
U s in g  M e t a p r o g r a m m in g  

t o  A d d  

P e r s is t e n c e  t o  C L O S

Arthur H. Lee 

Joseph L. Zachary

UUCS-93-001

Department of Computer Science 

University of Utah 

Salt Lake City, UT 84112 USA

July 15, 1992

A b s t r a c t

The need to “open up” languages and the spread of object-oriented technology have led 

to object-oriented programming languages with object-oriented implementations. By en

capsulating the fundamental aspects of language semantics within a set of default classes 

and giving the programmer the flexibility of deriving new versions of these base classes, a 

language whose semantics can be tailored to the needs of individual programmers can be 

provided. The degree to which such languages are simultaneously flexible and efficient is 

an open question. We address this question by reporting our experience with using this 

technique to incorporate support for persistence into the Common Lisp Object System via 

its metaobject protocol. For many aspects of our implementation we found that the metaob

ject protocol was perfectly suitable. In other cases we had to variously extend the protocol, 

pay an unacceptable performance penalty, or modify the language implementation directly. 

Based on our experience we propose some improvements to the protocol. We also present 

some performance measurements that reveal the need for improved language implementation 

techniques.



C o n t e n t s

1 Introduction 1

2 The CLOS metaobject protocol 2

3 CDRS: An object-intensive application 2

4 MetaStore ‘ 3

4.1 Overview.......................................................................................................................  4

4.2 Programmer’s view of M e taS to re ..........................................................................  6
4.3 Extensions required for persistence....................................................................... 7

5 Four kinds of extensions 8

5.1 Structure and behavior of o b je c ts ..........................................................................  8
5.1.1 Persistent class metaobject class................................................................  8
5.1.2 Object identity and creating persistable objects and h u s k s ................  9

5.1.3 Persistence via inheritance..........................................................................  9

5.1.4 Accessing o b je c ts ..........................................................................................  10

5.1.5 Persistent slot-definition metaobject class................................................  11

5.2 Indirection on slot access...................................  .................................................... 12
5.3 Maintaining dirty bits .............................................................................................  12

5.4 Persistence of shared s tructu res .............................................................................  13

6 Performance measurements 14

6.1 Objects vs. nonobject structured data ................................................................  15

6.2 PCL and Lucid C L O S .............................................................................................  17

6.3 M etaStore.................................................................................................................... 18

7 Observations 19

7.1 Abstraction mismatch .............................................................................................  19

7.2 Short-term improvements..........................................................................................  20

7.3 Long-term improvements..........................................................................................  21

8 Related work 21

9 Summary 22



1 I n t r o d u c t i o n

The need to “open up” languages and the spread of object-oriented technology have led to 

object-oriented programming languages implemented with the help of reflective and object- 

oriented techniques. By encapsulating the fundamental aspects of a language semantics 

within a set of default classes and giving the programmer the flexibility of deriving new 

versions of these base classes, a language whose semantics can be tailored to the needs of 

individual programmers can be provided. The process of modifying language semantics in 

this way is called metaprogramming. •

The degree to which such languages are simultaneously flexible and efficient is an open 

question. The Common Lisp Object System (CLOS) [BDG+88] is designed with these tech

niques, thus providing for metaprogramming via its metaobject protocol [KdRB91]. In this 

paper we address this question by reporting our experience with using the metaobject pro

tocol to incorporate support for persistent objects into CLOS.

The goal of our experiment was to see if we could obtain a version of CLOS with persis

tence to which we could easily port a commercial CAD system already written in CLOS. We 

originally wanted to modify CLOS strictly via the metaobject protocol, so that no changes 

to the compiler or run-time system would be required. Although we ultimately compromised 

slightly on this point and devoted considerable engineering effort to the implementation, the 

final product, although fully expressive, was judged too inefficient for commercial use, thus 

requiring changes in the way we use the metaobject protocol.

Our intent in this paper is to highlight the strengths and weaknesses exhibited by the 

CLOS metaobject protocol during our experiment. Extending CLOS with object persistence 

is no small undertaking, and the metaobject protocol is quite general, so we are convinced 

that our experience is relevant to metaprogramming in general. For many aspects of the 

implementation we found that the metaobject protocol was perfectly suitable. In other 

cases we had to choose among paying a large performance penalty, extending the protocol, 

and bypassing the protocol entirely and modifying the language implementation directly. 

Based on our experience we propose some improvements to the protocol. We also present 

some performance measurements that reveal the need for improved language implementation 

techniques.

The remainder of this paper is organized as follows. In section 2 we briefly describe the 

CLOS metaobject protocol followed by an application that reveals the problem of object 

persistence in section 3. In section 4 we describe our approach to adding persistence via 

metaprogramming followed by four particular extensions we made to CLOS that exhibited 

strengths and weaknesses of the CLOS metaobject protocol in section 5. In section 6 we 

present some performance measurements, and some improvements to the protocol are pro

posed in section 7. After we survey other uses of metaprogramming in section 8, we conclude 

in section 9.

1



2  T h e  C L O S  m e t a o b j e c t  p r o t o c o l

The design of CLOS is “open” in the sense that some aspects of implementation internals 

are accessible by application programmers. This object-oriented implementation is made 

possible by combining reflective techniques and object-oriented techniques in language design 

[KdRB9l]. The CLOS metaobject protocol, which is designed in this way, allows users to 

alter the semantics of the language by using the standard object-oriented techniques of 

subclassing and specialization.

In the design of CLOS, the basic elements of the programming language— classes, slots, 

methods, generic functions, and method combinations— are made accessible as objects. Be

cause these objects represent fragments of a program, they are given the special name metaob

ject. Individual decisions about the behavior of the language are encoded in a protocol oper

ating on these metaobjects— thus the term metaobject protocol. For each kind of metaobject 

a default class is created, that delineates the default behavior of the language in the form of 

methods.

In the metaobject protocol, for example, the meaning of object instantiation is imple

mented by a small number of generic functions. These semantics can be changed by defining 

a subclass in which these generic functions are specialized. In doing this, the user is making 

an incremental adjustment to the meaning of the language. Most aspects of the language’s 

behavior and implementation remain unchanged, with just the semantics of instances being 

altered.

