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Abstract

The sentinel construct i s  introduced, which provides a certa in  syntactic  
and semantic framework fo r  multiprocess coordination. The advantage 
o f  th is  construct over others i s  argued to  be semantic transparency, 
e f f i c i e n c y ,  ease in implementation, and usefu lness  in v e r f ica t io n .
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Introduction . ,• . ,V  - , ,  ■. •

The area o f  process coordination in operating systems has seen a . . 

wide var ie ty  o f  constructs . A partia l l i s t  includes events and queues 

[Witt 66] ,  semaphores [D ijkstra 68] ,  supervisory computers [Gaines 7 2 ] ,  

conditional c r i t i c a l  regions [Brinch Hansen 7 3 ] ,  monitors [Hoare 74], 

path expressions [Campbell and Habermann 74], s e r ia l iz e r s  [Atkinson and 

Hewitt 7 7 ] ,  atomic actions [Lomet 7 7 ] ,  and undoubtedly the l i s t  w ill  

continue to  grow. This paper introduces another entry to  the l i s t ,  which ' 

we argue has most o f  the good features o f  i t s  predecessors, few o f  the  

bad fe a tu r e s ,  and some advantages o f  i t s  own. No claim i s  made that  

th is  construct does not overlap ideas with others in the l i s t .  . ^ 

a; The sen tin e l construct uses a queuing prim itive as a basic form 

o f  synchronization. More elaborate forms o f  synchronization are then 

b u i l t  up by constructing a sequential process (a sentinel) which coordinates  

other processes v ia  the basic queuing prim itive .

Instead o f  being a passive object, wherein processes being coordinated 

are expected to  carry out certa in  c le r ic a l  operations ( e .g .  causing other  

processes to  be scheduled), a sen tin e l i s  an active process and carr ies  

out such operations i t s e l f .  This i s  not to say, however, that a sen tin el  

w il l  have no periods o f  in a c t iv i t y .  Indeed, i t  can be made a c t iv e  j u s t  ” 

when the appropriate conditions hold, thereby avoiding busy-waiting.

F in a l ly ,  rather than ju s t  exchanging data with processes being 

coordinated, a sen tin e l can be put in control o f  the execution o f  statements 

o f  such processes . This has certa in  advantages in "structured" concurrent 

programming. For example, i t  can elim inate  the need fo r  the programmer 

t o s p e c i f y  in stru ct io n s  for both entry and e x i t  o f  a c r i t i c a l  s e c t io n .  Using
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an appropriate s e n t in e l ,  he need only sp e c ify  that a certain  block (the  

c r i t i c a l  s ec t io n )  be contro lled  by the s e n t in e l .  , v

’ . Many varia tion s  on these themes are p o ss ib le .  For example, the «- 

"queues" could be r e s tr ic te d  in length for  implementation convenience.

What we sketch in th is  paper i s ,  th erefore , ju s t  one p oss ib le  development 

o f  the concept.  ̂ :.v- - . v

v ‘ Undoubtedly, the idea o f  an a c t iv e  synchronizing prim itive has occurred 

to  others-. I t  f i r s t  occurred to  the author while working on hardware - . 

modules [K eller  68] ,  but th is  idea did not g e t  written atten tion  until  

[K e ller  74]. A software version for  achieving mutual exclusion appeared 

in [Holt 71]. Why no one has sought to  develop i t  further i s  a mystery. 

Perhaps the overhead o f using an additional process for  synchronization  

i s  viewed as being too great. However, s in ce  such a process can be dormant 

(or "sleeping") most o f  the time, a ca r e fu lly  optimized version should 

be no l e s s  e f f i c i e n t  than the other elaborate synchronization schemes. 

Furthermore, there i s  some precedent for  being generous with the number 

o f  processes . For example, [Hoare 73] suggests using a process for each 

page in memory. ; ; ! - •
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Process Creation . ■ a v ^ ..

Prior to  introducing the sen tin e l notion i t s e l f ,  we must d iscuss  

the s p e c i f ic a t io n - o f  processes, s in ce  a sen tin e l i s  ju s t  a special type

of  process. - v —'■ ..... •

In order to have a means for  creating  processes , we assume the under

ly in g  mechanics for  a detached mode o f  execution , e .g .  as with the “task" 

option in PL/I [IBM 68] .  For concreteness , we assume that any sy n ta ct ic  

statement e n t i t y ,  <statement>, can be executed as a process by the statement 

detach(<process references-) <statement>  ̂ ,

I>v. .  ■. v . .vw-y Âtij optional . ,̂*•  ̂ t  ̂  ̂  ̂ ^

which w i l l  create  a process for  the statement which then runs concurrently  

with the creating  process. <reference> i s  a variable o f  type process 

reference and i s  assigned a reference to  the created process.

