View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by The University of Utah: J. Willard Marriott Digital Library

SENTINELS:

A CONCEPT FOR MULTIPROCESS COORDINATION

by
Robert M Keller

UCS - 78 - 104

June 1978

This work was supported by the National Science Foundation through
grant MCS 77-09369.

https://core.ac.uk/display/276277588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

. SENTINELS: ' "a

A CONCEPT FOR MULTIPROCESS COORDINATION

Robert M Keller
Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

June 1978

Abstract

The sentinel construct is introduced, which provides a certain syntactic
and semantic framework for multiprocess coordination. The advantage

of this construct over others is argued to be semantic transparency,
efficiency, ease in implementation, and usefulness in verfication.

Key words and phrases: parallelism, concurrency, synchronization, mutual
exclusion, monitors, semaphores, correctness proofs, semantics.

CR categories: 4.31, 4.32, 4.35, 5.24, 6.2

1
Introduction : sV - ' m .

The area of process coordination in operating systems has seen a
wide variety of constructs. A partial list includes events and queues
[Witt 66], semaphores [Dijkstra 68], supervisory computers [Gaines 72],
conditional critical regions [Brinch Hansen 73], monitors [Hoare 74],
path expressions [Campbell and Habermann 74], serializers [Atkinson and
Hewitt 77], atomic actions [Lomet 77], and undoubtedly the list will
continue to grow. This paper introduces another entry to the list, which '
we argue has most of the good features of its predecessors, few of the
bad features, and some advantages of its own. No claim is made that
this construct does not overlap ideas with others in the list. N
a; The sentinel construct uses a queuing primitive as a basic form
of synchronization. More elaborate forms of synchronization are then
built up by constructing a sequential process (a sentinel) which coordinates
other processes via the basic queuing primitive.

Instead of being a passive object, wherein processes being coordinated
are expected to carry out certain clerical operations (e.g. causing other
processes to be scheduled), a sentinel is an active process and carries
out such operations itself. This is not to say, however, that a sentinel
will have no periods of inactivity. Indeed, it can be made active just ”
when the appropriate conditions hold, thereby avoiding busy-waiting.

Finally, rather than just exchanging data with processes being
coordinated, a sentinel can be put in control of the execution of statements
of such processes. This has certain advantages in "structured™ concurrent

programming. For example, it can eliminate the need for the programmer

tospecify instructions for both entry and exit of a critical section. Using

an appropriate sentinel, he need only specify that a certain block (the
critical section) be controlled by the sentinel. : %

> . Many variations on these themes are possible. For example, the 3
"gueues'™ could be restricted in length for implementation convenience.

What we sketch in this paper is, therefore, just one possible development

of the concept. ~ VS - Y
v Undoubtedly, the idea of an active synchronizing primitive has occurred
to others- It first occurred to the author while working on hardware -

modules [Keller 68], but this idea did not get written attention until
[Keller 74]. A software version for achieving mutual exclusion appeared

in [Holt 71]. Why no one has sought to develop it further is a mystery.
Perhaps the overhead of using an additional process for synchronization

is viewed as being too great. However, since such a process can be dormant
(or "sleeping™) most of the time, a carefully optimized version should

be no less efficient than the other elaborate synchronization schemes.
Furthermore, there is some precedent for being generous with the number

of processes. For example, [Hoare 73] suggests using a process for each

page in memory. ; ; ! - .