3  C D R S :  A n  o b j e c t - i n t e n s i v e  a p p l i c a t i o n

Conceptual Design and Rendering System (CDRS) [Lee89, Lee90] is a geometric CAD mod

eler that is used by designers in a dozen major automotive and product design companies 

worldwide, and our work was initially motivated by the problems of object persistence en

countered with CDRS. It is an object-intensive application written mostly in Common Lisp 

[Ste90] as extended by CLOS. A typical model manipulated by an object-intensive applica

tion such as CDRS is characterized by:

• containing tens of thousands of objects that may not all fit in virtual memory,

• showing a wide variation in the sizes of objects,

• requiring complex data structures within objects, and

•  containing rich relationships (both semantic and structural) among objects.

Supporting object persistence in object-intensive applications is particularly difficult because 

of these characteristics.



Application

Meta

Store Database

CLOS

Common Lisp

Figure 1: MetaStore architecture

CDRS uses a naive file-based, batch-oriented approach to object persistence that has 

proven to be ill-suited for the many complex objects found in object-intensive applications 

[Lee92], All objects in a design session are saved to a file at the end of a modeling session and 

are reloaded at the beginning of the next session. This approach requires a huge amount of 

virtual memory, frequent large garbage collections, and a long time to load and save models. 

For example, CDRS usually uses 500 megabytes of swap space, requires up to 128 megabytes 

of main memory, and spends almost 30 minutes loading or saving a typical model. Users 

are usually noncomputer professionals and tend to save models frequently in fear of losing 

models due to reliability problems. Reducing user waiting time is critical for the success of 

an object-intensive system like CDRS. Users claim that anything more than three minutes 

of waiting for file operations is too much in a production environment.

4  M e t a S t o r e

We implemented a persistent object system called MetaStore to address these problems by 

adding the notion of persistent objects to CLOS. MetaStore has two major components: 

the language extension portion implemented via the CLOS metaobject protocol, and the 

database management portion that provides a persistent object store as shown in Figure 1. 

In this figure, Store is the persistent object store and Meta is the language extension portion. 

We are concerned in this paper with the language extension component and the degree 

to which the metaobject protocol facilitated and frustrated our efforts. For a complete 

discussion of the resulting system see [Lee92].

Object-oriented programming languages can cleanly and elegantly be extended to sup

port persistence at the granularity of objects and slots in such a way that saves are done 

incrementally (only modified objects are written to disk) and loads are done on demand (ob-



jects are loaded as they are needed). This approach amortizes the cost of saving and loading 

models over the entire design session, thus reducing the user waiting time. MetaStore also 

maintains a virtual object space within virtual memory. As the object space fills, it writes 

the least recently used persistent objects to disk and makes their virtual images available for 

garbage collection. To support this, we had to make substantial modifications to the way 

objects are represented and manipulated by CLOS. The question that concerned us through

out design and implementation was whether the overhead imposed by the metaprogramming 

would be too costly. It was.

In this section after an overview of MetaStore, we describe the programmer’s view of 

MetaStore and the extensions required for the persistence support in CLOS.

4 .1  O v e r v ie w

Focusing only on the aspects that require extensions to the object system, we give an overview 

of MetaStore design. It is given by describing the life cycle of a persistent object.

We distinguish between persistable and persistent objects. A persistable object is an 

instance of a persistable class, where a persistable class is a subclass of the persistent class 

pers is ten t- roo t-c lass . Thus, persistence in MetaStore is via inheritance. A persistable 

object becomes a persistent object when it is eventually saved to the object base. A persistable 

slot is a slot declared persistable in a persistable class. The value of a persistable slot also 

becomes persistent when saved.

Figure 2 contains two persistable objects, 01 and 02. 01 has five slots: o id , a, b, c, and 

d. o id  is added by MetaStore and the other four are from the user defined class of which 01 
is an instance. 02 has four slots: o id , e, f , and g. o id  is again added by MetaStore and the 

other three are from 02’s user defined class.

A persistable object, just as any other object, is created by a method call such as 

make-instance in CLOS. In MetaStore, when a persistable object is created, it is assigned 

a unique object identifier (O ID). The OID of the object 01 in Figure 2 is 22. A unique OID  

is necessary to map virtual addresses to persistent IDs as objects are saved to the object 

base, and to map from persistent IDs to virtual addresses as objects are loaded from the 

object base. Address translations in MetaStore are done by the pointer swizzling technique 

[Lee92],

Upon creation of a persistable object, an intermediary data structure called a phole1 is 

added between a persistable object and each of its persistable composite slot values. In 

Figure 2, slots b and d of the object 01 and f  and g of 02 are composite slots, and each has 

its own phole. A composite slot is a slot whose value is not of a primitive type. For example, 

a slot whose value is an array is a composite slot.

The use of pholes in MetaStore is a novel idea, which makes the following possible:

1 Phole stands for a persistent hole; it is pronounced “Foie.”

4

9



Memory Disk

01:

02 :

oid 22
a 3.4

b

c 50

d

oid 25

e 4.8

f

g

array-10

pholel

phole2

(list-20)

(list-21)

phole3

array-10

►(list-20)

-----(list-21)

Figure 2: Persistent objects in MetaStore

• Maintaining dirty bits for incremental saves

• Supporting persistence at the slot level

• Lazy loading of composite slot values

• Supporting a virtual object memory

• Handling shared structures

A phole contains the identifier of a slot and provides one level of indirection, which is nec

essary to support the features listed above.

Once a new persistable object is created, it can be repeatedly accessed, read or writ

ten. For now, a read access can be viewed as being much like a read on a transient ob

ject. A transient object is an instance of a class that does not inherit the persistent class 

pers is ten t- roo t-c lass . A write access is more interesting. The slot accessed for a write 

is marked dirty in the phole associated with the slot if it is a persistable composite slot of a 

persistable object. Otherwise, the object itself is marked dirty. Thus, a two level dirty bit 

scheme is adopted in MetaStore.

At some later time, a repeatedly accessed persistable object is saved if dirty when there 

is a request for a save, thus becoming persistent. Even after an object is saved, the copy in

5



virtual memory remains until the process that created the object terminates or the object is 

deleted upon a user’s request. When a persistent object is deleted, both copies— the one in 

virtual memory and the one in the object base— are deleted.

When an object is saved and the process that created it terminates, the life of the object 

is not terminated, but goes into a dormant state. When another process similar to the one 

that initially created the object loads the saved object, the object is revived and continues 

its active life. When an object is loaded from the object base, it is treated as clean until 

modified. Once a loaded object is modified, it is almost like a newly created object. The 

only difference is that the loaded object has a version stored in the object base. Thus, the 

life of a loaded object continues as if it were a newly created one.

