
SENTINELS:

A CONCEPT FOR MULTIPROCESS COORDINATION

by

Robert M. Keller

UUCS - 78 - 104

June 1978

This work was supported by the National Science Foundation through
grant MCS 77-09369. .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• SENTINELS: ': ' a

A CONCEPT FOR MULTIPROCESS COORDINATION

Robert M. Keller
Department o f Computer Science

U niversity o f Utah
S a lt Lake C ity , Utah 84112

June 1978

Abstract

The sentinel construct i s introduced, which provides a certa in syntactic
and semantic framework fo r multiprocess coordination. The advantage
o f th is construct over others i s argued to be semantic transparency,
e f f i c i e n c y , ease in implementation, and usefu lness in v e r f ica t io n .

Key words and phrases: p ara lle lism , concurrency, synchronization, mutual
exc lu s io n , monitors, semaphores, correctness proofs, semantics.

CR ca teg o r ies: 4 .3 1 , 4 .3 2 , 4 .3 5 , 5 .24 , 6 .2 .

Introduction . ,• . ,V - , , ■. •

The area o f process coordination in operating systems has seen a . .

wide var ie ty o f constructs . A partia l l i s t includes events and queues

[Witt 66] , semaphores [D ijkstra 68] , supervisory computers [Gaines 7 2] ,

conditional c r i t i c a l regions [Brinch Hansen 7 3] , monitors [Hoare 74],

path expressions [Campbell and Habermann 74], s e r ia l iz e r s [Atkinson and

Hewitt 7 7] , atomic actions [Lomet 7 7] , and undoubtedly the l i s t w ill

continue to grow. This paper introduces another entry to the l i s t , which '

we argue has most o f the good features o f i t s predecessors, few o f the

bad fe a tu r e s , and some advantages o f i t s own. No claim i s made that

th is construct does not overlap ideas with others in the l i s t . . ^

a; The sen tin e l construct uses a queuing prim itive as a basic form

o f synchronization. More elaborate forms o f synchronization are then

b u i l t up by constructing a sequential process (a sentinel) which coordinates

other processes v ia the basic queuing prim itive .

Instead o f being a passive object, wherein processes being coordinated

are expected to carry out certa in c le r ic a l operations (e .g . causing other

processes to be scheduled), a sen tin e l i s an active process and carr ies

out such operations i t s e l f . This i s not to say, however, that a sen tin el

w il l have no periods o f in a c t iv i t y . Indeed, i t can be made a c t iv e j u s t ”

when the appropriate conditions hold, thereby avoiding busy-waiting.

F in a l ly , rather than ju s t exchanging data with processes being

coordinated, a sen tin e l can be put in control o f the execution o f statements

o f such processes . This has certa in advantages in "structured" concurrent

programming. For example, i t can elim inate the need fo r the programmer

t o s p e c i f y in stru ct io n s for both entry and e x i t o f a c r i t i c a l s e c t io n . Using

- 1 -

an appropriate s e n t in e l , he need only sp e c ify that a certain block (the

c r i t i c a l s ec t io n) be contro lled by the s e n t in e l . , v

’ . Many varia tion s on these themes are p o ss ib le . For example, the «-

"queues" could be r e s tr ic te d in length for implementation convenience.

What we sketch in th is paper i s , th erefore , ju s t one p oss ib le development

o f the concept. ̂ :.v- - . v

v ‘ Undoubtedly, the idea o f an a c t iv e synchronizing prim itive has occurred

to others-. I t f i r s t occurred to the author while working on hardware - .

modules [K eller 68] , but th is idea did not g e t written atten tion until

[K e ller 74]. A software version for achieving mutual exclusion appeared

in [Holt 71]. Why no one has sought to develop i t further i s a mystery.

Perhaps the overhead o f using an additional process for synchronization

i s viewed as being too great. However, s in ce such a process can be dormant

(or "sleeping") most o f the time, a ca r e fu lly optimized version should

be no l e s s e f f i c i e n t than the other elaborate synchronization schemes.

Furthermore, there i s some precedent for being generous with the number

o f processes . For example, [Hoare 73] suggests using a process for each

page in memory. ; ; ! - •

* • - 3 -

Process Creation . ■ a v ^ ..

Prior to introducing the sen tin e l notion i t s e l f , we must d iscuss

the s p e c i f ic a t io n - o f processes, s in ce a sen tin e l i s ju s t a special type

of process. - v —'■ •

In order to have a means for creating processes , we assume the under

ly in g mechanics for a detached mode o f execution , e .g . as with the “task"

option in PL/I [IBM 68] . For concreteness , we assume that any sy n ta ct ic

statement e n t i t y , <statement>, can be executed as a process by the statement

detach(<process references-) <statement> ̂ ,

I>v. . ■. v . .vw-y Âtij optional . ,̂*• ̂ t ̂ ̂ ̂ ^

which w i l l create a process for the statement which then runs concurrently

with the creating process. <reference> i s a variable o f type process

reference and i s assigned a reference to the created process.