Whether or not the process has completed can be determined by evaluation

o f  the Bool ean ..................... ....

completed(<process r e fe r e n c e d  

The process i s  complete when the corresponding statement i s  completely  

executed. For example, i f  <statement> i s  a block, completion i s  when 

control leaves  the block. In some .ca ses ,  processes w il l  be created  

which w il l  be d e l ib e r a te ly  non-terminating (but which could be aborted ’

i f  the job creating them term inates). . . .  -

We assume a wait u n til statem ent, which w il l  delay a process u n til

a sp e c if ie d  condition  becomes true. To avoid busy w aiting , the condition

w il l  be evaluated when the statement i s  f i r s t  encountered and, i f  the

r e s u lt  i s  fa ls e , again whenever an event o.ccurs which could change the

r e s u lt  to  true. R estr ict ion s  on the form o f  the condition would l ik e ly



be imposed to  improve the e f f ic ie n c y  o f  th is  eva luation , but th is  i s  

not our primary concern here. Most ty p ic a l ly ,  we would expect to find  

w ait u n til  completed(<process r e fe r e n c e d  T iv '  

where the reference i s  to  some ear lier -crea ted  process. : ,

An additional re la ted  option provides additional convenience. This 

i s  the "count" option . We l e t  ' . : J - r- - >

‘ ' - v  ■ detach <statement> count(c) rSfi. . : ;

mean that the designated in teger  variable o w il l  be incremented by 1 

when th is  statement i s  executed, and decremented by 1 when and i f  the  

detached process term inates. When using th is  option , we would expect 

to  find  statements o f  the form ; s 1 ; r w--
saoc-'ia. ■ . .  . . .  ■■ • . . .

. . ' . ' wait until a -  0 • ■ - v i . ' v , ,» 1 

We do not wish to  be d istracted  here with is su e s  such as "completeness"

• with or without the count option. Such d iscu ssion s  are best saved for  

future in v e s t ig a t io n .  -- .........
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S e q u e l s  . . . . .  ■ ......

A sentinel i s  a specia l kind o f  process s e t  up to provide a ta ilored  

communication d i s c ip l in e : ' between other processes. I t  does so by being 

the unique server o f  a s e t  o f  queues which are a ssocia ted  with i t .  The ' " ■ ■ * ■ ’ 
use o f  queues for  communicating data between processes i s  well understood. 

S en tin e ls  add a unique feature o f  allowing a statement to  be placed on the 

queue, in the sense that the sen tin e l can determine when that statement 

i s  to  be executed, thus executing synchronization control over the enqueuing 

process. "■ .. - ■ - - v  .. ■ -

' In order to  s e t  up the queues, an additional option , the queue l i s t  

option , i s  sp e c if ie d  in the detach statement. The la t t e r  would then take 

the form ■ : ■. r- ■ ■■

detach(<process reference>) <queue l i s t >  <statement> 
v__________ ^ __________ j

optional .

I t  i s  the queue l i s t  option which ind icates  that a process i s  a s e n t in e l .  

More p r e c is e ly ,  <queue l i s t >  is  o f  the form

: ■■■ ■ ■  ; '■ qu eu es(< id en tif ier  l i s t > )  r , ,

where the id e n t i f i e r s  are o f  type queue reference. This means that  

when the process i s  created , a queue i s  e stab lish ed  fo r  each entry in 

the l i s t ,  and the reference id e n t i f i e r s  are s e t  so as to  reference these  

queues. The process created i s  the server o f  those queues.

I t  i s  expected that the statement to  be executed by the process  

has a declaration o f  i t s  queues. These queues are referenced through 

reference variab les  loca l to  the process. Thus the declaration  would
s

appear as - ■ r - -  ...

queues(<queue entry l i s t > )  .



where each entry in the l i s t  i s  o f  the form t  ,

' <queue reference> (< id e n t if ie r  list> ^

• ■ ' optional -  ■ - .

which resembles a procedure header. The <queue entry l i s t >  i s  expected

to correspond with the <queue l i s t >  sp e c if ied  when the process i s  created .  

The items which are communicated via  queues are c a l led  tokens.

A token i s  a pair* comprised o f  a statement and a parameter l i s t . \ .