. -3-
Process Creation : B av n
Prior to introducing the sentinel notion itself, we must discuss
the specification-of processes, since a sentinel is just a special type
of process. -v—m .
In order to have a means for creating processes, we assume the under-
lying mechanics for a detached mode of execution, e.g. as with the *task"
option in PL/l [IBM 68]. For concreteness, we assume that any syntactic
statement entity, <statement>, can be executed as a process by the statement
detach(<process references-) <statement> N
I>v. . wv . wy NAL optional A B A n
which will create a process for the statement which then runs concurrently
with the creating process. <reference> is a variable of type process
reference and is assigned a reference to the created process.
Whether or not the process has completed can be determined by evaluation
of the Boolean
completed(<process referenced
The process is complete when the corresponding statement is completely
executed. For example, if <statement> is a block, completion is when
control leaves the block. In some.cases, processes will be created
which will be deliberately non-terminating (but which could be aborted ’

if the job creating them terminates). Co -

We assume a wait until statement, which will delay a process until
a specified condition becomes true. To avoid busy waiting, the condition
will be evaluated when the statement is first encountered and, if the
result is false, again whenever an event o.ccurs which could change the

result to true. Restrictions on the form of the condition would likely

be imposed to improve the efficiency of this evaluation, but this is
not our primary concern here. Most typically, we would expect to find
wait until completed(<process referenced Tiv'
where the reference is to some earlier-created process. 5
An additional related option provides additional convenience. This
is the "count”™ option. W let B J - r- - >
‘ ' -V m detach <statement> count(c) rSfi. o ;
mean that the designated integer variable 0 will be incremented by 1
when this statement is executed, and decremented by 1 when and if the

detached process terminates. When using this option, we would expect

to find statements of the form ; sl :r W--

saoc-'ia, . (] .. .
) . wait until a - 0 em ViV,

We do not wish to be distracted here with issues such as "completeness
with or without the count option. Such discussions are best saved for

future investigation. S

Sequels ... L

A sentinel is a special kind of process set up to provide a tailored
communication discipline:'between other processes. It does so by being
the upique server of a set of queues which are agsociated with it. The
use of queues for communicating data between processes is well understood.
Sentinels add a unique feature of allowing a statement to be placed on the
queue, in the sense that the sentinel can determine when that statement
is to be executed, thus executing synchronization control over the engueuing
process. ' .- B - -V . -

' In order to set up the queues, an additional option, the queue list

option, is specified in the detach statement. The latter would then take

the form .. r- m [
detach(<process Areference>_) <queue list> <statement>

V. i
optional

It is the queue list option which indicates that a process is a sentinel.
More precisely, <queue list> is of the form
mE = N gueues(<identifier list>) r .

where the identifiers are of type queue reference. This means that

when the process is created, a queue is established for each entry in
the list, and the reference identifiers are set so as to reference these
queues. The process created is the server of those queues.

It is expected that the statement to be executed by the process
has a declaration of its queues. These queues are referenced through
reference variables local to the process. Thus the declaration would

S

appear as - Wr-- .

gueues(<queue entry list>)

where each entry in the list is of the form t

<queue reference> (<identifier list>"

. m optional - u -
which resembles a procedure header. The <queue entry list> is expected

to correspond with the <queue list> specified when the process is created.
The items which are communicated via queues are called tokens.

A token is a pair* comprised of a statement and a parameter list. \
Either of these items may be null in various applications. The .
identifiers in each identifier list> correspond with parameters in
the ~parameter list> part of a token. k cd e al
. A token gets created by a process, called the enqueuing process, through
a statement of the form "
gueue(<queue reference> <parameter nst>; <statement>
optional optional
The execution of this statement specifies that a token with the components
<statement>, <parameter list> N
should be placed on the referenced queue. The placement of such a token
puts the execution of <statement> in control of a unique process Serving
the queue. It also makes any. parameters in <parameter list> accessible

by this server. . " ; m- e eI 7

If it is "data" which is to be communicated from one process to another,
chances are that the statement part of the token would be null and the
data would be either contained in, or referenced through, the parameter
list. On the other hand, we shall see instances where the data, and

hence the parameter list, is null, but the statement part is‘important.