An object is usually loaded as a husk. A husk has pholes for its persistable composite slots 

without their values instantiated initially, although the persistable atomic slots are always 

instantiated. The persistable composite slot values of a husk are loaded when they are read 

accessed, instantiating the pholes. Thus, pholes make lazy loading possible.2 In Figure 2, for 

example, when 01 is first loaded as a husk, the loading of array-10 and list-20 is delayed 

until their corresponding slots are read accessed.

When the number of persistable objects in virtual memory reaches a certain limit, some 

objects (determined by the virtual object memory algorithm [Lee92]) are flushed to free up 

some space in order to improve the system performance. When an object is flushed, it turns 

into a husk. A flushed object is exactly like one just loaded as a husk. A husk is never 

flushed.

In Figure 2, list-20 is shared by two objects through slots d of 01 and f of 02. Handling 

the persistence of shared structures is also made possible by the use of pholes.

4 .2  P r o g r a m m e r ’s v ie w  o f  M e t a S t o r e

The application programmer’s interface to MetaStore is kept to minimum. The syntax of 

the def class macro in CLOS must be extended if we want the instances of the class being 

defined to behave as persistable objects. For example, in a user defined persistable class 

student below:

(defclass student ()
((name :initform "")
(id :initform -1)
(major :initform 'undecided)
(hobby :initform 'guitar :TRANSIENT T)) (1)

(:METACLASS PERSISTENT-METACLASS)) (2)
2PCLOS [Pae90] also uses the notion of a husk object, but with a different meaning. A husk in PCLOS 

is a placeholder for an object and is used to make memory-resident references to the instance, that is not 
yet loaded, work properly. Thus, a husk there is much like a phole in MetaStore, except that a phole is used 
for a composite slot, whereas a husk in PCLOS is used only for objects. The notion of a husk object as used 
in MetaStore does not exist in PCLOS.

6

9



two things are added to deal with persistence. First, the mandatory keyword : METACLASS in 

the line labeled (2) links a source program (the class definition for student) and the meta

code that defines the behavior of class metaobject. This line declares that the class student 
is persistable, thus making all of its instances persistable objects. Second, the optional slot 

option :TRANSIENT in the line labeled (1) declares that the slot hobby is not persistable, 

thus making its value nonpersistable even though the rest of the object is. .

4 .3  E x t e n s io n s  r e q u i r e d  fo r  p e r s is t e n c e

Extending CLOS with object persistence is a substantial undertaking, and it requires dealing 

with many aspects of the object system. It requires modifying how objects are represented, 

adding more information to each object, modifying some system provided methods, and 

setting up some conventions that application programs must abide by. Some of them are 

listed below:

• Adding an O ID to each object

•  Separating the transient from the persistable

• Keeping metaobject specific administrative information locally at metaobjects

• Adding and removing pholes at the time of a creation of or an access to persistable 

objects

• Intercepting read and write accesses to objects to support a virtual object memory

• Supporting persistence via inheritance

• Intercepting read accesses to objects to support lazy loading

•  Intercepting write accesses to objects to update dirty bits

•  Adding the slot option :tra n s ie n t to control persistence at the slot level

• Handling the persistence of shared structures

• Shadowing some system classes belonging to the metaobject protocol

• Realizing the notion of a husk

In MetaStore, we handle these via the metaobject protocol of CLOS without any help 

from the compiler or run-time support system. We describe how some of these are achieved 

in the next section.

7

*



5  F o u r  k i n d s  o f  e x t e n s i o n s

We used the metaobject protocol to make all the modifications listed in section 4.3 to CLOS. 

In this section we discuss four of these modifications, which illustrate the kinds of situations 

in which the metaobject protocol is and is not applicable.

5 .1  S t r u c t u r e  a n d  b e h a v io r  o f  o b je c t s

The metaobject protocol is ideal for language extensions that involve modifications to the 

structure of objects or simple changes to their behavior. Changes to other kinds of data 

structures (such as arrays) are much more difficult and usually require some help from user 

programs or the base language implementation level.

In addition to the user-defined slots, we maintain several other slots in each object. A 

unique object identifier and a “dirty bit” which flags unsaved objects are included. Since 

the majority of the objects in a typical model are not intended to be saved, we must be 

careful to distinguish between transient and persistable objects. This burden is borne by the 

programmer, who must choose between defining classes relative to the standard class meta

class (in the case of transience) or the derived class meta-class (in the case of persistence).

Each read or write access to a persistable object is intercepted so that appropriate actions 

can be carried out. For example, a read access may result in a composite slot being loaded 

from disk, and a write access results in a dirty bit being set.

We were able to make all these modifications by changing the appropriate methods via 

inheritance through the metaobject protocol, and we present some key ones in the following 

subsections.

5.1.1 Persistent class metaobject class

First, a specialized class metaobject class [KdRB91], pers istent-m etac lass, is defined as 

a subclass of the standard metaobject class, standard-class:

(de fc lass  persistent-m etaclass (standard-class)

0 )

The new class specifies the same structure and behavior as its superclass at this point. 

Although the structure will remain the same, if we were to want to keep extra information 

at the class metaobject class level, we would add some slots to this class. An instance of 

this metalevel class, a metaobject, say M, defines the behavior of a user level object, say 

an instance of the user class student, whose metaobject is M. Thus, the behavior of an 

instance of student is defined by M. By modifying M using the mechanism established by the 

metaobject protocol, we can achieve the extension of object persistence. These modifications 

are described in the sections below.

8

9



5.1.2 O b jec t iden tity  and creating persistable objects and  husks

At the time a persistable object is created by a call to make-instance, several things are 

taken care of: (i) Pholes are added to each composite slot if it is declared persistable. (ii) 

The necessary information for the virtual object memory is recorded, (iii) The necessary 

information for handling structure sharing is recorded.

To support object persistence and sharing, each object must have a unique identity (ID). 

This is a persistent, logical ID as opposed to a volatile ID, which is the virtual address of an 

object. In MetaStore, a reference in virtual memory from one object to another is done via 

a volatile ID, and the persistent ID is used only for addressing persistent objects. An O ID  

is added to a persistable object when it is first created and is encapsulated.

We also support the notion of a husk to support persistence at the slot level. Creating a 

husk is handled somewhat differently from creating objects. When an object is created via 

a call to make-instance, it happens in two steps:

• An instance is allocated by the protocol routine a llo ca te- instance .