Either o f  these items may be null in  various ap p lication s . The •

id e n t i f i e r s  in each i d e n t i f i e r  l i s t >  correspond with parameters in

the ^parameter l i s t >  part o f  a token. k  cd e al

„ A token gets  created by a process, ca l led  the enqueuing process, through

a statement o f  the form "

The execution o f  th is  statement s p e c i f ie s  that a token with the components

<statement>, <parameter l i s t >  ^

should be placed on the referenced queue. The placement o f  such a token 

puts the execution o f  <statement> in  control o f  a unique process serving 

the queue. I t  a lso  makes any. parameters in <parameter l i s t >  a c c e ss ib le

by th is  server. " ' ... ■ " ... ■ - •. . •: ’

I f  i t  i s  "data" which i s  to  be communicated from one process to another, 

chances are that the statement part o f  the token would be null and the  

data would be e ith e r  contained in ,  or referenced through, the parameter 

l i s t .  On the other hand, we shall  see instances where the data, and 

hence the parameter l i s t ,  i s  n u l l ,  but the statement part is 'im portant.

queue(<queue reference> <parameter n s t > ;  <statement>

optional optional



By convention, omission o f  <statement>'implies the.^wZZ statement. .

The server decides that <statement> i s  to  be allowed to execute 

by i t s e l f  executing .. ..

execute <queue reference> [n] *r- 

where n i s  an in teger  variable whose value in d ica tes  the posit ion  from 

the head o f  the queue, i . e .  the end containing the statement having been 

on the queue the lon gest .  Once the execute statement i s  executed, the  

statement on the queue a t  that p osit ion  cannot be stopped (a t  le a s t  not 

at the lev e l  o f  the language we are d escr ib in g ).  I t  i s  removed from the  

queue and cannot be re-executed. .

* The number » above always r e fers  to the posit ion  among the remaining 

e n tr ie s .  Thus always using

execute <queue reference> [ 1 ] 

provides a FIFO d is c ip l in e .  S im ilar ly ,  i f  we introduce-

last(<queue referen ced ,  

which eva luates  to  the p osit ion  o f  the l a s t  remaining entry,

execute <queue reference> [last(<queue r e fe r e n c e d ]  *

provides a LIFO d is c ip l in e  when used u n iv ersa lly .

I t  i s  q u ite  p o ss ib le  that o n e ' is  in ter ested  only in FIFO d is c ip l in e s ,  

in which case [n] could, o f  course, be omitted from the language.

We adopt the convention that the expression •

last(<queue r e fe r e n c e d  = 0 

i s  true e x a c t ly  when the corresponding queue i s  empty. We use the 

abbreviation • .

. empty(<queue r e fe r e n c e d

for  th is  expression , and

non-empty(<queue r e fe r e n c e d  

for  i t s  negation. . .

• . - 7 -



We allow the detached mode o f  execution for an execute statement,

v iz .

detach(<process r e fe r e n c e d  execute <queue referen ces  [«]

Since the token i s  already a statement in another process, namely the  

enqueuing one, execution can be optimized so that no new process i s  a c tu a lly  

created.,, . . . . . . .  •

' In order for  a server to  reference the parameter l i s t  o f  a token, 

we use the form .

<queue parameter> [n] 

to  re fer  to  the named parameter o f  the n-th  entry.

" 8 -



Interim Summary ^

Before proceeding to  examples, we b r ie f ly  sunmarize the concepts 

put forth in  the preceding se c t io n s .  F ir s t ,  we gave a way o f  representing

process crea tion . Then we introduced the concept o f  a sentinel process,
. . . *

which may be created with a number o f  queues and which becomes the server  

o f  those queues. Other processes (ca lle d  enqueuing processes) in ter a ct  

with the sen tin e l by specify ing  a queue, p oss ib ly  with some parameters, 

and a statement. The statement and parameters comprise a token which 

i s  placed on the queue. This allows the server o f  that queue to in tera ct  

with the enqueuing process through the parameters, and to  control execution  

o f  the statement'. The enqueuing process does not proceed until the s t a t e 

ment i s  completely executed.



Examples ' . ■ ' ■ - ;

We now attempt to  c la r i f y  the preceding informal d e f in it io n s  by 

programming a number o f  standard examples.- ■ iii • ■

Example Semaphores [D ijkstra 68 ] :  A minimum a c c e p ta b ility  requirement 

for  a synchronizing construct i s  that i t  be able to  implement a semaphore. 

The semaphore implementation shown below uses a sen tin e l with two queues. 

The usual P and V operations are represented as c a l l s  on a null statement 

with one o f  these  queues sp e c if ie d .  The private loca l storage used in ‘ 

the sen tinel corresponds to the usual "semaphore data structure". We thus 

have the follow ing correspondences: . • ■
■ "■■■■ ......... ........................• '•'i'-V .. 'VI? . + - .  • •• ; ■

' ■' * tj'fr - :S i r
• . (next page)
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To s e t  up the semaphore, execute:  ̂ ..

detach queues(P, 7) c a l l  sem apfore(^in itia l value>)

To do the P operation on the semaphore, execute

queue(?) .