Whether or not the process has completed can be determined by evaluation

o f the Bool ean

completed(<process r e fe r e n c e d

The process i s complete when the corresponding statement i s completely

executed. For example, i f <statement> i s a block, completion i s when

control leaves the block. In some .ca ses , processes w il l be created

which w il l be d e l ib e r a te ly non-terminating (but which could be aborted ’

i f the job creating them term inates). . . . -

We assume a wait u n til statem ent, which w il l delay a process u n til

a sp e c if ie d condition becomes true. To avoid busy w aiting , the condition

w il l be evaluated when the statement i s f i r s t encountered and, i f the

r e s u lt i s fa ls e , again whenever an event o.ccurs which could change the

r e s u lt to true. R estr ict ion s on the form o f the condition would l ik e ly

be imposed to improve the e f f ic ie n c y o f th is eva luation , but th is i s

not our primary concern here. Most ty p ic a l ly , we would expect to find

w ait u n til completed(<process r e fe r e n c e d T iv '

where the reference i s to some ear lier -crea ted process. : ,

An additional re la ted option provides additional convenience. This

i s the "count" option . We l e t ' . : J - r- - >

‘ ' - v ■ detach <statement> count(c) rSfi. . : ;

mean that the designated in teger variable o w il l be incremented by 1

when th is statement i s executed, and decremented by 1 when and i f the

detached process term inates. When using th is option , we would expect

to find statements o f the form ; s 1 ; r w--
saoc-'ia. ■ ■■ • . . .

. . ' . ' wait until a - 0 • ■ - v i . ' v , ,» 1

We do not wish to be d istracted here with is su e s such as "completeness"

• with or without the count option. Such d iscu ssion s are best saved for

future in v e s t ig a t io n . --

. ■ . . • •• -5- ■ . a

S e q u e l s ■

A sentinel i s a specia l kind o f process s e t up to provide a ta ilored

communication d i s c ip l in e : ' between other processes. I t does so by being

the unique server o f a s e t o f queues which are a ssocia ted with i t . The ' " ■ ■ * ■ ’
use o f queues for communicating data between processes i s well understood.

S en tin e ls add a unique feature o f allowing a statement to be placed on the

queue, in the sense that the sen tin e l can determine when that statement

i s to be executed, thus executing synchronization control over the enqueuing

process. "■ .. - ■ - - v .. ■ -

' In order to s e t up the queues, an additional option , the queue l i s t

option , i s sp e c if ie d in the detach statement. The la t t e r would then take

the form ■ : ■. r- ■ ■■

detach(<process reference>) <queue l i s t > <statement>
v__________ ^ __________ j

optional .

I t i s the queue l i s t option which ind icates that a process i s a s e n t in e l .

More p r e c is e ly , <queue l i s t > is o f the form

: ■■■ ■ ■ ; '■ qu eu es(< id en tif ier l i s t >) r , ,

where the id e n t i f i e r s are o f type queue reference. This means that

when the process i s created , a queue i s e stab lish ed fo r each entry in

the l i s t , and the reference id e n t i f i e r s are s e t so as to reference these

queues. The process created i s the server o f those queues.

I t i s expected that the statement to be executed by the process

has a declaration o f i t s queues. These queues are referenced through

reference variab les loca l to the process. Thus the declaration would
s

appear as - ■ r - - ...

queues(<queue entry l i s t >) .

where each entry in the l i s t i s o f the form t ,

' <queue reference> (< id e n t if ie r list> ^

• ■ ' optional - ■ - .

which resembles a procedure header. The <queue entry l i s t > i s expected

to correspond with the <queue l i s t > sp e c if ied when the process i s created .

The items which are communicated via queues are c a l led tokens.

A token i s a pair* comprised o f a statement and a parameter l i s t . \ .

Either o f these items may be null in various ap p lication s . The •

id e n t i f i e r s in each i d e n t i f i e r l i s t > correspond with parameters in

the ^parameter l i s t > part o f a token. k cd e al

„ A token gets created by a process, ca l led the enqueuing process, through

a statement o f the form "

The execution o f th is statement s p e c i f ie s that a token with the components

<statement>, <parameter l i s t > ^

should be placed on the referenced queue. The placement o f such a token

puts the execution o f <statement> in control o f a unique process serving

the queue. I t a lso makes any. parameters in <parameter l i s t > a c c e ss ib le

by th is server. " ' ... ■ " ... ■ - •. . •: ’

I f i t i s "data" which i s to be communicated from one process to another,

chances are that the statement part o f the token would be null and the

data would be e ith e r contained in , or referenced through, the parameter

l i s t . On the other hand, we shall see instances where the data, and

hence the parameter l i s t , i s n u l l , but the statement part is 'im portant.

queue(<queue reference> <parameter n s t > ; <statement>

optional optional

By convention, omission o f <statement>'implies the.^wZZ statement. .

