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Abstract

In the present work, an inversion technique to solve the atmospheric source characteriza
tion problem is described. The inverse problem comprises characterizing the source (x, y 
and z coordinates and the source strength) and the meteorological conditions (wind speed 
and wind direction) at the source, given certain receptor locations and the concentration 
values at these receptor locations. A simple Gaussian plume dispersion model for con
tinuous point releases has been adopted as the forward model. The solution methodology 
for this nonlinear inverse problem consists of Qausi-Monte Carlo (Q M C ) sampling of the 
model parameter space and the subsequent application of gradient optimization. The pur
pose of conducting Q M C  sampling is to provide the gradient scheme a good initial iterate 
to converge to the final solution. A new misfit functional that computes the L^-norm  of 
the ratio of the observed and predicted data has been developed and was used in the Q M C  
search stage. It has been demonstrated that the misfit functional developed, guides the in
version algorithm to the global minimum. Quasi-random sampling was performed using 
the Hammersley point-set in its original, scrambled and randomized form. Its performance
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was evaluated against the Mersenne-Twister uniform pseudo-random number generator in 
terms of the speed and quality of the initial iterate provided. Regularized Newton's method 
with quadratic line-search was employed for gradient optimization. The standard Tikhonov 
stabilizing functional was used for regularization and the regularization parameter was up
dated adaptively during inversion. The proposed approach has been validated against both 
synthetic and field experiment data. Results obtained indicate that the proposed approach 
performs exceedingly well for inverse-source problems with the Gaussian dispersion equa
tion as the forward operator. Also, the work presented highlights the advantages of us
ing deterministic low-discrepancy sampling compared to the conventional pseudo-random 
sampling to solve the source-inversion problem.
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1. I n t ro d u c t io n

The solution of inverse problems involves the retrieval of information about a physical process or 
phenomenon from known or observed data [46], Inverse problems arise in various fields and hence 
techniques to solve such problems have been an area of extensive study. One of the contemporary 
applications of inversion techniques includes the source characterization problem for atmospheric 
contaminant dispersion. Atmospheric source characterization problems, also referred to as event 
reconstruction, source-inversion or inverse-source problems, comprise characterizing the source of a 
chemical / biological / radiological (CBR) agent released into the atmosphere. Source characterization 
typically involves predicting the release location and rate of the CBR agent and the meteorological 
conditions at the release site, based on the time-averaged concentration and wind measurements obtained 
from a distributed sensor network in the region of interest.

Efficient and robust event reconstruction tools can play a crucial role in the event of accidental or 
deliberate release of CBR agents in or close to urban centers. Under such circumstances, quick and accurate 
reconstruction can help government agencies evacuate people from the affected regions. Also, using the 
information obtained from inversion, forward models can be run to estimate the extent of the plume spread 
and the consequent exposure. Event reconstruction tools can also be of use to environmental monitoring 
agencies as they can help evaluate the contribution of the stack releases from various industries close to 
urban areas to the air quality within urban areas. Therefore, from the perspective of public safety and



national security, a fast, robust and accurate atmospheric event reconstruction tool is pivotal for air-quality 
management and to effectively deal with emergency response scenarios.

It is generally well accepted that there does not exist a single best procedure to solve an inverse 
problem. For inverse problems having small domains and few decision variables, conducting an exhaustive 
grid search is the most robust inversion technique [45]. For larger problems, the performance of a solution 
technique depends upon the problem at hand, the nature of the forward model and the manner in which the 
inverse problem is formulated. Inverse problems are also difficult to solve owing to their inherent ill 
posedness, i.e. the existence, uniqueness, and stability of the computed solution. For real-life inverse 
problems, the question of existence is more mathematical than physical [46, 35]. This is also true for the 
present case, wherein; the sensor network recording a hit suggests the existence of a solution to the source 
characterization problem. However, to date, there is no formal proof for the existence of solutions to 
inverse problems with contaminated data, and seldom do we obtain noise-free data from measuring devices
[35]. Therefore, for the accurate retrieval of the model parameters (m), the knowledge of the uncertainty in 
the observed data (dobs) is absolutely essential. In short, one needs to know the uncertainties (8) in the data 
to know what it means to fit the data [35].

The solution phase of inverse problems can be divided into two stages [35]: 1) the estimation stage, 
and 2) the appraisal stage. The estimation stage involves using an inversion algorithm to predict a set of 
model parameters (mpr) based on the observed data (dobs). The appraisal stage is comprised determining 
how well the data generated (dpr) using the predicted model parameters (mpr) fits the observed data (dobs) 
[46]. Errors arising in inversion and the inherent ill posedness associated with inverse problems can be 
accounted for in one of these two stages. Errors arising in the inversion procedure can be attributed to one 
of the four possible sources: 1) the forward modeling error (8FM), 2) measurement error (8M), 3) non
uniqueness, and 4) nonlinear error propagation. For real life problems, the forward modeling error (8FM) is 
inevitable. This is because no forward model (A) can ever incorporate all the physics associated with the 
problem. During inversion, the forward modeling (8FM) and the measurement errors (8M) are accounted for 
in the estimation stage. Non-uniqueness arises primarily due to one of the following four factors: 1) 
mapping of the infinite dimensional model space (M) to a finite dimensional data space (D) by the forward 
operator (A) 2) lack of information -  this is especially true when solving an under-determined system, 3) 
correlation between the model parameters (m), and 4) distortion of the misfit functional due to the 
previously mentioned errors resulting in multiple optimal regions. Non-uniqueness and nonlinear error 
propagation (that is intractable) can be accounted for during the appraisal stage. Due to these uncertainties 
in the solution procedure, one usually defines a ‘data-fit’ or ‘model-acceptancy’ criterion (D) based on the 
prior information available about the noise level (8) [6, 24, 27, 37]. In summary, the goal of inversion is to 
find a set of model parameters (mpr) that fit the observed data (dobs) to some prescribed level. All the 
solution techniques developed work on the same underlying principle - to reduce the misfit between the 
predicted (dpr) and observed data (dobs) using a suitable algorithm.

