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ABSTRACT
We present in sp e c t , a tool for model checking safety prop
erties of m ultithreaded C /C + +  programs where threads in
teract through shared variables and synchronization primi
tives. The given program  is mechanically transform ed into 
an instrum ented version th a t yields control to  a centralized 
scheduler around each such interaction. The scheduler first 
enables an arbitrary  execution. I t then explores alternative 
interleavings of the program. It avoids redundancy explo
ration through dynam ic partial order reduction(DPO R) [1]. 
Our initial experience shows th a t in s p e c t is effective in test
ing and debugging m ultithreaded C /C + +  programs. We are 
not aware of D PO R  having been implemented in such a set
ting. W ith  in sp e c t, we have been able to  find many bugs 
in real applications.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Softw are/Program  Verifi
cation; D.2.5 [Software Engineering]: Testing and De
bugging

General Terms
Verification, Threading

Keywords
dynam ic partial order reduction, m ultithreaded, C /C + +

1. INTRODUCTION
W riting correct m ultithreaded programs is difficult. Many 

“unexpected” th read  interactions can only be manifested 
w ith in tricate low-probability event sequences. As a result, 
they often escape conventional testing, and manifest years 
after code deployment. Many tools have been designed to  
address this problem. They can be generally classified into 
three categories: dynam ic detection, static analysis, and 
model checking.
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Eraser [2] and Helgrind[3] are two examples of d a ta  race 
detectors th a t dynamically track the set of locks held by 
shared objects during program execution. They use locksets 
to  com pute the intersection of all locks held when accessing 
shared objects. Shared object accesses th a t have an em pty 
lockset intersection will be reported as being inconsistently 
protected, and as a result, potentially cause d a ta  races. Choi 
et al. [4] improve the Eraser algorithm by avoiding redun
dant analysis. Eraser (and similar tools) have been very 
successful in finding potential d a ta  races in m ultithreaded 
programs. However, as these tools try  to  detect potential 
d a ta  races by inferring them  based on one feasible execution 
path, there is no guarantee th a t the program is free from 
d a ta  races if no error is reported (i.e., full coverage is not 
guaranteed). Besides, these tools can generate many false 
warnings. As these tools are designed for identifying d a ta  
races only, they are not capable of detecting other safety 
violations such as deadlocks.

Tools such as RacerX[5], ESC/Java[6], and LockSmith[7] 
detect potential errors in the programs by statically ana
lyzing the source code. Since they do not get the benefit 
of analyzing concrete executions, the false warning rates of 
these tools can be high. They also provide no guarantee of 
full coverage.

Traditional model checking can guarantee complete cover
age, but on extracted finite sta te  models (e.g., [8, 9, 10, 11]) 
or in the context of languages whose interpreters can be eas
ily modified for backtracking (e.g., [12]). However, as far as 
we know, none of these model checkers can easily check (or 
be easily adapted  to  check) general application-level m ulti
threaded C /C + +  programs. For instance, if we want to  fol
low Java P athF inder’s [12] approach to  check m ultithreaded 
C /C + +  programs, we will have to  build a v irtual machine 
th a t can handle C /C + +  programs. This is very involved. 
Model checkers like Bogor[9], Spin[13], Zing [11], etc. im
plicitly or explicitly extract a model out of the source code 
before model checking. However, modeling library functions 
and the runtim e environment of C /C + +  programs is very 
involved as well as error-prone: the gap between modeling 
languages and programming languages is unbridgeably large 
in many cases.

Blast [8] and Magic [10] use predicate abstraction and re
finement technique to  verify concurrent programs. Blast can 
be used to  detect d a ta  races in nesC[14] programs. Magic 
focuses on detecting errors in concurrent programs th a t com
municate via message passing. Again, writing correct library 
function stubs is a problem for these model checkers. A dapt
ing these ideas to  real-world C /C + +  programs is also very
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Figure 1: Inspect’s workflow

difficult.
To the best of the authors' knowledge, Verisoft [15] is the 

only model checker th a t is able to  check concurrent C /C + +  
programs w ithout incurring modeling overheads. Unfortu
nately, Verisoft focuses on concurrent programs th a t interact 
only through inter-process communication mechanisms. In 
a real-world m ultithreaded program, th e  threads can affect 
each other not only through explicit synchronization/m utual 
exclusion primitives, b u t also through read /w rite operations 
on shared d a ta  objects.

To address these problems, we designed in sp e c t, a run
tim e model checker for system atically exploring all possible 
interleavings of a m ultithreaded C /C + +  program under a 
specific testing scenario. In other words, the reactive pro
gram under test is closed by providing a te s t driver, and 
in sp e c t examines all th read  interleavings under this driver.

An overview of in sp e c t is shown in Figure I . I t consists 
of three parts: a source code transform er to  instrum ent the 
program a t the source code level, a th read  library wrapper 
th a t helps intercept the th read  library calls, and a central
ized scheduler th a t schedules the interleaved executions of 
the threads. Given a m ultithreaded program, in sp e c t first 
instrum ents the program with code th a t is used to  commu
nicate with the  scheduler. Then in sp e c t compiles the pro
gram into an executable and runs the executable repeatedly 
under the control of the scheduler until all relevant interleav
ings among the threads are explored. Before performing any 
operation th a t might have side effects on other threads, the 
instrum ented program sends a request to  the scheduler. The 
scheduler can block the requester by postponing a reply. We 
use blocking sockets as communication channels between the 
threads and the scheduler. As the number of possible inter
leavings grows exponentially with the size of the program, 
we implemented an adaption of the dynamic partial order 
reduction (D PO E [I]) algorithm proposed by Flanagan and 
Godefroid to  reduce the search space. Such an implementa
tion of D PO E  in the context of threaded C /C + +  programs 
is our first key contribution. Dem onstrating the ability of 
in sp e c t to  find bugs in medium-sized public-domain appli
cations is our second key contribution.

In sp e c t can check application-level C /C + +  programs th a t 
use POS1X th reads[16]. In sp e c t supports not only mu
tua l exclusive lock/unlock, bu t operations on condition vari
ables, including wait, signal and broadcast. The errors th a t 
in sp e c t can detect include d a ta  races, deadlocks, and in
correct usages of th read  library routines. W hen an error is 
located, in sp e c t reports the error along with the trace th a t 
leads to  the error, which facilities debugging. The key fea
tures of our work, and some of the challenges we overcame 
are as follows:

•  We design in sp e c t, an in situ  runtim e model checker,

th a t can efficiently check m ultithreaded C /C + +  pro
grams. In sp e c t not only supports m utual exclusive 
locks, b u t also wait/signal, and read /w rite locks. The 
ability to  model check programs containing these con
structs makes in sp e c t a unique tool.

