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Abstract

We present a new version of the almost optimal Circumscribed Ellipsoid Algorithm (CEA) 
for approximating fixed points of nonexpanding Lipschitz functions. We utilize the ab­
solute and residual error criteria with respect to the second norm. The numerical results 
confirm that the CEA algorithm is much more efficient than the simple iteration algo­
rithm whenever the Lipschitz constant is close to 1. We extend the applicability of the 
CEA algorithm to larger classes of functions that may be globally expanding, however are 
nonexpanding/contracting in the direction of fixed points. We also develop an efficient 
hyper-bisection/secant hybrid method for combustion chemistry fixed point problems.

Keywords: fixed point problems, optimal algorithms, nonlinear equations, ellipsoid algo­
rithm, computational complexity.

1 Introduction

We want to approximate a fixed point that satisfies the equation for a
given function . Many problems can be formulated as fixed-point problems. For ex­
ample, a root-finding problem for nonlinear equations can be rearranged as
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, which is a fixed-point problem. The applications of fixed-point 
problems include economic equilibria Scarf and Hansen (1973); Border (1985), game the­
ory Scarf (1967b); Garcia et al. (1973); Scarf and Hansen (1973); Border (1985); Yang 
(1999), boundary value problems Jeppson (1972); Allgower (1977); Yamamoto (1998); 
Andreas (2003), and chaos and dynamical systems Corless et al. (1990); Szrednicki (2000).

A number of fixed-point theorems have been derived in the last century. Each theorem 
is focused on a specific class of functions. Banach’s fixed-point theorem Banach (1922) 
states that any contractive function of into itself has a unique fixed point. Banach 
demonstrated that the simple iteration algorithm (SIA), x i+1 =  /(x j) , generates a Cauchy 
sequence that converges to the fixed point of any such function. More general fixed-point 
theorems focused on continuous functions only. Brouwer demonstrated in Brouwer (1912) 
that any continuous function from a nonempty, convex and compact subset of into it­
self has at least one fixed point. However, Brouwer’s proof using topological arguments 
was nonconstructive. In 1967 Scarf (1967a) developed a simplicial algorithm for approxi­
mating fixed points for Brouwer’s maps from a simplex into itself. This was the first con­
structive proof of Brouwer’s fixed-point theorem. Since then, fixed-point computation has 
become an intensive research area and many new algorithms have been proposed includ­
ing restart methods Merril (1972a,b), homotopy methods Eaves (1972); Eaves and Saigal 
(1972); Allgower and Georg (1990) and ellipsoid algorithms Sikorski et al. (1993); Tsay 
(1994); Huang et al. (1999). As we mentioned earlier, a fixed-point problem x* =  /(x*) 
can be transformed into a root-finding problem . Therefore,
effective root-finding algorithms such as Newton type methods can also be used to solve 
fixed-point problems (see Allgower and Georg (1990)).

Algorithms dealing with nonlinear fixed-point computation are iterative methods. We con­
sider algorithms that are based on function evaluations, and assume that at least one func­
tion evaluation is required at each iteration. Most of CPU time is usually consumed by 
function evaluations. Therefore, we can define the worst case cost of an algorithm, for a 
class of functions , as the maximum number of function evaluations required to achieve a 
prescribed precision for all functions in JF. The problem complexity is defined as the mini­
mal cost among all possible algorithms for the class T . An algorithm is almost optimal if 
and only if its cost is almost minimal. The complexity depends on the class of functions 
and the selected error criterion, as shown in Sikorski and Wozniakowski (1987); Hirsch 
et al. (1989); Sikorski (1989, 2001). The contractive functions with contraction factor p 
close to 1 and nonexpanding functions are considered first, and then a larger class
of functions that are contractive/nonexpanding only in the direction of fixed points (but 
may be globally expanding), see Vassin and Eremin (2005). The contraction/nonexpansion 
property is defined with respect to the Euclidean norm. The e-approximations of fixed 
points are obtained by using the absolute or residual error criteria.



In this paper we present a new version of the Circumscribed Ellipsoid Algorithm (CEA), 
that does not require the dimensional deflation procedure of Tsay (1994), and as a con­
sequence has the cost lower by a factor of . Our CEA algorithm enjoys almost optimal 
cost ss 2«2 In  ̂ for obtaining residual solutions x  : ||/(x )  — x| [2 <  £ of nonexpand­
ing functions, and exhibits the cost «  2n 2(ln 7 +  In j ^ )  for obtaining absolute solutions 

for contractive functions with factor . We stress that these bounds 
hold for both of the considered classes of functions.

We also introduce a univariate hyper-bisection/secant (HBS) method for approximating 
fixed points of certain combustion chemistry problems. That algorithm enjoys the average 
case cost for computing -absolute solutions.

We stress that for the infinity-norm case, Shellman and Sikorski (2002) developed a Bisec­
tion Envelope Fixed point algorithm (BEFix). Shellman and Sikorski (2003a) also devel­
oped a Bisection Envelope Deep-cut Fixed point algorithm (BEDFix) for computing fixed 
points of two-dimensional nonexpanding functions. Those algorithms exhibit the optimal 
complexity of . They also developed a recursive fixed point algorithm
(PFix) for computing fixed points of -dimensional nonexpanding functions with respect 
to the infinity norm (see Shellman and Sikorski (2003b, 2005)). We note that the com­
plexity of finding -residual solutions for expanding functions with is exponential 
0 ((p /e )(n~1')), as e —>• 0, Hirsch et al. (1989); Deng and Chen (2005).