Given that the subject of source characterization of atmospheric contaminant dispersion is in its 
infancy, researchers have examined the applicability and effectiveness of the various available inversion 
procedures to solve such problems. The solution methodologies used span the range of deterministic 
(Adjoint methods), stochastic (Simulated Annealing (SA), Genetic Algorithms (GA), Bayesian inference 
using Markov Chain Monte Carlo sampling (MCMC)) and ‘common-sense’ methods (collector footprint 
methods). The inverse-source problem has been solved over local (micro and meso-scales), regional and 
continental scales for different model parameters (m) using empirical, diagnostic and prognostic models for 
scalar transport as the forward operator (A). Table 1 summarizes the salient features of the inversion 
procedures adopted by various research groups to solve the inverse-source problem.

As stated earlier, all inversion techniques have their own merits and demerits and the approaches found 
in Table 1 are no exception. Adjoint methods, apart from requiring a good initial guess, also require the 
misfit functional to be continuous and differentiable. Hence, they are more likely to get trapped in local 
minima, as, inverse problems are often characterized by misfit functionals that have multiple critical points 
(maxima, minima and saddle points). Also, for problems that have complicated forward operators (A) in 
the form of partial differential equations (PDE), Adjoint methods can get computationally expensive as 
they require the forward model evaluation and the Frechet evaluation over the entire domain on every
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iteration (when Newton’s method is employed, evaluation of the inverse of the Hessian over the entire 
domain is required). Therefore, problems that have complicated misfit functional surfaces often require 
stochastic sampling methods in order to distinguish the local minima from the global minima. The 
computational efficiency of guided-search algorithms such as SA and GA also depends upon the nature of 
the forward model (A), as, every iteration of these algorithms also requires the forward model (A) to be 
evaluated. Adjoint methods, SA and GA also carry the added disadvantage that they only provide a single 
model that fits the data rather than giving a set of acceptable models. Though Bayesian inference 
techniques appear robust and give probabilistic answers, they rely heavily upon the manner in which prior 
information is included into the initial probability distribution [31]. The posterior distribution is then 
computed using MCMC sampling, which also requires the forward model (A) to be evaluated on every 
iteration, and hence can get computationally intractable in higher dimensions owing to the ‘curse of 
dimensionality’ [35].

In this paper, an approach that has the combined benefits of stochastic sampling and gradient descent 
methods is presented. Stochastic sampling is performed using Quasi-Monte Carlo (QMC) and Monte Carlo 
Quasi-Monte Carlo (MC-QMC) point sets. It should be noted that the QMC search is not a guided-search 
and this ensures that the misfit functional space has been adequately sampled, thereby eliminating the 
possibility of getting stuck in a sub-optimal region. The objective of conducting quasi-random search is to 
provide the gradient optimization scheme a good starting solution. In order to make the QMC search 
procedure computationally inexpensive, a relaxed ‘data-fit’ criterion ( D q M C )  is imposed. Gradient 
optimization is performed with the starting solution provided by the QMC search stage until the global 
minimum is reached. The Gaussian plume dispersion model has been adopted as the forward model (A) 
because of its theoretical and computational simplicity and the proposed approach has been validated using 
both synthetic and field experiment data (The Copenhagen Tracer Experiments -  TCTE) [16].

Apart from the hybrid approach proposed, the present paper also investigates some of the vital aspects 
of the atmospheric source characterization problem when using the Gaussian plume model as the forward 
operator (A). The first feature examined is the effect of the misfit functional formulation on the accuracy 
and complexity of inversion. Some of the popular formulations of data-discrepancy functionals are based 
on the Euclidian norm of the misfit, Euclidian norm of the relative misfit, the Kullback-Leibler information 
divergence functional, and the negative Poisson log-likelihood functional [42 ]. Misfit functionals based on 
the L2-norm are often used when the errors (8) included in inversion are assumed to be additive in nature. 
Misfit functionals based on the relative error are adopted when the uncertainties (8) are incorporated as 
multiplicative errors [7]. Due to the costs involved with placing and monitoring the sensors in cities, 
atmospheric source inversion problems always suffer from a sparse number of measurements (N). The 
accuracy of most of the techniques found in Table 1 is directly related to the number of non-zero 
measurements recorded by sensors. Therefore, prior to solving the inverse problem, the role of the misfit 
functional formulation on the number of measurements (N) required in general and the number of non-zero 
measurements required in particular was investigated. Based on this study, it was concluded that the 
accuracy of inversion with data-discrepancy functionals based on the absolute and relative misfit depended 
strongly on the number of non-zero measurements available. Therefore, a new misfit functional that 
computes the L„-norm of the ratio of the observed data (dobs) and predicted data (dpr) and equally-weights 
sensors with zero-hits was developed. This functional was used in the QMC search stage with the relaxed 
‘data-fit’ criterion ( D q M C )  ( D q M C  = dobs / dpr). It is suggested that in atmospheric event reconstruction 
problems, sensors with non-zero measurements help identify a set of optimal regions in the solution space, 
while sensors with zero-hits help locate the optimum region from the various sub-optimal regions. Since 
the misfit functional developed weighs all sensor measurements equally, the possibility of uniquely 
identifying the source parameters (m) using this formulation is higher when compared to the traditional 
formulations. As gradient optimization methods work only for a convex misfit functional, the conventional 
misfit functional based on L2-norm of the difference between the observed (dobs) and predicted data (dpr) 
was used in the descent procedure.

