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Abstract

This report discusses the similarities and differences of STG and Burstmode specifications and synthesis
methods. The first part of the report examines the applicability and efficiency of STG’s single controller fork-
join concurrency ability versus Burstmode’s partitioned fork-join concurrency approach. Results comparing
the synthesis results for designs using the same level of concurrency in the controllers (STG and Burstmode),
as well as the different methods of realizing fork-join concurrency, are presented.

The second part compares the timing assumptions being made by the SI synthesis algorithms and if they
can generate a hazard-free solution under Burstmode burst property and fundamental mode assumptions.
This comparison shows that speed independent generalized C-element implementations exhibit hazards under
the burst property assumption model and can thus not be used to implement Burstmode controllers. It also
shows that the SI standard C-element approach, while complying with the burst property of a legal Burstmode
specification, may not generate - from a Burstmode point of view - minimum covers. In addition, timed circuits
are analyzed for the same hazard considerations. Timed circuits have the same problems as SI when it comes
to Burstmode hazard considerations. An extension to timed circuit synthesis that potentially can reduce the
number of entrance violations in a standard C-element implementation significantly is also presented.

1 Introduction

In the context of high level synthesis, the control style targeted by the handshake expansion step is important in
that it dictates what high level constructs can be supported efficiently at the state machine level. Two main styles
of asynchronous control realizations are STG’s and Burstmode circuits. These two have different advantages and
disadvantages at both the specification and synthesis level. The asynchronous circuit compiler ACK [3] allows
fork-join concurrency to be specified in its high level input language. Since it is currently targeting Burstmode
style of control implementation though, such concurrency must be realized by implementing each fork-join thread
as a separate sub controller that are invoked by a sequential main controller when they are supposed to execute.
Since this way of realizing fork-join concurrency introduces some overhead due to start/stop handshaking and
signal sharing arrangements, evaluating the more straight forward way of realizing fork-join concurrency in one
and the same controller using STG synthesis is of interest. This issue is discussed in section 2.

Another interesting comparison of ST'G and Burstmode synthesis is to examine the implementations for con-
trollers with the same kind of concurrency. This would potentially help in deciding what synthesis algorithms to
use under which circumstances. An interesting aspect of such a comparison is also to compare hazard equalities,
i.e. the hazard covers made by the different synthesis algorithms, to determine if Burstmode controllers can be
synthesized using speed independent algorithms and the implementations still be hazard-free under burst property
and fundamental mode assumptions. This will be discussed in section 4.2. Similar considerations regarding timed
circuits will also be discussed in sections 4.4 and 5. This report will discuss the similarities and differences of these
methods and present some synthesis benchmark comparisons of the resulting implementations.

2 Specification

Burstmode. Burstmode controllers [6, 8] were developed as a logic extension for single input change asyn-
chronous state machines [7]. The restriction that only one input could change at a time took care of dynamic



hazard problems but was too severe and resulted in significant limitations of concurrency. One answer to this was
to allow input signals to arrive in bursts and outputs to be generated as a burst thus allowing a higher degree of
concurrency. This specification method still put quite tight restrictions on the concurrency in that it is only allowed
in bursts of the same signal type (inputs or outputs). Burstmode has later been extended to allow non-monotonic
input level signals and directed don’t cares which further extends the concurrency by allowing input signals to be
enabled to change over a period of several bursts.

As far as specification is concerned, Burstmode’s main advantage is its similarity to synchronous state machines
which, by nature, also exhibits a “bursty” nature between clock edges. Its support of non-monotonic input level
signals also facilitates interfacing to synchronous or other level based environments.

STG. STG controllers [2] have a higher degree of concurrency than Burstmode in that they allow specification of
fork-join type of concurrency. Each thread in such afork-join can then operate on inputs and outputs independently
of eachother while being part of one and the same controller. STG’s in their normal form however, do not support
level signals which makes it harder to integrate them to a synchronous environment. Recent developments of timed
circuits [5], based on STG’s, not only allows timing bounds to be associated with each signal transition allowing
pruning of unreachable states, but also incorporates level signals. Addressing issues about level signals however,
1s out of scope for this report.