S im ilar ly ,  to do the V operation, execute *

queue (7)‘

A second semaphore might be s e t  up by

detach queues(P2j Vl) c a l l  sem apfore(< in itia l value>)

and the corresponding statements would be queue(Pi) and queue(yi).

The code for a semaphore sen tin el i s  as fo llow s:

procedure semaphore(natural number in itia l-sem -val) queues(P, V); 
in teger  sem-val;

sem-val := in itia l-sem -val;

loop
wait u n til  non-empty(P) v non-empty(7 );  *
i f  non-empty(p)

then • .
....... i f  sem-val = 0  ■ _ ,. , ,, . .

then ' !
- wait until non-empty(7);

detach execute 7 [1] "
• e l s e

sem-val := sem-val - 1
f i *» • .

detach execute P [ l ]
e l s e

detach execute 7 [1];  
sem-val := sem-val + 1 

f i  '
.  Pool 
end semaphore;

- 1 1 -



Example M utually-exclusive execution o f  procedures. To cause a s e t  

o f  procedures to be executed m u tu a lly -exc lu s ive ly , ca l l  each according
. ' • • - • - - -X - ■ • ' ■ '

to  the fo llow ing: •

• queue(m) <procedure ca ll>  

where M i s  the queue o f  a sen tin e l formerly created by : •

. ... detach queues(m) c a l l  mutex ^

The code fo r  the mutex sen tin e l i s  as fo llow s:

. procedure mutex queues(port); . ’ • #

, loop
iH- ■■ wait until non-empty(port); '

• execute p o r t [ l ]  ’ • .
- : ' pool : »• ;;\  ̂ <5 ; .■ - ,.,V ■ ’

end mutex', . .

The fa c t  th a t the execute i s  not detached i s  what provides mutual exc lu sion .

■_ • .■ -rJ: : A s  ~ . ■

• ‘ ‘ - • . . •
. . • _ . ;-.q . , '

* * ,
In the semaphore and mutual exclusion  examples, no information was 

passed to  the sen tin el in  the form o f  queue parameters. The follow ing  

example i s  the f i r s t  we sha ll see  in which th is  feature i s  used. •

- 1 2 -



Example Message buffer. . ■OTli

To crea te  buffer o f  s iz e  n: . ^

detach queues(inq, outq) c a l l  message-buffer(n)

'To en ter  message mes, execute:
* . . 

queue(inq(mes)) ,

To remove message mes, execute: ... ■ >4«.; , :: ,

 ̂ ^ queue[outq(mes))

procedure message-buffer(natural number n)
queues (in<?(message inmes), out^(message outmes))\

array buffer[0 .. n - l ]  o f  message; .
in teger  int out3 count;
in := out := 0; ’ ;1,

. count := 0; . '
loop

wait until non-empty(inq) v non-empty(outg); 
i f  non-empty(inq)

. then ■ ;■ s ■£-' •. ., * a k• , * » */ ,*\tf • - / v-v
. i f  count < n .
. then *

buff errin'] := inmes[ 1];
’ detach execute inq[1 ] ;

in := (in + 1 ) mod n; ....
. count := count + 1

e ls e
wait u n til  non-empty(outq)

. f i
f  1 ; •

i f  non-empty(outq) • .
then

i f  count > 0  
then

outmes[1] := buffer[out]; 
detach execute outq[1 ] ;

. out := (out + 1 ) mod w;
count := count - 1

e l s e
• wait u n til  non-empty(inq)

■■ f i  • . . ' . . • ■■ 
f i  ‘ ■■■ : - '  . ■ 

pool •
end message buffer;

• • -  - 1 3 -
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Example FIFO readers/w riters  

To create s e n t in e l :

detach queues{RW) c a l l  readers-writers-}

There w il l  be a s in g le  queue, and the parameter value 0 or 1 w il l  indicate  

reading or writing  resp ec t iv e ly .  . .

To "read" via a statement, use •: .

queue (rw{0))

To "write*1 v ia a statement, use ■ .

queue(RW( 1))

procedure readers-writers - 1 queues {entry{ in teger  ty p e ))’, 
in teger  counter; *
counter := 0 ;
loop ..

wait u n til  non-empty{entry) \ 
i f  type[1 ] = 0

then .
detach execute en tryl1 ] count{counter)

e l s e
wait until counter ~ 0 ; 
execute en tryl1 ]

• f i  
pool

end readers-writers- 1 ;
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Example Readers/writers with various types o f  p r io r i ty .  For each o f  

the following versions o f  readers/w riters, two queues are usedi
. ' •

To create  se n tin e l:

detach queues (read, write) cdil\readers-writers-n  

where n i s  a version number (2 or 3 ) .  •

To “read" with procedure, use : :

- . ~ ■ queue(read)

To "write" with procedure, use . - -  - .