The second feature examined was the performance of the various QMC point sets in the stochastic 
sampling procedure. QMC sampling was preferred over the conventional MC sampling as QMC point-sets 
have been specifically designed to improve upon the MC estimates through the suitable specification of a 
point-set [17]. Quasi-random numbers were developed to fill an s-dimensional hypercube [0,1 )s more
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uniformly than the traditional pseudo-random numbers. To ensure that the misfit functional space is 
adequately sampled, QMC point-sets were employed. Several point-sets (e.g. Halton, Hammersely, Sobol, 
ShiftNet and NiederreiterXing) were considered in their original, scrambled and randomized forms (MC- 
QMC) and their performance was evaluated in terms of the speed and quality of the initial guess (mQMC) 
provided to the optimization scheme. Of all the point-sets, the Hammersley sequence was found to be the 
most efficient in terms of the number of search points required for providing a starting solution. Hence, for 
conciseness, only these results in comparison to the Mersenne-Twister generator are presented.

The choice of the descent methods, stabilizing functional and the regularization parameter (a) for 
gradient optimization were also examined. Newton’s method is an attractive choice for the current problem 
as an analytical expression for the Frechet and the Hessian can be pre-computed for the Gaussian plume 
equation. Also, since the size of the Hessian matrix for the present problem is relatively small (=5x5), its 
inverse can be computed quickly and accurately. The regularized version of Newton’s method with 
quadratic line-search was implemented with the standard Tikhonov stabilizing functional. The 
regularization parameter (a) was updated adaptively in these algorithms. Several other features that play a 
significant role in inversion in general and atmospheric source characterization problems in particular were 
investigated, but are not discussed to aid conciseness.

As has been the central theme of this discussion, the area of application of inversion techniques to 
atmospheric source characterization problems is in its nascency and various methods are being tested and 
their performance is being evaluated. In the work presented in this paper, a solution procedure that is 
different from the ones published in the literature is suggested. As with most of the other inversion 
techniques, the speed and accuracy of the present solution methodology depends on the noise-level (8) in 
the observed data (dobs) and the quality of the forward model (A). When properly formulated, the solution 
to an inverse problem can help identify the necessary physics that need to be incorporated into the forward 
model (A). Thus, inverse problems can in-turn be used to improve the speed and accuracy of the solution to 
the forward problem by enhancing or pruning the forward model (A).

2. P ro b le m  D e fin itio n

2.1. The Forw ard Problem

The Gaussian plume model (GPM) is the simplest model that describes the dispersion of atmospheric 
contaminants. It is an analytical expression which is a special solution to the advection-diffusion equation 
[8,25,41]. Of all the models used to characterize atmospheric dispersion, the GPM takes the least execution 
time. In emergency-response situations, the two most important factors are the speed and accuracy of 
reconstruction. The accuracy of reconstruction depends as much on the forward model (A) as it does on the 
inversion technique. Therefore, within its range of applicability, the GPM is the most desirable in such 
situations, due to the meager cost associated with the forward model evaluation. Accordingly, the inverse- 
source problem has been solved using the GPM for continuous point-releases as the forward operator (A). 
The GPM for steady, continuous and uniform wind conditions can be written as:

CR (XR , y  R , Z R ) =
<2s

2 p -Us -Gy s z

( ZR-ZS
2Gz2 + e

( ZR+ZS 
2Gz2

(1)

G y =
C 1 • x

^1 + 0 .0004  • x

G  = C 2 • X
X = - ( yR -  y s  ) • C os(ds  ) -  (X r  -  X s  ) • S in (d s  )

y  = - ( y R  -  y s ) • S in (d s ) +  (X r  -  X s  ) • C o s (d s )

(1 .1)

(1 .2  )

(1 .3)

(1 .4)
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Eqn. (1) gives an estimate of the concentration at a receptor (CR) with the position 

vector X  =  [(XR -  X S ) , ( y R  -  y s  ) , ( ZR -  Z S )] > where, xS, yS, zS, and xR, yR, zR, represent the source and 
receptor coordinates respectively. The emission rate is QS and the wind speed (uS) and direction (9S) are 
assumed to be constant over the region of interest. The distances (xR -  xS), (yR -  yS) and (zR -  zS) are 
measured in the along-wind, cross-wind, and vertical directions with the origin of the coordinate system 
being the source location. oy and oz (Eqns. (1.1) and (1.2)) are called the Gaussian plume spread 
parameters and account for the turbulent diffusion of the plume. They are empirical parameters and are 
defined for various stability conditions. For the present problem, Brigg’s formulae for Pasquill C-type 
stability conditions have been chosen. These parameters, however, are very problem dependent and 
therefore for the present work, the empirical constants C1 and C2, which in Brigg’s formulae are 0.22 and 
0.20, have been replaced by 0.12 and 0.10 for TCTE [16] as per the work of [34]. There are several other 
assumptions that are tacit in the Gaussian dispersion equation for which the reader may refer to [8,41].