By convention, omission of <statement>'implies the.~wZZ statement.
The server decides that <statement> is to be allowed to execute
by itself executing
execute <queue reference> [n] *r-
where n is an integer variable whose value indicates the position from
the head of the queue, i.e. the end containing the statement having been
on the queue the longest. Once the execute statement is executed, the
statement on the queue at that position cannot be stopped (at least not
at the level of the language we are describing). It is removed from the
gueue and cannot be re-executed.
* The number » above always refers to the position among the remaining
entries. Thus always using
execute <queue reference> [1]
provides a FIFO discipline. Similarly, if we introduce-
last(<queue referenced,
which evaluates to the position of the last remaining entry,
execute <queue reference> [last(<queue referenced] *
provides a LIFO discipline when used universally.
It is quite possible that one'is interested only in FIFO disciplines,
in which case [n] could, of course, be omitted from the language
We adopt the convention that the expression .
last(<queue referenced =0
is true exactly when the corresponding queue is empty. W use the
abbreviation .
empty(<queue referenced
for this expression, and
non-empty(<queue referenced

for its negation.

"g-

We allow the detached mode of execution for an execute statement,
viz.

detach(<process referenced execute <queue references [«]

Since the token is already a statement in another process, namely the
enqueuing one, execution can be optimized so that no new process is actually
created.,,
' In order for a server to reference the parameter list of a token,
we use the form

<queue parameter> [n]

to refer to the named parameter of the n-th entry.

Interim Summary »

Before proceeding to examples, we briefly sunmarize the concepts
put forth in the preceding sections. First, we gave a way of representing
process creation. Then we introduced the concept*of a sentinel process,
which may be created with a number of queues.a;r.ld which becomes the server
of those queues. Other processes (called enqueuing processes) interact
with the sentinel by specifying a queue, possibly with some parameters,
and a statement. The statement and parameters comprise a token which
is placed on the queue. This allows the server of that queue to interact
with the enqueuing process through the parameters, and to control execution

of the statement'. The enqueuing process does not proceed until the state-

ment is completely executed.

-10-

Examples B | - ;

We now attempt to clarify the preceding informal definitions by

programming a number of standard examples.- [| iii o [|

Example Semaphores [Dijkstra 68]: A minimum acceptability requirement

for a synchronizing construct is that it be able to implement a semaphore.
The semaphore implementation shown below uses a sentinel with two queues.
The usual P and V operations are represented as calls on a null statement

with one of these queues specified. The private local storage used in

the sentinel corresponds to the usual 'semaphore data structure™. W thus

have the following correspondences: . *m
LT T itV oL VI t-.e e . m

' | * tj'fr -:Si r
. : (next page)

11-
To set up the semaphore, execute: ~
detach queues(P, 7) call semapfore(”initial value>)
To do the P operation on the semaphore, execute
queue(?)
Similarly, to do the V operation, execute *
queue (7)°
A second semaphore might be set up by
detach queues(P2j VI) call semapfore(<initial value>)
and the corresponding statements would be queue(Pi) and queue(yi).
The code for a semaphore sentinel is as follows:

procedure semaphore(natural number initial-sem-val) queues(P, V);
integer sem-val,

sem-val := initial-sem-val;
loop
wait until non-empty(P) v non-empty(7); *
if non-empty(p)
then .
....... if sem-val =0 = _ .
then ' !

- wait until non-empty(7);
detach execute 7[1] "
. else
sem-val :=sem-val - 1

i% .
detackfllexecute P[I]
else
detach execute 7[1];
sem-val := sem-val + 1
fi '
. Pool
end semaphore;

-12-
Example Mutually-exclusive execution of procedures. To cause a set

of procedures to be executed mutually-exclusively, call each according
' o - o« - - X - m ' oom!

to the following: ' .

. queue(m) <procedure call>

where Mis the queue of a sentinel formerly created by

detach queues(m) call mutex A

The code for the mutex sentinel is as follows:

procedure mutex queues(port); ’ . #

: loop

iH- m wait until non-empty(port); '

. execute port[l] ~’ . :
- ' pool : » A NG a -V ’

end mutex’,

The fact that the execute is not detached is what provides mutual exclusion.