•  The in situ  model checking capability runs the actual 
code, and not a formal model thereof. This eliminates 
the tedium  of model extraction, and lends itself to  an 
adaptation  of the D PO E  algorithm. Such a D PO E 
algorithm lias, previously, not been implemented in 
the context of debugging large C /C + +  programs th a t 
communicate using shared memory in a general way.

•  We have evaluated in sp e c t on a set of benchmarks 
and confirmed its efficacy in detecting bugs.

•  We have designed and implemented an algorithm to 
autom ate the source code instrum entation for runtim e 
model checking.

•  Since in sp e c t employs stateless search, it relies on 
re-execution to  pursue alternate interleavings. How
ever, during re-execution, the runtim e environm ent of 
the threaded code can change. This can result in the 
threads not being allotted the same id by the operating 
system. Also, dynam ically-created shared objects may 
not reside in the same physical memory address in dif
ferent runs. We have suitably address these challenges 
in our work.

•  We employ lock-sets, and additionally sleep-sets (the 
la tte r is recommended in [I]), to  eliminate redundant 
backtrack points during D PO E.

2. BACKGROUND

2.1 Multithreaded Programs in C/C++
Threading is not part of the C /C + +  language specifica

tion. Instead, it is supported by add-on libraries. Among 
m any im plementations of threading, POS1X threads [16] are 
perhaps the most widely used.

M utex and condition variable are two common data  struc
tures for communication between threads. Mutexes are used 
to  give threads exclusive access to  critical sections. Condi
tion variables are used for synchronization between threads. 
Each condition variable is always used together with an as
sociated mutex. W hen a th read  requires a particular condi
tion to  be true  before it can proceed, it waits on the asso
ciated condition variable. By waiting, it gives up the lock 
and blocks itself. The operations of releasing the lock and 
blocking the th read  should be atomic. Any th read  th a t sub
sequently causes the condition to  be true  may then use the



condition variable to  notify a th read  waiting for the condi
tion. A thread  th a t has been notified regains the lock and 
can then proceed. 1

The POSIX thread  library also provides read-write locks 
and barriers. A read-write lock allows concurrent read ac
cess to  an object but requires exclusive access for write oper
ations. Barrier provides explicit synchronization for a set of 
threads. As barriers seem not to  be frequently used in mul
tithreaded programs (we did not encounter any uses, except 
in some tutorials), we do not consider them  here.

2.2 Formal Model of Multithreaded Programs
A m ultithreaded program can be modeled as a concurrent 

system, which consists of a finite set of threads, and a set 
of shared objects. Shared objects include mutexes, condi
tion variables, read/write locks, and data objects. The sta te 
of a m utex, M u texes, can be captured as a function from 
the m utex ld (M u tex Id )  to  the thread(Tief) which holds the 
m utex, and the set of th reads(2T'd) th a t are waiting for 
acquiring the mutex. A condition variable(Con.ete) can be 
modeled in term s of the associated mutexes, along with the 
set of threads th a t are waiting on the condition variable. A 
read-write lock can be modeled in term s of a writer thread 
or a set of read threads, along with a set of threads waiting 
for read, and the other set of threads waiting for write. We 
denote this as Rwlocks.

O b jld , T id  
M u te x  I d 
M u te x e s  

C on ds  
R w locks

O b jld
M u le x ld  -> T id  x 
O b jld  -> M u le x ld  x  2 
O b jld  -> T id  x  2Tid x

T id  

T id  

T id x  21

Threads communicate with each other only through shared 
objects. O perations on shared objects are called visible oper
ations, while the rest are invisible operations. The execution 
of an operation is said to  block if it results in pu tting  the 
calling threads into the waiting queue of a m utex, a condi
tion variable, or a read/w rite lock. We assume th a t only the 
following can block a thread: visible operations on acquir
ing a mutex; acquiring a read /w rite lock; or waiting for a 
condition variable signal.

A sta te  of a m ultithreaded program consists of the global 
sta te  Global of all shared objects, and the local sta te  Local of 
each thread. Global includes M u texes, Conds, and Rwlocks.

Locals
S ta te

P rogram
A

T id  -> Local 
Global x  Locals  
(Sta le , so, A ) 
S ta le  —» S ta le

A  transition  moves the program from one sta te to  the 
next state, by performing one visible operation of a certain 
thread, followed by a finite sequence of invisible operations, 
ending just before the next visible operation of th a t thread. 
A m ultithreaded program as a whole is denoted as Program,, 
which is a triplet: the sta te  space S ta te , the initial sta te  so, 
and the transition relation A.

1 POSIX threads have condition wait and signal rou
tines nam ed pth reacL con cL w ait, p th read_ con d_ sign al, 
p th reacL co n cL b ro ad cast. On Microsoft Windows plat
forms, the correspondent APIs of the same semantics 
are S le e p C o n d itio n V a r ia b le C S , W akeC o n d itio n V ariab le  
and W a k e A llC o n d itio n V a ria b le .

2.3 Runtime Model Checking
Model checking is a technique for verifying a transition 

system by exploring its sta te  space. Cycles in the state 
space are detected by checking w hether a sta te has been 
visited before or not. Usually the visited states information 
is stored in a hash table. Runtim e model checkers explore 
the sta te  space by executing the program concretely and 
observing its visible operations. Runtim e model checkers do 
not keep the search history because it is not easy to  capture 
and restore the sta te  of a program which runs concretely. As 
a result, runtim e model checkers are not capable of checking 
programs th a t have cyclic sta te  spaces.