• The allocated instance is initialized with values specified for i n i t f  orms in slot defini

tions.

When an object is to be loaded from disk, we could create an instance, say 01, by calling 

make-instance and then replacing the slot values of 01 with the saved values to fully recover 

the original state of the saved object. This wastes time and space because the initialized 

slots by the values specified for i n i t f  orms will immediately be replaced by the values being 

loaded from disk.

To eliminate this waste, we create a husk. A husk is also created in two steps:

• An instance is allocated by the routine a lloca te- instance .

•  Only the transient slots are initialized with values specified for in itfo rm s in slot defi

nitions.

The atomic persistable slots of a husk are instantiated by the saved values and the composite 

persistable slots are instantiated with empty pholes. These pholes will then be instantiated 

with their values when the slots are accessed.

5.1.3 Persistence via inheritance

Persistence of program data in MetaStore is done via inheritance. Treating all the data in 

a program as persistable, as is done in PS-Algol [Coc90], is impractical since about 90% 

or more of data that an application like CDRS deals with are never meant to be saved. 

Persistence via inheritance can easily partition all the objects of a program into two groups: 

persistable and transient. Even for the objects that are instances of a persistable class, only

9



a small subset ends up being saved, pers is ten t- roo t-c lass is defined in MetaStore and is 

made a superclass of each persistable user class. This is done at in it ia l iz e - in s ta n c e  phase 

of class definition via the metaobject protocol [KdRB91]. This way, a user class does not 

explicitly have to include the persistent root class as one of its superclasses. The persistent 

root class is meant to be invisible to user programs. Because the root class handles the 

object persistence, the implementation of persistence is localized to one class. .

The purpose of pers is ten t- roo t-c lass is two-fold. Structurally, it adds extra infor

mation such as an object ID (oid) and a dirty bit (d ir typ ) to each object as in:

(de fc lass  pers is ten t- roo t-c lass ()

( (o id  : in itfo rm  (make-oid :o id  (get-next-obj-or-slot- id)

:mid *current-model- id*))

(d ir ty p  : in itfo rm  t  : in ita r g  :d ir ty p  :accessor d ir ty p )

)

( :metaclass pers is ten t-m etac lass))

Behaviorally, by defining a method on pers is ten t- roo t-c lass , the following are supported 

by the persistent root class.

•  It provides the default method for checking the consistency of objects before they are 

saved. In general, the default method would be a dummy routine whose role is to 

provide a method name that both MetaStore and application programs know about so 

that MetaStore can send this message just before an object is saved. A user program 

would either overwrite the default method or define an : a f te r  method. It is quite 

common for an object to have “wrong” data in an application like CDRS which can 

be fixed by this routine before it is saved. Because MetaStore is not smart enough to 

fix inconsistencies caused by application programs, it is important for an application 

program to have the chance to fix any anomaly of an object before it is saved.

• It handles flushing out objects if the virtual object memory algorithm determines that 

an object is to be flushed out. For a detailed description of the virtual object memory 

algorithm see [Lee92].

• It handles encoding of objects for saving and decoding of them during loading. Address 

translations are done as a part of this process.

5.1.4 Accessing objects

Each access, read or write, is intercepted by using the metaobject protocol so that appropriate 

persistence related actions can be handled.

On a read access, if the accessed slot is a persistable composite slot which is not yet 

loaded, then the value of the slot is read in from disk. If the slot is a transient slot or an 

atomic slot, then the value should already be in memory and is returned. All this is handled

10

»



by modifying the behavior of slot-value-using-class method, which is the workhorse 

of the user accessible routine slot-value. It is done by defining an : around method to 

slot-value-using-class.

A write access is more complicated than a read access. On a write access, the following 

are taken care of by MetaStore with the help of the metaobject protocol:

• If a transient slot is accessed, do nothing extra. Otherwise, do the following.

• If an unbound3 slot is accessed, then set the dirty bit of the object accessed. In addition, 

if the new value is a composite value, then add a phole with its dirty bit set.

•  If both the current and new values are atomic, set the dirty bit of the accessed object.

• If the current value is atomic and the new value is composite, add a phole to the slot 

with the dirty bit set and the reference count updated. Reference counts are used 

to handle the sharing of composite slot values. Also set the dirty bit of the accessed 

object.

• If the current value is composite and the new value is atomic, update the reference 

count of the current value, and set the object’s dirty bit. This is the case where a phole 

is removed.

• If both the current and new values are composite, update reference counts of both, and 

set the dirty bit of the new value.

All this is handled by modifying the behavior of (setf slot-value-using-class), which 

is the workhorse of the user accessible routine (setf slot-value). It is done by defining 

an :around method to (setf slot-value-using-class).

5.1.5 Persistent slot-definition m etaob jec t class

When a class definition is processed, a slot-definition metaobject class is created for each 

slot. We must add an extra slot option, :transient, so that each slot can be declared as 

transient or persistable. We must do this in two different places:

• standard-direct-slot-definition: Instances of this class hold intermediate, not fully pro

cessed slot-related information from the class definition form. We define persistent- 

standard-direct-slot-definition as a subclass of standard-direct-slot-definition with an 

extra slot, tran s ie n tp , and its :initarg, :tra n s ie n t.

• standard-effective-slot-definition: Instances of this class hold slot-related information 

that has been fully processed, finalized, using inheritance rules, thus ready to be 

used at run-time. We define persistent-standard-effective-slot-definition as a subclass

3A slot is said to be unbound if it has no value at all.

11

»



of standard-effective-slot-definition with an extra slot, tra n s ie n tp , and its :initarg,

:tran s ie n t.

Thus far, we have taken care of the static parts. We also have to tell the system which 

slot-definition metaobject class should be instantiated to implement each persistable slot. 

We do it for both pe rs is te n t- s tanda rd- d ire c t- s lo t- de fin it io n  and 

pers is ten t-standard-eff ective-slo t-def in i t io n .  These are used by two generic func

tions: the former is used by direct-slot-definition-class and the latter by effective-slot-definition- 

class. Both initialization and reinitialization of instances are funneled to the generic function 

s h a re d - in it ia liz e . Here, we first make the value of slot option, .-transient, available for 

use.

There is one more thing to take care of. A rule for inheritance regarding transience of 

slots must be enforced. A slot is treated as transient only if all classes in the inheritance 

chain that define a slot with that name has the same declaration. (This was also done in 

[Pae9l].) This is done at the time effective slot definitions are computed by the generic 

function, compute-eff ective-slo t-def in i t io n .

