
Runtime Model Checking of Multithreaded C/C++ Programs

Yu Yang Xiaofang Chen Ganesh Gopalakrishnan Robert M. Kirby
School of Computing, University of Utah

Salt Lake City, UT 84112, U.S.A.

ABSTRACT
We present in sp e c t , a tool for model checking safety prop
erties of m ultithreaded C /C + + programs where threads in
teract through shared variables and synchronization primi
tives. The given program is mechanically transform ed into
an instrum ented version th a t yields control to a centralized
scheduler around each such interaction. The scheduler first
enables an arbitrary execution. I t then explores alternative
interleavings of the program. It avoids redundancy explo
ration through dynam ic partial order reduction(DPO R) [1].
Our initial experience shows th a t in s p e c t is effective in test
ing and debugging m ultithreaded C /C + + programs. We are
not aware of D PO R having been implemented in such a set
ting. W ith in sp e c t, we have been able to find many bugs
in real applications.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Softw are/Program Verifi
cation; D.2.5 [Software Engineering]: Testing and De
bugging

General Terms
Verification, Threading

Keywords
dynam ic partial order reduction, m ultithreaded, C /C + +

1. INTRODUCTION
W riting correct m ultithreaded programs is difficult. Many

“unexpected” th read interactions can only be manifested
w ith in tricate low-probability event sequences. As a result,
they often escape conventional testing, and manifest years
after code deployment. Many tools have been designed to
address this problem. They can be generally classified into
three categories: dynam ic detection, static analysis, and
model checking.

Permission to make digital or hard copies o f all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...15.00.

Eraser [2] and Helgrind[3] are two examples of d a ta race
detectors th a t dynamically track the set of locks held by
shared objects during program execution. They use locksets
to com pute the intersection of all locks held when accessing
shared objects. Shared object accesses th a t have an em pty
lockset intersection will be reported as being inconsistently
protected, and as a result, potentially cause d a ta races. Choi
et al. [4] improve the Eraser algorithm by avoiding redun
dant analysis. Eraser (and similar tools) have been very
successful in finding potential d a ta races in m ultithreaded
programs. However, as these tools try to detect potential
d a ta races by inferring them based on one feasible execution
path, there is no guarantee th a t the program is free from
d a ta races if no error is reported (i.e., full coverage is not
guaranteed). Besides, these tools can generate many false
warnings. As these tools are designed for identifying d a ta
races only, they are not capable of detecting other safety
violations such as deadlocks.

Tools such as RacerX[5], ESC/Java[6], and LockSmith[7]
detect potential errors in the programs by statically ana
lyzing the source code. Since they do not get the benefit
of analyzing concrete executions, the false warning rates of
these tools can be high. They also provide no guarantee of
full coverage.

Traditional model checking can guarantee complete cover
age, but on extracted finite sta te models (e.g., [8, 9, 10, 11])
or in the context of languages whose interpreters can be eas
ily modified for backtracking (e.g., [12]). However, as far as
we know, none of these model checkers can easily check (or
be easily adapted to check) general application-level m ulti
threaded C /C + + programs. For instance, if we want to fol
low Java P athF inder’s [12] approach to check m ultithreaded
C /C + + programs, we will have to build a v irtual machine
th a t can handle C /C + + programs. This is very involved.
Model checkers like Bogor[9], Spin[13], Zing [11], etc. im
plicitly or explicitly extract a model out of the source code
before model checking. However, modeling library functions
and the runtim e environment of C /C + + programs is very
involved as well as error-prone: the gap between modeling
languages and programming languages is unbridgeably large
in many cases.

Blast [8] and Magic [10] use predicate abstraction and re
finement technique to verify concurrent programs. Blast can
be used to detect d a ta races in nesC[14] programs. Magic
focuses on detecting errors in concurrent programs th a t com
municate via message passing. Again, writing correct library
function stubs is a problem for these model checkers. A dapt
ing these ideas to real-world C /C + + programs is also very

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

re-run th e pro g ram until all

in te r le av in gs a re exp lored

S chedu le r
with

dynamic partial
order reduction

report

errors

Figure 1: Inspect’s workflow

difficult.
To the best of the authors' knowledge, Verisoft [15] is the

only model checker th a t is able to check concurrent C /C + +
programs w ithout incurring modeling overheads. Unfortu
nately, Verisoft focuses on concurrent programs th a t interact
only through inter-process communication mechanisms. In
a real-world m ultithreaded program, th e threads can affect
each other not only through explicit synchronization/m utual
exclusion primitives, b u t also through read /w rite operations
on shared d a ta objects.

To address these problems, we designed in sp e c t, a run
tim e model checker for system atically exploring all possible
interleavings of a m ultithreaded C /C + + program under a
specific testing scenario. In other words, the reactive pro
gram under test is closed by providing a te s t driver, and
in sp e c t examines all th read interleavings under this driver.

An overview of in sp e c t is shown in Figure I . I t consists
of three parts: a source code transform er to instrum ent the
program a t the source code level, a th read library wrapper
th a t helps intercept the th read library calls, and a central
ized scheduler th a t schedules the interleaved executions of
the threads. Given a m ultithreaded program, in sp e c t first
instrum ents the program with code th a t is used to commu
nicate with the scheduler. Then in sp e c t compiles the pro
gram into an executable and runs the executable repeatedly
under the control of the scheduler until all relevant interleav
ings among the threads are explored. Before performing any
operation th a t might have side effects on other threads, the
instrum ented program sends a request to the scheduler. The
scheduler can block the requester by postponing a reply. We
use blocking sockets as communication channels between the
threads and the scheduler. As the number of possible inter
leavings grows exponentially with the size of the program,
we implemented an adaption of the dynamic partial order
reduction (D PO E [I]) algorithm proposed by Flanagan and
Godefroid to reduce the search space. Such an implementa
tion of D PO E in the context of threaded C /C + + programs
is our first key contribution. Dem onstrating the ability of
in sp e c t to find bugs in medium-sized public-domain appli
cations is our second key contribution.

In sp e c t can check application-level C /C + + programs th a t
use POS1X th reads[16]. In sp e c t supports not only mu
tua l exclusive lock/unlock, bu t operations on condition vari
ables, including wait, signal and broadcast. The errors th a t
in sp e c t can detect include d a ta races, deadlocks, and in
correct usages of th read library routines. W hen an error is
located, in sp e c t reports the error along with the trace th a t
leads to the error, which facilities debugging. The key fea
tures of our work, and some of the challenges we overcame
are as follows:

• We design in sp e c t, an in situ runtim e model checker,

th a t can efficiently check m ultithreaded C /C + + pro
grams. In sp e c t not only supports m utual exclusive
locks, b u t also wait/signal, and read /w rite locks. The
ability to model check programs containing these con
structs makes in sp e c t a unique tool.

• The in situ model checking capability runs the actual
code, and not a formal model thereof. This eliminates
the tedium of model extraction, and lends itself to an
adaptation of the D PO E algorithm. Such a D PO E
algorithm lias, previously, not been implemented in
the context of debugging large C /C + + programs th a t
communicate using shared memory in a general way.

