory ′ = [Memory except ![proc] =

[i ∈ 1 . . Len(Memory [proc]) 7→
if i ∈ ranks2 . . (ranks2 + n)
then group[proc][group2].ranking [group[proc][group1].invranking [ranks1[i]]]
else Memory [proc][i]]] not quite right as there is no possibility of MPI UNDEFINED being assigned.

∧ unchanged mpi vars

MPI Group compare(group1, group2, result , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Group compare called before MPI Init.”)
∧ result ′ = [result except ![proc] =

if ∨ group1 = group2 138.31

∨ ∧ group[proc][group1].members = group[proc][group2].members

∧ group[proc][group1].ranking = group[proc][group2].ranking

then

MPI IDENT

else 138.32

if ∧ group[proc][group1].members = group[proc][group2].members

∧ group[proc][group1].ranking 6= group[proc][group2].ranking

then

MPI SIMILAR

else

MPI UNEQUAL] 138.33

∧ unchanged mpi vars

Section 5.3.2 Group Constructors

MPI Comm group(comm, gr , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Comm group called before MPI Init.”)
∧ Memory ′ = [Memory except ![proc] = [@ except ![gr] = communicator [proc][comm].group]] 139.19

∧ unchanged mpi vars

MPI Group union(group1, group2, newgroup, return, proc)
∆

=

∧ Assert(initialized [proc] = “initialized”, \ ∗ 200.10 − 200.12

“Error : MPI Group union called before MPI Init .”)

∧ ∃ i ∈ 0 . . (MAX GROUP − 1) :

let newmembers
∆

= group[proc][group1].members ∪

35

group[proc][group2].members

in

∧ group[proc][i] = MPI GROUP EMPTY

∧ newgroup′ = [newgroup except ![proc] = i]

∧ group′ =

[group except ![proc] =

[@ except ![i] =

[members 7→ newmembers,

size 7→ Cardinality(newmembers),

ranking 7→

[j ∈ 0 . . (Cardinality(newmembers) − 1) 7→

if j < group[proc][group1].size

then group[proc][group1].ranking[j]

else group[proc][group1].ranking[j]]]]] \ ∗ incorrect, need to fix

∧ unchanged 〈communicator , bufsize, message buffer , requests, initialized , collective〉

Section 5.4.1 Communicator Accessors

MPI Comm size(comm, size, return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“MPI Comm size called with proc not in initialized state.”)
∧ Memory ′ = [Memory except ![proc] = [@ except ![size] = group[proc][communicator [proc][comm].gr
∧ unchanged mpi vars

MPI Comm rank(comm, rank , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“MPI Comm rank called with proc not in initialized state.”)
∧ Memory ′ = [Memory except ![proc] = [@ except ![rank] = group[proc][communicator [proc][comm].gr
∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

MPI Comm compare(comm1, comm2, result , return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“MPI Comm rank called with proc not in initialized state.”)
∧ if comm1 = comm2

then

result ′ = MPI IDENT

else

if ∧ communicator [proc][comm1].group = communicator [proc][comm2].group

∧ communicator [proc][comm1].group.ranking = communicator [proc][comm2].group.ranking

then

result ′ = MPI CONGRUENT

else

if communicator [proc][comm1].group = communicator [proc][comm2].group

then

result ′ = MPI SIMILAR

else

result ′ = MPI UNEQUAL

36

∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

Section 7.5 Startup

199.12 − 199.17

Initialize the participation of this process within a distributed computation.

MPI Init(argc, argv , return, proc)
∆

=
∧ Assert(initialized [proc] = “uninitialized”, 199.12

“MPI Init called with proc not in uninitialized state.”)
∧ initialized ′ = [initialized except ![proc] = “initialized”] 199.13

∧ unchanged 〈Memory〉
∧ unchanged 〈group, communicator , bufsize, message buffer , requests, collective〉

Finalize the participation of this process within a distributed computation.

Do buffered operations complete when the message is transmitted or buffered?

MPI Finalize(return, proc)
∆

=
∧ Assert(initialized [proc] = “initialized”, 200.10 − 200.12

“Error: MPI Finalize called with proc not in initialized state.”)
∧ Assert(∀ i ∈ (1 . . Len(requests[proc])) : 199.47

¬requests[proc][i].active,
“Error: MPI Finalize called when some message was still active.”)

∧ Assert(bufsize[proc] = 0,
“Error: MPI Finalize called before the buffer is detached.”)

∧ initialized ′ = [initialized except ![proc] = “finalized”] 199.46

∧ unchanged 〈group, communicator , bufsize, message buffer , requests, collective〉
∧ unchanged 〈Memory〉

Determine whether MPI Init has been called.

MPI Initialized(flag , return, proc)
∆

=
∧ Memory ′ = [Memory except ![proc] = [@ except ![flag] =

if initialized [proc] = “initialized” 200.2

then true

else false]]
∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

“Best effort to clean up”

MPI Abort(comm, errorcode, return, proc)
∆

=
∀ p ∈ (0 . . (N − 1)) :
∀m ∈ (1 . . Len(requests[p])) :

∧ requests[p][m].active
∧ ¬requests[p][m].transmitted

⇒ requests[p][m]′ = [requests[p][m] except !.cancelled = true]
∧ unchanged 〈group, communicator , bufsize, message buffer , requests, initialized , collective〉

37