The server decides that <statement> i s to be allowed to execute

by i t s e l f executing

execute <queue reference> [n] *r-

where n i s an in teger variable whose value in d ica tes the posit ion from

the head o f the queue, i . e . the end containing the statement having been

on the queue the lon gest . Once the execute statement i s executed, the

statement on the queue a t that p osit ion cannot be stopped (a t le a s t not

at the lev e l o f the language we are d escr ib in g). I t i s removed from the

queue and cannot be re-executed. .

* The number » above always r e fers to the posit ion among the remaining

e n tr ie s . Thus always using

execute <queue reference> [1]

provides a FIFO d is c ip l in e . S im ilar ly , i f we introduce-

last(<queue referen ced ,

which eva luates to the p osit ion o f the l a s t remaining entry,

execute <queue reference> [last(<queue r e fe r e n c e d] *

provides a LIFO d is c ip l in e when used u n iv ersa lly .

I t i s q u ite p o ss ib le that o n e ' is in ter ested only in FIFO d is c ip l in e s ,

in which case [n] could, o f course, be omitted from the language.

We adopt the convention that the expression •

last(<queue r e fe r e n c e d = 0

i s true e x a c t ly when the corresponding queue i s empty. We use the

abbreviation • .

. empty(<queue r e fe r e n c e d

for th is expression , and

non-empty(<queue r e fe r e n c e d

for i t s negation. . .

• . - 7 -

We allow the detached mode o f execution for an execute statement,

v iz .

detach(<process r e fe r e n c e d execute <queue referen ces [«]

Since the token i s already a statement in another process, namely the

enqueuing one, execution can be optimized so that no new process i s a c tu a lly

created.,, •

' In order for a server to reference the parameter l i s t o f a token,

we use the form .

<queue parameter> [n]

to re fer to the named parameter o f the n-th entry.

" 8 -

Interim Summary ^

Before proceeding to examples, we b r ie f ly sunmarize the concepts

put forth in the preceding se c t io n s . F ir s t , we gave a way o f representing

process crea tion . Then we introduced the concept o f a sentinel process,
. . . *

which may be created with a number o f queues and which becomes the server

o f those queues. Other processes (ca lle d enqueuing processes) in ter a ct

with the sen tin e l by specify ing a queue, p oss ib ly with some parameters,

and a statement. The statement and parameters comprise a token which

i s placed on the queue. This allows the server o f that queue to in tera ct

with the enqueuing process through the parameters, and to control execution

o f the statement'. The enqueuing process does not proceed until the s t a t e

ment i s completely executed.

Examples ' . ■ ' ■ - ;

We now attempt to c la r i f y the preceding informal d e f in it io n s by

programming a number o f standard examples.- ■ iii • ■

Example Semaphores [D ijkstra 68] : A minimum a c c e p ta b ility requirement

for a synchronizing construct i s that i t be able to implement a semaphore.

The semaphore implementation shown below uses a sen tin e l with two queues.

The usual P and V operations are represented as c a l l s on a null statement

with one o f these queues sp e c if ie d . The private loca l storage used in ‘

the sen tinel corresponds to the usual "semaphore data structure". We thus

have the follow ing correspondences: . • ■
■ "■■■■• '•'i'-V .. 'VI? . + - . • •• ; ■

' ■' * tj'fr - :S i r
• . (next page)

- 1 0 -

To s e t up the semaphore, execute: ̂ ..

detach queues(P, 7) c a l l sem apfore(^in itia l value>)

To do the P operation on the semaphore, execute

queue(?) .

S im ilar ly , to do the V operation, execute *

queue (7)‘

A second semaphore might be s e t up by

detach queues(P2j Vl) c a l l sem apfore(< in itia l value>)

and the corresponding statements would be queue(Pi) and queue(yi).

The code for a semaphore sen tin el i s as fo llow s:

procedure semaphore(natural number in itia l-sem -val) queues(P, V);
in teger sem-val;

sem-val := in itia l-sem -val;

loop
wait u n til non-empty(P) v non-empty(7); *
i f non-empty(p)

then • .
....... i f sem-val = 0 ■ _ ,. , ,, . .

then ' !
- wait until non-empty(7);

detach execute 7 [1] "
• e l s e

sem-val := sem-val - 1
f i *» • .

detach execute P [l]
e l s e

detach execute 7 [1];
sem-val := sem-val + 1

f i '
. Pool
end semaphore;

- 1 1 -

Example M utually-exclusive execution o f procedures. To cause a s e t

o f procedures to be executed m u tu a lly -exc lu s ive ly , ca l l each according
. ' • • - • - - -X - ■ • ' ■ '

to the fo llow ing: •

• queue(m) <procedure ca ll>

where M i s the queue o f a sen tin e l formerly created by : •

. ... detach queues(m) c a l l mutex ^

The code fo r the mutex sen tin e l i s as fo llow s:

. procedure mutex queues(port); . ’ • #

, loop
iH- ■■ wait until non-empty(port); '

• execute p o r t [l] ’ • .
- : ' pool : »• ;;\ ̂ <5 ; .■ - ,.,V ■ ’

end mutex', . .