• We have evaluated in sp e c t on a set of benchmarks
and confirmed its efficacy in detecting bugs.

• We have designed and implemented an algorithm to
autom ate the source code instrum entation for runtim e
model checking.

• Since in sp e c t employs stateless search, it relies on
re-execution to pursue alternate interleavings. How
ever, during re-execution, the runtim e environm ent of
the threaded code can change. This can result in the
threads not being allotted the same id by the operating
system. Also, dynam ically-created shared objects may
not reside in the same physical memory address in dif
ferent runs. We have suitably address these challenges
in our work.

• We employ lock-sets, and additionally sleep-sets (the
la tte r is recommended in [I]), to eliminate redundant
backtrack points during D PO E.

2. BACKGROUND

2.1 Multithreaded Programs in C/C++
Threading is not part of the C /C + + language specifica

tion. Instead, it is supported by add-on libraries. Among
m any im plementations of threading, POS1X threads [16] are
perhaps the most widely used.

M utex and condition variable are two common data struc
tures for communication between threads. Mutexes are used
to give threads exclusive access to critical sections. Condi
tion variables are used for synchronization between threads.
Each condition variable is always used together with an as
sociated mutex. W hen a th read requires a particular condi
tion to be true before it can proceed, it waits on the asso
ciated condition variable. By waiting, it gives up the lock
and blocks itself. The operations of releasing the lock and
blocking the th read should be atomic. Any th read th a t sub
sequently causes the condition to be true may then use the

condition variable to notify a th read waiting for the condi
tion. A thread th a t has been notified regains the lock and
can then proceed. 1

The POSIX thread library also provides read-write locks
and barriers. A read-write lock allows concurrent read ac
cess to an object but requires exclusive access for write oper
ations. Barrier provides explicit synchronization for a set of
threads. As barriers seem not to be frequently used in mul
tithreaded programs (we did not encounter any uses, except
in some tutorials), we do not consider them here.

2.2 Formal Model of Multithreaded Programs
A m ultithreaded program can be modeled as a concurrent

system, which consists of a finite set of threads, and a set
of shared objects. Shared objects include mutexes, condi
tion variables, read/write locks, and data objects. The sta te
of a m utex, M u texes, can be captured as a function from
the m utex ld (M u tex Id) to the thread(Tief) which holds the
m utex, and the set of th reads(2T'd) th a t are waiting for
acquiring the mutex. A condition variable(Con.ete) can be
modeled in term s of the associated mutexes, along with the
set of threads th a t are waiting on the condition variable. A
read-write lock can be modeled in term s of a writer thread
or a set of read threads, along with a set of threads waiting
for read, and the other set of threads waiting for write. We
denote this as Rwlocks.

O b jld , T id
M u te x I d
M u te x e s

C on ds
R w locks

O b jld
M u le x ld -> T id x
O b jld -> M u le x ld x 2
O b jld -> T id x 2Tid x

T id

T id

T id x 21

Threads communicate with each other only through shared
objects. O perations on shared objects are called visible oper
ations, while the rest are invisible operations. The execution
of an operation is said to block if it results in pu tting the
calling threads into the waiting queue of a m utex, a condi
tion variable, or a read/w rite lock. We assume th a t only the
following can block a thread: visible operations on acquir
ing a mutex; acquiring a read /w rite lock; or waiting for a
condition variable signal.

A sta te of a m ultithreaded program consists of the global
sta te Global of all shared objects, and the local sta te Local of
each thread. Global includes M u texes, Conds, and Rwlocks.

Locals
S ta te

P rogram
A

T id -> Local
Global x Locals
(Sta le , so, A)
S ta le —» S ta le

A transition moves the program from one sta te to the
next state, by performing one visible operation of a certain
thread, followed by a finite sequence of invisible operations,
ending just before the next visible operation of th a t thread.
A m ultithreaded program as a whole is denoted as Program,,
which is a triplet: the sta te space S ta te , the initial sta te so,
and the transition relation A.

1 POSIX threads have condition wait and signal rou
tines nam ed pth reacL con cL w ait, p th read_ con d_ sign al,
p th reacL co n cL b ro ad cast. On Microsoft Windows plat
forms, the correspondent APIs of the same semantics
are S le e p C o n d itio n V a r ia b le C S , W akeC o n d itio n V ariab le
and W a k e A llC o n d itio n V a ria b le .

2.3 Runtime Model Checking
Model checking is a technique for verifying a transition

system by exploring its sta te space. Cycles in the state
space are detected by checking w hether a sta te has been
visited before or not. Usually the visited states information
is stored in a hash table. Runtim e model checkers explore
the sta te space by executing the program concretely and
observing its visible operations. Runtim e model checkers do
not keep the search history because it is not easy to capture
and restore the sta te of a program which runs concretely. As
a result, runtim e model checkers are not capable of checking
programs th a t have cyclic sta te spaces.

In s p e c t follows the common design principles of a run
tim e model checker, and uses a depth-first strategy to ex
plore the sta te space. As a result, in s p e c t can only handle
programs th a t can term inate in a finite num ber of steps.
Fortunately the execution of m any m ultithreaded programs
term inates eventually. 2

2.4 Dynamic Partial Order Reduction
P artia l order reduction (PO R) techniques[17] are those

th a t avoid interleaving independent transtions during search.
Given a sta te s and a transition t, let t.tid denote the iden

tity of the th read th a t executes t, and n e x t(s ,t) refer to the
sta te which is reached from s by executing t. Let s.enabled
denote the set of transitions th a t are enabled from s, and
s.sleep (sleep sets [18]) the set of transitions th a t are en
abled in s but will not be executed from s (because doing so
would only interleave independent transitions). A thread p
is enabled in a sta te s if there exists transition t such th a t
t € s.enabled and t .tid = p. Let s.backtrack be the back
track set at sta te s (Figure 2). {t | t.tid € s.backtrack} is
the set of transitions which are enabled but have not been
executed from s. Let s.done be the set of threads exam
ined at s, and let {t | t.tid € s.done} be the set of tran
sitions th a t have been executed from s. Given the set of
enabled transitions from a sta te s, partial order reduction
algorithms try to explore only a (proper) subset of s.enabled,
and at the same tim e guarantee th a t the properties of inter
est will be preserved. Such a subset is called persistent set,
i.e. s.persisten t.

In a finite transition sequence T = titz-.-tn , we say ti
happens before t j if i < j in every member of the equivalence
class (Mazurkeiwitz trace set) of T obtained by perm uting
independent transitions [18],

S tatic P O R algorithms com pute the persistent set of a
sta te s immediately after reaching it. In our context, per
sistent sets com puted statically will be excessively large be
cause of the lim itations of sta tic analysis. For instance, if
two transitions leading out of s access an array a[] by in
dexing it a t locations captured by expressions e l and e2
(i.e., a [e l] and a [e 2]) , a static analyzer may not be able to
decide whether e l= e2 . Flanagan and Godefroid introduced
dynam ic partial-order reduction (DPO R) [1] to dynamically
com pute smaller persistent sets (smaller persistent sets are
almost always better).