2 Classes of Functions

Given the domain , the -dimensional unit ball, we consider the
class of Lipschitz continuous functions

(1)

where , and . In the case when the class of
functions is denoted by Bnp<1. The existence of fixed points of functions in Bnp<l is assured 
by the Brouwer's theorem.

In this article, we present the circumscribed ellipsoid algorithm (CEA) that, for every 
$ ”<!, computes an absolute e-approximation x  to x*, ||x  — x*|| <  e, and for every f  e 
BpK1, computes a residual &-approximation x , ||/ (x )  — x || < e .

We also extend the applicability of the CEA algorithm to larger classes of functions con­
sidered by Vassin and Eremin (2005). We indicate that the complexity bounds for the CEA



algorithm do not change in this case. Those larger classes were investigated for problems 
defined by differential and integral equations originating in geophysics, atmospheric re­
search, material science, and image deblurring Vassin (2005); Vassin and Ageev (1995); 
Ageev et al. (1997); Vassin and Sereznikova (2004); Perestonina et al. (2003). These prob­
lems were effectively solved by Feyer type iterative methods and/or some general opti­
mization techniques, however no formal complexity bounds were derived. These classes 
are defined by:

where , , and . We note that the functions in may be expanding
globally, and therefore the class is a proper subclass of .

We finally introduce a univariate combustion chemistry fixed point problem defined in the 
class:

where the interval , and the constants and are defined later in section
6 .

We solve this problem in the equivalent zero finding formulation , where
. We derive the HBS method that is a modification of the bisection/regula- 

falsi/secant (BRS) method which was proven almost optimal in the average case setting 
Novak et al. (1995), with the complexity 0(loglog(l/£)). To get e-absolute approxima­
tions with we need at most function evaluations in the class . Since the 
number of function evaluations in the HBS method is essentially bounded by the number 
of function evaluations in the BRS method, we conclude that the average case complexity 
of HBS is at most .

Bp<x =  { /  : B n —>• B n : the set of fixed points of / ,  S ( f )  ^  0, (2)

and Vx G B n, and Vet G S ( f  ), we have | | / ( x )  — f(a) \ \  < p \ |x  — a \|},

G = {g : [a, b] —>• [a, b] : (3)



3 Constructive Lemmas and Cost Bounds

The following lemma is the basis of the circumscribed ellipsoid algorithm (CEA) Sikorski 
(1989); Sikorski et al. (1993); Tsay (1994); Sikorski (2001). The proof of this lemma can 
be found in Sikorski et al. (1993); Sikorski (2001).

Lemma 3.1 Let f  e  ^ < i .  Suppose that A C B n contains the fixed poin ts*. Then, for  
every x  e  A, x* e  A  n  B n(c, 7 ), where

1
C =  x +  -------^ (/(x ) - x )

I — (r

and

7  =  — I |/(x )  — x| I.

The above lemma yields 

Corollary 3.2 Let f  e  If

| | / ( x ) - x | | < i ^ e ,  (4)
P

then is an absolute -approximation to the fixed point .

The following lemma and corollary exhibit upper bounds on the number of iterations of the 
CEA algorithm.

Lemma 3.3 For any , and , the CEA algorithm requires at most
\2 n (n +  1) • In iterations to compute x* e 3?” such that | |/(x j) — Xj| | <  8, as

.



Proof:

We give a sketch of the proof, since it is similar to the proof of Lemma 2.2 of Huang et al. 
(1999).

The upper bound on the number of function evaluations of the CEA algorithm is obtained 
by replacing the volume reduction constant from the Interior Ellipsoid Algorithm
of Huang et al. (1999), by the volume-reduction constant of the CEA algorithm given by 
exp(—l/(2 (n  +  1))) < 1 Khachiyan (1979); Sikorski (2001). Following the formula (2.3) 
of the proof in Huang et al. (1999) we get

----------  <  P 2(n+l) (5)
(2 +  8)n -  ' (5)

The number of iterations that guarantees to obtain an -residual approximation is the 
smallest i for which this inequality is violated. Therefore, we get:

, / 2  +  A  1
nhi I —-— I <  %—------- (6)

U r  2 ( n + l ) -  ( '

that yields

i =  \2n{n +  l ) l n ( ^ ) ] ,

and completes the proof.

We conclude that the worst case cost of the CEA algorithm is

i — 0 (2 n 2 ln(2/5)), as 8 —>• 0. (7)

We also remark that the bound obtained in the above Lemma is better by a factor of than 
the bound obtained in Tsay (1994).

As a direct corollary from this lemma we get:

Corollary 3.4 If p <  1, the CEA algorithm finds an e-approximation Xj of the fixed point 
x* in the absolute sense, \ \ ^ —x* | |2 <  e, within i =  2n 2(ln(l/£) +  ln ( l / ( l  —p)) iterations.