2.1 Fork-join concurrency using Burstmode

One of the major problems with the burst property of a Burstmode specification is the lack of fork-join type of
concurrency where the threads are allowed to contain arbitrary sequences of input/output signal events.

While STG’s are general enough to allow specification of this type of concurrency, Burstmode effectively restricts
the allowed concurrency to signal bursts of either inputs or outputs. To perform handshake expansion from a
high level description containing fork-join concurrency that targets Burstmode type of control is therefore not
as straight forward as for the STG case and requires partitioning of incompletely specified controllers [4]. To
allow such concurrency, the threads must be separated into subcontrollers which then can be made to execute
in parallel by requests from the sequential main controller. While this method of realizing fork-join concurrency
generally reduce the complexity of the individual controllers, there is added overhead in starting and detecting the
completion of each such subcontroller. In addition, when signals are shared between such incompletely specified
subcontrollers, extra logic must be added to resolve the sharing. For input signals this can be done by using a
blocker gate approach to only allow the signal to reach the subcontrollers that are currently executing and supposed
to see the change on the input. For each controller containing the shared signal, a blocker gate is allocated. A
control signal associated with each controller then controls if the event should be propagated through the blocker
gate (to the controller) or not. The blocker gate can be implemented as an AND gate in the case of four phase
protocol or a SELECT element in case of two phase. For output signal sharing, merge elements such as OR and
XOR. gates can be used.

This logic must be added sequentially to the critical signal path through the controller as illustrated in figure
1. Subsequently it may significantly reduce controller performance unless the complexity of the subcontrollers
themselves have been reduced by the partitioning sufficently to outweigh this fact. Something that is becoming
less likely with recent advances in automated technology mapping of large controller circuits [1].

The question then is, if STG’s with their ability to specify fork-join signal concurrency within the same con-
troller can generate a potentially better solution that, with application of technology mapping, can yield better
performance on average.

Since issues such as technology mapping and controller placement and routing are affected by the decision to
partition or not, this study can not give a definitive answer for the general case. The results obtained however
indicates that STG’s are better to implement short fork-join threads. while partitioned Burstmode is better suited
for implementing larger fork-joins due to the reduced logic complexity of non-shared signals thanks to partitioning.
One example that compares the efficiency of the two implementation approaches more in detail is presented in
section 6.
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Figure 1: Fork-join realization using STG and Burstmode

3 Converting Burstmode to STG

In the process of comparing the Burstmode and STG approaches, it is important to realize specifications that are
exactly the same. We therefore discuss how to implement an automatic translator from a Burstmode specification
to an STG, or more specific, Event Rule (ER) specification.

One main difference in the specification of STG’s compared to Burstmode controllers is that STG’s synthesis
methods require the environment to be specified in order to find all reachable states of the design. AFSM
specifications like Burstmode do not explicitly model the environments behavior, but due to the controllers single
threaded nature the environment can unambiguously be derived from the controller specification.

In order to find the enabling and enabled signals, or rules, which then describe the behavior of both controller
and environment, of an ER, it is therefore necessary to find the environment of the Burstmode controller to be
translated. To find the environment we must mirror the behavior of the controller. By observing that a Burstmode
controller at any given time only executes a single thread, albeit with burst concurrency, the mirror behavior can
be informally defined as follows.

1. An input burst of the controller is an output burst of the environment.
2. An output burst of the controller is an input burst of the environment.

3. An output burst of the environment enables an output burst of the controller if and only if the current state
of the controller has a non-empty output burst. Otherwise an output burst of the environment enables an
input burst of the controller.

4. An input burst of the controller enables an input burst of the environment.

Note that this simple definition only holds true for Burstmode specifications. Extended Burstmode’s addition
of directed don’t cares requires that the enabling signals for such a directed don’t care is the output (or input)
burst of the previous state of where the directed don’t care is first encountered. Also a directed don’t care can only
enable the output burst in the state it is forced to evaluate (or the input burst of the next state). It is also worth
noting that while the basic definition for Burstmode mirroring given above always will guarantee persistency in
the ER, the introduction of Extended Burstmode and its directed don’t cares may result in persistency violations
of the trigger signals of the directed don’t care signal.