In D POR, given a sta te s, s .p ersis ten t is not com puted
im m ediately after reaching s. Instead, D PO R explores the
states th a t can be reached from s w ith depth-first search,
and dynamically computes s.persisten t. Assume t € s.enabled

2If term ination is not guaranteed, in s p e c t can still work by
depth-bounding the search.

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25

26
27
28

29
30
31
32
33
34
35

StateStack S:
TransitionSequenee T;
Transition t;

D P O R () {
S tate s = S.top-,
update_baektraek_info(,s);
if (3 th rea d p, 31 € s.enabled , t . t id

s .back track = {p};
s. done = 0 ;

w h ile (3<7 € s .backtrack) {
s.done = s .done U {(/};
s.backtrack = s.back track \ {(/};
let t„ € s.enabled , t n .tid = q;
T .a p p en d (tn)',
S .p u sh (n e x t(s , t„)):
DPOR();
T.pop-backQ ;
S.pop ();

P) {

}
}

}

u p d a te b a c k tra c k iufo(.V/n/f ,s) {
for e a c h th read p {

let t„ € s.enabled, t„ .t id = p;
t,i = the latest transition in T th a t dependent

and may be eo-enabled with t n ;
if (td j=- null) {

Sd = th e sta te in S from which td is executed;
E = {q S Sd-enabled | q = p or 3 t j € T, t j

happened after td, and is dependent with
some transition of process p in T th a t is
happened after t j }

if (E ± 0)
add any q € E to sd-backtrack

else
add all enabled threads to Sd-backtrack;

F ig u re 2: D y n a m ic p a r t ia l- o rd e r re d u c t io n

is the transition which the model checker chose to execute,
and t' is a transition th a t can be enabled with DFS from s
by executing t. For each to-be-executed transition t ' , D PO R
will check whether t ' and t are dependent and can be enabled
concurrently (i.e. co-enabled). If t ' and t are dependent and
can be co-enabled, t ' . t id will be added to the s.backtrack .
Later, when backtracking during DFS, if a s ta te s is found
w ith non-empty s.back track , D PO R will pick one transition
t such th a t t € s.enabled and t . t id € s.back track , and ex
plore a new branch of the sta te space by executing t. Figure
2 recapitulates the D PO R algorithm (this is the same as the
one given, as well as proved correct in [1]; we merely sim
plified some notations). In Section 4 we show how to adapt
the D PO R algorithm for checking m ultithreaded C /C + +
programs.

3. AN EXAMPLE

In this section we consider the following example, which
captures a common concurrent scenario in database systems:
Suppose th a t a shared database supports two distinct classes
of operations, A and B. The semantics of the two operations
allow multiple operations of the same class to run concur
rently, but operations belongs to different classes cannot be
run concurrently. Figure 3 is an im plem entation th a t a t
tem pts to solve this problem. a_count and b_count are the
num ber of threads th a t are performing operations A and B
respectively. Here, lock is used for the m utual exclusion
between threads, and mutex is used for the m utual exclu
sion between threads of the same class. Could this code
deadlock?

s h a re d v a r ia b le s a m o n g th re a d s :

pthread_imtex_t mutex, lock;
int a_count = 0, b_count = 0;
c lass A o p e ra tio n :

10
11
12
13

pthread_mutex_lock(&mutex);
a_count++;
if (a_count == 1) {

pthred_mutex_lock(fclock);

pthread_mutex_unlock(&mutex);
performing class A operation;
pthread_imitex_lock(famitex);
a_count— ;
if (a_count == 0 M

pthread_imitex_unlock(&lock) :

pthread_mutex_unlock(&mutex);

c lass B o p e ra tio n :

10
11
12
13

pthread_imitex_lock(famitex);
b_count++;
if (b_count == 1 M
pthred_imitex_lock(&lock) ;

pthread_mutex_unlock(&mutex);
performing class B operation;
pthread_imitex_lock(famitex);
b_count— ;
if (b_count == 0){

pthread_imitex_unlock(&lock) :

pthread_mutex_unlock(&mutex);

F ig u re 3: A n e x a m p le o n c o n c u r re n t o p e ra t io n s in
a s h a re d d a ta b a s e

Conventional testing might miss the error as it runs with
random scheduling. In general it is difficult to get a spe
cific scheduling th a t will lead to the error. To system ati
cally explore all possible interleavings, inspect needs to take
the control of scheduling away from the operating system.
We do this by instrum enting the program with code th a t is
used to communicate with a central scheduler. As only vis
ible operations in one th read can have side effects on other
threads, we only need to instrum ent before each visible oper
ation is performed. The instrum ented code sends a request
to the scheduler. The scheduler can then decide whether

the request should be granted permission immediately, or
be delayed. The scheduler works as an external observer.
In addition, it needs to be notified about the occurrences
of the th read s ta rt, join, and exit events. Figure 4 shows
the code after instrum entation for threads th a t performs
class A operations. As shown in the figure, each call to the
p thread library routines is replaced w ith a w rapper routine.
As a_count is a shared variable th a t multiple threads can
access, we insert a read /w rite request to the scheduler be
fore each access of a_count. A call to inspect_thread_start
is inserted a t the entry of the th read to notify th a t a new
thread is started . Similarly, a call to inspect _thread_end is
inserted a t the end of the th read routine.

inspect_thread_start();

inspect_mutex_lock(&mutex);
inspect_obj_write((void*)&a_count);
a_count++;
inspect_obj_read((void*)&a_count);
if (a_comit == 1)

inspect_mutex_lock(&lock);
inspect_mutex_unlock(&mutex);

inspect_mutex_lock(&mutex);
inspect_obj_write((void*)&a_count);
a_count— ;
inspect_obj_read((void*)&a_count);
if (a_comit == 0)

inspect_mutex_unlock(&lock);
inspect_mutex_unlock(&mutex);

inspect_thread_end();

F ig u re 4: I n s t r u m e n te d co d e fo r c lass A th r e a d s
sh o w n in F ig u re 3

After compiling the instrum ented program, inspect ob
tains an executable th a t can be run under the central sched
uler’s control and monitoring. Firstly inspect lets the pro
gram run randomly and collects a sequence of visible oper
ations, which reflects a random interleaving of threads. If it
happens th a t an interleaving th a t can lead to errors, these
errors will be reported immediately. (W hen inspect en
counters an error, it does not stop immediately. Section 4.6
presents the details.) Otherwise, inspect will try to find a
backtrack point out of the trace (as described in Figure 2),
and begins monitoring the executable runs, now obtained
through another interleaving.

Assume the program shown in Figure 3 has only one class
A thread, and one class B thread. In the first run of the in
strum ented program, inspect may observe the visible oper
ation sequence shown in Figure 5, beginning a t “(th re a d a)”
(which does not contain any errors).