Finally, we derive a constructive lemma for the larger class . This lemma is similar in 
nature to Lemma 3.1, since after each function evaluation it enables us to locate the set of 
fixed points in the intersection of the previous set with a certain half space (in Lemma 3.1 
it was the intersection of the previous set with a ball). This lemma implies that the CEA 
algorithm can be also applied to functions in yielding the same complexity bounds 
as in the smaller classes , since all of the arguments in the proof of Lemma 3.3 and 
Lemma 2.2 of Huang et al. (1999) hold in the classes Bp<1.

Lemma 3.5 Let f  E BpK1 and A c  B n be such that the set of fixed points S ( f)  C A. 
Then:

(8)

where the halfspace , for .

Proof:

Suppose on the contrary that there exists such that (a -  c H / ( x )
Then, since , we get:

| | / ( x ) - a ||2 =  ( / ( x ) - c  +  c - a ) T( / ( x ) - c  +  c - a )
=  |\ f  (x) -  c ||2 +  ||c -  a \\2 +  2(c -  a )T(/(x ) -  c)
> ||/(x )  — c 112 +  | |c — a \\2
>  I|x -  c | |2 +  I|c -  a\\2 -  2(c -  a )T(c -  x)
=  | |x  — c +  c — ft 112 =  | |x — ft 112,

which contradicts that f  E B“<1 and completes the proof.

4 Circumscribed Ellipsoid Algorithm

The circumscribed ellipsoid algorithm (CEA) originally designed by Khachiyan (1979) 
for Linear Programming Problems was developed by Sikorski et al. (1993) for fixed point 
problems. The details of the CEA algorithm can be found in Tsay (1994) and in a forth­
coming (numerically stable) implementation paper Sikorski et al. (2006). The idea behind 
this algorithm is to construct a sequence of decreasing volume ellipsoids, , cen­
tered at the evaluation points , , with , , that enclose
the set of fixed points. The volume of an ellipsoid is decreased at each step by a factor

.

(9)



of exp(—l/(2 (n  +  1))) < 1, Khachiyan (1979); Sikorski (2001). Both, Lemma 3.3 and 
Lemma 3.5 allow us to locate the set of fixed points S ( f)  in the intersection I(k) of the 
current ellipsoid with the halfspace
H(k) =  {y e  Rn : (y — xfe)r (/(xfe) — x .̂) > 0}. Indeed, this is the case, since H (k) con­
tains as a subset the ball B(c, 7) of Lemma 3.3 as well as the halfspace HX]i of Lemma 3.5. 
Then, the smallest volume ellipsoid circumscribing the set is constructed.
This process is continued until one of the stopping criteria is satisfied and/or the center of 
the last ellipsoid is an e-approximation of the fixed point.

The CEA algorithm is summarized in Fig. 1. In each iteration we construct the minimum 
volume ellipsoid that encloses the set of fixed points. The worst case cost of the
CEA algorithm with the (5-residual error termination is i as . This
and Corollary 3.4 indicate that the CEA algorithm is more efficient than the SIA algorithm 
whenever n is not too large and p is close to 1, since the number of iterations of the SIA 
algorithm to get an -absolute solution is .

We now explain all three stopping criteria used in the CEA algorithm. The first one denoted 
as (1) in Fig. 1 is an absolute error criterion where is the computed
-approximation. This stopping criterion occurs when the radius of the minimal-volume 

ellipsoid is at most . The second one denoted as (2) is also an absolute error
criterion implied by Corollary 3.2 when the condition is
satisfied. By using this criterion we may reduce the number of function evaluations in 
some test cases. The last denoted by (3) is a residual error criterion . We
use it only when p =  1, since for p < 1 it may result in premature termination especially if 
we want to get -absolute solutions.

We note that each iteration of this algorithm requires construction of the minimum volume 
ellipsoid that is equivalent (in numerically stable implementation) to computing a positive 
definite matrix defining that ellipsoid as well as its eigenvalues ,
... <  Xn(Ak) and eigenvectors. The direct construction of the ellipsoids as outlined in the 
above figure is numerically unstable.

An efficient, stable implementation of this algorithm will appear in a forthcoming paper 
Sikorski et al. (2006).



input {p < 1 ; e > 0 ; fcmax (maximum number of iterations): 
function /  G B " <  1 or /  G }

k 0: x 0 := 0: /10 4 x n  (initial ellipsoid -E(x0) =  B n): 
while fc <  fcmax do begin

if y /A„(/lfe) <  e then (1 )
return x fe as an absolute approximation: 

a  := x fe -  / ( x fc);

if | |a| | <  (1  — p2)e /p then  (2 )
return x& — a / ( l  — p2) as an absolute £—approximation; 

if 11 a| | <  e then (3)
return x& as a residual £—• approximation;

£ := aTa / ( ( 1  +  p)^/aTA ka): 
a  n(  1 — £) / (n  + 1 );

0  ■■= s j  A O  -  f 2>;
7  «  +  l ) / ( n  +  1 ); 
z := i , a / V ? 5
x fe+1 :=  x fe -  7Z ;

Afe+i : =  /92(/lfe -  (1 -  a 2/(32)z zT): 
k k I 5

end
if k =  fcmax then

return failed to compute £—approximation in fcmax iterations

Figure 1: The circumscribed ellipsoid algorithm (CEA).