The fa c t th a t the execute i s not detached i s what provides mutual exc lu sion .

■_ • .■ -rJ: : A s ~ . ■

• ‘ ‘ - • . . •
. . • _ . ;-.q . , '

* * ,
In the semaphore and mutual exclusion examples, no information was

passed to the sen tin el in the form o f queue parameters. The follow ing

example i s the f i r s t we sha ll see in which th is feature i s used. •

- 1 2 -

Example Message buffer. . ■OTli

To crea te buffer o f s iz e n: . ^

detach queues(inq, outq) c a l l message-buffer(n)

'To en ter message mes, execute:
* . .

queue(inq(mes)) ,

To remove message mes, execute: ... ■ >4«.; , :: ,

 ̂ ^ queue[outq(mes))

procedure message-buffer(natural number n)
queues (in<?(message inmes), out^(message outmes))\

array buffer[0 .. n - l] o f message; .
in teger int out3 count;
in := out := 0; ’ ;1,

. count := 0; . '
loop

wait until non-empty(inq) v non-empty(outg);
i f non-empty(inq)

. then ■ ;■ s ■£-' •. ., * a k• , * » */ ,*\tf • - / v-v
. i f count < n .
. then *

buff errin'] := inmes[1];
’ detach execute inq[1] ;

in := (in + 1) mod n;
. count := count + 1

e ls e
wait u n til non-empty(outq)

. f i
f 1 ; •

i f non-empty(outq) • .
then

i f count > 0
then

outmes[1] := buffer[out];
detach execute outq[1] ;

. out := (out + 1) mod w;
count := count - 1

e l s e
• wait u n til non-empty(inq)

■■ f i • . . ' . . • ■■
f i ‘ ■■■ : - ' . ■

pool •
end message buffer;

• • - - 1 3 -

- 1 4 -

Example FIFO readers/w riters

To create s e n t in e l :

detach queues{RW) c a l l readers-writers-}

There w il l be a s in g le queue, and the parameter value 0 or 1 w il l indicate

reading or writing resp ec t iv e ly . . .

To "read" via a statement, use •: .

queue (rw{0))

To "write*1 v ia a statement, use ■ .

queue(RW(1))

procedure readers-writers - 1 queues {entry{ in teger ty p e))’,
in teger counter; *
counter := 0 ;
loop ..

wait u n til non-empty{entry) \
i f type[1] = 0

then .
detach execute en tryl1] count{counter)

e l s e
wait until counter ~ 0 ;
execute en tryl1]

• f i
pool

end readers-writers- 1 ;

• . -15-

Example Readers/writers with various types o f p r io r i ty . For each o f

the following versions o f readers/w riters, two queues are usedi
. ' •

To create se n tin e l:

detach queues (read, write) cdil\readers-writers-n

where n i s a version number (2 or 3) . •

To “read" with procedure, use : :

- . ~ ■ queue(read)

To "write" with procedure, use . - - - .

....... queue{write) „ . >a t

The code for various versions fo llow s:

procedure reader-w riters-2 queues{read, w r ite) ;
; comment: w riters have p r io r ity ;

in teger readers;
readers := 0; .
loop

' wait u n til non-empty{read) v non-empty(write);
. i f non-empty(write) *

then
wait u n til readers = 0 ; .
execute u r £ te [l]

e l s e
detach execute readl1] count{readers)

■ f i
pool •

end reader-w riters-2; •

- 1 6 -

procedure reader-writers-3 queue(reaJ, w rite)\
comment: a l l readers and w riters have a f a ir chance
in teg er readers;

... readers := 0;
loop

wait u n til non-empty(read) v non-empty(write);
i f non-empty(write)

then
wait until readers = 0 ;
execute w rite[1]

f i ; . •
. i f non-empty(read)

then
detach execute readl1] count(readers)

' ' f i
pool

end reader-writers-3 ;

• • ‘ 1 7 “ ,

We now summarize the advantages o f the sen tin e l concept:

1. S en tin e ls are ju s t processes , so th e ir understanding does not en ta il
any su b s ta n t ia l ly new concept. ' Only the enqueued statements which
accompany processes served by s e n t in e ls require any extension o f ‘
standard semantics. ~

2. S en t in e ls are easy to understand. The code for a sen tinel i s usually
seq u en tia lly executed. Waiting occurs a t w ell-defined p o in ts , with
c lea r semantics. ' •

3. S en t in e ls have no "hidden" or unspecified scheduling d is c ip l in e . I t
i s u sually obvious from inspection what queue i s served next.

4 . S en tin e ls can be constructed without the s in g le queue "bottleneck". *
M ultiple queues are used for t h is purpose. This e lim inates some o f
the anomalies c ited in [Lipton 73].

5. M ultiple queues a v a ila b le with s e n t in e ls allow the communication
o f information by queue s e le c t io n and a lso the sorting o f processes
in to c la s s e s when order o f arrival i s irre lev a n t .