L . | -rJ:As ~ .]

* *
’

In the semaphore and mutual exclusion examples, no information was
passed to the sentinel in the form of queue parameters. The following

example is the first we shall see in which this feature is used.

. . - -13-

Example Message buffer. . mOTHi
To create buffer of size n: : n
detach queues(ing, outq) call message-buffer(n)
"To enter message mes, execute:
queue(ing(mes)) ,
To remove message MesS, execute: ¢ ; , - ,

N N queue[outg(mes))

procedure message-buffer(natural number n)
queues (in<?(message inmes), out”(message outmes))\
array buffer[0..n-1] of message;
integer int out3 count;

in := out := 0; i ;L
count := O; . -
loop

wait until non-empty(inq) v non-empty(outg);
if non-empty(inq)
then LI I
if count <n ’ :
then *
bufferrin'] := inmes[1];
’ detach execute inq[i];
in = (in + 1) mod n;
count := count +1
else
wait until non-empty(outq)

fi
fi1; .
if non-empty(outq)
then
if count >0
then
outmes[1] := buffer[out];
detach execute outq[t];
out = (out + 1) nod w;
count :=count - 1
else
* wait until non-empty(inq)
[fi .. : oL e []
fi - - .]
pool .

end message buffer;

-14-

Example FIFO readers/writers

To create sentinel:
detach queues{RW) call readers-writers-}

There will be a single queue, and the parameter value 0 or 1 will indicate
reading or writing respectively.
To "read"™ via a statement, use

queue (rf0))
To "write® via a statement, use]

queue(RV(1))
procedure readers-writers- 1 queues {entry{integer type)),

integer counter; *
counter := 0;

loop
wait until non-empty{entry)\
if type[t] =o0
then
detach execute entryli] count{counter)
else
wait until counter ~ 0;
execute entryli]
. fi

pool _
end readers-writers-1;

. : -15-
Example Readers/writers with various types of priority. For each of

the following versions of readers/writers, two queues are usedi

To create sentinel:

detach queues(read, write) cdil\readers-writers-n
where N is a version number (2 or 3). .
To “read™ with procedure, use
- .~m queue(read)
To "write" with procedure, use .- -

....... queue{write) - - a t

The code for various versions follows:

procedure reader-writers-2 queues{read, write);
; comment: writers have priority;
integer readers;
readers := 0;
loop
wait until non-empty{read) v non- empty(wrlte)
if non-empty(write)
then
wait until readers =0;
execute urf£te[l]
else
detach execute readli] count{readers)
[| fi
pool .
end reader-writers-2; .

-16-

procedure reader-writers-3 queue(real, write)\
comment: all readers and writers have a fair chance
integer readers;
readers := 0;
loop

wait until non-empty(read) v non-empty(write);
if non-empty(write)
then
wait until readers = 0;
execute write[1]
fi; . .
if non-empty(read)
then
detach execute readli] count(readers)
vt fi
pool
end reader-writers-3;

. . C 7w

W& now summarize the advantages of the sentinel concept:

1.

10.

11.

12.

13.

Sentinels are just processes, so their understanding does not entail
any substantially new concept. 'Only the enqueued statements which
accompany processes served by sentinels require any extension of
standard semantics. ~

Sentinels are easy to understand. The code for a sentinel is usually
sequentially executed. Waiting occurs at well-defined points, with
clear semantics. ' .

Sentinels have no "hidden™ or unspecified scheduling discipline. It
is usually obvious from inspection what queue is served next.

Sentinels can be constructed without the single queue "bottleneck™. *
Multiple queues are used for this purpose. This eliminates some of
the anomalies cited in [Lipton 73].

Multiple queues available with sentinels allow the communication
of information by queue selection and also the sorting of processes
into classes when order of arrival is irrelevant.

Sentinels provide a way of avoiding the possibility of "unmatched
brackets™ in synchronizing operations (cf. [Greif 75]). For example,
it is unnecessary to have separate entries for start-write and end-
write.