To disambiguate concurrency from choice and merge we also need to define conflicts. In a choice place, each
signal in one branch of the choice conflicts with the signals of every other branch. The conflicts in a merge place
is similarly defined but with the “branches” going into the place rather than out of it.
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Figure 2: Burstmode translation to ER structure

A translation example is illustrated in figure 2. As can be observed in the definition of the mirror behavior
above, we can directly translate the input burst of state 3 of the controller to enable the output burst of the same
state. Similarly the output burst of this state enables the input burst of the next state. Notice that in state 2
the output burst is empty wherefore the input burst, rather than the output burst, of this state enables the input
burst of the next state.

4 Synthesis

The question now that we have a way to convert a Burstmode specification to a STG specification is, can a
Burstmode controller be implemented using speed independent synthesis algorithms and still be hazard-free under
the Burstmode timing assumptions? This section will try to answer that question by analyzing what hazard covers
are made by the SI algorithms and how they correspond to Burstmode hazards.

4.1 Burstmode circuits

When a Burstmode specification is entered into the synthesis algorithms it is first converted into a flow table.
This flow table is then minimized to reduce the number of states. This minimized flow table then forms an initial
hazard-free implementation of single minterm excitation region covers. After state assignment, logic minimization
is performed to reduce the complexity of the circuit. During logic minimization, special care must be taken as to
not introduce any dynamic hazards by expanding cubes such that they intersect a dynamic transition trajectory
without including the corresponding start state of the transition. In a Burstmode controller all signals within a
specified input burst may arrive in arbitrary order and with arbitrary times in between. This timing property
will be refered to as the Burstmode burst property. Burstmode circuits also operate under fundamental mode
assumption, meaning that the circuit as a whole must stabilize after an input burst before the next input burst is
allowed to arrive at its inputs.

4.2 Speed independent circuits

When the STG specification, is entered into the synthesis algorithms it is first converted into a state graph
representing all reachable states of the circuit. The resulting state graph is then synthesized using different
assumptions on gate implementation structure, i.e. single generalized C-element (gC) gate or multiple gates of a
standard C-element (sC) implementation. Each separate gate though is still considered to be atomic and have
an arbitrary propagation time. FEach excitation region is then synthesized separately. The general algorithm,
also called multi-cube, then proceeds by finding all prime implicants that can be used to implement the current
excitation region. Since the multicube algorithm allows covering of an excitation region with an arbitrary SOP



cover rather than one single cube, we will sometimes refer to such SOP covers as gate-blocks since they are
considered to be one atomic block.

Under the generalized C-element model, which assumes the entire complex gate is atomic and thus evaluates
immediately upon arrival of any input signal, any set of prime implicants that completely covers the excitation
region can be used to implement a cover.

The standard C-element model assumes that individual gates are atomic. The implementation structure for
this model can be seen in figure 3. Since the circuit consists of more than one level of gates, while gates are atomic
the propagation of a gates new value may take arbitrarily long time, and thus the whole set or reset function may
not have finished evaluating before new inputs arrive. This could potentially create a hazard when evaluation of
the set and reset functions overlap. The synthesis algorithm must in this case remove the cause of such hazards.
This is done by introducing the concept of entrance violations which are solved by first finding the implied states
of every prime implicant. An implied state is a state from which we illegally may enter the cube cover of a prime
implicant, thus causing a hazard. Second we split the prime implicants that have implied states into candidate
implicants that have less entrance violations. A CC-table containing columns for both the states of the excitation
region that must be covered by some implicants, and the implied states of the implicants is then constructed. A
solution covering all columns of the table is then found.

4.3 Hazard equivalence

This section will explore the similarities between hazards in SI and Burstmode realizations. The important
questions are what Burstmode hazards under burst property and fundamental mode assumptions may manifest in
a circuit synthesized using speed independent algorithms under atomic gC and sC implementation assumptions.
We assume that a SI sC can in fact be implemented as a gC Burstmode circuit. Such a transformation is legal
under Burstmode burst property and fundamental mode assumptions. Since these Burstmode assumptions do not
make any assumptions about gate atomicity any hazards exhibited by the SI standard gate implementation will
be preserved in the transformation to a Burstmode generalized C-element.