In s p e c t  follows the common design principles of a run
tim e model checker, and uses a depth-first strategy to  ex
plore the sta te space. As a result, in s p e c t  can only handle 
programs th a t can term inate in a finite num ber of steps. 
Fortunately the execution of m any m ultithreaded programs 
term inates eventually. 2

2.4 Dynamic Partial Order Reduction
P artia l order reduction (PO R) techniques[17] are those 

th a t avoid interleaving independent transtions during search.
Given a sta te  s and a transition t, let t.tid  denote the iden

tity  of the th read  th a t executes t, and n e x t( s ,t ) refer to  the 
sta te  which is reached from s by executing t. Let s.enabled  
denote the set of transitions th a t are enabled from s, and 
s.sleep (sleep sets [18]) the set of transitions th a t are en
abled in s but will not be executed from s (because doing so 
would only interleave independent transitions). A thread  p 
is enabled in a sta te  s if there exists transition t  such th a t 
t  € s.enabled  and t .tid  = p. Let s.backtrack  be the back
track set at sta te  s (Figure 2). {t  | t.tid  €  s.backtrack}  is 
the set of transitions which are enabled but have not been 
executed from s. Let s.done be the set of threads exam
ined at s, and let {t  | t.tid  €  s.done} be the set of tran 
sitions th a t have been executed from s. Given the set of 
enabled transitions from a sta te  s, partial order reduction 
algorithms try  to  explore only a (proper) subset of s.enabled, 
and at the same tim e guarantee th a t the properties of inter
est will be preserved. Such a subset is called persistent set, 
i.e. s.persisten t.

In a finite transition sequence T  = titz-.-tn , we say ti 
happens before t j  if i <  j  in every member of the equivalence 
class (Mazurkeiwitz trace set) of T  obtained by perm uting 
independent transitions [18],

S tatic P O R  algorithms com pute the persistent set of a 
sta te  s immediately after reaching it. In our context, per
sistent sets com puted statically will be excessively large be
cause of the lim itations of sta tic  analysis. For instance, if 
two transitions leading out of s access an array a[] by in
dexing it a t locations captured by expressions e l  and e2 
(i.e., a [ e l]  and a [e 2 ]) , a static analyzer may not be able to  
decide whether e l= e2 . Flanagan and Godefroid introduced 
dynam ic partial-order reduction (DPO R) [1] to  dynamically 
com pute smaller persistent sets (smaller persistent sets are 
almost always better).

In D POR, given a sta te  s, s .p ersis ten t is not com puted 
im m ediately after reaching s. Instead, D PO R  explores the 
states th a t can be reached from s w ith depth-first search, 
and dynamically computes s.persisten t. Assume t  €  s.enabled

2If term ination is not guaranteed, in s p e c t  can still work by 
depth-bounding the search.
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StateStack S:
TransitionSequenee T;
Transition t;

D P O R ( ) {
S tate s  =  S.top-, 
update_baektraek_info(,s); 
if  (3 th rea d  p, 31 €  s.enabled , t . t id  

s .back track  =  {p}; 
s. done =  0 ;

w h ile  (3<7 €  s .backtrack) { 
s.done =  s .done  U {(/}; 
s.backtrack  =  s.back track  \  {(/}; 
let t„  € s.enabled , t n .tid  =  q; 
T .a p p en d (tn )',
S .p u sh (n e x t(s , t„)):
DPOR();
T.pop-backQ ;
S.pop  ();

P) {

}
}

}

u p d a te  b a c k tra c k  iufo( .V/n/f ,s) { 
for e a c h  th read  p {

let t„  € s.enabled, t„ .t id  =  p; 
t,i =  the latest transition in T  th a t dependent 

and may be eo-enabled with t n ; 
if  (td j=- null) {

Sd =  th e  sta te  in S from which td  is executed; 
E  =  {q  S Sd-enabled | q =  p or 3 t j  €  T, t j  

happened after td, and is dependent with 
some transition of process p in T th a t is 
happened after t j  } 

if  (E  ±  0 )
add any q €  E  to  sd-backtrack  

else
add all enabled threads to  Sd-backtrack;

F ig u re  2: D y n a m ic  p a r t ia l- o rd e r  re d u c t io n

is the  transition  which the model checker chose to  execute, 
and t' is a transition th a t can be enabled with DFS from s 
by executing t. For each to-be-executed transition t ' , D PO R 
will check whether t ' and t  are dependent and can be enabled 
concurrently (i.e. co-enabled). If t ' and t  are dependent and 
can be co-enabled, t ' . t id  will be added to  the s.backtrack . 
Later, when backtracking during DFS, if a s ta te  s  is found 
w ith non-empty s.back track , D PO R  will pick one transition 
t  such th a t t  €  s.enabled  and t . t id  €  s.back track , and ex
plore a new branch of the sta te  space by executing t. Figure
2 recapitulates the  D PO R  algorithm (this is the  same as the 
one given, as well as proved correct in [1]; we merely sim
plified some notations). In Section 4 we show how to  adapt 
the D PO R  algorithm for checking m ultithreaded C /C + +  
programs.

3. AN EXAMPLE

In  this section we consider the following example, which 
captures a common concurrent scenario in database systems: 
Suppose th a t a shared database supports two distinct classes 
of operations, A and B. The semantics of the two operations 
allow multiple operations of the same class to  run concur
rently, but operations belongs to  different classes cannot be 
run concurrently. Figure 3 is an im plem entation th a t a t
tem pts to  solve this problem. a_count and b_count are the 
num ber of threads th a t are performing operations A and B 
respectively. Here, lock is used for the m utual exclusion 
between threads, and mutex is used for the m utual exclu
sion between threads of the same class. Could this code 
deadlock?

s h a re d  v a r ia b le s  a m o n g  th re a d s :

pthread_imtex_t mutex, lock; 
int a_count = 0, b_count = 0;
c lass A  o p e ra tio n :

10
11
12
13

pthread_mutex_lock(&mutex);
a_count++;
if (a_count == 1) {

pthred_mutex_lock(fclock);

pthread_mutex_unlock(&mutex);
performing class A operation; 
pthread_imitex_lock(famitex); 
a_count— ; 
if (a_count == 0 M

pthread_imitex_unlock(&lock) :

pthread_mutex_unlock(&mutex);

c lass B  o p e ra tio n :

10
11
12
13

pthread_imitex_lock(famitex); 
b_count++; 
if (b_count == 1 M  
pthred_imitex_lock(&lock) ;

pthread_mutex_unlock(&mutex); 
performing class B operation; 
pthread_imitex_lock(famitex); 
b_count— ; 
if (b_count == 0){

pthread_imitex_unlock(&lock) :

pthread_mutex_unlock(&mutex);

F ig u re  3: A n  e x a m p le  o n  c o n c u r re n t  o p e ra t io n s  in  
a  s h a re d  d a ta b a s e