The forward problem can be defined as estimating the concentrations at the desired receptor locations 
based on the given model (source) parameters (m) and can be written as:

A (m ) = d  (2)

m  =  [ x s  y s  Z S # S  / U S q s  L  (2 1 )

d  =  [ C  r ,  C r  2 . . . .  C rn n  ]Nx, (2 2 )

where, A  is the forward modeling operator (which in this case is the GPM), m  is the set of model or 
source parameters, and d  is the vector of concentration measurements at the various receptor locations.

2.2. The Inverse Problem

The inverse problem can be defined as the solution of the operator equation:

d  = A (m )  (3)

The solution to the inverse problem comprises of determining a model ‘mpr’ (predicted model) that 
generates predicted data, ‘dpr’, which ‘fits-well’ the observed data ‘dobs’. Since the forward operator (A) is 
nonlinear, the solution to the inverse problem can only be found iteratively. Therefore, nonlinear inverse 
problems are often cast as minimization or optimization problems as shown below:

arg (m in ||&(m  ) -  j J I M  (4)
V mpr 11 11 J

Since the source strength (QS) and the wind velocity at the source (uS) are a fraction of each other in 
the Gaussian equation, more often than not, they cannot be retrieved uniquely. Therefore, they have been 
combined into a single term (QS / uS) in the inversion procedure.

3. V a lid a tio n  T e s ts  - T h e  C o p en h a g en  T ra cer E x p e r im e n ts  — (T C T E )

Data from the Copenhagen field experiments [16] has been used for the experimental validation of the 
proposed approach. As part of this experiment, the tracer sulphurhexafluoride (SF6) was released without 
buoyancy from a tower of height 115m. It was collected 2 -  3 m above the ground-level by sensors placed 
in three crosswind arcs positioned 2 - 6  km from the point of release. A total of 137 tracer-samplers were 
used with 48 sensors placed in the arc closest to the source (Arc 1), 43 in the arc farthest from the source 
(Arc 3) and 46 in the intermediate region (Arc 2). Three consecutive 20 minute averaged tracer
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concentrations were measured, allowing for a total sampling time of 1 hour. The site was mainly residential 
having a roughness length (z0) of 0.6 m. The experiment was conducted on different days under neutral and 
unstable stability conditions. For the present work, the experiment conducted on October 19, 1978 / 1979 
has been considered. The experiment was conducted mid-day thereby resulting in unstable conditions 
(Monin-Obukhov length L — 108 m, friction velocity u* ~ 0.39 m / s, inversion height ~ 1120 m, standard 
deviation of the lateral and vertical velocities at the release point ov ~ 0.85 m / s and ow ~ 0.68 m / s, 
Stability class = Pasquill C -type). The emission rate was 3.2 g / s and the limit of estimation (LOE) of the 
sensors was 9 ng / m3. The average temperature (tS), wind speed (uS) and direction (9S) at the release height 
during the course of the experiment were tS~ 283.72 K, uS ~ 4.92 m / s and 9S ~ 308.57 degrees. For the 
validation of the numerical experiments, the height of the sensors was considered to be 2.5 m.

It is worth noting that for the October 19 experiment, 34 out of the 137 sensors received a hit. These 
have been denoted by the ‘squares’ (□) in Fig. 1. As stated in the introductory section, the total error that 
needs to be accounted for during the estimation stage is the sum of the following individual error 
components:

Estimation error (8E) = Forward modeling error (8FM) + Measurement error (8M)

Since the authors of the report make no mention of the uncertainties in the measurements, 8E has been 
considered to be a result of 8FM (i.e., 8M=0). In order to quantify 8FM when using the GPM, the forward 
problem was solved with the known source parameters. The results obtained are shown in Fig. 1. From the 
figure it is evident that despite using the modified oy and oz, the plume spread predicted by the GPM does 
not match the experimental measurements. Therefore, it should be noted that the results obtained after 
inversion will not match the true source parameters.

The difference in the plume spread predicted by the GPM can be attributed to the complexities 
associated with real-world flows that have not been incorporated into the present version of the GPM. Since 
?E = ?FM, and 8FM is due to the inadequacies of the forward model (A), the inversion procedure has been 
designed to drive the forward model (A) to match the zero and non-zero measurements recorded by the 
sensors. That is, the inversion procedure adopted ensures that at the end of inversion, the plume spread 
predicted by the GPM is as close as possible to that observed in the experiments, not in magnitude, but, in 
terms of the zero and non-zero measurements recorded by the respective sensors. And as stated above, the 
final predicted model parameters (mpr) will not match the true source parameters (mt).

4. S o lu tio n  P ro c e d u re

4.1. The T ikhonov Param etric Functional

In a general setting, the solution to an inverse problem can be obtained by minimizing the following 
unconstrained parametric functional [46]:

P a (m a , d s )  = mD (A (m a X d s)  +  a  • s (m a )
(5)

argl m in ( f ( » a ,  d d ))

This can also be written as:

p ( a )  = i ( a )  + a  • s ( a )  (6)

where i ( a )  = mD(& (m a ), d d ) is the misfit functional, s ( a )  = s (m a ) is the stabilizing functional, 

and p ( a )  = P a (m a , d d ) is the parametric functional. The parametric functional p ( a )  is a linear

a
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combination of the misfit and the stabilizing functionals, and the unknown real parameter a  is called the 
regularization parameter.
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Fig. 1: Schematic depicting the sensor positioning and the number o f zero (o) and non-zero (□) measurements recorded 
for TCTE on October 19. Also shown is the plume spread predicted by the GPM for true source parameters (mt). ‘S’ is

the true source location

The parametric functional described in Eqn. (5) can be minimized using different techniques. 
Depending upon the technique chosen, the inversion procedure acquires its respective name (such as GA, 
SA, MCMC sampling, gradient descent, adjoint methods, etc.). The role of the misfit functional i ( a )  is to 
check if, on every step of inversion, the discrepancy between the observed and the predicted data 