WThile observing the random visible operation sequence,
inspect will, for each visible operation, update the back
track set for each sta te in the search stack. In the above
trace, as event bi may happen before an, and b\ and an are
both lock acquire operation on shared object mutex, inspect
will p u t the backtracking inform ation after event as (i.e.,
ju s t before ag). Before inspect backtracks from a state,
if its backtrack set is not empty, inspect will try to enable

til : acquire mutex
a.2 : count_a + +
a.3 : count_a = = 1
£14 : acquire lo ck
£15 : release mutex

-(W :W)
£16 : acquire mutex
£17 : c o u n t_ a ------
ag : count_a = = 0
a.g : release lock
aio : release mutex
h | : acquire mutex
b'2 ■ count_b + +
bs : count_b = = 1
64 : acquire lo ck
bs : release mutex
be : acquire mutex
67 : count_b ------
bs : count_b = = 0
69 : release lock
610 : release mutex

F ig u re 5: A p o ss ib le in te r le a v in g o f o n e c lass A
th r e a d a n d o n e c lass B th r e a d

the transition in the backtrack set to s ta rt exploring another
branch of the sta te space. It, however, accomplishes this by
m arking th a t such a branch m ust be tried (the actual explo
ration is done following a re-execution from the initial state).
In this example, (i) inspect will first re-execute the instru
m ented program and allow thread a, run through a i — as.
(ii) now, since the backtrack set contains b, the scheduler
will block th read a until thread b has performed the visible
operation b\. Then it will allow thread a and th read b run
randomly until all threads ends. In our example, we will ob
serve the following alternate sequence of visible operations
generated as a result of re-execution:

- ({&}: W)
(thread a) =>■ a\ acquire mutex

a2 count _a + +
a 3 c o u n t.a = = 1
a.4 acquire lo ck
a 5 release mutex

(thread 6) =>■ &i acquire mutex
b2 count _b + +
H co u n t.b = = 1

A fter th read b performs the visible operation 63, thread
a is trying to acquire mutex which is held by th read b; at
the same time, th read b is waiting to acquire lock, which
is held by thread a. In s p e c t will report th is deadlock sce
nario at th is point, and start backtracking. As for the new
interleaving, 61 may happen before a \, inspect will s ta rt
another backtracking by having 61 execute first. In general,
inspect will continue the process of finding the backtrack
point and re-running the program under test until there are
no backtrack points in the search stack.

4. ALGORITHMS

4.1 Identifying threads and shared objects out
of multiple runs

W hen inspect runs the program under test repeatedly, as
the runtim e environm ent may change across re-executions,

(thread a) =>■

(thread b) =>■

each thread may not be allocated to the same id by the oper
ating system. Also, dynam ically-created shared objects may
not reside in the same physical memory address in different
runs.

One observation about th read execution is this: given the
same external inputs, if the two runs of a thread program
generate the same sequence of visible operations, then the
constituent threads in this program should be created in the
same order. Banking on this fact, we can identify threads
(which may be allocated different th read IDs in various re
executions) across two different runs by examining the se
quence of thread creations. In our implementation, we make
each th read register itself in a mapping table, from system-
allocated th read ids to integers. If the threads are created
in the same sequential order in different runs, each thread
will be assigned to the same id by this table. In the same
m anner, if two runs of the program have the same visible
operation sequence, the shared objects will also be created
w ith malloc, etc., in the same sequence. As a result, the
same shared objects between multiple runs can be recog
nized in a similar way as threads.

4.2 Communicating with the scheduler
As explained before, in sp e c t works by having the instru

m ented threads calling the scheduler before executing visible
operations, and moving forward only based on the permis
sions being granted by the scheduler. The requests th a t
a thread can send to the scheduler can be classified into
four classes: 1) thread-m anagem ent related events, includ
ing th read creation, thread destruction, thread join, etc.; 2)
mutex-events, include m utex init, destroy, acquire, release;
3) read-write lock init, destroy, reader lock, writer lock,and
unlock operations; 4) cond-related events, include condition
variable creation, destroy, wait, signal, broadcast; and 5)
da ta object related events, include the creation of the data
object, read and write operations.

4.3 Handling wait and signal
Condition variable and the related w ait/signal/broadcast

routines are a necessity in many threading libraries. The
w ait/signal routines usually obey the following rules: (i) the
call to a condition wait routine shall block on a condition
variable; (ii) They shall be called w ith a m utex locked by
the calling thread; (iii) The condition wait function atom
ically release m utex and causes the calling thread to block
on the condition variable; and (iv) Upon successful return,
the m utex shall have been locked and shall be owned by he
calling thread.

A common problem (user bug) related to w ait and signal
operations is the “lost wake-up” caused by a thread execut
ing a signal operation before the waiter goes into the waiting
status. This can cause the waiter to block forever, since con
dition signals do not pend. We now explain how in sp e c t
takes care of this so as to no t m ask such bugs.

In sp e c t handles the condition variable related events by
splitting the wait routine into three sub-operations: pre_w ait,
w ait, and post_w ait. Here, pre_w ait releases the m utex
th a t is held by the caller thread; w ait changes the thread
into blocking s ta tus and pu t the thread into the waiting
queue of the correspondent condition variable; and post_w ait
tries to re-acquire the m utex again. The wrapper function
for the pthread_cond_w ait routine is shown in Figure 6.

In an instrum ented program, when the wait routine is

inspect_cond_w ait(cond , mutex) {
send pre-w ait request;
receive pre-w ait permit;
receive unblocking permit;
send post-vjait request;
receive post-w ait permit;

}

F ig u re 6: W a p p e r fu n c tio n fo r pthread_cond_w ait

invoked, the calling th read t first sends a pre_w ait request
to the scheduler; the scheduler records th a t t releases the
mutex, and set t 's sta tus as blocking. The scheduler will not
send an “unblocking” perm it to t until some other threads
send out a related signal and t is picked out by the scheduler
from the waiting queue. In t, after receiving the unblocking
perm it from the scheduler, t will send a post_w ait request
to acquire the mutex.

4.4 Avoiding Redundant Backtracking
Following [1], we assume th a t two transitions t \ and t -2 are

dependent if and only if they access the same communication
object. We trea t w ait and signal operations on the same
condition variable as dependent transitions. Also, a thread
join operation is dependent with the correspondent thread
exit.

In runtim e model checking, backtracking is an expensive
operation as we need to resta rt the program, and replay the
program from the initial sta te until the backtrack point. To
improve efficiency, we want to avoid backtracking as much
as possible. Line 21 in Figure 2 is the place in D PO R where
a backtrack point is identified. It trea ts td, which is depen
dent and may-be eo-enabled w ith t n as a backtrack point.
However, i f two transitions that m ay be co-enabled are never
co-enabled, we m ay end up exploring redundant backtrack
ings, and reduce the efficiency o f D P O R . Our two solutions
- the use of locksets, and the use of sleep sets - are now
discussed.

We use lockset to eliminate exploring transitions pairs
th a t may not be co-enabled. Take the following trace as
an example. I t shows a program of two threads, both of
which are trying to acquire locks p and q, and then release
them. In thread b, before it acquires the lock p, it updates
some shared variable a.