Sentinels with simple waits can be implemented efficiently through
compiler optimization, yet do not prohibit their user from constructing
more-exotic but perhaps less-efficient waits.

The sequential combination of waits, such as allowed in sentinels,
is often more efficient and easier to design than a single combinatorial
condition.

For sentinels with sequential programs and simple waits, correctness
can often be proved using only sequential program proof techniques.

Dynamically created sentinels offer no unique implementation problems.*
Sentinels provide customized selection of processes from queues (rather
than a fixed discipline) and for priority execution as desired by

the programmer. .,

A library of "standard"™ sentinels is easily maintained.

The issues of resource protection and synchronization mechanism can
be separated through use of sentinels.

18-

With regard to property number 13, it should be a simple matter for
a protection mechanism to force access to certain objects through certain
procedures (cf. [Wulf, et al. 74])."Ttwis,- the mechanism could easily

be extended to force the use of a certain tag, which causes coordination

by a sentinel. - B--- ek

’ . -19-

Comparison with Other Synchronizing Constructs

Although sentinels have ideas in common with many proposals, it appears
that they have the most in common with serializers [Atkinson and Hewitt 77].
Although it may be due to our lack of intimate familiarity with the actor
model on which serializers are based (sentinels are based on sequential
programs), it appears that serializers lack at least properties 1, 2,
and 11 above. Unlike serializers, processes do not '"possess™ control
of sentinels. The latter are independent processes in their own right.
Also, sentinels need not explicitly relay messages to processes using
resources, enhancing the ability of the system to enforce protection.

Monitors [Hoare 74] are also closely related, but appear to lack
properties 1, 3, 4, 5, 6. Regarding property 3, [Howard 76] describes
numerous possible interpretations for the underlying scheduling in monitors.
Although Hoare gave a specific interpretation, it appears that it may
be less than transparent to the programmer. Although monitors as described
in [Hoare 74] are not dynamically creatable, extension to allow this
presents no real problem. - -
| Path expressions [Campbell and Habermann 74] bear a certain similarity
to sentinels. However, as proposed.in the cited reference, they are
apt to leave aspects of implementation arbitrary, which sentinels avoid ’
doing. Also, the "completeness™ of path expressions seems more subject
to question than the completeness of sentinels, the former being based
on regular expressions. W conjecture that there is an algorithm for
producing from any path expression a sentinel implementation, and that
this is true for path expressions which lack many of the restrictions

imposed in the reference cited. Also, unlike monitors and path expressions,

sentinels need not encase .their resources. Hence the same sentinel

procedure can be used for any number of different resources of different

types. TR
Conditional critical regions [Brinch Hansen 73] appear to lack properties

1* 3, 5, 8, 9, and 11. Conditional critical regions are apt to be rather
opaque to the programmer without knowledge of.the underlying scheduling
disciplines, particularly when the change of a variable causes more than

one awaited condition to become true simultaneously. 51-
Atomic actions [Lomet 77] form another type of coordination construct.

Like the others being compared here, they also have the property that

the processes being coordinated are responsible for carrying out the

actions inside the primitive. Consequently’, the method of dealing with
conflicting calls to the primitive is opaque to the programmer. This

is in constrast to the sentinel's use of explicit polling of requests

to make the treatment of conflicting calls transparent.

’ The supervisory computer concept [Gaines 72] does use the notion of

an active process which coordinates other processes. It does not give

a language construct per se, nor does it put the control of single statements
under control of the synchronizing primitive. The programs are written

on a lower level than sentinels and no built-in queuing is provided.