( ||d obs ~  dpr ||> d pr = A (m pr) )  is increasing or decreasing. Since most real-life inverse problems are ill- 

posed, casting the inverse problem as the minimization of the misfit functional can result in unstable
solutions. This is because the operator A  1 may not be continuous over the entire model space M . The 
inherent ill-posedness of inverse problems can be overcome by considering a family of well-posed 
problems (d  = A a (m  )) that approximate the original ill-posed problem (d  = A  (m  )) . The scalar

parameter a  > 0 in the above expression is called the regularization parameter and regularization is 
imposed under the constraint m a ®  m t ; a s a  ®  0 (where m t is the true solution). That is, regularization

approximates the non-continuous operator A  1 by the family of continuous operators A a 1 ( d ) for

different values of a  . The family of continuous A a 1 (d )  operators that approximate the original non-

continuous operator A  1 are called the regularization operators R a (R ( d , a )  = A a 1 ( d )) . 

Regularization operators can be constructed by adding a stabilizing functional s ( a )  to the misfit 

functional i ( a )  . The task of the stabilizing functional is to help identify from the set of all possible models
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that fit the data, a solution, that belongs to the correctness-set M C ( M C ^  M ) ,  such that, the operator

A  1 is continuous over M C . Formulating an inverse problem in this manner converts an ill-posed 
problem into a ‘conditionally-well-posed problem’ expressed by the parametric functional in Eqn. (5).

In this paper, Eqn. (5) has been minimized using gradient descent methods. Gradient methods require 
the misfit functional to be convex, continuous and differentiable (C-C-D) to converge to the global 
minimum. Examining the GPM, one can recognize that the misfit functional generated by the GPM (using 
Eqn. (10)) has multiple critical points (maxima, minima and saddle points). In fact, when using the GPM, 
the number of global maxima (= 1 ) in the misfit functional space is equal to the number of sensors (N) in 
the domain. This can be shown by considering the GPM in Eqn. (1). It can be seen that 
XS = XR a n d  y S = y R ^  CR (XR, y R, ZR ) = ¥  . The presence of ‘N ’ global maxima in addition to the

various error components (8E and 8A) results in the formation of several critical points interspersed around 
the global minimum. Therefore, to employ gradient schemes to solve such problems, a good starting 
solution is pivotal. This starting solution needs to be in the C-C-D region surrounding the global minimum 
in the misfit functional space. If a starting solution in the C-C-D region can be identified, gradient descent 
methods are the most appealing of the available techniques, as, the analytical expressions for the Fretchet 
and the Hessian of the GPM can be pre-computed and used in the descent procedure. For this precise 
reason, the approach proposed in this paper comprises of QMC sampling to provide a good initial iterate to 
the gradient descent scheme.

In order to illustrate that the proposed approach works for inverse-source problems with the GPM as 
the forward operator (A), the domain of TCTE (Fig. (1)) was discretized and the misfit functional at every 
grid node was computed using Eqn. (10). This was done in 2D by considering the x and y coordinates of 
the source (xS and yS) to be the unknown model parameters (m). The results obtained are shown in Figs. 
2(a) and 2(b). From the figures it can be seen that

as xs ®  XR a n d  y S ®  y R ,||d pr -  d obs || T (in crea ses ) . This behavior is in agreement with the above 

mentioned assertion that as x s  ®  XR a n d  y S ®  y R, CR (XR, y R, z r  ) = d pr ®  ¥  . From the figures it

can also be deduced that there exists a region in the misfit functional space (translucent dotted circle and 
triangle in Figs. 2(a) and 2(b)), which is convex and continuous, and houses the global minimum. The plots 
also shed light on the distortion of the misfit functional by the forward modeling error ‘8FM’ (assuming 8M = 
0). The distortion manifests in terms of the discrepancy observed in the predicted ‘Sp’ (square - □) and the 
true source locations ‘St’ (diamond - U) as shown in Fig. 2(b). However, not too many conclusions should 
be drawn from these plots as these are in 2D. In 5D, the hyper-volume that spans the C-C-D region might 
be of different size and corrugated, due to the effects of nonlinear error propagation.

Fig. 2: (a) Surface o f the misfit functional for TCTE, (b) 2D contour o f the misfit functional for TCTE with the true (St)
and predicted (Sp) source locations
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4.2. QMC andM C-QM C Sampling

QMC sampling was performed over the misfit functional space to identify a good starting solution for 
the descent algorithm. QMC sampling is recommended over conventional MC sampling as quasi-random
numbers were developed to fill an s-dimensional hypercube on [0 ,1 )s more uniformly than pseudo-random 
numbers [14]. Additionally, QMC point-sets provide the extra advantage of being completely deterministic. 
This property of QMC point-sets is highly desirable for atmospheric event reconstruction problems. This is 
because, for known receptor locations, stochastic algorithms developed to solve the inverse-source problem 
for a real city can be tested for all possible model parameters and the performance of the algorithm in terms 
of total execution time (which is equivalent to the number of forward model evaluations) can be determined 
apriori. For the work presented in this paper, the Hammersley point-set in its original, scrambled and 
randomized form was considered. The performance of the point-set was evaluated with respect to the 
Mersenne-Twister generator, which is the standard uniform pseudo-random number generator used in most 
programming languages.