4.3.1 Burstmode dynamic hazards.

Take the example in figure 3 which models the introduction of a possible dynamic hazard in a Burstmode cover.
For the sake of the discussion, assume that cubes A, B, and C are prime implicants found by the Burstmode
logic minimizer and SI multi-cube algorithm respectively. The transitions we will consider are ¢1 followed by 2.
Consider two different scenarios.

1. If for dynamic transition ¢1 signal a arrives before signal b, then the transition trajectory passes briefly
through state s1 and cube A, before reaching its end state in cube C.

Under the SI atomic gate assumption, this transition is hazard-free in the gC approach since the gate evaluates
immediately as it enters each state. This means that the A cube will always have switched on before the
state covered by the C cube is entered and subsequently there will be no hazard. Since selecting such a cover
would introduce a dynamic hazard under Burstmode burst property and fundamental mode assumptions,
where gates are not assumed to be atomic, SI gC implementations can not be used to synthesize hazard-free
Burstmode circuits. (Consider the case when C starts pulling down the output and is interrupted by a late
conducting A transistor stack.)

Under the SI atomic gate assumption, this transition is not hazard-free in the sC approach since the gate
implementing cube A, while evaluating immediately, may take an arbitrary long time to propagate its value.
As illustrated in figure 3, the internal node X can then exhibit a glitch while transition ¢2 is being performed,
resulting in an incorrect final value of the output. This potential hazard however, is removed by the SI sC
algorithm since moving over cube A in this fashion indicates an entrance violation which is solved by reducing
cube A to, in this case, only cover the excitation region minterm. The SI sC hazard removal addresses the
Burstmode dynamic hazard issue even under the burst property and fundamental mode assumptions and
can thus generate a hazard-free cover for the specified transitions.

2. If for dynamic transition t1 signal b arrives before signal a, then the transition trajectory passes briefly
through state s2, before reaching its end state in cube C.
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Figure 3: Comparison between Burstmode and SI hazards

Under the SI atomic gate assumption, this transition is hazard-free in the gC approach since the gate
evaluates immediately as it enters each state. This means that the transition is guaranteed not to turn on
A during the transition. When the end state C is reached, the gate evaluates and eventually propagates a
monotonic transition to the output. While this holds true for the SI gC approach due to the atomic gate
assumption, it does not hold true under the Burstmode burst property assumption. This is due to the gate
not being considered atomic and thus even if signal b arrives before a at the perimeter of the gate, they
may arrive at the different stacks inside the gate in arbitrary order thus making it possible to enter state s1,
switching on cube A. If A is slow and C switches on first, it may cause a hazard on the output.

Under the SI atomic gate assumption, the t1 transition is hazard-free in the sC approach since the gate
implementing cube A evaluates immediately due to signal ¢ disabling it from any further changes. A will
therefore remain off during the transition, and when entering the end state of t1, C' will evaluate and
eventually propagate a monotonic transition to the output. While this holds true for the SI sC approach
due to the atomic gate assumption, it does not hold true under the Burstmode burst property assumption.
This is due to the gate for A not being considered atomic and thus even if signal b arrives before a at the
perimeter of the gate, they may arrive at the different stacks inside the gate in arbitrary order thus making
it possible to enter state s1. This may cause C to switch on before A, causing a hazard on the output.

4.3.2 Burstmode static hazards.

Take the example in figure 4 which models the introduction of a possible static hazard in a Burstmode cover.
(Note however that this hazard will not be seen at the output of the circuit due to the staticizer on the output.)
For the sake of the discussion, assume that cubes A, B, and C are prime implicants found by the Burstmode logic
minimizer and SI multi-cube algorithm respectively. The transitions we will consider are ¢1 followed by 2 followed
by t3. Consider two different scenarios.