21«
Proofs or. .VAjnsv S. C- -\ r
At this stage, we have not had much experience in proving properties
of sentinels. It is clear, however, that sequential program proof techniques
can be used for proving invariants to a large extent, thanks to the sequential
nature of most sentinels. Although there are concurrent transitions to be
considered, namely processes joining queues and detached processes completing,
these can be kept under control by careful programming. . CErRA"KS*ti m
It is too early to attempt a set of formal proof rules. W can make'.
some observations however. For any queue q if P is a predicate not referring
to q, the following is a valid inference rule:
% now P [
' : / wait until non-empty() \
now P a non-empty(c?)
Here now indicates an invariant assertion for tha; point in the program.
This rule is valid because a process cannot leave the queue once it joins
it, other than through an execute instruction in the sentinel.
On the other hand, the following would not be valid:
now P .
. [wait until empty(<?)>
y now P a empty(")
because a process may join the queue after the wait is satisfied, without
any action on the part of the sentinel. W can summarize this distinction
by saying that non-empty is a monotone predicate whereas empty is not,

where monotonicity of a predicate within a sentinel means its invariance

within a sentinel, relative to the behavior of enqueuing processes.

22

Similarly, if we use a variable count to count the number of detached
processes in a certain category, then for any N not occurring in P, we
have a'rule .

- J now P
wait until count <N)
- now P . count <N
Based on such considerations, we have annotated the semaphore, sentinel

program with invariant assertions, as shown on the following page.

23
comment: body of procedure semaphore annotated with assertions;

comment: MNP indicates ah invariant at that execution point in the program;
comment: henceforth indicate an invariant for each execution point to follow;

comment: Pe

X and 7ex are the sequences of P and 7 tokens executed; respectively;

¢
comment: A(X) abbreviates |[P | + X - \V@05| + initial-sem-val\ -

henceforth initial-sem-val > 0; . .
sem-val :* initial-sem-val; ; y % iw e
henceforth sem-val >,0; ' SN BN B N
loop :
now A(sem-val)\ m .

wait until non-empty(P) v non-empty(7);
now(non-empty(P) v non-empty(7)) a A(sem-val);
if non-empty(P)

 then ! .
now non-empty(P) a A(sem-val)\
. f. if sem-val =0
. then
enow non-empty(P) a A(sem-val) a sem-val - 0;
. wait until non-empty(7);

now non-empty(7) a non-empty(P) a A(sem-val)\
detach execute 7[1];
now non-empty(P) a A(sem-val +1);
else
now non-empty(P) a a(sem-val);
sem-val := sem-val - 1;
now non-empty(p) a A(sem-val +1);
fl;

now non-empty(P) a A(sem-val +1);

detach execute P[I];

now A(sem-val);

else

now non-empty(7) a A(sem-val)\

detach execute 7[1];

now A(sem-val +1);

* sem-val := sem-val + 1;
now A(sem-val)\
fi
now A(sem-val)\
pool

_24-

In general, we would like a high-level scheme for stating correctness
of sentinels (i.e. a denotational semantics), and a method for proof
of such correctness. The internal invariants are likely to form only
one part of such a proof. The kind of scheme we seek has not yet been

developed. However, we give an example to show what form such a scheme

might take, with an accompanying informal proof.

25.-
Claim letting PeX and 7ex denote the sequence of statements from queues
P and 7, respectively, which are executed, and P. and V. denote the

sequence of statements which enter the queues, we have correct operation

of the semaphore sentinel, as defined by the equations

. n 7ex = 7)'(n [| n'n . n n
c mmmm p = <P. > o —I-I'
ex XN \ + initial-sem-val I r
LI S LoEEE>, . 1 .

The notation is that 1*1 represents the length of sequence X and <N denotes
the first n components of A, or $11 of A if there are fewer than n components.
These equations give a denotational semantics for the long-range behavior
of the semaphore, in the spirit of the equations in [Keller 78]. They hold
whether the' sequences P)'(n and 7)'(n are finite or infinite. The reader will

also npte a similarity to the "semaphore invariant™ in [Habermann 72].