The Hammersley point-set is one of the most commonly used low-discrepancy point-sets in computer 
graphics. It is based on the radical inverse function in base b written as F  b ( 0  . To compute the function 

value, the number i is written in base b and is then reflected about the radix point. For any base b , 

F b (0) = 0 and F b (i)  G [0 ,1 ). Using the definition of F b ( i ) , for the d-th prime number p d , the 
Hammersley point-set is written as [14]:

J  i /  N  d  = 0 

X  d =  | F ( i )  pd 1 o th e r w is e  (7)

The scrambled version of the Hammersley point-set was obtained by applying Faure permutations over 
the original set [14]. The randomized form, also called MC-QMC, was computed using the Cranley- 
Patterson rotation [14]. The Cranley-Patterson rotation involves generating a random multidimensional
vector o  in the unit-hypercube [0 ,1 )s and adding the vector to each of the components of the original

Hammersley vector sequence ( X ). The components of the newly generated sequence ( y ) in the d-th

dimension d  are [14]:

yi,d = (x i ,d + o d)m o d 1  (8)

4.3. The M isfit F unctional

The misfit functional is one of the most important components of an inversion algorithm. When 
properly formulated, it helps guide the inversion algorithm to the global minimum. Misfit functional 
formulation, just like the choice of an inversion algorithm, is highly problem-dependent. Most of the data- 
discrepancy functional formulations appearing in the atmospheric source-inversion problem literature 
[2,3,18,28,39,44] are either based on the L2-norm (Eqn. (10)) or the log-likelihood of the misfit [34]. Misfit 
functionals based on the L1-norm (Eqn. (9)) of the error have also been used in other areas of application of 
inversion techniques.

PL1 (A (m pr X d obs ) = |\A (m pr ) -  d obs |[ (9)

P , 2 (A (m pr X d obs ) = |\A (m pr ) -  d ob\ 2 (10)

Computing the L2-norm or the L1-norm of the misfit to determine the class of models (mpr) that fit the 
observed data (dobs) can lead to erroneous results for the atmospheric source-inversion problem. This is
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primarily because atmospheric inverse-source problems always suffer from sparse number of 
measurements (N) in general, and, very few non-zero measurements in particular. Therefore, computation 
of the L1 or L2 norms (Eqns. (9) and (10)) does not take into account the zero-hits recorded by the sensors, 
as, the magnitude of these norms are driven only by the non-zero measurements. Additionally, since these 
norms calculate the sum or sum of the squares of the misfits, they can give a misleading final misfit that 
satisfies the convergence requirements, but, might not correspond to a solution that is close to the true 
model (mt). This has been demonstrated with the help of a simple 3D example with three receptors R1, R2 
and R3 as shown in the Fig. 3(a). The unknown model parameters are assumed to be xs, ys and 9S. 
Synthetic data was generated at these receptors with known source parameters. The inverse problem 
comprises of estimating the unknown model parameters from the computed concentration measurements at 
the receptors. Fig. 3(b) shows the plume spread predicted for the true source parameters (mt) along the slice 
9 = 270°. The true model parameters (mt), observed data (dobs) and the unknown model parameters (m) for 
this problem are:

m t = [50 50 270° ]" m  = [x5 y s ds f d obs = [6.67 0 0 [

Since the domain is relatively small, the best procedure for inversion is performing an exhaustive grid 
search [45]. Conducting an exhaustive grid search and checking for zero-misfits will give multiple source 
locations that do not correspond to the true location (S). The first such scenario is shown in Fig. 3(c), 
wherein, if the misfit functional is formulated using Eqn. (9), multiple source locations along the sectors 
AR1B, CR2D and ER3F will give zero-misfits for various 9S values. In fact, depending on the plume 
spread parameters C1 and C2, zero-misfits can be obtained along a sector of radius ‘r ’ around the receptors 
R1, R2 and R3. Hence, it can be seen that for the simple 3D example, there exist several model parameters 
that satisfy the zero-error criterion. In the second scenario, having the source close to the origin with 9S = 
225° (i.e. the along the plane 9 = 225°) and using Eqn. (9) for the misfit will also result in a zero-misfit 
location close to the origin as shown in Fig. 3(d). Thus, based on this example it has been demonstrated that 
using Eqns. (9) and (10) for atmospheric event reconstruction problems might result in incorrect solutions.

To overcome this problem, a new misfit functional that takes into account both zero and non-zero hits 
and treats both of them equally is proposed in this paper. The new functional is based on the Lm-norm of 
the ratio of the observed (dobs) and predicted data (dpr) and is shown in Eqn. (11.4) below. The constant s  
( s  << L O E ) accounts for the zero hits and becomes insignificant for non-zero hits.

d obs [̂ R1 CR

d pr =  ] [ ( A ( m pr  ) ) r ,  ( & ( m pr  ) R

D s =
d obsr d obsR

d  + s  d  + sprR1 prR2

P (&(m pr X d obs ,S )  =

• C rn K X1

• • (A (m pr))"N L
d obsR

• d  + sPrRN Nx1

(11 .1)

(11 .2)

(11 .3)

(11 .4)

The applicability of the proposed misfit functional is based on the fact that for inversion without noise, 
the result of inversion should give the true model parameters (mt), such that, in some sense, for mpr = mt, 
dobs / dpr = 1. Running the inversion algorithm until p ( A (m pr), d obs) £  b  (where b  is some constant)

ensures that ‘mpr’ is in the vicinity of ‘mt’. The scalar b  is a problem-specific constant and its value 
depends upon the noise-level (8M) in the observed data (dobs) and the number of available measurements 
(N). Therefore, for consistent or over-determined problems, b  can be estimated as:

(12)

s  ¥
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where, dM is the measurement error and k  is a relaxation factor that takes into account the forward 
modeling error (8FM).