5 .2  I n d i r e c t i o n  o n  s lo t  a c c e s s

MetaStore supports persistence at the slot level, and Common Lisp allows structure sharing. 

These two facts required us to maintain one level of indirection for each persistable composite 

slot. The contents of a persistable composite slot is a pointer to a phole, which (among other 

things) contains a pointer to the composite value.

When a user program issues a s lo t-va lue  call to a persistable slot, MetaStore must 

follow pointers and return the value stored in the phole. The implementation of Meta

Store, however, must sometimes directly obtain the phole via the same call. Supporting this 

behavior was not entirely straightforward.

The solution requires providing two different semantics for the method (s lo t-va lue ) de

pending upon where and for what purpose it is called. The metaobject protocol provides no 

support for this. Solving this problem involved making minor modifications to the protocol. 

Specifically, we had to add an extra method for accessing slot values at the protocol imple

mentation level. This kind of problem could be avoided by a minor change to the design of 

the protocol.

(s e tf  s lo t- v a lu e ) , used to modify a slot value, is the dual of s lo t-va lue , posing the 

exact same problem. A similar treatment was made for (s e tf s lo t- va lue ).

5 .3  M a i n t a i n i n g  d i r t y  b i t s

When objects are requested to be persistent, only dirty (modified) persistable objects and 

slot values are ever saved to disk. Because the smallest grain size of persistence in MetaStore 

is the composite slot, each persistable object and persistable composite slot value has its own

12



dirty bit. We will concern ourselves here with composite slots. The dirty bit of a composite 

slot is kept in its phole.

The dirty bit of an object or composite slot must be set whenever a write access is made. 

Doing this via the metaobject protocol proved difficult. Performing a write upon a slot 

value via the public interface of the containing object, i.e., via (s e tf  s lo t- va lue ), poses 

no problem because a slot access via public interface is intercepted to maintain the dirty 

bits. The problem occurs when programmers obtain a slot value via a read access and then 

mutate that value outside the object system. The following code fragment demonstrates the 

problem. •

( le t  ( ( a r r l  (s lo t-va lue  o b je c t l ’ s lo t l ) ) )

(s e tf  (a re f a r r l 3) 4 .5 ))

Here, the value (an array) of the slot s lo t l  is read and locally bound to a r r l .  The array 

is then modified. However, since this modification is not made via the phole of s lo t l ,  the 

phole’s dirty bit cannot be set. To make sure that the dirty bit is set, the user program 

could do the following.

( le t  ( ( a r r l  (s lo t-va lue  o b je c t l ’ s lo t l ) ) )

(s e tf  (are f a r r l 3) 4 .5)

(s e tf  (s lo t-va lue  o b je c t l ’ s lo t l )  a r r l ) )  ( 1)

The extra call, labeled ( l ) ,  would solve the problem since (s e tf  s lo t-va lue ) can be 

easily modified via the metaobject protocol to maintain dirty bits. However, requiring this 

extra call changes the semantics of CLOS. This is a problem-specific difficulty due to adding 

persistence to a programming language.

An expensive solution that maintains dirty bits without any help from either the appli

cation program or the compiler is described in [Lee92] although we chose to implement a 

simpler solution along the lines suggested above that requires help from user programs for 

efficiency reasons.

5 .4  P e r s is t e n c e  o f  s h a r e d  s t r u c t u r e s

Structured data in Common Lisp can be shared freely by variables and other structured 

data. This freedom adds much difficulty in supporting persistence of shared structures. We 

could not find any acceptably efficient solution within the metaobject protocol since it does 

not deal with structured data that are not objects. The central problem is that structures 

such as arrays and lists, unlike objects, cannot be given unique identifiers via the protocol.

To illustrate the problem, suppose a composite slot value, the array a l of the object 01 
in Figure 3, is ready to be saved. Also suppose that a l has another array, say a2, as one 

of its elements. Finally, suppose that a slot of another object 02 also has a2 as its value 

through a third array a3. Thus, a2 is shared indirectly by 01 and 02.

13



01:

02 :

a 3.4 al:

b

c 50

a2

a 4.6

b 45 a3:

c

Figure 3: An array shared by two objects

This sort of sharing is perfectly legal in Common Lisp. Assuming that only objects have 

dirty bits, and also assuming both 01 and 02 are dirty, if both 01 and 02 are saved, two 

copies of a2 will be saved: once by 01 and again by 02. When 01 and 02 are both loaded 

at some later time, b of 01 and c of 02 will have their own copies of the original array a2, 

say a2-l and a2-2 . This again is a problem-specific difficulty due to adding persistence to 

a programming language.

In [Lee92], a solution that, while inefficient, handles persistent shared structures entirely 

within the metaobject protocol is described. We chose, however, for efficiency reasons a 

different approach in MetaStore in which we require that composite structures be shared 

only at the slot level. This approach works because a phole can contain a unique identifier 

for a composite slot value.

6  P e r f o r m a n c e  m e a s u r e m e n t s

We present a performance comparison between objects and nonobject structured data. We 

also present performance measurements of our persistence implementation of MetaStore 

along with a few significant inefficient aspects of two implementations of the CLOS metaob

ject protocol, PCL [BS83] and Lucid CLOS [Luc90]. The machine and the configuration we 

used are not included since we are primarily interested in relative comparisons.

14



6 .1  O b j e c t s  v s . n o n o b je c t  s t r u c t u r e d  d a t a

The advantages of using object-oriented programming in software engineering are well known, 

but these advantages come with extra costs. In this section, we analyze these costs by 

examining the following aspects of CLOS: object creation, read and write accesses to objects, 

and method calls.

Transient objects are compared against data structures that are most commonly used in 

Common Lisp: arrays, structures, and lists. We used Lucid CLOS for these measurements 

since it is considered most efficient among many implementations of the metaobject protocol.

• Creation: A class of 30 slots, a structure created by def struct with 30 slots, an array 

of 30 elements, and a list of 30 elements each having a simple integer value were created

100,000 times with the following results:

Time Ratio Bytes Consed Ratio

Object

Structure

Array

List

7.20 sec 

2.00 
2.24 

4.44

1.00
3.60

3.21

1.62

19,200,288

13.600.008

13.600.008

24.800.008

1.00
1.41

1.41 

0.77

Creating objects is from approximately 2 to 4 times slower than creating other data 

structures. Class hierarchy does not seem to add a noticeable difference in either time 

or space. When different sizes of objects, structures, arrays, and lists were used, the 

relative differences between them were similar to the measurements shown above.