Proof Since all executes are done on the first queue element, we immediately

have the inequalities (where < denotes is a prefix of) *
<
: Vex Mmoo . m
P <P. ’ \Y
ex — Xn

We are thus left with showing -

.\gx.l :}VXnJ . 1 - V- e

[] IPAL =min(|P{n|, |7in]| + initial-sem-val)

To prove the first equality, suppose to the contrary that \v \ f \v. \.

Singe V,, < L. we have that 17,4 < J7,J. Notice that each iteration

of the loop must execute a P or a 7. From the invariant assertions in the

. -26-
annotated version of the procedure, we see that at any time only finitely-
many P's can be executed before either a V must be executed or waiting
occurs. At this point, if W | < \V*i»nl’ then another V can be executed.
Hence the long-range behavior cannot have Iv~] < I~nl* N

For proof of the second inequality, we examine two cases:
(i) |P. I < |F. I + initial-sem-val.
(n)7 hPi.n 1> 0+ initial-sem-val, .
ia; In case (i), it suffices to show that the following gives a contradiction:
ASIK - (iii) iPgd < \Pin\ i, /O o0
Since every loop iteration executes a P or V and the P queue is polled first
on each iteration, this implies that the sentinel must stop, waiting at the
statement ..-v. .s.th-iTfnr v. ru R ok ey-
[' . n ol T :
% wait until non-empty(7) r N -
The invariant which precedes this statement gives us
AQi |P | =\ | + initial-sem-val
But we already Proved that VeX = V"n’ S0
.[LPex!L = Pagt + initial-sem-val
and combining this with (i), we get ~ >
12,1 < 12, |
n' —~ ex
which does indeed contradict (iii).

Similarly, in case (ii), it suffices to show that the following gives

a contradiction: e Y B
(1v) \Fex™ * \Mn™ + initial-sem-val .t-'y,p9 'i:f; u . 2
S i !-iAs .u.n- J1 .,.>;V,, jgt:i* isV&i n: " :’vi j .

| w. r [5 ' "vrt 4t v\ s 'lo

_27- .

We infer from the assertions in the program that A(sem-val) v A[sem-val + 1)
is invariant, and since sem-val > 0 is also invariant and 7 = 7. has
been proved, we have

Pex! < Tyt + |n|t|al-sem-\{al
With (iv), this gives

(v) |P | < 17. j + initial-sem-val
So‘'from (ii), and (v), we have
- " Pex! < Prnk
Once again, this implies that the sentinel stops at
wait until non-empty(7)

where the invariant A[sem-val) a sem-val - 0 gives

Poyet = J7. 1+ initial-sem-val

which contradicts (v), as desired.

. - -28-

Conclusions and Future Research n r ' mri.-m n %

W& have introduced the sentinel construct as a means of achieving
tailored communication disciplines between processes. As pointed out,
ethis construct has features in common with other proposals for synchronizing
constructs. We feel that the sentinel retains the most desirable features
of each of these. It also adds new elements. In particular, it allows
the programmer to specify scheduling which cannot be specified in some -«
other schemes, without imposing undue complications. It separates scheduling
actions from the processes being scheduled, in contrast to other approaches
in which the synchronizing construct is passive, wherein the processes
being synchronized are required to do any necessary bookkeeping. Finally, .
it adds the feature of having statements be a component of enqueued token,
which we feel is useful in 'separation of powers™ when protection is at
issue.

We have left unexplored many variations, e.g. restricting queue lengths
(say, to 1). Although an example of a correctness proof was presented,

much remains to be explored in this area, both formal and informal.

Acknowledgement : '
The comments of Professors John Smith and Gary Lindstrom and the

typing of Karen Evans are greatly appreciated.

‘£ 29-
References n v/ \

[Atkinson and Hewitt 77] R Atkinson and C. Hewitt. Synchronization
in actor systems. Proc. 4th AOM Conference on Principles of Programming
Languages, 267-280 (Jan. 1977). ”

[Brinch Hansen 73] P. Brinch Hansen. Operating system principles. :
Prentice-Hall (1973). , . .