....... queue{write) „ .  >a t

The code for various versions fo llow s:

procedure reader-w riters-2 queues{read, w r ite ) ;
; comment: w riters  have p r io r ity ;  

in teger  readers; 
readers := 0; .
loop

' wait u n til  non-empty{read) v non-empty(write);
. i f  non-empty(write) *

then
wait u n til  readers = 0 ;  .
execute u r £ te [ l ]

e l s e
detach execute readl1 ] count{readers)

■ f i
pool •

end reader-w riters-2; •



- 1 6 -

procedure reader-writers-3 queue(reaJ, w rite)\
comment: a l l  readers and w riters have a f a ir  chance 
in teg er  readers;

... readers := 0; 
loop

wait u n til  non-empty(read) v non-empty(write);  
i f  non-empty(write) 

then
wait until readers = 0 ; 
execute w rite[1 ] 

f i ; . •
. i f  non-empty(read)

then
detach execute readl1 ] count(readers)

' ' f i  
pool

end reader-writers-3 ;
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We now summarize the advantages o f  the sen tin e l concept: ... .

1. S en tin e ls  are ju s t  processes , so th e ir  understanding does not en ta il  
any su b s ta n t ia l ly  new concept. ' Only the enqueued statements which 
accompany processes served by s e n t in e ls  require any extension o f  ‘ 
standard semantics. ~

2. S en t in e ls  are easy to  understand. The code for  a sen tinel i s  usually  
seq u en tia lly  executed. Waiting occurs a t  w ell-defined  p o in ts ,  with  
c lea r  semantics. ' •

3. S en t in e ls  have no "hidden" or unspecified  scheduling d is c ip l in e .  I t  
i s  u sually  obvious from inspection  what queue i s  served next.

4 . S en tin e ls  can be constructed without the s in g le  queue "bottleneck". * 
M ultiple queues are used for  t h is  purpose. This e lim inates some o f
the anomalies c ited  in [Lipton 73].

5. M ultiple queues a v a ila b le  with s e n t in e ls  allow the communication
o f  information by queue s e le c t io n  and a lso  the sorting  o f  processes  
in to  c la s s e s  when order o f  arrival i s  irre lev a n t .

6 . S en tin e ls  provide a way o f  avoiding the p o s s ib i l i t y  o f  "unmatched 
brackets" in synchronizing operations ( c f .  [Greif 7 5 ] ) .  For example, 
i t  i s  unnecessary to  have separate e n tr ie s  for  s ta r t -w r ite  and end- 
w rite .

7. S en tin e ls  with simple waits can be implemented e f f i c i e n t l y  through 
compiler optim ization , y e t  do not prohib it  th e ir  user from constructing  
m ore-exotic but perhaps l e s s - e f f i c i e n t  w aits.

8 . The sequential combination o f  w a its ,  such as allowed in s e n t in e ls ,
i s  o ften  more e f f i c i e n t  and e a s ie r  to design than a s in g le  combinatorial 
cond ition .

9. For s e n t in e ls  with sequential programs and simple w a it s ,  correctness  
can o ften  be proved using only sequential program proof techniques.

10. Dynamically created se n t in e ls  o f fe r  no unique implementation problems.*

11. S en tin e ls  provide customized s e le c t io n  o f  processes from queues (rather  
than a f ixed  d is c ip l in e )  and for  p r io r ity  execution as desired by
the programmer. . ,

12. A lib ra ry  of "standard" se n t in e ls  i s  e a s i ly  maintained.

13. The issu es  o f  resource protection  and synchronization mechanism can 
be separated through use o f  s e n t in e ls .



With regard to property number 13, i t  should be a simple matter for  

a protection mechanism to  force access to certa in  objects through certa in  

procedures ( c f .  [Wulf, e t  a l .  74]).'Ttwis,- the mechanism could e a s i ly  

be extended to  force the use o f  a certa in  ta g , which causes coordination  

by a s e n t in e l .  - ■--- -"**

. - 1 8 -
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Comparison with Other Synchronizing Constructs

Although se n t in e ls  have ideas in common with many proposals, i t  appears 

that they have the most in common with s e r ia l iz e r s  [Atkinson and Hewitt 77]. 