1. If for static transition ¢1 signal a arrives before signal b, then the transition trajectory passes briefly through

state s1 and cube A, before reaching its end state in state s3. The following dynamic transition ¢2 then
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Figure 4: Comparison between Burstmode and SI hazards

moves to its end state covered by cube C.

Under the SI atomic gate assumption, transitions ¢1 + ¢2 are hazard-free in the gC approach since the gate
evaluates immediately as it enters each state. This means that the A cube will always have switched on
before the state covered by the C cube is entered and subsequently there will be no hazard. This cover is also
hazard-free under Burstmode burst property and fundamental mode assumptions since, by the assumptions,
it is guaranteed that the circuit will attain quiescence after ¢t1 before the input burst of 12 will arrive. Static
hazards are therefore of no concern in a Burstmode gC implementation.

Under the SI atomic gate assumption, transitions ¢t14¢2 are not hazard-free in the sC approach since the gate
implementing cube A, while evaluating immediately, may take an arbitrary long time to propagate its value.
As illustrated in figure 3, the internal node X can then exhibit a glitch while transitions ¢2 4¢3 are being
performed, resulting in an incorrect final value of the output. This potential hazard however, is removed by
the SI sC algorithm since moving over cube A in this fashion indicates an entrance violation which is solved
by reducing cube A to only cover the excitation region minterm. The SI sC hazard removal addresses the
Burstmode static hazard issue although such hazards can not manifest in the corresponding Burstmode gC
implementation. The cover produced by the SI sC implementation is therefore not minimal in the number
of literals compared to the hazard-cover requirements to achieve a hazard-free Burstmode cover under burst
property and fundamental mode assumptions.

. If for static transition ¢1 signal a arrives before signal b, then the transition trajectory passes briefly through
state s1 and cube A, before reaching its end state in state s3. The following dynamic transition {2 then
moves to its end state covered by cube C.

Under the SI atomic gate assumption, transitions {1 + {2 are hazard-free in the gC approach since the gate
evaluates immediately as it enters each state. This means that the transition is guaranteed not to turn
on A. When 12 reaches the state covered by C, the gate evaluates and eventually propagates a monotonic
transition to the output. Since ¢1 and ¢2 are separate transitions and a Burstmode circuit is guaranteed to



attain quiescence under burst property and fundamental mode assumptions in between burst transitions,
regardless of the arrival order of @ and b to internal stacks, the output will be hazard-free.

Under the SI atomic gate assumption, transition ¢1 + {2 are hazard-free in the sC approach since the gate
implementing cube A evaluates immediately due to signal ¢ disabling it from any further changes. A will
therefore remain off during the transition, and when entering the end state of 12, C' will evaluate and
eventually propagate a monotonic transition to the output. Since ¢1 and ¢2 are separate transitions and a
Burstmode circuit is guaranteed to attain quiescence under burst property and fundamental mode assump-
tions in between burst transitions, regardless of the arrival order of a and b to internal stacks, the output
will be hazard-free.

4.3.3 Conclusions

From the discussion in previous subsections, it is clear that a SI gC cover is not enough to guarantee hazard-freeness
under Burstmode burst property and fundamental mode assumptions. SI sC covers on the other hand not only
provide required hazard-free covers, but also introduces extra hazard covers of hazards that cannot manifest in a
controller restricted to a legal Burstmode behavior. Subsequently speed independent synthesis can not implement
circuits obeying Burstmode burst property and fundamental mode assumptions as well as Burstmode synthesis
can.

The following equations then informally express these observations in a clear and straight forward manner.

Literal count: SI ¢C < BM ¢C < SI sC

BM hazards: ST gC > BM gC = SIsC =10

4.4 Timed circuits

As discussed in the previons section, a SI model cannot deal with the fundamantal mode issue. Since no fun-
damental mode assumption is made the algorithm cannot assume that the circuit has stabilized before the next
input signal event occur. This problem is inherent to the timing model of speed independent circuits and cannot
be solved without violating the SI assumption.

There is another approach called timed circuits [b] that also starts from a STG specification. This approach
annotates signal transitions with timing bounds in an attempt to prune the state graph of unreachable states.
This approach does not require a SI model but rather extends the specification to allow putting bounds on the
delay of a circuit. Gates are still considered atomic however.