Conventional testing might miss the  error as it runs with 
random  scheduling. In general it is difficult to  get a spe
cific scheduling th a t will lead to  the error. To system ati
cally explore all possible interleavings, inspect needs to  take 
the control of scheduling away from the operating system. 
We do this by instrum enting the program  with code th a t is 
used to  communicate with a central scheduler. As only vis
ible operations in one th read  can have side effects on other 
threads, we only need to  instrum ent before each visible oper
ation is performed. The instrum ented code sends a request 
to  the  scheduler. The scheduler can then decide whether



the request should be granted permission immediately, or 
be delayed. The scheduler works as an external observer. 
In addition, it needs to  be notified about the occurrences 
of the th read  s ta rt, join, and exit events. Figure 4 shows 
the code after instrum entation  for threads th a t performs 
class A operations. As shown in the figure, each call to  the 
p thread library routines is replaced w ith a w rapper routine. 
As a_count is a shared variable th a t multiple threads can 
access, we insert a read /w rite request to  the scheduler be
fore each access of a_count. A call to  inspect_thread_start 
is inserted a t the entry of the th read  to  notify th a t a new 
thread is started . Similarly, a call to  inspect _thread_end is 
inserted a t the end of the th read  routine.

inspect_thread_start();

inspect_mutex_lock(&mutex); 
inspect_obj_write( (void*)&a_count ); 
a_count++;
inspect_obj_read( (void*)&a_count ); 
if (a_comit == 1)

inspect_mutex_lock(&lock); 
inspect_mutex_unlock(&mutex);

inspect_mutex_lock(&mutex); 
inspect_obj_write( (void*)&a_count ); 
a_count— ;
inspect_obj_read( (void*)&a_count ); 
if (a_comit == 0)

inspect_mutex_unlock(&lock); 
inspect_mutex_unlock(&mutex);

inspect_thread_end();

F ig u re  4: I n s t r u m e n te d  co d e  fo r c lass  A  th r e a d s  
sh o w n  in  F ig u re  3

After compiling the instrum ented program, inspect ob
tains an executable th a t can be run under the central sched
uler’s control and monitoring. Firstly inspect lets the pro
gram run randomly and collects a sequence of visible oper
ations, which reflects a random  interleaving of threads. If it 
happens th a t an interleaving th a t can lead to  errors, these 
errors will be reported immediately. (W hen inspect en
counters an error, it does not stop immediately. Section 4.6 
presents the details.) Otherwise, inspect will try  to  find a 
backtrack point out of the trace (as described in Figure 2), 
and begins monitoring the executable runs, now obtained 
through another interleaving.

Assume the program shown in Figure 3 has only one class 
A thread, and one class B thread. In the first run  of the in
strum ented program, inspect may observe the visible oper
ation sequence shown in Figure 5, beginning a t “(th re a d  a )” 
(which does not contain any errors).

WThile observing the random  visible operation sequence, 
inspect will, for each visible operation, update the back
track set for each sta te  in the search stack. In the above 
trace, as event bi may happen before an, and b\ and an are 
both  lock acquire operation on shared object mutex, inspect 
will p u t the backtracking inform ation after event as (i.e., 
ju s t before ag). Before inspect backtracks from a state, 
if its backtrack set is not empty, inspect will try  to  enable

til : acquire mutex
a.2 : count_a +  +
a.3 : count_a = =  1
£14 : acquire lo ck
£15 : release  mutex

-(W :W )
£16 : acquire mutex
£17 : c o u n t_ a ------
ag : count_a = =  0
a.g : release  lock  
aio : release  mutex
h | : acquire mutex
b'2  ■ count_b +  +
bs : count_b = =  1
64 : acquire lo ck
bs : release  mutex
be : acquire mutex
67 : count_b ------
bs : count_b = =  0
69 : release  lock
610 : release  mutex

F ig u re  5: A  p o ss ib le  in te r le a v in g  o f  o n e  c lass  A  
th r e a d  a n d  o n e  c lass  B  th r e a d

the transition in the backtrack set to  s ta rt exploring another 
branch of the sta te  space. It, however, accomplishes this by 
m arking th a t such a branch m ust be tried (the actual explo
ration is done following a re-execution from the initial state). 
In this example, (i) inspect will first re-execute the instru
m ented program and allow thread  a, run through a i — as.
(ii) now, since the backtrack set contains b, the scheduler 
will block th read  a until thread b has performed the visible 
operation b\. Then it will allow thread  a and th read  b run 
randomly until all threads ends. In our example, we will ob
serve the following alternate sequence of visible operations 
generated as a  result of re-execution:

-  ({&}: W)
(thread a) =>■ a\ acquire mutex

a2 count _a +  +
a 3 c o u n t.a  = =  1
a.4 acquire lo ck
a 5 release mutex

(thread  6) =>■ &i acquire mutex
b2 count _b +  +
H co u n t.b  = =  1

A fter th read  b performs the visible operation 63, thread 
a is trying to  acquire mutex which is held by th read  b; at 
the same time, th read  b is waiting to  acquire lock, which 
is held by thread a. In s p e c t  will report th is deadlock sce
nario at th is point, and start backtracking. As for the new 
interleaving, 61 may happen before a \, inspect will s ta rt 
another backtracking by having 61 execute first. In general, 
inspect will continue the process of finding the backtrack 
point and re-running the program under test until there are 
no backtrack points in the search stack.

4. ALGORITHMS

4.1 Identifying threads and shared objects out 
of multiple runs

W hen inspect runs the program under test repeatedly, as 
the runtim e environm ent may change across re-executions,

(thread a) =>■

(thread b) =>■



each thread  may not be allocated to  the same id by the oper
ating system. Also, dynam ically-created shared objects may 
not reside in the same physical memory address in different 
runs.

One observation about th read  execution is this: given the 
same external inputs, if the two runs of a thread program 
generate the same sequence of visible operations, then the 
constituent threads in this program should be created in the 
same order. Banking on this fact, we can identify threads 
(which may be allocated different th read  IDs in various re
executions) across two different runs by examining the se
quence of thread creations. In our implementation, we make 
each th read  register itself in a mapping table, from system- 
allocated th read  ids to  integers. If the threads are created 
in the same sequential order in different runs, each thread 
will be assigned to  the same id by this table. In the same 
m anner, if two runs of the program have the same visible 
operation sequence, the shared objects will also be created 
w ith malloc, etc., in the same sequence. As a result, the 
same shared objects between multiple runs can be recog
nized in a similar way as threads.

4.2 Communicating with the scheduler
As explained before, in sp e c t works by having the instru

m ented threads calling the scheduler before executing visible 
operations, and moving forward only based on the permis
sions being granted by the scheduler. The requests th a t 
a thread can send to  the scheduler can be classified into 
four classes: 1 ) thread-m anagem ent related events, includ
ing th read  creation, thread destruction, thread join, etc.; 2) 
mutex-events, include m utex init, destroy, acquire, release; 
3) read-write lock init, destroy, reader lock, writer lock,and 
unlock operations; 4) cond-related events, include condition 
variable creation, destroy, wait, signal, broadcast; and 5) 
da ta  object related events, include the creation of the data  
object, read and write operations.