(■th rea d a) => ai : acquire p
a,2 : acquire q
0 ,3 ’■ re lea se p
a,4 : re lea se q
60 : a++;
bi : acquire p
62 : acquire q
63 : re lea se p
64 : re lea se q

(■th rea d b) =>

The algorithm in [1] relies on clock vectors, and the sta
tus of the process after taking a transition to infer whether
two transitions may be co-enabled or not. Although th a t
is a safe approxim ation, and will not affect correctness, this
may lead to the result th a t the sta te before taking <22 is a
backtrack point because of the dependency between <22 and
62- However, this will lead to a redundant backtracking as

02 and 62 cannot be co-enabled. (More specifically, as in [1],
an a ttem p t to run th read b starting w ith a++ ju st before a2
is superfluous.)

To solve this problem, we associate w ith each transition t
the set of locks th a t are held by the th read which executes
t. Testing whether the intersection of the locksets th a t are
held by the threads right after 01 and b\ can help us safely
judge th a t the two transitions are m utually exclusive, and
avoid redundant backtracking after 01.

4.5 Using Sleep Sets for Further Reduction
W hile using locksets can avoid some redundant backtrack

ing, conditional dependency and cond/signal make filtering
out false “may-be co-enabled” transition pairs more diffi
cult. Instead, we use sleep sets to further reduce the search
space to detect the false “may-be co-enabled” transitions at
runtime.

Figure 7 shows an example th a t has redundant backtrack
points th a t is hard to detect by checking the transition se
quence. It is a simplified dining philosopher problem: two
philosophers com peting for forks / I and / 2, bo th follow the
order of get / I first, and then /2 . Two condition variables,
a_free and b_free are used for synchronization between the
philosophers. The lower p art of Figure 7 shows a trace th a t
inspect may explore w ith DPOR. In this trace, th read a
first acquires the forks, and then releases / l , th read b takes
/ I right after th read a releases it, and waits on th read a
to release /2 . After th a t, th read a releases /2 and notifies
thread b th a t the fork is available. We only show the first
two context switches between threads in Figure 7. In this
trace, two lower backtrack points have been explored. The
next backtrack points to be explored is right before 05, as
05 and 65 are dependent transitions th a t appear to be co
enabled (actually they are not). However, enabling 61,62
after 04 will have thread 6 attain ing blocking sta tus waiting
for signal / l_ / r e e , 05 will be enabled again. In this situa
tion, stopping further depth-first search will not affect the
correctness of model checking as the assum ption th a t 05 and
65 may be co-enabled is wrong. We use sleep sets to achieve
this.

The sleep set is a mechanism used to avoid the interleaving
of independent transitions. It works by m aintaining a set of
transitions sleep such th a t whenever a new transition new
is considered, if new is in sleep, then moving new can be
considered to be un-necessary, and hence avoided [16]. Line
38-45 in Figure 8 shows how the sleep set are computed. In
this example, while backtracking right after 04, and executes
61 and 62, we will reach a sta te in which th read 6 is blocked,
and the transition 05 in the sleep set, which is not going to be
executed. A t this point, since there is no transition available
for further exploration, we can backtrack immediately.

4.6 Runtime Model Checking with DPOR
Figure 8 shows how D PO R is adapted in the context of

model checking m ultithreaded C /C + + programs. The algo
rithm has two phases: In the first phase, inspect executes
the program for the first tim e under the m onitoring of the
scheduler, and collects a random visible operation sequence
(lines 7-17). Any errors encountered will be reported. In
the second phase, inspect does backtrack checking until all
backtrack points are explored (lines 18-26).

In the replay mode in the second phase, we first rerun the
program until the latest backtrack point (lines 31-36). The

s h a re d v a r ia b le s :

pthread_mutex_t fl, f2;
pthread_cond_t fl_free, f2_free;
int fl_owner, f2_owner;

th r e a d r o u t in e :

pthread_imrtex_lock(fc£ 1);
while (fl_owner != 0)

pthread_cond_wait(&fl_free, fcfl);
fl_owner = thread_id;
pthread_mutex_unlock(fcf 1);

pthread_imrtex_lock(fc£2);
while (f2_owner != 0)

pthread_cond_wait(&f2_free, &f2);
f2_owner = thread_id;
pthread_imrtex_unlock(fc£2);

pthread_imrtex_lock(fc£ 1);
left_owner =0;
pthread_mntex_milock(&f 1);
pthread_cond_signal(&fl_free);

pthread_imrtex_lock(fc£2);
right_owner = 0;
pthread_mntex_milock(&f2);
pthread_cond_signal(&f2_free);

(thread a)

(thread b)

(thread a)

a 1

«2
a4
as
ae
a7
a8

ag :
“ 10
a n
« 1 2
bi
b'2
h
64

65

h
b7
h
“ 13

“ 14

acquire f i
(fL ow ner ! = 0)?
fi_owner = th rea d _ id
release f i

acquire f 2
(f 2_owner! = 0)?
£2 owner = th re a d id
release f 2

acquire f i
fi_owner = 0
release f i
signal f 2_free
acquire f i
(fL ow ner ! = 0)?
fi_owner = th rea d _ id
release f i

acquire f 2
(f 2_owner ! = 0)?
p re jw a it f 2_free
wait
acquire f 2
£2 owner = 0

(W . W)

(W . W)

F ig u re 7: S im p lified d in in g p h ilo s o p h e rs

m ultithreaded program must be able to precisely follow the
transition sequence. After th a t, we choose a new transition
t from the backtrack set of the backtracking sta te s (line 37).
In lines 38-40, we update s.back track , s.done and initialize
s.sleep . After th a t, we will continue the depth-first search

while updating the sleep sets associated with each state.
Line 45 shows how sleep sets are updated.

In the second phase, if a d a ta race is detected, it will be
reported on the fly. If a deadlock detected, FoundDeadlock-
E xceptionwill be thrown out. W hen inspect catches such
an exception, it will abort the current execution and s ta rt
explore another backtrack point.

The backtrack point information is updated each tim e a
new transition is appended to the transition sequence. We
do not show the pseudo-code here. In inspect, we use the
clock vector, lockset, along with the thread creation/join
information to decide whether a pair of transitions may be
co-enabled or not. As we divide condjw ait into three sub
transitions, for a lock acquire, the appropriate backtrack
ing points include not only the preceding lock acquire, bu t
post-w ait which is also a lock acquiring operation. For a
condsigna l, the appropriate backtrack point is the latest
w ait on the signal.

4.7 Automated Instrumentation
Inspect needs to capture every visible operation to guar

antee th a t it is not missing any bugs in the program. In
correct instrum entation can make the scheduler fail to ob
serve visible operations (viz., before execution of some visi
ble operations, the program under test does not notify the
scheduler). To autom ate the instrum entation process, we
designed an algorithm as shown in Figure 9.

The autom ated instrum entation is primarily composed of
three steps: (i) replace the call to the th read library routines
with the call to the w rapper functions; (ii) before each visible
operation on a data object, insert code to send a request to
the scheduler; (iii) add thread start at the entry of every
thread, and thread end at each exit point.