For example, one may specify that the response time for a given output to react to a given input event will
be within a certain timing bound. When the STG specification, or rather an ER structure, is entered into the
synthesis algorithms, a timing analysis step is first performed. This timing analysis use the timing information
from the specification and tries to find unreachable states in the state graph. Such states can then be removed
from the state graph reducing the complexity of the specification to be synthesized without changing its external
behavior. The resulting state graph is then synthesized using the same speed independent assumptions on gate
behavior as discussed in section 4.2.

Once unreachable states due to timing specifications in the state graph have been removed, the synthesis
proceeds exactly the same as in speed independent synthesis. Using the same figures as in the SI case, the
difference in the interpretation of hazards that were discussed in section 4.2 then will then change to the following.

Burstmode dynamic hazards.

1. If for transition ¢1 signal a is always guaranteed to arrive before signal b, then state s1 is unreachable and
thus removed from the state graph. One might believe that this would solve the problem of cube A causing
a hazard since it is not reachable. While this holds true for both the gC and sC SI approaches due to atomic
gate assumptions, it does not hold true under the Burstmode burst property. This is due to the gate not
being considered atomic and thus even if signal a arrives before b at the perimeter of the circuit, they may
arrive at the different stacks inside the circuits in arbitrary order thus making it possible to enter state sl.
This may cause C' to switch on before A causing a hazard on the output. (Observe that state s1 may still
be covered by a prime implicant as a don’t care despite it no longer being in the state graph.)



2. If for transition t1 signal b is always guaranteed to arrive before signal a, then state s2 is unreachable and
thus removed from the state graph. This however, does not in any way affect the possibility of ¢1 to briefly
enter cube A followed by C. The hazard considerations will therefore be exactly the same as for dynamic
hazards in section 4.2.

Burstmode static hazards. Similar observations as those made for the Burstmode dynamic hazards above
can be made to the static hazard considerations in section 4.2.

As we can see from the comparison, timed circuit synthesis algorithms in their current form cannot deal with
Burstmode hazards any better than the speed independent synthesis (since the synthesis algorithms after state
graph pruning are, in fact, the same). The problem is that while timing analysis is used on the state graph to
remove unreachable states, no timing is used by the synthesis algorithms when finding implied states.

5 Extended timed circuits ‘

In this section an extension to timed circuit synthesis is proposed that will help reduce the number of implied
states caused by static transitions.

Due to the lack of timing considerations during the actual synthesis phase, timed circuits can not take advantage
of a property fundamental to achieving less entrance violations, namely the assumption that the circuit may have
stabilized between static transitions. (Observe though that during a dynamic transition under SI assumption, the
circuit is assumed to have stabilized as soon as the output has been propagated since only one gate-block may be
on at the same time.) Entrance violations for such cases must therefore still be considered during the covering step.
The key to remove implied states thus is being able to determine which static transitions will obey the fundamental
mode assumption and which will not. For every static transition that will obey the fundamental mode assumption
we do not have to find any implied states. We informally define a transition obeying the fundamental mode
assumption as a transition that after reaching its end state, the circuits internal nodes will stabilize before the
next transition out of this state commences. Note that the assumption of atomic gates in sC implementations still
is valid under the new fundamental mode assumption. In this case, the fundamental mode assumption refers to
all internal gate outputs (nodes) of the circuit having reached their final values for the given state.