The new misfit functional was used in the QMC search stage to identify a good starting solution for the 
gradient descent scheme. The value of b  characterizes the size of the hyper-volume constituting the C-C-

D region around the global minimum in the misfit functional space. Setting b  = 1 + SM would imply 
solving the inverse problem by pure quasi-random search, which can be very expensive. Therefore, based 
on a number of numerical experiments, a b  value, referred to as P#mC , was chosen for the QMC search

stage that made QMC sampling extremely economical. Since gradient methods only work for convex misfit 
functionals, the conventional misfit functional based on L2-norm (Eqn. (10) was used for computing the 
new iterates for the gradient scheme. However, the new iterates were accepted only as long as the value of 
P qMC at each of the receptors was preserved or improved ( b . D).

(b)

Fig. 3: (a) Source -  Receptor configuration for the synthetic three parameter example problem, (b) Plume spread 
predicted by the GPM for true model parameters along 9 = 270° plane, (c) Possible source locations (sectors AR1B, 

CR2D, ER3F) that yield zero-misfit based on the L 1-norm for various 9 values , (d) Incorrect source location that yields
zero-misfit based on the L 1-norm along the plane 9 = 225°

4.4. The S tabilizing Functional, Regularization Param eter and  N ew to n ’s M ethod

The stabilizing functional s(m) in conjunction with the regularization parameter a  is used to 
construct the regularization operator R a that converts an ill-posed problem into a ‘conditionally-well- 
posed’ problem. For the inverse-source problem, the standard Tikhonov stabilizing functional has been

11



chosen as the penalty functional. The Tikhonov stabilizer is shown in Eqn. (13) below. mapr represents 
some prior information that we might have about the model parameters (m). No prior information was 
assumed in the solution procedure for the atmospheric event reconstruction problem. However, a modified 
version of the stabilizer shown in Eqn. (13) was used in the descent algorithm and is shown in Eqn. (14). 
The rationale behind using this stabilizer is based on the initial iterate provided by the QMC search stage. 
The QMC search stage was designed to provide a starting solution that belongs to the C-C-D hyper-volume 
around the global minimum. Therefore, to ensure that the gradient scheme does not bounce out of the C-C- 
D region, the model parameters on the current and previous iterations were used to stabilize the gradient 
scheme.

s(m ) = ||m -  m apr\\2 (13)

s(m ) = IK  -  m i-J |2 ;i = 2 ,3 ........ (14)

The regularization parameter a  determines the relative significance of the misfit and the stabilizing 
functionals. Choosing extremely small values of a  leads to the situation where the inverse problem 
reduces to the minimization of the misfit functional, which can result in unstable solutions. Large values of 
a  corresponds to the situation wherein the inverse problem is driven in the direction of the stabilizer. 
Hence, accurate reconstruction requires optimal regularization parameter selection. Several methods have 
been proposed for optimal regularization parameter selection. Prominent among these are the Mozorov 
condition [42] and the L-curve criterion [5, 40 42, 46]. In the present paper, a more heuristic approach as 
suggested in [46] has been adopted. The regularization parameter has been estimated following Eqns. (15)
and (16) shown below. The first iteration of the gradient scheme is run without regularization and a ,  is 
calculated at the end of the iteration following Eqn. (15). Values of a  on the subsequent iterations are 
computed using Eqn. (16). The value of the scalar q  helps control the extent of regularization. Lower 
values of q  favor faster convergence, but, can lead to instabilities in the inversion procedure. Higher 
values of q  promote better stability, but result in more iterations for convergence.

a 1 =
||A(m i ) -  d obs\\

m, -  m 0 II 1 0||2
a  = a ,  • / ( 0  < q  < 1); i = 2,3,

(15)

(16)

Following Eqns. (10), (14), (15) and (16), the unconstrained parametric functional described in Eqn.
(5) can be written as:

d S) = | |A (m i ) -  d obi2 + a i ' \ m i -  m -l||2 (17)

The parametric functional shown in Eqn. (17) has been minimized using Newton’s method. To ensure 
convergence and to prevent overshooting of the Newton jump, quadratic line-search was implemented. For 
computational efficiency, the Hessian was approximated by calculating the residual assuming unit-step 
with linear line-search. The details of the algorithm implemented can be found in [46].

5. R e su lts  a n d  D iscu ss io n

As stated in the previous sections, the algorithm developed to solve the inverse-source problem 
comprises of quasi-random sampling of the model parameter space and the subsequent application of 
regularized Newton’s method with quadratic line-search. Quasi-random sampling was performed to 
provide a good starting solution for the gradient scheme and the Hammersley point-set in its original,