4.3 Handling wait and signal
Condition variable and the related w ait/signal/broadcast 

routines are a necessity in many threading libraries. The 
w ait/signal routines usually obey the following rules: (i) the 
call to  a condition wait routine shall block on a condition 
variable; (ii) They shall be called w ith a m utex locked by 
the calling thread; (iii) The condition wait function atom 
ically release m utex and causes the calling thread to  block 
on the condition variable; and (iv) Upon successful return, 
the m utex shall have been locked and shall be owned by he 
calling thread.

A common problem (user bug) related to  w ait and signal 
operations is the “lost wake-up” caused by a thread execut
ing a signal operation before the waiter goes into the waiting 
status. This can cause the waiter to  block forever, since con
dition signals do not pend. We now explain how in sp e c t 
takes care of this so as to no t m ask  such bugs.

In sp e c t handles the condition variable related events by 
splitting the wait routine into three sub-operations: pre_w ait, 
w ait, and post_w ait. Here, pre_w ait releases the m utex 
th a t is held by the caller thread; w ait changes the thread 
into blocking s ta tus and pu t the thread into the waiting 
queue of the correspondent condition variable; and post_w ait 
tries to  re-acquire the m utex again. The wrapper function 
for the pthread_cond_w ait routine is shown in Figure 6.

In an instrum ented program, when the wait routine is

inspect_cond_w ait(cond , mutex) { 
send pre-w ait request; 
receive pre-w ait permit; 
receive unblocking permit; 
send post-vjait request; 
receive post-w ait permit;

}

F ig u re  6: W a p p e r  fu n c tio n  fo r pthread_cond_w ait

invoked, the calling th read  t  first sends a pre_w ait request 
to  the scheduler; the scheduler records th a t t  releases the 
mutex, and set t 's  sta tus as blocking. The scheduler will not 
send an “unblocking” perm it to  t  until some other threads 
send out a related signal and t  is picked out by the scheduler 
from the waiting queue. In t, after receiving the unblocking  
perm it from the scheduler, t  will send a post_w ait request 
to  acquire the mutex.

4.4 Avoiding Redundant Backtracking
Following [1], we assume th a t two transitions t \  and t -2 are 

dependent if and only if they access the same communication 
object. We trea t w ait and signal operations on the same 
condition variable as dependent transitions. Also, a thread 
join operation is dependent with the correspondent thread 
exit.

In runtim e model checking, backtracking is an expensive 
operation as we need to  resta rt the program, and replay the 
program from the initial sta te  until the backtrack point. To 
improve efficiency, we want to  avoid backtracking as much 
as possible. Line 21 in Figure 2 is the place in D PO R  where 
a backtrack point is identified. It trea ts  td, which is depen
dent and may-be eo-enabled w ith t n as a backtrack point. 
However, i f  two transitions that m ay be co-enabled are never  
co-enabled, we m ay end up exploring redundant backtrack
ings, and reduce the efficiency o f D P O R . Our two solutions 
-  the use of locksets, and the use of sleep sets -  are now 
discussed.

We use lockset to  eliminate exploring transitions pairs 
th a t may not be co-enabled. Take the following trace as 
an example. I t shows a program of two threads, both of 
which are trying to  acquire locks p and q, and then release 
them. In thread b, before it acquires the lock p, it updates 
some shared variable a.

(■th rea d  a) => ai : acquire  p
a,2 : acquire  q
0 ,3  ’■ re lea se  p
a,4 : re lea se  q
60 : a++;
bi : acquire  p
62 : acquire  q
63 : re lea se  p
64 : re lea se  q

(■th rea d  b) =>

The algorithm in [1] relies on clock vectors, and the sta
tus of the process after taking a transition to  infer whether 
two transitions may be co-enabled or not. Although th a t 
is a safe approxim ation, and will not affect correctness, this 
may lead to  the result th a t the sta te  before taking <22 is a 
backtrack point because of the dependency between <22 and 
62- However, this will lead to  a redundant backtracking as



02 and 62 cannot be co-enabled. (More specifically, as in [1], 
an a ttem p t to  run th read  b starting  w ith a++ ju st before a2 
is superfluous.)

To solve this problem, we associate w ith each transition t 
the set of locks th a t are held by the th read  which executes 
t. Testing whether the intersection of the locksets th a t are 
held by the threads right after 01 and b\ can help us safely 
judge th a t the two transitions are m utually exclusive, and 
avoid redundant backtracking after 01.

4.5 Using Sleep Sets for Further Reduction
W hile using locksets can avoid some redundant backtrack

ing, conditional dependency and cond/signal make filtering 
out false “may-be co-enabled” transition pairs more diffi
cult. Instead, we use sleep sets to  further reduce the search 
space to  detect the false “may-be co-enabled” transitions at 
runtime.

Figure 7 shows an example th a t has redundant backtrack 
points th a t is hard  to  detect by checking the transition se
quence. It is a simplified dining philosopher problem: two 
philosophers com peting for forks / I  and / 2, bo th  follow the 
order of get / I  first, and then /2 . Two condition variables, 
a_free and b_free are used for synchronization between the 
philosophers. The lower p art of Figure 7 shows a trace th a t 
inspect may explore w ith DPOR. In this trace, th read  a 
first acquires the forks, and then releases / l ,  th read  b takes 
/ I  right after th read  a releases it, and waits on th read  a 
to  release /2 . After th a t, th read  a releases /2  and notifies 
thread b th a t the fork is available. We only show the first 
two context switches between threads in Figure 7. In this 
trace, two lower backtrack points have been explored. The 
next backtrack points to  be explored is right before 05, as 
05 and 65 are dependent transitions th a t appear to  be co
enabled (actually they are not). However, enabling 61,62 
after 04 will have thread 6 attain ing blocking sta tus waiting 
for signal / l_ / r e e ,  05 will be enabled again. In this situa
tion, stopping further depth-first search will not affect the 
correctness of model checking as the assum ption th a t 05 and 
65 may be co-enabled is wrong. We use sleep sets to  achieve 
this.