To achieve this, we need to know w hether an update to
a d a ta object is a visible operation or not. The may-escape
analysis [19] is used to discover the shared variables among
threads. Because the result of may-escape analysis is an
over-approximation of all-possible shared variables among
threads, our instrum entation is safe for intercepting all vis
ible operations in the concrete execution.

4.8 Detecting Bugs
Inspect detects d a ta races and deadlocks while updat

ing the backtracking information. If two transitions on a
shared data object are enabled in the same state, inspect
will report a d a ta race. Deadlocks are detected by checking
whether there is a cycle in resource dependency. Inspect
keeps a resource dependent graph among threads, checks
and updates the graph before every blocking transition.

Besides races and deadlocks, inspect can report incorrect
usages of synchronization primitives. The incorrect usages
include: (1) using an uninitialized m utex/condition vari
able; (2) not destroying m utex/condition variables after all
threads exit; (3) releasing a lock th a t is held by another
thread; (4) waiting on the same condition variable with dif
ferent mutexes; (5) missing a pthread-exit call a t the end of
function main.

5. IMPLEMENTATION
Inspect is designed in a client/server style. The server

side is the scheduler which controls the program ’s execu
tion. The client side is linked with the program under test
to communicate with the scheduler. The client side includes

1: TransitionSequence T , T ';
2: StateStack S;
3: S tate s, s';

4: r u n t im e m e wi t h D P ()R () {
5: run P , which is the program under test;
6: s = the initial s ta te of the program;
7: t r y {
8: w h ile (s.enabled ^ 0) {
9: S .p u sh (s);

10: choose t € s .enabled,',
1 1 : s = next(s, t);
12: T .append(t);
13: update_backtrack_info(); //defined in Figure 2
14: }
15: }
16: c a tc h (FoundD eadlockE xception){ ... }
17: c a tc h (A ssertV io la tionE xcep tion) { ... }

18: w h ile (^ S .e m p ty ()) {
19: s = S.popQ;
20: T.popJbackQ; j j remove the last element of T
21: if (s.back track ^ 0) {
22: resta rt the program P;
23: backtrack_checking(s);
24: T = T ';
25: }
26: }
27: }

28: b ack track _ ch eck in g (S 'ta te s u) {
29: initialize T ' to empty;
30: t r y {
31: s = the initial sta te of the program;
32: w h ile (s £ s bt) {
33: t = T .p o p -fro n tQ ; j j remove the head of T
34: T ' ,append(t);
35: s = next(s, t);
36: }
37: choose t, t € s .enabled A t . t id € s .b a ck tra ck ;
38: s.back track = s.back track \ { t.tid };
39: s.s leep = { t € s .enabled | t . t id € s.done};
40: s.done = s.done U { t.tid };
41: r e p e a t
42: S .p u sh (s);
43: T ' .a;ppend(t);
44: s ' = n e x t(s ,t) ;
45: s ' .sleep = { t ' € s.s leep | (t , t ') are indepen

dent};
46: s ' .enabled = s'.enab led \ s ' .sleep;
47: s = s';
48: update_backtrack _info();
49: choose t € s.enabled;
50: u n t i l (s.enabled = 0)
51: }
52: c a tc h (FoundD eadlockException) { ... }
53: c a tc h (A ssertV io la tionE xcep tion) { ... }
54: }

F ig u re 8: R u n t im e m o d e l ch e ck in g w ith D P O R

a wrapper for the p thread library, and facilities for commu-

a u to _ in s tru m e n t (program P) {
have an inter-procedural escape analysis on P to find

out all possible shared variables among threads;

fo r e a c h call of the th read library routines
replace the call w ith the call to the correspondent
wrapper function;

fo r e a c h access of a shared variable v {
if (read access)

insert a reading request for v before reading v,
e lse

insert a write request for v before updating v:
}
fo r e a c h entry of threads

insert a thread sta rt notification to the scheduler,
before the first statem ent in the thread;

fo r e a c h exit point of threads
insert a thread end notification after the last sta te
m ent of the thread;

}
F ig u re 9: A u to m a te d in s t ru m e n ta t io n

nication w ith the scheduler.
We have the scheduler and the program under test com

municate using Unix domain sockets. Comparing with In ter
net dom ain sockets, Unix domain sockets are more efficient
as they do not have the protocol processing overhead, such
as the network headers to add or remove, the check sums
to calculate, the acknowledgments to send, etc. Besides,
the Unix domain datagram service is reliable. Messages will
neither be lost nor be delivered out of order.

In the autom ated instrum entation p art, we first use CIL [20]
as a pre-processor to simplify the code. Then we use our own
program analysis and transform ation framework based on
gee’s C front end to do the instrum entation. We first have
an inter-procedural flow-sensitive alias analysis to com pute
the alias information. W ith the alias information, we use an
inter-procedural escape analysis to discover the shared vari
ables among threads. Finally we follow the algorithm in Fig
ure 9 to do the source code transform ation. Right now the
autom atic instrum entation can only work for C programs
because of the lack of a front end for C + + -

6. EXPERIMENTS AND EVALUATION
We evaluate inspect on two sets of benchmarks. The

first set includes two benchm arks in [1]. The second set con
tains several small applications th a t use p thread on source-
forge.net and freshmeat .net[21, 22, 23, 24],

The performance of inspect for the benchm arks in [1] is
shown in Table 1. The first program, indexer, captures the
scenarios in which multiple threads insert messages into a
hash table concurrently. The second benchmark, fsbench, is
an abstraction of the synchronization idiom in Frangipani
file system. We re-wrote the code using C and the POSIX
thread library. The source code is available at [25]. In the
original indexer benchmark, a compare-and-swap is used.
As C does not have such an atomic routine, we replaced it
w ith a function and used a m utex to guarantee the m utual
exclusion. The execution tim e was measured on a PC with
two Intel Pentium CPUs of 3.0GHz, and 2GB of memory,
inspect was compiled w ith gee-3.3.5 at optim ization level

T a b le 1: C h e c k in g in d e x e r a n d fsb e n c h

threads runs transitions time(s) runs/sec
1-11 1 272 0.01 -

13 64 6,033 1.44 44.44
indexer 14 512 42,635 12.58 40.69

15 4,096 351,520 108.74 37.68
16 32,768 2,925,657 988.49 33.15

1-13 1 209 0.01 -

16 8 1,242 0.14 -

fsbench 18 32 4,893 0.64 50
20 128 20,599 2.76 46.38
22 512 84,829 11.94 42.88
24 2,048 367,786 54.82 37.36
26 8,192 1,579,803 261.40 31.33

- 02 .

In Table 1, it shows th a t when the num ber of threads
increases, more conflicts among threads slow down the pro
gram. However, inspect can still explore more th an 30
different interleavings per second.