6 . S en tin e ls provide a way o f avoiding the p o s s ib i l i t y o f "unmatched
brackets" in synchronizing operations (c f . [Greif 7 5]) . For example,
i t i s unnecessary to have separate e n tr ie s for s ta r t -w r ite and end-
w rite .

7. S en tin e ls with simple waits can be implemented e f f i c i e n t l y through
compiler optim ization , y e t do not prohib it th e ir user from constructing
m ore-exotic but perhaps l e s s - e f f i c i e n t w aits.

8 . The sequential combination o f w a its , such as allowed in s e n t in e ls ,
i s o ften more e f f i c i e n t and e a s ie r to design than a s in g le combinatorial
cond ition .

9. For s e n t in e ls with sequential programs and simple w a it s , correctness
can o ften be proved using only sequential program proof techniques.

10. Dynamically created se n t in e ls o f fe r no unique implementation problems.*

11. S en tin e ls provide customized s e le c t io n o f processes from queues (rather
than a f ixed d is c ip l in e) and for p r io r ity execution as desired by
the programmer. . ,

12. A lib ra ry of "standard" se n t in e ls i s e a s i ly maintained.

13. The issu es o f resource protection and synchronization mechanism can
be separated through use o f s e n t in e ls .

With regard to property number 13, i t should be a simple matter for

a protection mechanism to force access to certa in objects through certa in

procedures (c f . [Wulf, e t a l . 74]).'Ttwis,- the mechanism could e a s i ly

be extended to force the use o f a certa in ta g , which causes coordination

by a s e n t in e l . - ■--- -"**

. - 1 8 -

’ • -19-

Comparison with Other Synchronizing Constructs

Although se n t in e ls have ideas in common with many proposals, i t appears

that they have the most in common with s e r ia l iz e r s [Atkinson and Hewitt 77].

Although i t may be due to our lack o f intimate fa m il ia r ity with the actor

model on which s e r ia l iz e r s are based (se n t in e ls are based on sequential

programs), i t appears th a t s e r ia l i z e r s lack a t l e a s t properties 1 , 2 ,

and 11 above. Unlike s e r i a l i z e r s , processes do not "possess" control

o f s e n t in e l s . The la t t e r are independent processes in th e ir own r ig h t .

A lso, s e n t in e ls need not e x p l i c i t l y relay messages to processes using

resources, enhancing the a b i l i t y o f the system to enforce protection .

Monitors [Hoare 74] are a lso c lo s e ly re la ted , but appear to lack

properties 1, 3, 4 , 5, 6 . Regarding property 3, [Howard 76] describes

numerous p o ss ib le in terpreta tion s for the underlying scheduling in monitors.

Although Hoare gave a s p e c i f ic in ter p r eta t io n , i t appears th a t i t may

be l e s s than transparent to the programmer. Although monitors as described

in [Hoare 74] are not dynamically crea ta b le , extension to allow th is

presents no real problem. - - . . .
i' ..

Path expressions [Campbell and Habermann 74] bear a certa in s im ila r ity

to s e n t in e ls . However, as proposed.in the c ite d reference , they are

apt to leave aspects o f implementation arb itrary , which s e n t in e ls avoid ’

doing. A lso, the "completeness" o f path expressions seems more subject

to question than the completeness o f s e n t in e l s , the former being based

on regular expressions. We conjecture that there i s an algorithm for

producing from any path expression a sen tin e l implementation, and that

th is i s true for path expressions which lack many o f the r e s tr ic t io n s

imposed in the reference c i t e d . A lso , unlike monitors and path expressions,

se n t in e ls need not encase th e ir resources. Hence the same sentinel
. • .

procedure can be used for any number o f d if fe r e n t resources o f d ifferen t

types. " -

Conditional c r i t i c a l regions [Brinch Hansen 73] appear to lack properties

1* 3, 5, 8 , 9, and 11. Conditional c r i t i c a l regions are apt to be rather

opaque to the programmer without knowledge o f . th e underlying scheduling

d is c ip l in e s , p a r t ic u la r ly when the change o f a variab le causes more than

one awaited condition to become true sim ultaneously. 5! - . .

Atomic action s [Lomet 77] form another type o f coordination construct.

Like the others being compared here, they a lso have the property that t

the processes being coordinated are responsible fo r carrying out the

actions in sid e the prim itive . Consequently', the method o f dealing with

c o n f l ic t in g c a l l s to the prim itive i s opaque to the programmer. This

i s in constrast to the s e n t in e l ' s use o f e x p l i c i t p o llin g o f requests

to make the treatment o f c o n f l ic t in g c a l l s transparent.

’ The supervisory computer concept [Gaines 72] does use the notion o f

an a c t iv e process which coordinates other processes . I t does not g ive

a language construct per s e , nor does i t put the control o f s in g le statements

under control o f the synchronizing prim itive . The programs are written

on a lower le v e l than s e n t in e ls and no b u i l t - in queuing i s provided.