5 Numerical Results

In this section we compare numerical results for several test functions with utilizing nu­
merically stable implementations of the CEA and SIA algorithms. We exhibit the total 
CPU time (in seconds), number of iterations and the number of the stopping criterion that 
resulted in termination. We also exhibit (in the parentheses) the upper bounds (see Lemma 
3.3, where for the absolute termination case) on the number of iterations of
the CEA and SIA algorithms. The speedup factors that represent the ratios of CPU time 
when using the CEA algorithm instead of the SIA algorithm are also included. All tests are 
carried out with the Linux operating system on Intel Pentium IV 2.4 GHz based machine.

The user specified termination parameter is modified in our code according to the follow­



ing rules. If the function evaluations are carried out in single precision, then

e =  max (e, Macheps (1)), (10)

and if in double precision, then

e =  max(e, M acheps(2)), (11)

where M acheps(j), j  =  1, 2 , are respectively machine precision in single and double float­
ing point representations.

If the absolute termination is to be used (case ) the user may request to modify the 
by

M acheps(j)
e =  m ax(£,---- ----------- j. (12)

This is justified by the absolute sensitivity of the problem that is characterized by the con­
dition number equal to

In the tests of functions 2 and 3, some initial balls are not the unit balls. In these cases, the 
problems are defined on a general ball They can be transformed to the unit ball

as follows.

Let /  : B n(c, 7 ) —»• B n(c, 7 ) denote the original function defined on a ball B n(c, 7 ). The 
modified function /  : B n{0,1) —»• B n{0,1) defined on a unit ball B n{0,1) is

-  1
/ ( x ) =  -  ( / ( x  ' 7  +  c) -  c ) .

7

It turns out that if /  is p-Lipschitz on the ball B n(c, 7 ), then /  is p-Lipschitz on the ball 
. Indeed, if , then

||7(xi) — 7 (x2)II =  - | | / ( x1 -7  +  c) - / ( x2 -7 +  c)||
7
1

<  - ■ ( )  ||7 - ( x i  — x 2)| I
7

=  p ||x i — X 2 II, 

i.e., they satisfy Lipschitz condition with the same and

-  1 1
ll/(x )ll =  - | l / ( x -  7 +  c) -  c|| < -  ■ 7  =  1,

7 7

i.e., J :  B n(0 ,1) -»• B n(0 ,1).



In all the tables we exhibit the user specified e. In all cases these e ’s were then modified 
according to equations 10-12, however in only a few cases their values were changed.

Test 1. This test function is a simple affine mapping f  : K” K” given by

T\ : / (x )  =  px +  (1 -  p)s,

where the constant vector is chosen from . Obviously, is the unique fixed
point of for . The results for are exhibited in Table 1. Table 2 shows the
results with varying n from 2 to 5.

Table 1: T1: n =  5, e =  lO^6 and x* =  [0.1,0.3,0.4,0.1,0.2]T

p CEA SIA Speedup
1 -  10-1 0.00276, 287 (1008), 2 0.000017, 119 (132), 2 0.00616
1 -  10-2 0.00282, 302 (1146), 2 0.000173, 1247 (1375), 2 0.06135
1 -  10-3 0.00283,311 (1284), 2 0.001746, 12531 (13809), 2 0.61696
1 -  10-4 0.00300, 321 (1423), 2 0.017640, 125361 (138149), 2 5.88000
1 -  10-5 0.00252, 296 (1561), 2 0.175800, 1253671 (1381545), 2 69.7619
1 -  10-6 0.00230, 304 (1699), 2 1.758000, 12536780 (13815504), 2 764.348

Table 2: T1: p =  1 -  10“6, e =  lO^6, x j =  [0.1,0.3]T, =  [0.1,0.3, 0.4]T, x^ 
, and .

n X * CEA SIA Speedup
2 0.000132, 86 (339), 2 0.987, 11971078 (13815504), 2 7477.27
3 X2 0.000823, 185 (679), 2 1.367, 12448820 (13815504), 2 1661.00
4 * 3 0.000826, 187 (1132), 2 1.462, 12467678 (13815504), 2 1769.98
5 x 4 0.002300, 304(1699), 2 1.758, 12536780 (13815504), 2 764.35

Test 2. This test function is a complex function from Howland and Vaillancourt (1985), 
given by

T<2 ■ f ( z ) = g ( g ( z ) ) ,

where
z2 +  c cos2 z

9 iz ) — ------ :---------- ’z +  sin z cos z



z is a complex variable and c is a complex constant. We consider this test function as a 
two-dimensional real function f  : 3fJ2 --+ SR2, i.e., n — 2, but we evaluate the function as a 
one-dimensional complex function. The problem is tested with two values of the constant 
c \ c — 1.025 and c =  7r/4  +  1.2 +  i(ir — 1.17). The fixed points of this problem are 
(0, 0.69029)t  and (2.14062, —2.50683)T, respectively. The results are exhibited in Table 3.