Although i t  may be due to  our lack o f  intimate fa m il ia r ity  with the actor  

model on which s e r ia l iz e r s  are based (se n t in e ls  are based on sequential 

programs), i t  appears th a t s e r ia l i z e r s  lack a t  l e a s t  properties 1 , 2 , 

and 11 above. Unlike s e r i a l i z e r s ,  processes do not "possess" control 

o f  s e n t in e l s .  The la t t e r  are independent processes in th e ir  own r ig h t .

A lso, s e n t in e ls  need not e x p l i c i t l y  relay  messages to processes using 

resources, enhancing the a b i l i t y  o f  the system to enforce protection .

Monitors [Hoare 74] are a lso  c lo s e ly  re la ted , but appear to  lack  

properties  1, 3, 4 , 5, 6 . Regarding property 3, [Howard 76] describes  

numerous p o ss ib le  in terpreta tion s  for  the underlying scheduling in monitors. 

Although Hoare gave a s p e c i f ic  in ter p r eta t io n ,  i t  appears th a t i t  may 

be l e s s  than transparent to  the programmer. Although monitors as described  

in [Hoare 74] are not dynamically crea ta b le ,  extension to  allow th is

presents no real problem. - - . . .
i' ..

Path expressions [Campbell and Habermann 74] bear a certa in  s im ila r ity  

to  s e n t in e ls .  However, as proposed.in the c ite d  reference , they are 

apt to leave aspects o f  implementation arb itrary , which s e n t in e ls  avoid ’ 

doing. A lso, the "completeness" o f  path expressions seems more subject  

to question than the completeness o f  s e n t in e l s ,  the former being based 

on regular expressions. We conjecture that there i s  an algorithm for  

producing from any path expression a sen tin e l implementation, and that  

th is  i s  true for path expressions which lack many o f  the r e s tr ic t io n s  

imposed in the reference c i t e d .  A lso , unlike monitors and path expressions,



se n t in e ls  need not encase th e ir  resources. Hence the same sentinel
. • .

procedure can be used for  any number o f  d if fe r e n t  resources o f  d ifferen t

types. " - ...............

Conditional c r i t i c a l  regions [Brinch Hansen 73] appear to  lack properties

1* 3, 5, 8 , 9, and 11. Conditional c r i t i c a l  regions are apt to be rather

opaque to  the programmer without knowledge o f . th e  underlying scheduling

d is c ip l in e s ,  p a r t ic u la r ly  when the change o f  a variab le  causes more than

one awaited condition  to become true sim ultaneously. 5! - . .

Atomic action s  [Lomet 77] form another type o f  coordination construct.

Like the others being compared here, they a lso  have the property that t

the processes being coordinated are responsible  fo r  carrying out the

actions in sid e  the prim itive . Consequently', the method o f  dealing with

c o n f l ic t in g  c a l l s  to  the prim itive i s  opaque to  the programmer. This

i s  in constrast to  the s e n t in e l ' s  use o f  e x p l i c i t  p o llin g  o f requests

to  make the treatment o f  c o n f l ic t in g  c a l l s  transparent.

’ The supervisory computer concept [Gaines 72] does use the notion o f

an a c t iv e  process which coordinates other processes . I t  does not g ive

a language construct per s e , nor does i t  put the control o f  s in g le  statements

under control o f  the synchronizing prim itive . The programs are written

on a lower le v e l  than s e n t in e ls  and no b u i l t - in  queuing i s  provided.



Proofs or. ..V ^jnsv S. c-, - \  r

At th is  s tage , we have not had much experience in proving properties

o f  s e n t in e ls .  I t  i s  c le a r ,  however, that sequential program proof techniques

can be used for proving invariants to  a large ex ten t ,  thanks to the sequential

nature o f  most s e n t in e ls .  Although there are concurrent tra n s it io n s  to  be

considered, namely processes jo in ing queues and detached processes completing,

these can be kept under control by careful programming. . C > ■ r«A " 'K«S * ti ■

I t  i s  too early  to  attempt a s e t  o f  formal proof r u le s .  We can make'.

some observations however. For any queue q i f  P i s  a predicate not referring

to q , the fo llow ing i s  a va lid  inference rule:

v now P ■

' . /  wait u n til  non-empty(<7) \

now P a  non-empty(c?) .
t

Here now in d ica tes  an invariant a ssertion  for  that point in the program.

This ru le  i s  v a lid  because a process cannot leave the queue once i t  jo in s

i t ,  other than through an execute in stru ction  in the s e n t in e l .