Proofs or. ..V ^jnsv S. c-, - \ r

At th is s tage , we have not had much experience in proving properties

o f s e n t in e ls . I t i s c le a r , however, that sequential program proof techniques

can be used for proving invariants to a large ex ten t , thanks to the sequential

nature o f most s e n t in e ls . Although there are concurrent tra n s it io n s to be

considered, namely processes jo in ing queues and detached processes completing,

these can be kept under control by careful programming. . C > ■ r«A " 'K«S * ti ■

I t i s too early to attempt a s e t o f formal proof r u le s . We can make'.

some observations however. For any queue q i f P i s a predicate not referring

to q , the fo llow ing i s a va lid inference rule:

v now P ■

' . / wait u n til non-empty(<7) \

now P a non-empty(c?) .
t

Here now in d ica tes an invariant a ssertion for that point in the program.

This ru le i s v a lid because a process cannot leave the queue once i t jo in s

i t , other than through an execute in stru ction in the s e n t in e l .

On the other hand, the follow ing would not be va lid :

now P •

• / wait until empty(<?)>

now P a empty(^)
• V. /

because a process may jo in the queue a fter the wait i s s a t i s f i e d , without

any action on the part o f the s e n t in e l . We can summarize th is d is t in c t io n

by saying that non-empty i s a monotone predicate whereas empty i s not,

where monotonicity o f a predicate within a sen tin e l means i t s invariance

within a s e n t in e l , r e la t iv e to the behavior o f enqueuing processes.

- 2 1 “

- 2 2 -

S im ilar ly , i f we use a variable count to count the number o f detached

processes in a certa in category, then for any N not occurring in P, we

have a 'ru le •

• -• J now P

wait u n til count < N)

- now P a count < N

Based on such considerations, we have annotated the semaphore, sen tin el

program with invariant a s se r t io n s , as shown on the following page.

comment: body o f procedure semaphore annotated with assertion s;

comment: ncm> ind icates ah invariant a t that execution point in the program;

comment: henceforth ind icate an invariant for each execution point to follow;

comment: P and 7 are the sequences o f P and 7 tokens executed; resp ectiv e ly ; ex ex ♦ " • •
comment: A(x) abbreviates |P | + x - \v | + in itia l-sem -val\ -

@05

henceforth in itia l-sem -val > 0; • •
sem-val :* in itia l-sem -val; ; y % , iw .• ..
henceforth sem-val > ,0; ' : '■ ' ■ ' ^
loop .

now A(sem-val)\ ■ • _
wait u n til non-empty(P) v non-empty(7); . ’
now(non-empty(P) v non-empty(7)) a A(sem-val);
i f non-empty(P)

• then ! • .
now non-empty(P) a A(sem-val)\

• f. i f sem-val = 0 .
• then .

• now non-empty(P) a A(sem-val) a sem-val - 0;
• wait u n til non-empty(7);

now non-empty(7) a non-empty(P) a A(sem-val)\
detach execute 7 [1];
now non-empty(P) a A(sem-val + 1) ;

e ls e
now non-empty(P) a a (sem-val);
sem-val := sem-val - 1;
now non-empty(p) a A(sem-val + 1) ;

f 'i ;
now non-empty(P) a A(sem-val + 1) ;
detach execute P [l] ;
now A(sem-val); .

e l s e
now non-empty(7) a A(sem-val)\
detach execute 7 [1];
now A(sem-val + 1) ;

* sem-val := sem-val + 1;
now A(sem-val)\ .

f i
now A(sem-val)\
pool

- 2 3 -

- 2 4 -

In general, we would l ik e a h igh-level scheme for s ta t in g correctness

o f s e n t in e ls (i . e . a denotational semantics) , and a method for proof

o f such correctness . The internal invariants are l ik e ly to form only

one part o f such a proof. The kind o f scheme we seek has not yet been

developed. However, we g ive an example to show what form such a scheme

might take, with an accompanying informal proof.

Claim le t t in q P and 7 denote the sequence o f statements from queues ----- ex ex
P and 7 , r e sp e c t iv e ly , which are executed, and P. and V. denote the

sequence o f statements which enter the queues, we have correct operation

o f the semaphore s e n t in e l , as defined by the equations

7 = 7 . ‘• ■ ex xn ■ ■ ' ■ . ■ ■

- 2 5 -

. • ■ ■ ■ ■■ p = <P. > --.i-.i'
ex xn \ + in itia l-sem -val ! r

• •. .. :.;■■■>, . 1 ■ ..

The notation i s that 1*1 represents the length o f sequence X and <X>n denotes

the f i r s t n components o f AT, or $11 o f AT i f there are fewer than n components.

These equations g ive a denotational semantics fo r the long-range behavior

o f the semaphore, in the s p i r i t o f the equations in [K eller 78]. They hold

whether the' sequences P. and 7 . are f i n i t e or i n f i n i t e . The reader w il l ̂ xn xn
a lso npte a s im ila r i ty to the "semaphore invariant" in [Habermann 72]. .