Table 3: T2: B x =  S 2([0.0,0.1]r , l ) , JB2 =  S 2([2.2; -2 .2]T; 1), Cl =  1.025, px 
, , and .

£ p c Ball CEA SIA Speedup
i o - 2 Pi £-1 B  i 0.000017, 3 (146), 2 0.00206,583 (4551), 2 121.18
io - 3 Pi £-1 B\ 0.000034, 7 (173), 2 0.00823, 2290 (6826), 2 242.06

I—4 o 1

Pi £-1 B  i 0.000063, 14 (201), 2 0.01452,4102 (9102), 2 230.48
10- 5* Pi £-1 B  i 0.000060, 14 (207), 2 0.01440, 4250 (9624), 2 240.00
10- 6* Pi £-1 B  i 0.000060, 14 (207), 2 0.01450, 4250 (9624), 2 241.67
10-2 P2 £2 b 2 0.000065, 14 (140), 1 0.00946, 2876 (2876), 1 145.54
10-3 P2 £2 b 2 0.000092, 20 (168), 1 0.01339, 4314(4314), 1 145.54

o 1

P2 £2 b 2 0.000113,25 (196), 1 0.01804, 5752 (5752), 1 159.65
io -5 * * P2 £2 b 2 0.000119, 28 (207), 1 0.01916, 6369 (6369), 1 161.01
10^6 * * P2 £2 b 2 0.000118,28 (207), 1 0.01916, 6369 (6369), 1 162.37

* these in p u t ’s were changed to 5.89 x 10 5 via equation 12.
** these input e’s were changed to 3.72 x 10-5 via equation 12.

Test 3. This test function is a parabolic, periodical function from Sikorski et al. (1993), 
given by

T3 : f ( x i, ar2) =  [ / i (^ i: x 2), f 2{xt , x 2)\,

where
f i ( x i , x 2) =  ^(Xi  -  2m f  +  1 -  ^

for and and is an arbitrary integer. This two-dimensional
contractive function has a unique fixed point at (1 ,1)T. The results are exhibited in Table 4. 
It is worth noting that the CEA algorithm can terminate with absolute error criterion even 
when p — 1 — 10-15; i.e., when the function is almost nonexpanding.

Test 4. This test function is a saw-like, periodical function from Sikorski et al. (1993), 
given by

T  , f ( r  T \ - (  ^ / 2 - 1/ 2 \  (  M x ^ x2) \
1 / 2  VS/2  )  {  h ( Xl, x 2) )



Table 4: T3: B x =  B 2([0,0]T, 2), B 2 =  S 2([0.1,0.2]T, 2), ^  =  1 -  10"3, p2 =  1 -  10^5, 
and p3 =  1 -  10- 15.

£ P Ball CEA SIA Speedup
10-3 Pi Bi 0.000062, 34 (182), 2 0.000101, 1120 (7598), 2 8.42
10-3 P2 Bi 0.000065, 45 (237), 2 0.00106, 11874 (760087), 2 70.67
10-4 Pi b 2 0.000068,47 (210), 2 0.00029, 2768 (9899), 2 4.40
10-4 P2 b 2 0.000077, 54 (265), 2 0.00336, 37376 (990344), 2 40.98
Iq-6 P2 b 2 0.000114, 79 (320), 2 0.0249, 277744 (1450859), 2 228.44

io - 6* P'i b 2 0.000154, 87 (596), 1 75.35, 1.8 x 108 (1.6 x 1016), 2 489286

* In these tests we removed the modification of £ according to equation 12, to test the limits 
of numerical precision of our algorithm.

where
x2) — m in (p\xi — m  — 10_2j |  +  i/3 )  

j= 1,99

for and and is an arbitrary integer. This function has a unique
fixed point at (—0.01946, 0.75933)T. The results are exhibited in Table 5. It is worth noting 
that the speedup factor is increased by 4 orders of magnitude when is closer to 1 by 4 
orders of magnitude.

Table 5: T4: e =  lO^6, x* =  [-0 .04 ,0.74]T, B 1 =  B 2([0,0]T, 1), B 2 =  B 2([0,0]T, 2), and
.

P Ball CEA SIA Speedup
1 - 10-2 B 1 0.000152, 36 (229), 1 0.00302, 1109 (1375), 2 19.87
1 - 10-2 b 2 0.000169, 40 (237), 1 0.00306, 1109 (1444), 2 18.11
1 -  10-2 B;s 0.000172,41 (237), 1 0.00307, 1141 (1444), 2 17.85
1 -  10^6 Bi 0.000152, 36 (339), 1 37.49, 13815504(13815504), 1 246644
1 -  10-6 b 2 0.000166,41 (348), 1 40.40, 14508651 (14508651), 1 243373
1 -  10-6 B-a 0.000168,41 (348), 1 40.38, 14508651 (14508651), 1 240357

Test 5. This test function is a nine-dimensional function from Xu and Shi (1992), given by

T5 : f ( x)  = x - //' '(x)

where
F(x) =  A x  +  Cr(x) — b,



A

B

G{x)
1 1 
4 ’ 4 ’

B 0
- 1 B
0 - 1 B

4 - 1 0
- 1 4 - 1
0

/

- 1

2 2

4

\
9 4 ’ 4 ’X‘2 J

3 3 
4 ’ 4 :

x9

and

b =  ^ ( 0 , i ) + p ( i . 0 ) . « ( i 0 ) , p ( 2 , 0 ) + p ( l . i ) . « ( 0 . i ) , 0 , p ( l .  

p (°= i )  +  p ( I 1) ^  ( i ' )  -p ( !■ ' )  +  $ j ) ] t -

with
g(s, t, u)

t
---h \U
S

(f>(s,t) — sin(0.57r6‘i).