• Read Access: Becaiise the context in which a read access to an object is made makes a 

significant difference, we consider two cases for read accesses to an object: (i) reading a 

slot value of the “self” object within a method, and (ii) reading a slot value of an object 

within a function. These two cases were compared against the cases with structures, 

arrays, and lists. In each case, the 20th element was accessed 1,000,000 times. Memory 

consumptions on read accesses were negligible.

Time Ratio

Object (i) 

Object (ii) 

Structure 

Array 

List

1.41 sec 

40.30 

0.20 
4.04 

0.22

1.00
28.58

0.14

2.87

0.16

Read accesses to an object within a method, case (i), was about 3 to 7 times slower 

than accesses to other data structures. Read accesses to an object outside a method, 

case (ii), however was about 10 to 200 times slower than accesses to other structures.



•  Write Access: Similar experiment was tried on write accesses to objects and other 

structured data and the results were:

Time Ratio

Object (i) 

Object (ii) 

Structure 

Array 

List

1.18 sec 

39.74 

0.43 

4.72 

22.28

1.00
33.68

0.36

4.00

18.88

Write accesses to an object within a method was about 3 to 19 times slower than 

accesses to other structures. Write accesses to an object outside a method, however, 

was about 2 to 90 times slower than accesses to other structures.

• Functions vs. Methods: To measure the difference between a function call and a method 

call, the following experiment was done. A function, foo, was defined to increment 

an integer variable by 1. Because a method call requires at least one argument, foo 

is also defined with one argument. For the method case, 50 different methods, one 

for each of 50 classes of six slots, were defined with one generic function, bar. Each 

method again increments an integer variable, not a slot but a global variable as was 

done in the function case, by 1. Then, two driver functions, one for the function and 

the other for the method, were defined. Each driver function calls the function foo or 

the method bar 1,000,000 times and the resulting time is shown below. In the case 

of method calls, three different cases were sampled: (i) with ob ject-0 , an instance of 

the first class defined, (ii) with object-25, an instance of the 26th class, and (iii) with 

object-49, an instance of the 50th class.

Time Ratio

Function calls 

Method calls: object-0 

object-25 

object-49

1.98 sec 

6.00 
7.31 

7.30

1.00
3.03

3.69

3.69

The majority of the time spent on method calls are assumed to be spent on dispatching 

of the generic function call to appropriate methods. Although a method call to an 

object of the first class defined seems to be a little faster than the other cases, method 

calls in general are almost 4 times slower than function calls.

In general using objects is more expensive than using other data structures. This was the case 

with all categories that we considered: creating objects, accessing objects, and calling generic 

functions. The cost was especially significant when objects are not read- or write-accessed 

as the “self” object within a method. This suggests that only some cases are optimized.



6 .2  P C L  a n d  L u c i d  C L O S

We had originally intended to use the Lucid CLOS version of the metaobject protocol, but it 

did not have a complete implementation of slot-level metaobjects. As a result we were forced 

to use the PCL version, even though it is not an industrial-strength implementation. Since 

the performance measurements of MetaStore is based on PCL and our application CDRS 

will be running on Lucid CLOS, we present the comparison between PCL and Lucid so that 

we can predict the performance of MetaStore running on Lucid later.

We describe one significant inefficiency we found with PCL and Lucid CLOS before we 

present the measurements of MetaStore. In implementing MetaStore, a number of : around 

methods are defined to the protocol routines, the following three being the most notable: 

make-instance for creating objects, s lo t-value-using-class for read accessing an object, 

and (s e tf  slo t-value-using-class) for write accessing an object. To measure the cost 

of : around methods, an : around method was defined for each of these methods, whose body 

does nothing but calling call-next-method. The measurements in this section are based 

on PCL and we also present what we learned about Lucid CLOS where appropriate.

•  Creation: Creating 1,000 objects showed:

Time Bytes Consed

Transient

After :around methods

3.40 sec 

4.32

256.008

368.008

Ratio 1.27 1.43

Other measurements showed that creating objects with : around methods was about 

50 times slower than without in Lucid CLOS [Lee92]. In PCL we do not see as big a 

difference as with Lucid CLOS since creating objects in PCL without : around methods 

is already much slower than it is in Lucid CLOS.

• Read Access: Read accessing a slot of the “self” object 100,000 times showed:

Time

Before MetaStore 

After :around Methods

0.13 sec 

34.86

Ratio 268.15

Dummy : around methods made read accesses almost 300 times slower than the normal 

transient read accesses.

• Write Access: Write accessing a slot of the “self” object 100,000 times showed:

Time

Before MetaStore 

After : around Methods

0.11 sec 

35.90

Ratio 326.36

17



The extent to which dummy : around methods compromise the performance of both the 

PCL and Lucid implementations of CLOS belies the claim of [KdRB91] that the metaobject 

protocol is both elegant and efficient. Specializing default behavior by the use of : around 

methods is the most commonly used tool in the metaobject protocol.

Notice that in PCL we observed a 300 times slowdown when reading and writing slots, 

whereas in Lucid we observed a 50 times slowdown when creating objects. This is primarily 

due to the loss of optimization when : around methods are added. Neither of these figures 

can be tolerated in a commercial application. In fairness, we must emphasize that Lucid is 

in general far more efficient than PCL.

6 .3  M e t a S t o r e

In this section we present measurements based on our implementation of MetaStore kernel. 

This is the cost of the basic mechanism of MetaStore that allows the minimum functionality 

of MetaStore: being able to define persistable classes, being able to selectively declare slots 

to be persistable, being able to perform incremental saves, being able to load on demand, etc. 

Therefore, we maintain object identities, pholes, the object table, dirty bits, model identities 

for interfacing the object base, etc. at this level. It also includes the cost of metaobject 

classes, : around methods, and slot level persistence. Shared structures and virtual object 

memory are not included.

• Creation: The measurements were made while creating 1,000 objects.

Dummy : around methods made write accesses over 300 times slower than the normal

transient write accesses.

Time Bytes Consed

Transient 

MetaStore Kernel

3.40 sec 

56.35

256,008

6,152,008

Ratio 16.57 24.04

The MetaStore kernel made creating objects about 16 times slower than creating ob

jects without MetaStore. Creating objects in the MetaStore kernel used about 24 times 

more space than creating objects without MetaStore.