On the other hand, the follow ing would not be va lid :

now P •

• /  wait until  empty(<?)>

now P a  empty(^)
• V. /

because a process may jo in  the queue a fter  the wait i s  s a t i s f i e d ,  without 

any action on the part o f  the s e n t in e l .  We can summarize th is  d is t in c t io n  

by saying that non-empty i s  a monotone predicate whereas empty i s  not, 

where monotonicity o f  a predicate within a sen tin e l  means i t s  invariance  

within a s e n t in e l ,  r e la t iv e  to  the behavior o f  enqueuing processes.

- 2 1 “
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S im ilar ly ,  i f  we use a variable count to count the number o f detached 

processes in a certa in  category, then for  any N not occurring in P, we 

have a 'ru le  •

• -• J now P

wait u n til  count < N )

- now P a  count < N

Based on such considerations, we have annotated the semaphore, sen tin el  

program with invariant a s se r t io n s ,  as shown on the following page.



comment: body o f  procedure semaphore annotated with assertion s;

comment: ncm> ind icates  ah invariant a t  that execution point in the program;

comment: henceforth ind icate  an invariant for  each execution point to  follow;

comment: P and 7  are the sequences o f  P and 7 tokens executed; resp ectiv e ly ;  ex ex ♦ " • • 
comment: A(x) abbreviates |P | + x -  \v | + in itia l-sem -val\ -

@05

henceforth in itia l-sem -val > 0; • •
sem-val :* in itia l-sem -val; ; y % , iw .• ..
henceforth sem-val > ,0; ' : '■ ' ■ ' ^
loop .

now A(sem-val)\ ■ • _
wait u n til  non-empty(P) v non-empty(7 );  . ’
now(non-empty(P) v non-empty(7)) a A(sem-val); 
i f  non-empty(P)

• then ! • .
now non-empty(P) a A(sem-val)\

• f. i f  sem-val = 0 .
• then .

• now non-empty(P) a A(sem-val) a sem-val -  0;
• wait u n til  non-empty(7);

now non-empty(7) a non-empty(P) a A(sem-val)\
detach execute 7 [1 ];
now non-empty(P) a A(sem-val + 1 ) ;

e ls e
now non-empty(P) a a (sem-val);
sem-val := sem-val - 1;
now non-empty(p) a A(sem-val + 1 ) ;

f 'i ;
now non-empty(P) a A(sem-val + 1 ) ;  
detach execute P [ l ] ;
now A(sem-val); .

e l s e
now non-empty(7) a  A(sem-val)\ 
detach execute 7 [1 ];  
now A(sem-val + 1 ) ;

* sem-val := sem-val + 1;
now A(sem-val)\ .

f i
now A(sem-val)\ 
pool

- 2 3 -
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In general, we would l ik e  a h igh-level scheme for s ta t in g  correctness  

o f  s e n t in e ls  ( i . e .  a denotational semantics) ,  and a method for  proof 

o f  such correctness . The internal invariants are l ik e ly  to form only 

one part o f  such a proof. The kind o f  scheme we seek has not yet  been 

developed. However, we g ive  an example to  show what form such a scheme 

might take, with an accompanying informal proof.



Claim le t t in q  P and 7 denote the sequence o f  statements from queues -----  ex ex
P and 7 , r e sp e c t iv e ly ,  which are executed, and P. and V. denote the 

sequence o f  statements which enter the queues, we have correct operation 

o f  the semaphore s e n t in e l ,  as defined by the equations

7 = 7 .  ‘• ■ ex xn ■ ■ ' ■ . ■ ■

- 2 5 -

. • ■ ■ ■ ■■ p = <P. > --.i-.i'
ex xn \ + in itia l-sem -val ! r

• •. .. :.;■■■>, . 1 ■ ..

The notation i s  that 1*1 represents the length o f  sequence X and <X>n denotes 

the f i r s t  n components o f  AT, or $11 o f  AT i f  there are fewer than n components.

These equations g ive  a denotational semantics fo r  the long-range behavior 

o f  the semaphore, in the s p i r i t  o f  the equations in [K eller 78]. They hold

whether the' sequences P. and 7 .  are f i n i t e  or i n f i n i t e .  The reader w il l ̂ xn xn
a lso  npte a s im ila r i ty  to the "semaphore invariant" in [Habermann 72]. .

Proof Since a l l  executes are done on the f i r s t  queue element, we immediately 

have the in e q u a l i t ie s  (where <_ denotes i s  a prefix  of) *

V < V.• ex — xn .. . . -  • ■

P < P . ’ V : .ex — xn

We are thus l e f t  with showing - '

\v I = \v. I 1 ‘ : ■ ■‘v-’ • ........., . ' e x '  1 xn' . ,  f

■ IP^I = m in ( |P { n | ,  |7 i n | + in itia l-sem -val)  ..