Proof Since a l l executes are done on the f i r s t queue element, we immediately

have the in e q u a l i t ie s (where <_ denotes i s a prefix of) *

V < V.• ex — xn - • ■

P < P . ’ V : .ex — xn

We are thus l e f t with showing - '

\v I = \v. I 1 ‘ : ■ ■‘v-’ •, . ' e x ' 1 xn' . , f

■ IP^I = m in (|P { n | , |7 i n | + in itia l-sem -val) ..

To prove the f i r s t eq u a lity , suppose to the contrary th a t \ v \ f \v . \.

Since V < V. , we have that 17 I < 17 . I. Notice that each ite r a t io n• ex — xn 1 ex' 1 xn' . .
o f the loop must execute a P or a 7. From the invariant assertion s in the

' • - 2 6 -

annotated version o f the procedure, we see that a t any time only f i n i t e l y -

many P 's can be executed before e i th e r a V must be executed or waiting

occurs. At th is p o in t, i f \v | < \v. | , then another V can be executed.
*1>YI

Hence the long-range behavior cannot have Iv ^] < l ^ n l* : ^

For proof of the second in eq u a lity , we examine two cases:

(i) |P . I < |F . I + in itial-sem -val.

. (i i) |P . I > 17 . I + in itia l-sem -val, •
- ' 7 1 i n ' 1 ^ t t l

ia; In case (i) , i t s u f f ic e s to show that the follow ing g ives a contradiction:

.iSiK (i i i) iP gJ < \Pin \ i1-, / O o

Since every loop i te r a t io n executes a P or V and the P queue i s polled f i r s t

on each i te r a t io n , t h is im plies that the sen tinel must s top , waiting a t the

statement . .-v. . s.th-iTf nr v. r u . . :.t . i • * • v -
■ ' . ■ • • ■ T : .

* Xv wait u n til non-empty(7) r ^ -

The invariant which precedes th is statement gives us .

A(Q)i |P | = \V | + in itia l-sem -val "" .

But we already proved that v = v. , so J r ex ^n
. |P I = 17 . I + in itia l-sem -val. 1 ex1 1 ^n'

and combining th is with (i) , we get ~ > :

which does indeed contrad ict (i i i) . ; ,

S im ila r ly , in case (i i) , i t s u f f ic e s to show that the follow ing g ives

a contrad iction: "• Y' r;: ■B‘

(1V) \Fex̂ * \Vin ̂ + in i t ia l-sem-val .t-',y,,p9 ' i : f ; u . ̂

i - i A s .u .n - J V, j s t i * isv& i vi j■ ■ - j , : . . . 1 ‘ .. "•>; ' " : n ; " :, ■

■ w:. r [5 • ' " v r t . -j t v. \ s 'lo

We in fe r from the a ssert ion s in the program that A(sem-val) v A[sem-val + 1)

i s in var ian t, and s in ce sem-val > 0 i s a lso invariant and 7 = 7 . has

been proved, we have

|P I < 17 . I + in itia l-sem -val 1 ex' — 1 vn' ,

With (i v) , th is g ives

(v) |P | < 17 . j +. in itia l-sem -val

So'from (i i) , and (v) , we have

. • ' ■ |P | < |P . | .1 ex' ' rn x
Once again , t h i s im plies that the sen tin e l stops at

wait until non-empty(7)

where the invariant A[sem-val) a sem-val - 0 g ives

IP I = 17 . I + in itia l-sem -val . 1 ex' 1
which con trad icts (v) , as desired. .

- 2 7 - •

• - - 2 8 -

Conclusions and Future Research n r ' ■ r i . - ;■ n ?y

We have introduced the sen tin e l construct as a means o f achieving

ta i lo r e d communication d is c ip l in e s between processes. As pointed out,

• t h i s construct has features in common with other proposals for synchronizing

co n stru cts . We fe e l that the sen tin e l reta in s the most d es irab le features

o f each o f these . I t a lso adds new elements. In p art icu lar , i t allows

the programmer to sp ec ify scheduling which cannot be s p e c if ie d in some •

other schemes, without imposing undue com plications. I t separates scheduling

a ct io n s from the processes being scheduled, in contrast to other approaches

in which the synchronizing construct i s p ass ive , wherein the processes

being synchronized are required to do any necessary bookkeeping. F in a lly , .

i t adds the feature o f having statements be a component o f enqueued token,

which we fe e l i s useful in "separation o f powers" when protection i s a t

i s s u e .

We have l e f t unexplored many v a r ia t io n s , e . g . r e s tr ic t in g queue lengths

(sa y , to 1) . Although an example o f a correctness proof was presented,

much remains to be explored in t h is area, both formal and informal.

Acknowledgement . ' .

The comments o f Professors John Smith and Gary Lindstrom and the

typing o f Karen Evans are g rea t ly appreciated.