The sleep set is a mechanism used to  avoid the interleaving 
of independent transitions. It works by m aintaining a set of 
transitions sleep such th a t whenever a new transition new  
is considered, if new  is in sleep, then moving new  can be 
considered to  be un-necessary, and hence avoided [16]. Line 
38-45 in Figure 8 shows how the sleep set are computed. In 
this example, while backtracking right after 04, and executes 
61 and 62, we will reach a sta te  in which th read  6 is blocked, 
and the transition 05 in the sleep set, which is not going to  be 
executed. A t this point, since there is no transition available 
for further exploration, we can backtrack immediately.

4.6 Runtime Model Checking with DPOR
Figure 8 shows how D PO R is adapted in the context of 

model checking m ultithreaded C /C + +  programs. The algo
rithm  has two phases: In the first phase, inspect executes 
the program for the first tim e under the m onitoring of the 
scheduler, and collects a random  visible operation sequence 
(lines 7-17). Any errors encountered will be reported. In 
the second phase, inspect does backtrack checking until all 
backtrack points are explored (lines 18-26).

In the replay mode in the second phase, we first rerun the 
program until the latest backtrack point (lines 31-36). The

s h a re d  v a r ia b le s  :

pthread_mutex_t fl, f2; 
pthread_cond_t fl_free, f2_free; 
int fl_owner, f2_owner;

th r e a d  r o u t in e  :

pthread_imrtex_lock(fc£ 1); 
while ( fl_owner != 0 )

pthread_cond_wait(&fl_free, fcfl); 
fl_owner = thread_id; 
pthread_mutex_unlock(fcf 1);

pthread_imrtex_lock(fc£2); 
while ( f2_owner != 0 )

pthread_cond_wait(&f2_free, &f2); 
f2_owner = thread_id; 
pthread_imrtex_unlock(fc£2);

pthread_imrtex_lock(fc£ 1); 
left_owner =0; 
pthread_mntex_milock(&f 1); 
pthread_cond_signal(&fl_free);

pthread_imrtex_lock(fc£2); 
right_owner = 0; 
pthread_mntex_milock(&f2); 
pthread_cond_signal(&f2_free);

(thread a)

(thread b)

(thread a)

a 1 

«2
a4
as
ae
a7
a8

ag : 
“ 10 
a n  
« 1 2  
bi 
b'2 
h
64

65 

h 
b7 
h 
“ 13 

“ 14

acquire f  i  
(fL ow ner ! =  0)? 
fi_owner =  th rea d _ id
release f  i

acquire f 2 
( f 2_owner! =  0)?
£2 owner =  th re a d  id  
release f 2

acquire f  i  
fi_owner =  0 
release f  i  
signal f 2_free  
acquire f  i  
(fL ow ner ! =  0)? 
fi_owner =  th rea d _ id  
release f  i

acquire f 2 
( f 2_owner ! =  0)? 
p re jw a it  f 2_free
wait
acquire f 2 
£2 owner =  0

( W . W )

( W . W )

F ig u re  7: S im p lified  d in in g  p h ilo s o p h e rs

m ultithreaded program must be able to  precisely follow the 
transition sequence. After th a t, we choose a new transition 
t  from the backtrack set of the backtracking sta te  s  (line 37). 
In lines 38-40, we update s.back track , s.done  and initialize 
s.sleep . After th a t, we will continue the depth-first search



while updating  the sleep sets associated with each state. 
Line 45 shows how sleep sets are updated.

In the second phase, if a d a ta  race is detected, it will be 
reported on the fly. If a deadlock detected, FoundDeadlock- 
E xceptionwill be thrown out. W hen inspect catches such 
an exception, it will abort the current execution and s ta rt 
explore another backtrack point.

The backtrack point information is updated  each tim e a 
new transition is appended to  the transition sequence. We 
do not show the pseudo-code here. In inspect, we use the 
clock vector, lockset, along with the thread creation/join 
information to  decide whether a pair of transitions may be 
co-enabled or not. As we divide condjw ait into three sub
transitions, for a lock acquire, the appropriate backtrack
ing points include not only the preceding lock acquire, bu t 
post-w ait which is also a lock acquiring operation. For a 
condsigna l, the appropriate backtrack point is the latest 
w ait on the signal.

4.7 Automated Instrumentation
Inspect needs to  capture every visible operation to  guar

antee th a t it is not missing any bugs in the program. In
correct instrum entation can make the scheduler fail to  ob
serve visible operations (viz., before execution of some visi
ble operations, the program under test does not notify the 
scheduler). To autom ate the instrum entation process, we 
designed an algorithm  as shown in Figure 9.

The autom ated instrum entation is primarily composed of 
three steps: (i) replace the call to  the th read  library routines 
with the call to  the w rapper functions; (ii) before each visible 
operation on a data  object, insert code to  send a request to  
the scheduler; (iii) add thread start at the entry of every 
thread, and thread end at each exit point.

To achieve this, we need to  know w hether an update to  
a d a ta  object is a visible operation or not. The may-escape 
analysis [19] is used to  discover the shared variables among 
threads. Because the result of may-escape analysis is an 
over-approximation of all-possible shared variables among 
threads, our instrum entation is safe for intercepting all vis
ible operations in the concrete execution.

4.8 Detecting Bugs
Inspect detects d a ta  races and deadlocks while updat

ing the backtracking information. If two transitions on a 
shared data  object are enabled in the same state, inspect 
will report a d a ta  race. Deadlocks are detected by checking 
whether there is a cycle in resource dependency. Inspect 
keeps a resource dependent graph among threads, checks 
and updates the graph before every blocking transition.

Besides races and deadlocks, inspect can report incorrect 
usages of synchronization primitives. The incorrect usages 
include: (1) using an uninitialized m utex/condition vari
able; (2) not destroying m utex/condition variables after all 
threads exit; (3) releasing a lock th a t is held by another 
thread; (4) waiting on the same condition variable with dif
ferent mutexes; (5) missing a pthread-exit call a t the end of 
function main.