We choose the value of t — \ f L 2( 1 — p2) /L 2 with L — 0.8234 and select the Lipschitz 
constant p close to 1. This choice implies that /  is contractive Xu and Shi (1992); Tsay 
(1994). The results are exhibited in Table 6. It turns out that the SIA algorithm is faster than 
the CEA algorithm when is not too close to 1. This is because the cost of each iteration 
of the CEA algorithm increases with the dimension as . However, when is close to
1, the CEA algorithm is much faster than the SIA algorithm.

We note that in all our tests the CEA algorithm terminated with the absolute error criterion 
(1) or (2) much faster than indicated by the upper bounds. More numerical tests and com­
parisons with Newton type methods will be carried out in a forthcoming paper Sikorski 
et al. (2006).

6 Combustion Chemistry Fixed Point Problem

In this section we focus on the design of nearly optimal fixed point solvers that are applied 
to univariate fixed point problems originating in modeling combustion of energetic materi­
als. In particular, our solvers are able to efficiently approximate fixed points of nonlinear 
equations modeling burn rates of HMX type materials. These fixed point calculations are 
utilized in large scale transient combustion simulations. They are repeated at every grid 
cell of a very large model and at every time step. This is why they have to be extremely 
fast and sufficiently accurate.



Table 6 : T5: s =  10 6 and p is varied from 1 — 10 2 to 1 — 10 15.

p CEA SIA Speedup
1 -  10-2 0.0601, 1630 (3440), 2 0.000088, 93 (1375), 2 0.00146

I—4 I—4 O 1 W 0.0765, 2138 (3854), 1 0.000310, 332 (13809), 2 0.00405

h-4 O 1 0.0818,2288 (4269), 1 0.001044, 1122 (138149), 2 0.01276
1 -  10-5 0.0834, 2333 (4683), 1 0.00351,3775 (1381545), 2 0.04209
1 - 10-6 0.0847, 2364 (5098), 1 0.01166, 12527 (13815504), 2 0.13766

O 1 -4 0.0847,2349 (5512), 1 0.03830, 41440 (138155099), 2 0.45218

O 1 OO 0.0846, 2344 (5927), 1 0.1277, 136790 («  1.4 x 109), 2 1.50946

O 1 * 0.0851,2358 (6341), 1 0.418,450622 («  1.4 x 1010), 2 4.91187

O 1 O * 0.0847, 2337 (6612), 1 1.374, 1478283 («  1.4 x 1011), 2 16.2220
1 -  lO^11* 0.0843,2359 (7170), 1 4 .49, 4824754 («  1.4 x 1012), 2 53.2622
1 -  10- 12* 0.0843, 2330 (7585), 1 13.93, 14999188 («  1.4 x 1013), 2 165.243

0 1 w * 0.0846, 2348 (7999), 1 42.26, 45615144 («  1.4 x 1014), 2 499.527

0 1 * 0.0855, 2330 (8414), 1 169.1, 138613488 («  1.4 x 1015), 2 1977.19
1 -  IQ-15* 0.0853, 2348 (8828), 1 523.9, 420287875 («  1.4 x 1016), 2 6141.85

* In these tests we removed the modification of £ according to equation 12, to test the limits 
of numerical precision of our algorithm.

We derive an almost optimal (on the average) hyper-bisection/secant (HBS) modification of 
a hybrid bisection-regula falsi-secant (BRS) method Novak et al. (1995); Sikorski (2001) to 
solve a nonlinear fixed point problem that is derived from the Ward, Son, Brewster (WSB) 
combustion model Ward et al. (1998a,b); Ward (1997). The WSB model assumes a simple 
overall kinetic scheme to represent the complex chemical reactions in condensed phase 
and gas phase: a zero-order mildly exothermic decomposition reaction with high activation 
energy in condensed phase is followed by a second-order highly exothermic reaction with 
zero activation energy in gas phase. Given the values of initial solid temperature and 
gas pressure P , the WSB model defines the functions for the condensed phase mass flux 

and the burning surface temperature : and . The problems in condensed
phase and gas phase are solved separately. Solving for the condensed phase problem, we 
obtain a solution for the condensed phase mass flux Ward et al. (1998a,b); Ward (1997):

{rp\ I A cRTs kcpcm(Ts) =  4/ ----------------------- ■ e R1° (13)
'  ”  V Ec(cp(T, -  T0) - f )  ( )

where m  is the condensed phase mass flux f ), Ts is the burning surface temperature, 
is the initial solid temperature, is the specific heat, is the thermal conductivity, 

is the pre-exponential factor, is the chemical heat release per unit mass, is the solid



density, Ec is the solid phase apparent activation energy and R  is the gas constant (Table 7). 
Solving for the gas phase problem, we obtain a solution for the burning surface temperature 
Ward et al. (1998a,b); Ward (1997):