To prove the f i r s t  eq u a lity ,  suppose to  the contrary th a t  \ v \  f  \v . \.

Since V < V. , we have that 17 I < 17 .  I. Notice that each ite r a t io n• ex — xn 1 ex' 1 xn' . .
o f  the loop must execute a P or a 7. From the invariant assertion s  in the
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annotated version o f  the procedure, we see that a t  any time only f i n i t e l y -  

many P 's  can be executed before e i th e r  a V must be executed or waiting  

occurs. At th is  p o in t,  i f  \v | < \v. | ,  then another V can be executed.
*1>YI

Hence the long-range behavior cannot have Iv ^ ]  < l ^ n l* : ^

For proof of the second in eq u a lity ,  we examine two cases:

( i )  |P . I < |F .  I + in itial-sem -val.

. ( i i )  |P . I > 17 .  I + in itia l-sem -val, •
- '  7 1 i n '  1 ^ t t l

ia; In case ( i ) ,  i t  s u f f ic e s  to show that the follow ing g ives  a contradiction:  

.iSiK ( i i i )  iP gJ  < \Pin \ i1-, / O o

Since every loop i te r a t io n  executes a P or V and the P queue i s  polled  f i r s t  

on each i te r a t io n ,  t h is  im plies that the sen tinel must s top , waiting a t  the 

statement . .-v.  . s.th-iTf nr v. r u  . . :.t . i  • * • v -
■ ' . ■ • • ■ T : .

* Xv wait u n til  non-empty(7) r ^ -

The invariant which precedes th is  statement gives us .

A(Q)i |P | = \V | + in itia l-sem -val "" .

But we already proved that v = v. , so J r ex ^n
. |P I = 17 .  I + in itia l-sem -val. 1 ex1 1 ^n'

and combining th is  with ( i ) ,  we get  ~ > :

which does indeed contrad ict ( i i i ) .  ; ,

S im ila r ly ,  in case ( i i ) ,  i t  s u f f ic e s  to show that the follow ing g ives  

a contrad iction: "• Y' r;: ■B‘

( 1V) \Fex̂  * \Vin  ̂ + in i t ia l-sem-val .t-',y,,p9 ' i : f ;  u  .  ̂

i - i A s  .u .n - J  V, j s t i *  isv& i vi j■ ■ - j , : . . .  1 ‘ .. "•>; ' " : n ;  " :, ■

■ w:. r [ 5 • '  " v r t  . -j t  v. \  s  'lo



We in fe r  from the a ssert ion s  in the program that A(sem-val) v A[sem-val + 1) 

i s  in var ian t,  and s in ce  sem-val > 0 i s  a lso  invariant and 7 = 7 .  has 

been proved, we have

|P I < 17 .  I + in itia l-sem -val 1 ex' — 1 vn' ,

With ( i v ) ,  th is  g ives

(v) |P | < 17 . j +. in itia l-sem -val

So'from ( i i ) ,  and ( v) ,  we have

. • ' ■ |P | < |P . | .1 ex' ' rn x
Once again , t h i s  im plies that the sen tin e l stops at

wait until non-empty(7)

where the invariant A[sem-val) a sem-val -  0 g ives

IP I = 17 . I + in itia l-sem -val . 1 ex' 1
which con trad icts  ( v) ,  as desired. .

- 2 7 -  •
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Conclusions and Future Research n r ' ■ r i . - ;■ n ?y

We have introduced the sen tin e l  construct as a means o f  achieving  

ta i lo r e d  communication d is c ip l in e s  between processes. As pointed out,

• t h i s  construct has features in  common with other proposals for  synchronizing 

co n stru cts .  We fe e l  that the sen tin e l reta in s  the most d es irab le  features  

o f  each o f  these . I t  a lso  adds new elements. In p art icu lar ,  i t  allows  

the  programmer to  sp ec ify  scheduling which cannot be s p e c if ie d  in some • 

other schemes, without imposing undue com plications. I t  separates scheduling 

a ct io n s  from the processes being scheduled, in contrast to  other approaches 

in  which the synchronizing construct i s  p ass ive , wherein the processes  

being synchronized are required to  do any necessary bookkeeping. F in a lly ,  . 

i t  adds the feature o f  having statements be a component o f  enqueued token, 

which we fe e l  i s  useful in "separation o f  powers" when protection  i s  a t  

i s s u e .

We have l e f t  unexplored many v a r ia t io n s ,  e . g .  r e s tr ic t in g  queue lengths  

( sa y ,  to 1 ) .  Although an example o f  a correctness proof was presented, 

much remains to be explored in t h is  area, both formal and informal.
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