• Read Access: The measurements were made while read accessing an object 100,000 

times. A slot of the “self” object within a method was accessed that many times.

Time

Transient 

MetaStore Kernel

0.13 sec 

35.62

Ratio 274.00

18



• Write Access: The measurements were made while write accessing an object 100,000 

times. A slot of the “self” object within a method was accessed that many times.

Read accesses in the MetaStore kernel was about 270 times slower than the normal

transient read accesses.

Time

Transient 

MetaStore Kernel

0.11 sec 

254.70

Ratio 2,315.45

Write accesses in the MetaStore kernel was over 2,000 times slower than the normal 

transient write accesses.

Read accesses in the MetaStore kernel did not add any additional cost as expected because 

there is no extra work added to the read mechanism at the kernel level. The main cost added 

on object creation is due to the addition of pholes to persistable composite slots and the 

case analysis of slot values that are being used as the initial values. Write accesses added 

substantial extra cost. Most of it is caused by (i) the : around methods and (ii) the case 

analysis on the slot values in order to add or remove a phole if necessary.

If we were to eliminate the overhead caused by : around methods, object creation and 

write accesses would be about 13 and 7 times slower respectively than the transient case; 

read accesses would be about the same as the transient case.

If MetaStore were to run on Lucid CLOS with the : around overhead removed, our 

measurements predict that object creation and write accesses would be about 4 and 7 times 

slower respectively than the transient case; read accesses would be about the same as the 

transient case. Although obviously not ideal, we believe that these overheads would be 

tolerable in CDRS, which is governed by the speed of user interaction.

7  O b s e r v a t i o n s

In this section we offer our observations on why some of these modifications were difficult 

to make within the scope of the metaobject protocol. We also propose some short-term and 

long-term improvements to the metaobject protocol.

7 .1  A b s t r a c t i o n  m i s m a t c h

The metaobject protocol is designed to support language extensions that have to do with 

the structure or behavior of objects. As soon as we try to augment the language with a 

feature that is not a property of objects, the protocol is no longer sufficient.

19



As we have seen, supporting object persistence required some changes that were object 

related as well as others that were base language related. Dealing with the kinds of mod

ifications described in sections 5.3 and 5.4 was difficult because there are no metaobjects 

corresponding to the nonobject structures; i.e., there is an abstraction mismatch.

CLOS can be viewed as having five levels of implementation ranging from high-level to 

low-level: ‘

•  CLOS objects,

• Common Lisp,

• garbage collection,

• data types, and

• memory

Dealing with dirty bits and structure sharing can best be done at levels such as “Common 

Lisp” and/or “garbage collection” in the list above. In MetaStore we tried to solve these 

issues at the “CLOS objects” level, so it is not surprising that it was not natural. We had to 

leave the metaobject protocol at times to deal with these issues by devising extra mechanisms 

that required some help from user programs and/or the Common Lisp compiler.

7 .2  S h o r t - t e r m  im p r o v e m e n t s

Based on the experience of adding object persistence to CLOS in MetaStore, a few minor 

improvements are proposed here to the existing protocol. They are related to slot accessing 

as described in section 5.2. We propose that the protocol support a mechanism for one level 

of indirection on slot accesses. One possibility would be to provide two more routines as 

follows:

• s lo t-va lue-us ing-c lass-d irec t: This routine is identical in all respects to 

slo t-value-using-class, which performs read accesses to slots. We sometimes 

want to use the default behavior of s lo t-value-using-class and at other times 

the changed behavior, and this new routine would always give the default behavior. 

This changed behavior is typically obtained by specializing the default method. W ith  

the current protocol, once we modify the behavior of a method this way, we cannot 

use the default behavior anymore.

• (s e tf  s lo t-va lue-us ing-c lass-d irec t):

This is the dual of s lo t-va lue-using-class-direct for write accesses to slots.

When a method in CLOS is changed via specialization, there is no easy way to get the 

default behavior any more. We may want to extend the semantics of method combinations as

20



follows. Even after a method is specialized, we are given the option of executing the original 

version alone. This is not an easy extension to support in general since it requires elaborate 

control over all the methods: primary methods, :before methods, : a f te r  methods, and 

: around methods. The copy-as operation of Jigsaw [Bra92] would solve this problem.

7 .3  L o n g - t e r m  im p r o v e m e n t s

As discussed in sections 5.3 and 5.4, a seamless extension to CLOS of object persistence 

requires support from the base language implementation level. Judging from our experience 

with MetaStore, the metaobject protocol of CLOS seems well designed to support extensions 

to CLOS as long as the extension is inherently object-oriented.

To stay with the spirit of the metaobject protocol of CLOS to “open” up the language, 

it would be useful to push the metaobject protocol idea further down to the level of the 

base language implementation. If we could support the metaobject protocol at the Common 

Lisp data type level or at the garbage collection level, the problems that we experienced in 

MetaStore (dirty bits and shared structures) could be easily solved. W ith  this change, the 

protocol would allow more flexibility for extensions of the sort done in MetaStore. (Perhaps, 

we would then call it the metadata protocol or metatype protocol.)

8  R e l a t e d  w o r k

Metaprogramming has been used in a variety of different applications by a number of 

researchers. Interestingly, none of these researchers reported the kinds of problems with 

metaprogramming that we have observed. We believe that this is because our application 

was much more ambitious than any of the others.

Rodriguez, with Anibus [Rod91, Rod92], investigated whether it was possible to use 

the metaobject protocol approach to develop an open parallelizing compiler in which new 

“marks” for parallelization could be defined in a simple and incremental way. Anibus has 

its own metaobject protocol. Unlike the metaobject protocol of CLOS, which is intended to 

be used in executing CLOS programs at run-time, that of Anibus was intended to be used 

to map a Scheme [SS75] program to an SPMD Scheme [Rod91] program at compile-time.

The authors in [ABB+89] present three examples of how the CLOS metaobject protocol 

could be used. The first example shows how atomic objects could be implemented for 

concurrency control. Their second example outlines how persistence could be implemented 

through metalevel manipulations. This supports persistence at the object level. Their final 

example illustrates how graphic objects could be implemented via the protocol.

PCLOS [Pae90] is CLOS extended with persistence via the metaobject protocol of CLOS. 

PCLOS also supports persistence at the object level. It uses data base management systems 

for secondary storage management, which suffers from the phenomenon known as impedance 

mismatch [BM88, CM84],

21



Unlike PCLOS [Pae90] and the work described in [ABB+89], MetaStore supports persis

tence at the slot level, which we believe is critical for the performance of a CAD application. 