Ts (m) =  T0 +  ^  + ---------^ -------- —  (I4)
P I 9 9 --------- T C „

/ ~ A k „  P ^ V T / ^  ^

Table 7: List of constant values

cp — 1.4 x 10 3J  -kg  1 • K  1 R =  8.314J • I\ 1 • m o l-1

kc =  0.2W  ■ n r 1 ■ l\ 1 kg =  Q.Q1W • m " 1 • l\ 1

Ac =  1.637 x lO1̂ - 1 Bg =  1.6 x 10-3m 3 • k g -1 • s^ 1

Qc =  4.0 x 105,J • k g -1 Qc =  3.018 x 106J • k g -1

pc — 1.8 x 103%  • m r3 W  =  3.42 x 10-2%  • m o l-1

Ec =  1.76 x 105J • m o l-1

where, subscript denotes variables for the gas phase, is the overall molecular weight 
of gas product, is the pressure and is the gas phase pre-exponential factor (Table 7).

With the known equations for and outlined above, we want to compute the
burn rate and the burning surface temperature . The and are dependent on the 
local pressure and the initial solid temperature . The nonlinear dependence between 

and implies the need for an iterative solution.

Since , , , , , , , , , and are all constant physical properties of 
materials, then for a given values of initial solid temperature and gas phase pressure , 
we can simplify the equations for and to:

m( r *) = (15)

and



Ts{rn) Ci
a

( a/  in2 +  C:i +  in) '
(16)

where, CYi =  A . C2 =  T0 +  C* -  ------w
’ 1 E ccp ’ z  u 2cp ’ ^ Cj,H-

When plugging m(Ts) into Ts(m), we get the fixed point equation T<
T0 +  ^  and C5

G{TS) =  C.i +
a

chi'.:2
T„-C-2

E r. e bt. G, chi'.:2
T„-C-2

c 3q ,,

G(TS), where

Ere bt.
2 ■

Now, the problem can be formulated as a zero finding problem: given gas phase pres­
sure P , initial solid temperature T0 and a small positive number e, we want to  find an e- 
approximation Te of the exact zero Ts_lrv 
by solving the nonlinear equation f (T s)

I Tm '-F'rniri \ <  £

the solution Ts_brve and f (T s) 
various T0 and P.

with respect to the root criterion 
, where is the interval containing

Ts — G(TS). Figure 2 depicts a number of functions with
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7 Description of the Algorithm

For the univariate zero finding problem, the solution can be efficiently obtained by using a 
hybrid bisection-secant method. The reasons for adopting a hybrid method are:



1. Bisection Method was proved to be optimal in the worst case in the class of all methods 
using arbitrary sequential linear information Sikorski (2001, 1982).

2. A hybrid bisection-secant type method is more efficient than plain bisection in the aver­
age case and exhibits almost optimal average case complexity Novak et al. (1995); Sikorski 
(2001).

7.1 Solution Interval

Given the function , we can identify a solution interval such that
has different signs at its endpoints. Since is continuous, it follows that the exact zero 
Ts_true. such that f ( T s_true) = 0  is in [Tmin, Tmax] . Since the constants C:i, C\, C 5 and 
variable m are all positive, then Ts(m) > C4, which implies G(TS) >  C4 and /(C 4) =  

. Thus, we can define the left endpoint of the interval as . To
estimate the maximum of the function G(TS), we need to solve for dC'ffa) =  0, which gives

the local maximum of G(TS) at /'. max — ( '■> | y C >2 I tl:ir, >  C-2 for Ts >  0,
where C2 >  0 (see Appendix). Since the function has negative derivative for Ts > Ts_nmx 
(see Appendix), we define Tmax G(Ts_max) if Trnin Ts_max, 01 Tmax G(Trn;n) 
otherwise. In other words, . This choice of implies that

and therefore . In the majority of tests, was greater
than Ts_max. An example is shown in Figures 3 and 4.

Figure 3: Function G(TS) with T0 =  400A' and P  = 10a,tin (Tmin > Ts_max)



Figure 4: Zoom-in of Figure 3 with G(TS) , Ts G [Tmin,T nuUL]

7.2 The BRS Method

We now outline the hybrid bisection-regula falsi-secant (BRS) method investigated in No­
vak et al. (1995). This method computes points TsA G [Tmin, Trnax], at which the function 

is evaluated, and a subinterval containing a zero of . We always have 
f(k )  <  0 < f ( r i ) ,T Sti e  [k -i,r i- i]  and C [k -^ ri-i]. Each function evaluation
is preceded by the verification of the stopping rule. At the beginning and later after each 
bisection step, the method takes two steps of the regula falsi method, starting from the end­
points of the interval . Then, the secant steps are performed until they are well 
defined, result in points in the current interval and reduce the length of the current interval 
by at least one half in every three steps. If any of these conditions is violated, a bisection 
step takes place. We utilize the absolute error termination criterion given by:

1, if , then
0, otherwise

| rj~i _ rj~i  ̂ |
After the termination (Slop, =  1), we have 3~*r"f < c. since the exact solution

I J-rnax J-rnin |

Tg-Vrue € [hi r-i\ . We further define the points

undefined, otherwise



for the secant method with , and

I ; -j~~ Tj i - j. - . i ' iBisection^ — —-—

for the bisection method. In each step, a new interval ij containing a zero of f ( T s) is 
computed,

( [li- 1, x i] , i f f ( x i) >  0 
, if 

, if

The complete method is summarized in the flowchart in Figure 5.