We also tried inspect on several small applications th a t
use p thread on sourceforge.net and freshmeat.net. Ta
ble 2 shows the result. Application aget[21] is an ftp client in
which multiple threads are used to download different seg
m ents of a large file concurrently. Application pfscan[22] is
a m ultithreaded file scanner th a t combines the functional
ity of find, xargs, and fgrep. It uses multiple threads to
search in parallel through directories. Application tplay\2'i]
is a multim edia player th a t uses one th read to prefetch the
audio data, and the other th read to play the audio. Finally,
libcprops[2A] is a C prototyping tools library which provides
thread-safe d a ta structures such as linked list, AVL tree,
hash list, as well as a th read pool and th read management
framework.

In Table 2, the second column LOG (lines of code) for
each application is counted with wc. The right most col
umn shows the num ber of errors we found. As inspect
may report the same error multiple tim es while backtrack
ing and re-executing the program repeatedly, we only count
the unique number of errors.

For aget, we found one d a ta race on writing the statistic
d a ta bwritten to a file. This d a ta race is also reported in
[7]. W hen testing aget w ith inspect, we need to construct
a closed environm ent for it. As the network may introduce
non-determ inism to the environment, we reduced the size of
the d a ta package, which aget gets from the ftp server, to 512
bytes.

In pfscan, we found four errors. One error is th a t a condi
tion variable is used w ithout initialization. This is a danger
ous behavior, and may completely mess up synchronization
among threads and end up with incorrect results. In addi
tion, two mutexes th a t are initialized at the beginning of the
program never get released, which results in resource leak
age. Also, we found th a t a pthread_exit was missing at the
end of main. As a result, when the main th read exits, some
worker threads may be killed before they completely finish
their work. .

As for libcprops, it is a thread-safe library and test drivers
are required for testing it. We adapted the test cases in
libcprops release into m ultithreaded versions, and used them

T a b le 2: C h e c k in g re a l a p p l ic a tio n s
benchmark LOC threads

races
Errors

deadlock other errors
aget-0.4 1,098 3 1 0 0

pfscan-1.0 1,073 4 1 0 4
tplay-0.6.1 3,074 2 0 0 0

avl 1,432 1-3 2 0 0
heap 716 1-3 0 0 0

libcprops-0.1.6 hashlist 1,953 1-3 1 0 1
linked-list 1,476 1-3 1 0 0
splay-tree 1,211 1-3 1 0 0

as test drivers. Inspect revealed several d a ta races in the
code. After manually examining th e source code, we found
th a t most of the races are benign races. Besides, we also
found th a t in hashlist, a condition variable is destroyed w ith
out initialization. This may lead to undefined behaviors.

6.1 Discussion
Our experiments show th a t inspect can be very help

ful in testing and debugging m ultithreaded C /C + + appli
cations. However, it also has lim itations. F irst, inspect
needs a set of test cases incorporated in its test driver to get
good coverage of the code being verified. Secondly, runtim e
monitoring pu ts an overhead 011 the program, especially in
programs th a t have a lot of visible operations 011 shared
da ta objects. Also, the intrusive instrum entation limits in
spect from checking programs th a t have strict tim ing re
quirements. As inspect checks the program ’s behavior by
monitoring the concrete executions of the program, is not
able to check system-level code like RacerX, LockSmith, etc.,
can do.

It is obvious th a t to check a program, we m ust be able
to concretely execute the program. W hen doing our exper
iments, however, we also tried running several other open-
source applications. Unfortunately, some problems were en
countered: (i) some programs kept crashing because of other
existing bugs; (ii) it is inconvenient to construct a closed
world for server programs such as h ttp servers. O ther than
these lim itations, we think inspect is a powerful assistant
tool in the process of unit testing and debugging for m ulti
threaded software.

7. OTHER RELATED WORK
Lei et al.[26] designed RichTest, which used reachability

testing to detect d a ta races in concurrent programs. Reach
ability testing views an execution of a concurrent program
as a partially-ordered synchronization sequence. Instead,
dynamic partial order reduction views it as an interleav
ing of visible operations from multiple threads. Compared
w ith RichTest, inspect focuses 011 checking m ultithreaded
C /C + + programs, and it can detect not only d a ta races, but
also deadlocks and other errors. However, inspect cannot
yet handle send/receive events between multiple processes.

CMC[27] verifies C /C + + programs by using a user-model
Linux as a v irtual machine. CMC captures the virtual ma
chine’s sta te as the sta te of a program. Unfortunately, CMC
is not fully-autom ated. As CMC takes the whole kernel plus
the user space as the state, it is not convenient for CMC to
adapt the dynam ic partial order reduction method.

ConTest[28] debugs m ultithreaded programs by injecting
context switching code to random ly choose the threads to
be executed. As randomness does not guarantee all inter
leavings will be explored for a certain input, it is possible
th a t ConTest can miss bugs.

jCute[29] uses a combination of symbolic and concrete ex
ecution to check a m ultithreaded Java program by feeding it
w ith different inputs and replaying the program w ith differ
ent schedules. jC u te is more powerful in discovering inputs
th a t can have the program execution take different paths.
We think the difference between our work and jC u te is in the
implem entation part. jC u te uses th e Java v irtual machine
to intercept visible operations of a m ultithreaded Java pro
gram. Here we use socket communication and an external
scheduler for C /C + + programs.

Ilelm stetter et al.[30] show how to generate scheduling
based 011 dynamic partial order reduction. We th ink th a t
the differences between our work and theirs lie in: (i) We
are focusing 011 application-level m ultithreaded C programs,
while they focused 011 the schedulings of SystemC simula
tions; and (ii) Instead of generating the scheduling only, our
work reruns the program and tries to verify safety proper
ties.

CHESS [31] is the work which is probably most similar
to ours. The difference between CHESS and our work lies
in the instrum entation p art and how to take control of the
scheduling away from the operation system. In CHESS, the
instrum entation allocates a semaphore for each th read th a t
is created. I t also requires an invariant to be preserved:
th a t a t any tim e every th read bu t one is blocked 011 its
semaphore. I11 contrast, we do the instrum entation at the
source code level, and use blocking sockets to communicate
between scheduler and the threads.

8. CONCLUSION
In this paper, we propose a new approach to model check

safety properties including deadlocks and stu ttering invari
ants in m ultithreaded C /C + + programs. Our m ethod works
by autom atically enum erating all possible interleavings of
the threads in a m ultithreaded program, and forcing these
interleavings to execute one by one. We use dynamic partial-
order reduction to eliminate unnecessary explorations. Our
preliminary results show th a t th is m ethod is promising for
revealing bugs in real m ultithreaded C programs. Finally,
inspect is available from [25],

In the future, inspect can be improved in many ways. We
can combine the sta tic analysis techniques w ith the dynamic
partial order reduction to further reduce the number of in-

terleavings we need to explore to reveal errors. Inspect can
also adapt more efficient algorithms such as Goldilocks[32]
for com puting happen-before relations to improve efficiency.
The autom ated instrum entation p art can be improved by
employing more efficient and precise pointer-alias analysis.