[Atkinson and Hewitt 77] R. Atkinson and C. Hewitt. Synchronization
in actor systems. Proc. 4th ACM Conference on Princip les o f Programming
Languages, 267-280 (Jan. 1977). ,,

[Brinch Hansen 73] P. Brinch Hansen. Operating system p r in c ip le s . ,
Prentice-Hall (1973). , .. .

[Campbell and Habermann 74] R. H. Campbell and A. N. Habermann. The
s p e c if ic a t io n o f process synchronization by path expressions. In Gelenbe
and Kaiser (e d s .) , Operating Systems, Springer Lecture Notes in Computer
Science, 16, 89-102 (1974).

[D ijkstra 68] E. W. D ijkstra. Cooperating sequential processes. In F. .
Genuys (e d .) , Programming Languages, Academic Press (1968).

[Gaines 72] R. S. Gaines. An operating system based on the concept
o f a supervisory computer. CACM 1 5 , ‘3, 150-156 (March 1972). .

[G reif 75] I . G reif. Semantics o f communicating p aralle l processes.
MIT Project MAC TR-154 (Sept. 1975). . .

[Habermann 72] A. N. Habermann. Synchronization o f communicating processes.
Comm. ACM 15., 3 , 177-184 (March 1972). . . .

• [Hoare 73]' C. A. R. Hoare. A structured paging system. Computer J . ,
16, 3, 209-215 (1973). ‘

[Hoare 74] C. A. R. Hoare. Monitors: an operating system structuring
concept. CACM 17, 10, 54-557 (Oct. 1974).

[Holt 71] R. C. Holt. On deadlock in computer systems. Tech. Rep.
CSRG-6 , Computer Systems Research Group, U niversity o f Toronto (April 1971).

[Howard 76] J. H. Howard. S ignalling in monitors. Proc. Second International
Conference on Software Engineering, 47-52, IEEE 76CH1125-4C (Oct. 1976).

[IBM 68] PL/I reference manual. IBM form C28-8201-1 (March 1968).

[K eller 68] R. M. K eller. Analysis o f implementation errors in d ig i ta l
computing systems. Washington U niversity Computer Systems Laboratory
TR 6 (MS T h e s is) , (March 1968). U.S. Government RD Report AD 669-812.

[K eller 74] R. M. K eller. Towards a theory o f universal speed-independent
modules. IEEE Trans, on Computers, C-23, 1, 21-33 (Jan. 1974). .

[K eller 76] R. M. K eller. Formal v e r i f ic a t io n o f para lle l programs.
CACM 19, 7, 371-384 (July 1976). .

[K e ller 78] R. M. K eller. Denotational models fo r .p a r a l le l programs
with indeterminate operators. In E. J. Neuhold (e d .) , Formal d escription
•of programming concepts, 337-366, North-Holi and (1978).

‘ 2 9 -

R e f e r e n c e s ■ v/:,, \

[Lipton 73] R. J . Lipton. On synchronization prim itive systems. Ph.D.
T hesis , Carnegie-Mellon U niversity , Department o f Computer Science (1973).

[Lomet 77] D. B. Lomet. Process structuring , synchronization, and recovery
using atomic a c t io n s . Sigplan N otices, 12 ̂ 3 , 128-137 (March 1977). j

[Schmid 76] H. A. Schmid. On the e f f i c i e n t implementation o f conditional
c r i t i c a l regions and the construction o f monitors. Acta Informatica,
227-249 (1976). . • . . . v, , ■ ri* ■ • , . ̂ '

[Witt 66] B. I. Wit t . . The functional structure o f 0S/360, Part II: Job
and task management. IBM Systems J . , J5, 1, 12-29 -{1966).

[Wulf, e t a l . 74], W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin,
C. Pierson, and F. Pollack. Hydra: The kernel o f a multiprocessor operating
system. CACM 17, 6, 337-345 (June 1974).

- 3 0 -

■ . . , , ' : ^ Yam-

rts.'V -i M ,,:i. r<?-; ;
\ , t \ c j : m ,

; v -\ ^ -''"-jatc ? r r - - v - . ,'V*: ,1 .A

n * * • \ • . - w . . *. „ :. .. • j r ;•v «. r 5 - ■ ■ , »
■ c ‘ ur?..Y: ■ , ■■ " \

i : "O j i I, . . . -:;

* - ■ ' : : ' c ‘ B 3 r •
" ’v*' ■r_- ,,

-;oc' ~v " v'

, .. . i5*') • - -• u ' d > .. 3V; C 7 K' i I. . T : l 7' •

j f ' iv„

;='T|5'4 ' f 62'V'iV-f jjiJ ^ 0

.' i U. o ^O fo 'iioT T J ■'!$■'/ . | ■> .7 %;«, f: j" |

T % m "'‘S ' 2- . . -i5t ... :
, ' ; ‘ ' » ■...................... .

1 : ' ’ - ■
■ ' ■ ■ r- i : , ■: . t - -■ .. . r... . .

k .