Start:
;

;
;

while Stopi ^  1 do

Two Steps pf Regula Falsi:
for j  — 1, 2 do
i — i +  1;
X i  =  Secan t(k-i, r ^ ) ;
evaluate f(xi);
Set [k,n] =  /»;
if Stopi — 1, then return Ts i ,  Stop;

Secant steps:
do
2 =  Secant (xi, Xi-i);
if z [k, ri] or 2 undefined, then break;
i — i +  1;
X i  =  2;
evaluate f(xi);
Set [k,n] =  /»;
if Stopi — 1, then return Ts i ,  Stop;

while (n  -  k) <  (r»_3 -  Z»_3

Bisection step:
;

;
evaluate f(xi);
Set [lh n] =  h;

return Ts , ; 
Stop.

Figure 5: Flowchart of the BRS method

The BRS method is almost optimal on the average Novak et al. (1995); Sikorski (2001). 
The average number m aver of function evaluations for finding an e-approximation to the



solution is bounded by:

1 1
m (,ver < ---- 77T7F7 ' l ° g l° g ( - )  +  A

where A  is a constant Novak et al. (1995).

Figure 6 : Iteration Graph of the BRS method

For practical combustion simulations, the initial solid bulk temperature T0 usually varies 
within the interval and the gas phase pressure within the interval
P R  =  [0 , 3000] atm. The number of iterations of the BRS method can be visualized in 
3-D as a function of To and P  within those intervals. To carry out the tests, we selected 
60 x  50 evenly spaced grid nodes for the set of parameters T E x  PR . By choosing £  =  10 _4, 
the average number of iterations is 10.5, where the average is defined as the total number 
of iterations divided by the number of tested functions. We observed (Figure 6) that for 
low P  and high T0 it took about 12-13 iterations to solve the problem. The differences in 
the numbers of iterations can be explained by the special graph shapes of the functions in 
different sub-domains of the parameter set T E  x PR . Figure 2 indicates that the functions 
have characteristic break-points, where the largest function curvatures occur. The solution 
of turns out to be very close to the high curvature break-point for high and
low . In this case, more iterations are required for the secant method to converge. We 
derive a modification to the BRS method in order to lower the average number of iterations.



7.3 HBS - a modified BRS method

To derive the HBS method, we first divide the parameter plane into three subdo­
mains D u i =  1,2, 3 (Figure 7) by two lines P  =  4 ■ (T0 -  250) a n ^ ^ ^ ^ T 0 -  250),

, if 
, if 
, if

Figure 7: domain subdivision

For each subdomain, we run two steps of hyper-bisection method defined as:

HyperbiSj =  1, +  • (r, -  I,)

where =  7>";' //' e  [0.1], Numerical experiments indicate that the solutions are usually 
distributed around the point Tmin + X-(Tmax — Trnin) in the sub-domain Di, where A =  0.12. 
We therefore utilize =  A for the first step of hyper-bisection and,

/. _  /  ^2, if function evaluation /(H yp erb is^  <  0,
, otherwise,

where . Those choices guarantee that in most cases the solution will be in the
interval . The same strategy applies to subdomains and ,
with A =  0.18 for D 2 and A =  0.25 for D s. Param eter equals 0.2 for all the subdomains. 
Ideally, the solution interval will be reduced to of its original length after two



steps of the hyper-bisection. Thereafter, the BRS method is used to find the solution. When 
choosing the same set of test functions and e — 1CT4, the average number of iterations of 
the HBS method is 5.7 as compared to 10.5 of the BRS method. The maximum number 
of iterations is 6. The iteration graph of the HBS method is shown in Figure 8. Since we 
ultimately want to compute the burn rate m, the equation (15) is used to compute m — 

. The maximum of the relative error in the computation of is in the
T E  x P R  domain, where < r,i — and the real solution is computed by
our HBS method with e — 10_15.

We derive formulas for the first derivative of the function G{.) and its roots that are needed 
in verification of the definition of initial interval locating the fixed point, as well as in 
showing existence of exactly one fixed point of G.

1. First derivative of the function G(TS) is given by:

3000

Figure 8: Iteration Graph of the HBS method

8 Appendix

dG(T») 
d'T„ ( T'„.

2 Rl 2 -  (2 RC2 + R -E cyi;  -  Ec c 2 ] ■ V c l  C5 ■ e v 2 RT«

y< /



2. Roots of the first derivative d<̂ j =  0 are given by:

r p j  r p 2 t ~ p (  r p  2

T- = ^ - 2 h + H + w > 0 m i T - = C t - 2 h - H + w < 0
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