12



scrambled and randomized form was used for this purpose. The results obtained by implementing the 
algorithm are displayed in Table. 2. To improve the stability of the gradient scheme, the x and y-axes of the 
5D coordinate system were translated from (0,0) to (2000,5000) during inversion. ‘mt’ represents the true 
model parameters from TCTE, ‘m0-H’, ‘m j-2’, ‘m0-R-H’, ‘ms-R-n’ , stand for the initial iterates provided by 
the Hammersley point-set in its original, scrambled, randomness added to the original and randomness 
added to the scrambled forms. From the results it can be seen that the original version of the Hammersley 
point-set takes only 90 iterations to identify a starting solution in the C-C-D region, while the scrambled 
version takes 262. In order to compare their performance with the Mersenne-Twister uniform pseudo
random number generator, the QMC search stage was run with this generator 15,000 times. This has been 
done to get an average statistic for the number of iterations taken by the pseudo-random generator. The 
result of this numerical experiment can be seen in Fig. 4(a). From the figure it can be observed that pseudo
random generators can provide a ‘lucky-hit’, wherein, the starting solution can be obtained in just one 
iteration, or, they can be exorbitant, with the search stage consuming at least 106,074 iterations to identify a 
good initial iterate. On an average, the Mersenne-Twister generator took 9124 iterations to recognize a 
solution in the C-C-D hyper-volume. This result affirms the superior space-filling nature of the 
Hammersley point-set in comparison to a standard pseudo-random generator. Too many conclusions should 
not be drawn from the results obtained for ‘m0_R_H’ and ‘ms_R_H’, as, these MC-QMC point-sets were 
generated by adding pseudo-randomness to quasi-randomness. Hence, their performance should also be 
evaluated in terms of an average statistic for convergence.

‘mGD’ represents the model parameters obtained at the end of the descent procedure. On an average, 
the descent scheme took 70 regularized Newton steps to converge to the final solution. Newton’s method 
was implemented with quadratic line-search with q = 0.7. For the initial iterate provided by the QMC point- 
sets, Newton’s method converged to the final solution in 7 steps without requiring regularization (q = 0) 
and line-search. Regularization and quadratic line-search were only needed for the starting solutions 
provided by the pseudo-random generator and the MC-QMC point-sets. However, to maintain the overall 
robustness of the proposed approach, regularization and quadratic line-search were incorporated into the

descent procedure. The convergence criteria for the descent algorithm was set as \\mt — m l— J  < 0 .0001 .
¥

Model
Parameters

xs (m) ys(m) zs (m) q s/ us(g / 
m)

9s (degrees) X of 
iterations

mt 2000 5000 115 0 .64 308.57
mo-H 17.8 6015.62 178.6 0.904 294.5 90

ms_H 52.2 6269.53 15.08 0.68 298.05 262

m0-R-H 412.86 5508.3 66.42 0.51 292.98 1279

mS-R-H 1020.28 5314.44 100.4 0.56 292.55 35,339

m GD 1905.36 4984.62 163.11 0.77 292. 78 70

Table. 2: Results at the end o f the QMC search stage and the gradient descent procedure

A few other interesting results of inversion are shown in Figs. 4(b), 4(c), and 4(d). Fig. 4(b) depicts the 
solutions generated by the Mersenne-Twister generator during the search stage. From the figure it can be 
seen that the x and the y values of the initial iterates generated are distributed in an asymmetric manner 
around the true source location, while, the z values are distributed more uniformly about the true value. 
Along any z-plane, it can be observed that the starting solutions lie within a triangular region for the DqMC 
value chosen. This behavior in 5D is in agreement with the earlier hypothesis in 2D that there exists a C-C- 
D region around the global minimum, and, as seen in Fig. 2(b), the region appears to have a triangular 
contour.
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Fig. 4(c) shows the behavior of a  and
a  ■ s ( a )  

i ( a )
during the descent procedure when using ‘m0H’ as

This demonstrates how
_ a  ■ s ( a )

the initial iterate. From the figure it can be seen that as a ®  0 ;---------------® 0
i ( a )  .

the significance of the stabilizer fades as the gradient algorithm approaches the final solution. Fig. 4(d) 
shows the plume spread obtained using the predicted model parameters (mGD). St (hexagon) and Sp (plus) 
denote the true and the predicted locations of the source. From the figure it can be concluded that the plume 
spread obtained from mGD matches the sensor measurements far better than that observed in Fig. (1) (for 
true parameters -  mt).

(a)

Max. #  of iterations = 106,074

(b)

Min. #  of iterations = 1

5000 10000
# o f  expts

(d) 10*1 
10*0 

10M 

1[K2 _  
Te10"-3 g 

10M |  
10*-5 |  

10*-6 ° 
10*-7 

10̂8 
10̂9

Fig. 4: (a) Iterations taken by the pseudo-random generator for 15,000 experiments, (b) Distribution o f the x, y and z 
coordinates o f the solution generated by the search stage using the Mersenne-Twister generator, (c) Behavior o f the 

regularization parameter a  and the ratio o f the stabilizing and the misfit functionals in the descent algorithm with ‘mo- 
h’ as the starting iterate, (d) Plume spread predicted by the model parameters obtained from inversion (mGD)

6. C o n c lu s io n s

The work presented describes an inversion technique to solve the atmospheric source characterization 
problem. A simple Gaussian plume model was adopted as the forward model. The approach proposed 
comprises of quasi-random sampling of the model parameter space and the subsequent application of 
gradient optimization. QMC sampling was performed using the Hammersley point-set in its original, 
scrambled and randomized form and regularized Newton’s method with quadratic line-search was 
employed for gradient descent. A modified version of the Tikhonov stabilizing functional suited for
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atmospheric inverse-source problems was used for regularization and the regularization parameter was 
updated adaptively in the descent algorithm. A few features of atmospheric source inversion problems that 
make the reconstruction procedure challenging are discussed and ways to tackle them are suggested. 
Prominent among them is the development of a new misfit functional based on the Lm-norm of the ratio of 
the observed and predicted data that takes into account both the zero and non-zero hits recorded by the 
receptors. Additionally, the work presented highlights the advantages of using deterministic low- 
discrepancy sampling over the conventional pseudo-random sampling to solve atmospheric event 
reconstruction problems. Future work will investigate and document the correlation between the star- 
discrepancy of a point-set and its effectiveness in the sampling procedure.
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