By using timing information conveying how long the maximum time the circuit may take to stabilize after
receiving a certain input and compare this to the minimum time until the next input signal arrives to the circuit,
we can determine if the fundamental mode assumption is violated or not. If it is violated, then we must consider
implied states, but if it is met there is no reason to find implied states. This approach then removes the constraint
that two gate-blocks can not be on at the same time, as two covers now not only can be on at the same time
due to different gate delays, but their cubes are actually allowed to overlap eachother if they do not cross any
transition trajectory that does not obey the fundamental mode assumption. Note that this method can also be
used to annotate static subtrajectories of a transition to find out if indeed the transition can be broken up into two
transitions, the first of which obeys the fundamental mode assumption. This method can of course also be used to
model settling time due to state variable feedbacks by treating them as input transitions. The assumption that the
circuit has stabilized after a dynamic transition as soon as the output event has occurred is also true under this new
assumption since although several cubes may be on at the same time, all internal nodes are stable at the beginning
of the transition. In a reset region, that means that all set region cubes that are initially on must monotonically
go off before the C-element is enabled to respond to the reset region cube going on. Note that while several cubes
can switch off, but only one cube can switch on. Otherwise the circuit would not be guaranteed to have stabilized
at the time the output changes value. A gate-block can thus not cover subsets of other excitation regions. It is
allowed however, to extend into another excitation region if it will cover it complctely, thus enabling us to remove
the other cover, resulting in only one gate-block covering each excitation region (thus several excitation regions
may be covered by the same gate-block).

ER rule extension. In order to derive how long time it will take the circuit to stabilize due to a static transition
we must extend the rule concept of the ER structure. A rule can now also be used to specify enablings of non-
enabled signals. I.e. the enabling signals in this case are input signals that are making transitions in the output
signals quiescent states.



A “non-enabled” (fundamental mode) rule can then also be annotated with the maximum time it will take
the cover of the excitation region of the non-enabled signal to settle after the enabling signal(s) have arrived. A
fundamental mode rule will therefore have the following syntax:

Signalenabling §ignalnon_enabled MATKINGinitial tiMemin tiMemar tiMegtabilize
The extended multi-cube algorithm then becomes the following:

1. Find prime implicants

2. Find implied states

Find candidate implicants
Construct CC table
Solve CC table

A NS

Where the extended definition of the “find implied states” step will be the followiné:

e A state s is an implied state of an implicant ¢ for the excitation region ER(ux, k) if s is not covered by ¢ and
is a predecessor of a state s’ that is both covered by ¢ and in the quiescent set, and the transition s; — s’
does not obey the fundamental mode assumption, i.e.

[S(c) =s|s¢ cATS[(s,8) ETAS EcAs € QS(w)AIFM(s,s)]

Where compliance with the fundamental mode assumption can be expressed as follows:

e A cover ¢ obeys the fundamental mode assumption for a transition ¢ if its maximum settling time s; for ¢ is
greater than the minimum arrival time of the next input event i.

The rest of the synthesis steps are not changed. In the following example we abstract the settling time annotation
to just indicate that the circuit indeed is guaranteed to have settled before the next input transition can occur.
If the full scope of the timing analysis were to be used, the maximum settling time would have to be compared
to the minimum arrival time of the next input transitions to determine if the fundamental mode assumption is
violated or not.

An example of using this method is illustrated in figure 5. As shown the ER structure has been extended
with two fundamental mode rules (markings, min, and max timing not shown) that lets the synthesis algorithms
know that these static transitions (a—, 1 and d—, 1) for excitation region ¢+, 1 can be treated as if they obey the
fundamental mode assumption. In other words we are guaranteed that transition a—, 1 will not occur before the
logic covering the excitation region for ¢+, 1 has stabilized after transition d—,1. Similarly we are guaranteed
that b—, 1 does not occur until the logic has settled after transition a—, 1. Without using this fundamental mode
annotation, prime implicant a’b has F110 as an implied state forcing the implicant to be split searching for
candidate implicants. Using the fundamental mode annotation, the prime implicant does not have any implied
state and can be used in the cover without introducing extra implied state columns that must be covered by other
implicants. The cover using the fundamental mode annotation then becomes a’b, and when not using it becomes
a'be’.

As with the minimum and maximum timing bound annotation in a timed circuit specification, the fundamental
mode settling time annotations in the extended timed circuits can be gradually introduced and tightened. This
allows great flexibility in how much timing information the designer wants to enter into the specification.

Extended timed circuits relation to Burstmode. By using timed circuit synthesis with the proposed fun-
damental mode annotation, The properties of Burstmode controllers can be modeled more precisely in the STG
synthesis. Since unnecessary covers due to implied states of static transitions that actually obey the fundamental
mode constraint are no longer included in the solution, the literal count compared to that achieved by Burstmode
synthesis should be the same, or very close.