A c k n o w le d g m e n ts : We thank Subdoh Sharm a for help
ing implement the escape analysis part, and Sarvani Vakkalanka
for comments. This work is funded by NSF CNS-0509379,
SRC 2005-TJ-1318, and a grant from Microsoft.

9. REFERENCES
[1] Corm ac F lanagan and P a trice Godefroid. D ynam ic

partia l-o rder reduction for m odel checking software. In Jens
Pafsberg and M artin A badi, editors, POPL, pages 110 121.
ACM, 2005.

[2] Stefan Savage, Michael Burrows, G reg Nelson, Patrick
Sobalvarro, and T hom as Anderson. E raser: a dynam ic d a ta
race detecto r for m ultith readed program s. A C M Trans.
Comput. Sysi., 15(4):391-411, 1997.

[3] Nicholas N ethercote and Ju lian Seward. Valgrind: A
program supervision fram ework. Electr. Notes Theor.
Comput. Set.. 89(2), 2003.

[4] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, R obert
0 :C allahan. Vivek Sarkar, and M anu Sridharan. Efficient
and precise da ta race detection for m ultith readed
object-oriented program s. In Proceedings of the A C M
SIG P LA N Conference on Programming language design
and implementation, pages 258 269, New York, NY, USA,
2002. ACM Press.

[5] Dawson Engler and Ken A shcraft. Racerx: effective, s ta tic
detection of race conditions and deadlocks. In SO SP ’OS:
Proceedings of the nineteenth A C M symposium on
Operating systems principles, pages 237-252, New York,
NY, USA, 2003. ACM Press.

[6] Corm ac F lanagan, K. R u stan M. Leino, M ark Lillibridge,
Greg Nelson, Jam es B. Saxe, and Raym ie S ta ta . E xtended
s ta tic checking for java. In Proceedings of the AC M
SIG P LA N Conference on Programming language design
and implementation, pages 234-245, New York, NY, USA,
2002. ACM Press.

[7] Polyvios P ratikakis, Jeffrey S. Foster, and M ichael Hicks.
Locksmith: context-sensitive correlation analysis for race
detection. In Proceedings of the A C M SIG P LAN conference
on Programming language design and implementation,
pages 320 331, New York, NY,' USA, 2006. ACM Press.

[8] T hom as A. Henzinger, R an jit Jha la, and R upak M ajum dar.
Race checking by context inference. In P LD I ’04:

Proceedings of the A C M SIG P LA N 2004 conference on
Programming language design and implementation, pages
I 13. New York, NY', USA, 2004. ACM Press.

[9] Robby, M atthew B. Dwyer, and John Hatcliff. Bogor: an
extensible and h ighly-m odular software m odel checking
fram ework. In E SEC / SIG SO F T FSE, pages 267 276,
2003.

[10] Sagar Chaki, Edm und M. Clarke, Alex Groce, Somesh Jha,
and H elm ut Veith. M odular verification of software
com ponents in c. In ICSE, pages 385 395. IE E E C om puter
Society, 2003.

[11] Tony Andrews, Shaz Q adeer, S riram K. R ajam an i, Jakob
Rehof, and Y ichen Xie. Zing: A m odel checker for
concurrent software. In Computer Aided Verification. 16th
International Conference, C AV 2004, Boston, MA, USA,
July 13-17, 2004■ Proceedings, volume 3114 of Lecture
Notes in Computer Science, pages 484 -487. Springer, 2004.

[12] W illem Visser, K laus Havelund, G uillaum e P. B ra t, and
Seungjoon Park . M odel checking program s. In ASE, pages
3 12, 2000.

[13] G erard J. Holzmann. The Spin Model Checker: Prim er and
Reference Manual. Addison-W esley, 2004.

[14] h ttp :/ /n e sc c .sourceforge .ne t/.

[15] Patrice Godefroid. M odel checking for program m ing
languages using verisoft. In POPL, pages 174 186, 1997.

[16] David R. Butenhof. Programming with P O SIX Threads.
Addison-W esley, 1998.

[17] Edm und M. Clarke, O rn a G rum berg, and D oron A. Peled.
Model Checking. M IT Press, 2000.

[18] Patrice Godefroid. Partial-Order Methods for the
Verification of Concurrent Systems: A n Approach to the
State-Explosion Problem. Springer-Verlag New York, Inc.,
Secaucus, N J, USA, 1996. Foreword B y-Pierre Wolper.

[19] A lexandru Salcianu and M artin R inard . Po inter and escape
analysis for m ultith readed program s. In PPoPP 301:
Proceedings of the eighth A C M SIG P LA N symposium on
Principles and practices of parallel programming, pages
12 23, New York, NY, USA, 2001. ACM Press.'

[20] h ttp ://m a n ju .c s .b e rk e le y .e d u /c il/.
[21] h ttp : / /f re sh m e a t .n e t/p ro je c ts /a g e t/ .
[22] h t tp : / /f re s h m e a t .n e t/p ro jec ts/ pfscan.
[23] h t tp : //tp lay .so u rce fo rg e .n e t/.
[24] h t tp : / /c p ro p s .sourceforge.net/.
[25] h ttp ://w w w .c s .u ta h .e d u /~ y u y an g /in sp ec t.
[26] Yu Lei and R ichard H. C arver. R eachability testing of

concurrent program s. IE E E Trans. Software Eng.,
32(6):382 403, 2006.

[27] M adanlal M usuvathi, David Y. W. Park , A ndy Chou,
Dawson R. Engler, and D avid L. Dill. Cmc: A pragm atic
approach to m odel checking real code. In OSDI, 2002.

[28] O rit Edelstein, E itan Farchi, Evgeny Goldin, Y arden Nir,
Gil R atsaby, and Shm uel Ur. Fram ew ork for testing
m ulti-th readed jav a program s. Concurrency and
Computation: Practice and Experience, 15(3-5):485-499,
2003.

[29] Koushik Sen and G ul Agha. Concolic testing of
m ultith readed program s and its application to testing
security protocols. Technical R eport
U IU C D C S-R -2006-2676, U niversity of Illinois a t U rbana
C ham paign, 2006.

[30] C laude H elm stetter, Florence M araninchi, L aurent
M aillet-C ontoz, and M atth ieu Moy. A utom atic generation
of schedulings for im proving the test coverage of
system s-on-a-chip. fmcad, 0:171 178, 2006.

[31] h ttp ://re sea rch .m ic ro so ft.co m /p ro jec ts /C H E S S /.
[32] Tayfun E lm as, Shaz Q adeer, and Serdar Tasiran.

Goldilocks: Efficiently com puting the happens-before
relation using locksets. In Formal Approaches to Software
Testing and Runtim e Verification, LNCS, pages 193 208,
Berlin, Germ any, 2006. Springer.

http://nescc.sourceforge.net/
http://manju.cs.berkeley.edu/cil/
http://freshmeat.net/projects/aget/
http://freshmeat.net/projects/pfscan
http://tplay.sourceforge.net/
http://cprops.sourceforge.net/
http://www.cs.utah.edu/~yuyang/inspect
http://research.microsoft.com/projects/CHESS/