5. IMPLEMENTATION
Inspect is designed in a client/server style. The server 

side is the scheduler which controls the program ’s execu
tion. The client side is linked with the program under test 
to  communicate with the scheduler. The client side includes

1: TransitionSequence T , T ';
2: StateStack S;
3: S tate s, s';

4: r u n t im e  m e wi t h  D P ()R (  ) {
5: run  P ,  which is the program under test;
6: s =  the initial s ta te  of the program;
7: t r y  {
8: w h ile  (s.enabled  ^  0 )  {
9: S .p u sh (s);

10: choose t  €  s .enabled,',
1 1 : s =  next(s, t);
12: T .append(t);
13: update_backtrack_info(); //defined in Figure 2
14: }
15: }
16: c a tc h (FoundD eadlockE xception){ ... }
17: c a tc h (A ssertV io la tionE xcep tion ) { ... }

18: w h ile  ( ^ S .e m p ty ()) {
19: s =  S.popQ;
20: T.popJbackQ; j  j  remove the last element of T
21: if  (s.back track  ^  0 )  {
22: resta rt the program P;
23: backtrack_checking(s);
24: T  =  T ';
25: }
26: }
27: }

28: b ack track _ ch eck in g (S 'ta te  s u )  {
29: initialize T '  to  empty;
30: t r y  {
31: s =  the initial sta te  of the program;
32: w h ile  (s £  s bt) {
33: t  =  T .p o p -fro n tQ ; j  j  remove the head of T
34: T ' ,append(t);
35: s =  next(s, t);
36: }
37: choose t, t  €  s .enabled  A t . t id  € s .b a ck tra ck ;
38: s.back track  =  s.back track  \  { t.tid };
39: s.s leep  =  { t  € s .enabled  | t . t id  €  s.done};
40: s.done =  s.done  U { t.tid };
41: r e p e a t
42: S .p u sh (s);
43: T ' .a;ppend(t);
44: s ' =  n e x t( s ,t ) ;
45: s ' .sleep  =  { t '  € s.s leep  | ( t , t ' )  are indepen

dent};
46: s ' .enabled =  s'.enab led  \  s ' .sleep;
47: s =  s';
48: update_backtrack _info();
49: choose t  €  s.enabled;
50: u n t i l  (s.enabled  =  0 )
51: }
52: c a tc h  (FoundD eadlockException) { ... }
53: c a tc h  (A ssertV io la tionE xcep tion ) { ... }
54: }

F ig u re  8: R u n t im e  m o d e l ch e ck in g  w ith  D P O R

a wrapper for the p thread library, and facilities for commu-



a u to _ in s tru m e n t  (program P )  {
have an inter-procedural escape analysis on P  to  find 

out all possible shared variables among threads;

fo r e a c h  call of the th read  library routines
replace the call w ith the call to  the correspondent 
wrapper function; 

fo r e a c h  access  of a shared variable v  { 
if  (read access)

insert a reading request for v  before reading v, 
e lse

insert a write request for v  before updating v:
}
fo r e a c h  entry of threads

insert a thread sta rt notification to  the scheduler, 
before the first statem ent in the thread; 

fo r e a c h  exit point of threads
insert a thread end  notification after the last sta te
m ent of the thread;

}
F ig u re  9: A u to m a te d  in s t ru m e n ta t io n

nication w ith the scheduler.
We have the scheduler and the program  under test com

municate using Unix domain sockets. Comparing with In ter
net dom ain sockets, Unix domain sockets are more efficient 
as they do not have the protocol processing overhead, such 
as the network headers to  add or remove, the check sums 
to  calculate, the acknowledgments to  send, etc. Besides, 
the Unix domain datagram  service is reliable. Messages will 
neither be lost nor be delivered out of order.

In the autom ated instrum entation p art, we first use CIL [20] 
as a pre-processor to  simplify the code. Then we use our own 
program analysis and transform ation framework based on 
gee’s C front end to  do the instrum entation. We first have 
an inter-procedural flow-sensitive alias analysis to  com pute 
the alias information. W ith the alias information, we use an 
inter-procedural escape analysis to  discover the shared vari
ables among threads. Finally we follow the algorithm in Fig
ure 9 to  do the source code transform ation. Right now the 
autom atic instrum entation can only work for C programs 
because of the lack of a front end for C + + -

6. EXPERIMENTS AND EVALUATION
We evaluate inspect on two sets of benchmarks. The 

first set includes two benchm arks in [1]. The second set con
tains several small applications th a t use p thread on source- 
forge.net and freshmeat .net[21, 22, 23, 24],

The performance of inspect for the benchm arks in [1] is 
shown in Table 1. The first program, indexer, captures the 
scenarios in which multiple threads insert messages into a 
hash table concurrently. The second benchmark, fsbench, is 
an abstraction of the synchronization idiom in Frangipani 
file system. We re-wrote the code using C and the POSIX 
thread  library. The source code is available at [25]. In the 
original indexer  benchmark, a compare-and-swap is used. 
As C does not have such an atomic routine, we replaced it 
w ith a function and used a m utex to  guarantee the m utual 
exclusion. The execution tim e was measured on a PC with 
two Intel Pentium  CPUs of 3.0GHz, and 2GB of memory, 
inspect was compiled w ith gee-3.3.5 at optim ization level

T a b le  1: C h e c k in g  in d e x e r  a n d  fsb e n c h

threads runs transitions time(s) runs/sec
1-11 1 272 0.01 -

13 64 6,033 1.44 44.44
indexer 14 512 42,635 12.58 40.69

15 4,096 351,520 108.74 37.68
16 32,768 2,925,657 988.49 33.15

1-13 1 209 0.01 -

16 8 1,242 0.14 -

fsbench 18 32 4,893 0.64 50
20 128 20,599 2.76 46.38
22 512 84,829 11.94 42.88
24 2,048 367,786 54.82 37.36
26 8,192 1,579,803 261.40 31.33

- 02 .

In Table 1, it shows th a t when the num ber of threads 
increases, more conflicts among threads slow down the pro
gram. However, inspect can still explore more th an  30 
different interleavings per second.

We also tried inspect on several small applications th a t 
use p thread on sourceforge.net and freshmeat.net. Ta
ble 2 shows the result. Application aget[21] is an ftp  client in 
which multiple threads are used to  download different seg
m ents of a large file concurrently. Application pfscan[22] is 
a m ultithreaded file scanner th a t combines the functional
ity of find, xargs, and fgrep. It uses multiple threads to  
search in parallel through directories. Application tplay\2'i] 
is a multim edia player th a t uses one th read  to  prefetch the 
audio data, and the other th read  to  play the audio. Finally, 
libcprops[2A] is a C prototyping tools library which provides 
thread-safe d a ta  structures such as linked list, AVL tree, 
hash list, as well as a th read  pool and th read  management 
framework.

In Table 2, the second column LOG (lines of code) for 
each application is counted with wc. The right most col
umn shows the num ber of errors we found. As inspect 
may report the same error multiple tim es while backtrack
ing and re-executing the program repeatedly, we only count 
the unique number of errors.