We must observe however that when several cubes are allowed to be on at the same time in the sC implemen-
tation, when translated to a Burstmode gC implementation the cirucit is not guaranteed to have settled by the
time the output changes. This is due to transistor stacks having different drive strength which may result in one
stack changing the output value while a weaker stack in the opposite transistor network remains conducting.
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Figure 5: Example of extended timed circuit synthesis

By also annotating enabled signals (as opposed to non-enabled), i.e. the rules of an output’s excitation region,
with a maximum settling time, we can decide if the resulting cover can be safely translated into a gC implementa-
tion. Note that if the fundamental mode assumption annotation method is extended like so, the minimum arrival
time for the next input transition can always be annotated with a value large enough to satisfy this constraint. By
inserting delays on signal wires we can therefore always ensure that the fundamental mode assumptions are met
and that the sC circuit can be safely translated into a hazard-free gC circuit seen from a Burstmode point of view.
Note however that this extra extension to fundamental mode annotation has no meaning for sC implementations
since gates are assumed to be atomic.

6 Results

The similar results for the SI gC and Burstmode gC implementations illustrated in figure 6 are a bit surprising
since the SI gC should potentially be able to find better covers since it does not consider any kind of logic hazards.
Observe that the SI gC implementations are not guaranteed hazard-free under Burstmode burst property and
fundamental mode assumptions. As expected, the SI sC implementations sometimes have to remove hazards for
static transitions, hazards that cannot actually occur under the Burstmode assumptions, and thus result in larger
covers. The large difference in the synthesis time is due to the SI synthesis using a very efficient single cube
algorithm based on graph traversal rather than finding prime implicants as in the Burstmode case.

As can be seen in figure 7, the introduction of fork-join concurrency in the SI design did result in a complexity
increase. It is hard to make a fair comparison though since not the same state variable assignments can be used (as
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Rules /O Time Literals
GCD 2p 3D gC 320 18 840 140
ATACS gC 11 140
sC 15 247 *
Factorial 2p 3D gC 92 16 88 46
ATACS gC 1 46
sC 1 54 *
Factorial 4p 3D gC 95 16 83 42
ATACS gC 1 42
sC 1 42
scsi_isend 3D gC 81 10 30 48
ATACS gC 1 51
sC 1 ) 60
diffeq_mull 3D gC 48 7 30 31
ATACS gC 1 31
sC 1 33 *
sbuf_send_ctl 3D gC 34 8 24 30
ATACS gC 1 30
sC 1 35 *
mp_fwd_pkt 3D gC 24 7 27 14
ATACS gC 1 16
sC 1 16

Figure 6: Comparison between Burstmode and SI implementations

in the comparison of the same-concurrency implementations). Since the state variable assignment in the SI case
was fairly naive, better results are to be expected when a good state assignment algorithm is used. The figure also
illustrates the added complexity of the same partitioned Burstmode implementation due to signal sharing logic. To
get a fair comparison of the number of transistors an input signal must take through the circuit before generating
an output, the figure also illustrates the average “transistor-depth” of each output signal. This also takes into
account the signal sharing logic for the partitioned Burstmode case. The similar “gate-depth” of the signal paths
in the partitioned Burstmode and centralized Sl realizations indicates that the centralized approach would have
an advantage due to its greater ability to take advantage of technology mapping. The dissimilar gate-depth for
the fablreq and fab2regq signals in the fork-join can to a large part be explained by the naive state assignment in
the ST case.
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Rules 1/0 Time Literals
ForkJoin 3D gC main 18 56 42
gl 7 24 13
fi2 10 35 26
sharing 9 - 6
ATACS gC 109 26 76 93
sC - -
Avg.
literal |:| SI DBM
path
] _ Total: SI° = 33.6
] BM = 31.25
5 —
- ' Forkjoin: SI = 163 1l 24.5
7 il - mm m 1 BM = 135 1l 12.5

Figure 7: Comparison between Burstmode and SI fork-join concurrency
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