Therefore, neither of these efforts experienced the kinds of problems that we described in 

section 5. Two other important differences are that MetaStore, unlike [Pae90] and [ABB+89], 

supports incremental saves and persistence of shared structures.

9  S u m m a r y

The authors in [KdRB91] state that they have simultaneously achieved elegance and effi

ciency by basing language design on metaobject protocols. Our experience of extending 

CLOS with persistence via the metaobject protocol shows that current implementations do 

not live up to this claim. The extent to which even dummy : around methods compromise 

the performance of both the PCL and Lucid implementations of CLOS makes them unac

ceptable for production programming. We observed up to 300 time slowdowns in PCL, and 

up to 50 time slowdowns in Lucid. Specializing default behavior by the use of : around 

methods is the most commonly used tool in the metaobject protocol.

Nevertheless, most of the extensions required to support object persistence were easily 

carried out in the metaobject protocol. We are convinced that the idea of metaprogram

ming is the right approach for applications such as ours. A few extensions to the protocol, 

coupled with better implementation techniques, would yield a uniquely useful tool. Adding 

persistence to CLOS is no small undertaking, and the metaobject protocol is quite general, 

so we are convinced that our experience is relevant to metaprogramming in general.

The protocol is sufficient to support language extensions as long as these extensions 

involve modifying or augmenting the structure and/or behavior of objects. Since most of 

what was required to extend CLOS with object persistence was related to objects, it was 

done easily via the protocol.

To support persistence at the slot level requires one level of indirection on slot accesses 

and the current protocol does not provide this feature. We were, however, able to deal with 

this by extending the protocol by adding two more interface routines. We propose that two 

new routines be added to the protocol so that one level of indirection on slot accesses can 

be done. An even better solution would be to extend the semantics of method combinations 

in CLOS in such a way that specialized methods such as an : around method can optionally 

be skipped during execution.

There were a few difficulties that we faced that could not be resolved with the protocol 

alone. They were maintaining dirty bits for composite values and handling persistence of 

shared nonobject structured data. They are not object related and do not belong to the 

domain of the metaobject protocol. Instead they belong to the base language implementation 

level, thus requiring help from the language compiler and the run-time support system. Since 

we could not get help from these either, we handled them with some help from application 

programs. Here, we propose that all persistable data types be implemented as objects so

22



that they can be included in the metaobject protocol. This would be a significant effort and 

we consider this a long-term goal.

Well implemented objects fare well against other structured data as we showed by com

paring them against structures, arrays, and lists. Some features, however, were found to be 

very expensive to use in the current implementations of CLOS. : around method was one 

such example which slowed down slot accesses by a factor of 300 although accessing slot 

values is considered one of the most critical aspects of object performance.

R e f e r e n c e s

[ABB+89] G. Attardi, C. Bonini, M. R. Boscotrecase, T. Flagella, and M. Gaspari. Metalevel 

programming in CLOS. In Proceedings of the European Conference on Object- 

Oriented Programming, 1989.

[BM88] F. Bancilhon and D. Maier. Multilanguage object-oriented systems: new answer 

to old database problems? In Programming of Future Generation Computers II, 

K. Fuchi and L. Kott, editors. Elsevier Science Publishers B.V. (North-Holland),

. 1988.

[BDG+88] D. G. Bobrow, L. DeMichiel, R. P. Gabriel, G. Kiczales, D. Moon, and S. E.

Keene. The Common Lisp Object System Specification: Chapters 1 and 2. Tech

nical report 88-002R, X3J13 Standards Committee Document, 1988.

[BS83] D. G. Bobrow and M. Stefik. The Loops Manual. Intelligent Systems Laboratory, 

Xerox Palo Alto Research Center, 1983.

[Bra92] G. Bracha. The programming language Jigsaw: mixins, modularity, and multiple 

inheritance. Ph.D. dissertation, Dept, of Computer Science, Univ. of Utah, 1992.

[Coc90] W . P. Cockshott. PS-Algol Implementations: Applications in Persistent Object- 

Oriented Programming. Ellis Horwood Limited, 1990.

[CM84] G. Copeland and D. Maier. Making Smalltalk a database system. In Proceedings 

of the ACM  SIGM OD International Conference on Management of Data (June 

1984). ACM  SIGM OD Record 1 4 , 2 (1984).

[KdRB91] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Metaobject 

Protocol. The MIT Press, 1991.

[Lee89] A. H. Lee. An object-oriented programming approach to geometric modeling. In 

Proceedings of Evans & Sutherland Technical Retreat, Ocho Rio, Jamaica, 1989.

[Lee90] A. H. Lee. Managing hierarchical complex objects. Internal report, Evans h  

Sutherland Computer Co., 1990.

23



[Luc90]

[Pae90]

[Pae91]

[Rod91]

[Rod92]

[SS75]

[Ste90]

[Lee92] A. H. Lee. The persistent object system MetaStore: persistence via metaprogram

ming. Ph.D. dissertation, Dept, of Computer Science, Univ. of Utah, 1992.

Lucid Common Lisp/M IPS Version 4-0, Advanced User’s Guide. Lucid, Inc., 

1990.

A. Paepcke. PCLOS: stress testing CLOS: experiencing the metaobject protocol. 

In Proceedings of the ACM  Conference on Object-Oriented Programming Systems, 

Languages, and Applications, 1990.

A. Paepcke. User-Level Language Crafting— Introducing the CLOS Metaobject 

Protocol. Draft copy via personal communication, 1991.

L. H. Rodriguez, Jr. Coarse-grained parallelism using metaobject protocols. M.S. 

Thesis, Massachusetts Institute of Technology, 1991. (Also available as Tech. Rep. 

SSL-91-06, Xerox Palo Alto Research Center, 1991.)

L. H. Rodriguez, Jr. Towards a better understanding of compile-time metaobject 

protocols for parallelizing compilers. In Proceedings of IMS A ’92: International 

Workshop on Reflection and Meta-level Architecture, Tokyo, Japan, 1992.

G. L. Steele, Jr and G. J. Sussman. Scheme: An interpreter for the extended 

lambda calculus. Memo 349, MIT Artificial Intelligence Laboratory, 1975.

G. L. Steele, Jr. Common Lisp: The Language, Second edition. Digital Press, 

1990.

24

9