For aget, we found one d a ta  race on writing the statistic 
d a ta  bwritten to  a file. This d a ta  race is also reported in
[7]. W hen testing aget w ith inspect, we need to  construct 
a closed environm ent for it. As the network may introduce 
non-determ inism to  the environment, we reduced the size of 
the d a ta  package, which aget gets from the ftp server, to  512 
bytes.

In pfscan, we found four errors. One error is th a t a condi
tion variable is used w ithout initialization. This is a danger
ous behavior, and may completely mess up synchronization 
among threads and end up with incorrect results. In addi
tion, two mutexes th a t are initialized at the beginning of the 
program never get released, which results in resource leak
age. Also, we found th a t a pthread_exit was missing at the 
end of main. As a result, when the main th read  exits, some 
worker threads may be killed before they completely finish 
their work. .

As for libcprops, it is a thread-safe library and test drivers 
are required for testing it. We adapted  the test cases in 
libcprops release into m ultithreaded versions, and used them



T a b le  2: C h e c k in g  re a l a p p l ic a tio n s
benchmark LOC threads

races
Errors

deadlock other errors
aget-0.4 1,098 3 1 0 0

pfscan-1.0 1,073 4 1 0 4
tplay-0.6.1 3,074 2 0 0 0

avl 1,432 1-3 2 0 0
heap 716 1-3 0 0 0

libcprops-0.1.6 hashlist 1,953 1-3 1 0 1
linked-list 1,476 1-3 1 0 0
splay-tree 1,211 1-3 1 0 0

as test drivers. Inspect revealed several d a ta  races in the 
code. After manually examining th e  source code, we found 
th a t most of the  races are benign races. Besides, we also 
found th a t in hashlist, a  condition variable is destroyed w ith
out initialization. This may lead to  undefined behaviors.

6.1 Discussion
Our experiments show th a t inspect can be very help

ful in testing  and debugging m ultithreaded C /C + +  appli
cations. However, it also has lim itations. F irst, inspect 
needs a set of test cases incorporated in its test driver to  get 
good coverage of the  code being verified. Secondly, runtim e 
monitoring pu ts an overhead 011 the program, especially in 
programs th a t have a lot of visible operations 011 shared 
da ta  objects. Also, the intrusive instrum entation limits in
spect from checking programs th a t have strict tim ing re
quirements. As inspect checks the  program ’s behavior by 
monitoring the  concrete executions of the program, is not 
able to  check system-level code like RacerX, LockSmith, etc., 
can do.

It is obvious th a t to  check a program, we m ust be able 
to  concretely execute the program. W hen doing our exper
iments, however, we also tried running several other open- 
source applications. Unfortunately, some problems were en
countered: (i) some programs kept crashing because of other 
existing bugs; (ii) it is inconvenient to  construct a closed 
world for server programs such as h ttp  servers. O ther than  
these lim itations, we think inspect is a powerful assistant 
tool in the process of unit testing and debugging for m ulti
threaded software.

7. OTHER RELATED WORK
Lei et al.[26] designed RichTest, which used reachability 

testing to  detect d a ta  races in concurrent programs. Reach
ability testing views an execution of a concurrent program 
as a partially-ordered synchronization sequence. Instead, 
dynamic partial order reduction views it as an interleav
ing of visible operations from multiple threads. Compared 
w ith RichTest, inspect focuses 011 checking m ultithreaded 
C /C + +  programs, and it can detect not only d a ta  races, but 
also deadlocks and other errors. However, inspect cannot 
yet handle send/receive events between multiple processes.

CMC[27] verifies C /C + +  programs by using a user-model 
Linux as a v irtual machine. CMC captures the virtual ma
chine’s sta te  as the sta te  of a program. Unfortunately, CMC 
is not fully-autom ated. As CMC takes the  whole kernel plus 
the user space as the state, it is not convenient for CMC to 
adapt the dynam ic partial order reduction method.

ConTest[28] debugs m ultithreaded programs by injecting 
context switching code to  random ly choose the threads to  
be executed. As randomness does not guarantee all inter
leavings will be explored for a certain input, it is possible 
th a t ConTest can miss bugs.

jCute[29] uses a combination of symbolic and concrete ex
ecution to  check a m ultithreaded Java program  by feeding it 
w ith different inputs and replaying the program w ith differ
ent schedules. jC u te  is more powerful in discovering inputs 
th a t can have the  program execution take different paths. 
We think the  difference between our work and jC u te  is in the 
implem entation part. jC u te  uses th e  Java v irtual machine 
to  intercept visible operations of a m ultithreaded Java pro
gram. Here we use socket communication and an external 
scheduler for C /C + +  programs.

Ilelm stetter et al.[30] show how to  generate scheduling 
based 011 dynamic partial order reduction. We th ink th a t 
the differences between our work and theirs lie in: (i) We 
are focusing 011 application-level m ultithreaded C programs, 
while they focused 011 the schedulings of SystemC simula
tions; and (ii) Instead of generating the  scheduling only, our 
work reruns the program and tries to  verify safety proper
ties.

CHESS [31] is the work which is probably most similar 
to  ours. The difference between CHESS and our work lies 
in the  instrum entation p art and how to  take control of the 
scheduling away from the operation system. In CHESS, the 
instrum entation allocates a semaphore for each th read  th a t 
is created. I t also requires an invariant to  be preserved: 
th a t a t any tim e every th read  bu t one is blocked 011 its 
semaphore. I11 contrast, we do the  instrum entation at the 
source code level, and use blocking sockets to  communicate 
between scheduler and the  threads.

8. CONCLUSION
In this paper, we propose a new approach to  model check 

safety properties including deadlocks and stu ttering  invari
ants in m ultithreaded C /C + +  programs. Our m ethod works 
by autom atically enum erating all possible interleavings of 
the threads in a m ultithreaded program, and forcing these 
interleavings to  execute one by one. We use dynamic partial- 
order reduction to  eliminate unnecessary explorations. Our 
preliminary results show th a t th is m ethod is promising for 
revealing bugs in real m ultithreaded C programs. Finally, 
inspect is available from [25],

In the future, inspect can be improved in many ways. We 
can combine the sta tic  analysis techniques w ith the  dynamic 
partial order reduction to  further reduce the  number of in-



terleavings we need to  explore to  reveal errors. Inspect can 
also adapt more efficient algorithms such as Goldilocks[32] 
for com puting happen-before relations to  improve efficiency. 
The autom ated instrum entation p art can be improved by 
employing more efficient and precise pointer-alias analysis.
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