[Campbell and Habermann 74] R. H. Campbell and A. N. Habermann. The
specification of process synchronization by path expressions. In Gelenbe
and Kaiser (eds.), Operating Systems, Springer Lecture Notes in Computer
Science, 16, 89-102 (1974).

[Dijkstra 68] E. W Dijkstra. Cooperating sequential processes. In F.
Genuys (ed.), Programming Languages, Academic Press (1968).

[Gaines 72] R. S. Gaines. An operating system based on the concept
of a supervisory computer. CAOM 15,3, 150-156 (March 1972).

[Greif 75] 1. Greif. Semantics of communicating parallel processes.
MIT Project MAC TR-154 (Sept. 1975).

[Habermann 72] A. N. Habermann. Synchronization of communicating processes.
Coom ACQM 15., 3, 177-184 (March 1972). . :

[Hoare 73]" C. A. R Hoare. A structured paging system. Computer J.,
16, 3, 209-215 (1973). ‘

[Hoare 74] C. A. R Hoare. Monitors: an operating system structuring
concept. CAOM 17, 10, 54-557 (Oct. 1974).

[Holt 71] R C. Holt. On deadlock in computer systems. Tech. Rep.
CSRG-6, Computer Systems Research Group, University of Toronto (April 1971).

[Howard 76] J. H. Howard. Signalling in monitors. Proc. Second International
Conference on Software Engineering, 47-52, IEEE 76CH1125-4C (Oct. 1976).

[IBM 68] PL/lI reference manual. IBM form C28-8201-1 (March 1968).

[Keller 68] R M Keller. Analysis of implementation errors in digital
computing systems. Washington University Computer Systems Laboratory
TR 6 (M5 Thesis), (March 1968). U.S. Government RD Report AD 669-812.

[Keller 74] R M Keller. Towards a theory of universal speed-independent
modules. IEEE Trans, on Computers, C-23, 1, 21-33 (Jan. 1974).

[Keller 76] R M Keller. Formal verification of parallel programs.
CAOM 19, 7, 371-384 (July 1976). :

[Keller 78] R M Keller. Denotational models for.parallel programs
with indeterminate operators. In E. J. Neuhold (ed.), Formal description
eof programming concepts, 337-366, North-Holiand (1978).

-30-

[Lipton 73] R J. Lipton. On synchronization primitive systems. Ph.D.
Thesis, Carnegie-Mellon University, Department of Computer Science (1973).

[Lomet 77] D. B. Lomet. Process structuring, synchronization, and recovery
using atomic actions. Sigplan Notices, 12~ 3, 128-137 (March 1977).]

[Schmid 76] H. A. Schmid. On the efficient implementation of conditional
critical regions and the construction of monitors. Acta Informatica,

227-249 (1976). : . Vv, , mri* = .. :

N\]

[Witt 66] B. I. Witt.. The functional structure of 0S/360, Part Il: Job
and task management. IBM Systems J., J5 1, 12-29 -{1966).

[Wulf, et al. 74], W Wulf, E. Cohen, W Corwin, A. Jones, R. Levin,
C. Pierson, and F. Pollack. Hydra: The kernel of a multiprocessor operating
system. CAOM 17, 6, 337-345 (June 1974).

u N Yam-
rs.'vV-i M i r<?-
\ ,t\cj m
v\ A -""'jatc ? r r - - v - Vv 1 A
Wt \s CW. e e Lok,
m C ‘ ur?..Y:m, m "\
L OJ 11, ' '\f.r__
] c‘* B3re 0 ~v "V
B') e-2u'd > 3V C7 Kil T | 7.
if ' iv,,
=54 * f 627V iv-fjjiJ ~ 0
liu o MOfo'iioT T I/ | w7 % £ |
T%m =S 2- . . L-i5t :
: » | TR

1 ; .
' ommr- g , n t-ml o L

