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Abstract 

Force Control for dextrous manipulation has been approached algebraically with a great 
deal of success, however, the computational burden created when such approaches are applied 
to grasps consisting of many contacts is prohibitive. This paper describes a procedure which 
restricts the complexity of the algebraic system of equations, and makes Use of mathematical 
programming techniques to select a solution which is optimal with respect to an objective 
function. The solution is constrained by contact surface friction properties and the kinematic 
limitations of the hand. The application of the procedure to the selection of minimal internal 
grasp forces which allow the application of task defined external forces is described. Examples 
of the procedure are presented. 
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1 Introduction 
Salisbury has demonstrated that the solution for contact wrench intensities which produce a desired 

external wrench on the object could be found by inverting the Grip Jacobian[4]. The procedure involves 
first, augmenting the \V matrix presented in section 1.1 row wise with the command vectors which 
describe its null space. The result is the Grip transform, a square N X N matrix, where N is the number 
of contact wrenches in the contact system. The desired external wrench and the magnitude of the internal 
wrench systems are inputs to the resulting system of equations. The computation involved to build the 
Grip Transform and to invert it for large N is prohibitive. We propose a method for defining minimal 
contact interaction forces with which to accomplish the external wrench command. The selection of 
forces is constrained by the coefficient of friction for tangential forces, and the geometry of the robot 
hand which produces the contact. The latter is accomplished by the so called Principally Conditioned 
Axes for the manipulator, and is discussed in detail in [2]. The result is a reduction in rank for the system 
of equations used, and the use of an objective function to produce optimal solutions. The procedure 
discussed here is similar to a method described by Kerr and Roth[3]. The algorithm presented here is 
somewhat more effecient, however, since it employs the singular value decomposition of the augmented 
wrench matrix rather than separate homogeneous and particular solutions. 

1.1 The Singular Value Decomposition 

The Singular Value Decomposition is a very powerful method for describing the character of a linear 
transform. For a very complete and detailed description of its properties, see Golub et al. [1]. In this 
section, we will present our nomenclature and the role of the svd in the selection of grasp forces. 

DEFINITIONS: 

Wi a particular wrench space vector resulting from the ith interaction force. 

l¥i the set of non orthogonal wrenches produced at the ith contact position. 

Wi an orthogonal basis for R(Wi) with associated magnitude limits. 

W [~V 1 TV 2 ... TV n ], for 4 fingertip grasp modeled as point contacts with friction, W is 6X12. 

CONSIDER: 

:3 orthogonal matrices: 

W E nmxn 

R(W) = {y E nm I y = W x for x E nn } 

N(W) = {x E nn I W x = O} 

U = [Ul' ... , urn] E nrnrrn and V 

such that: 

U~rrn W mxn V nxn = 1: 

where, p min(m, n). 
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Figure 1: Example Grasp Geometry and Force Magnitude Limits 

INTERPRETING THE SVD: 

First of all, the hyperellipsoid ... 

E = {y I y = WX, II X 112 = 1 } 

Then if we define r to be the number of non-zero singular values, that is ... 

0'1 ~ ... ~ Ur > Ur+l = ... = 0 

we may make the following observations about the vector space described by matrix ,V. 

1. rank(W) = r 
2. NeW) = span [ v r +l> ... , Vn 1 = null space of \V 

3. R(W) = span [ U1, ... , U r 1 = space spanned by W 

EXAMPLE: 
A two dimensional grasp geometry consisting of two fingers and a spherical object, with associated 

force magnitude limits is illustrated in Figure 1. This system of forces produces a cooresponding system 
of wrenches at contact positions 0 and 1 as follows: 

Wo: (wd 3 0 1 o 000 o 
(U'2) 1.414 1.414 o 0.707 0 0 0 -0.707 

~Vl : (W3) 2 0 -1 0 a 0 0 0 
(W4) 1.414 1.414 o 0.707 0 0 0 0.707 

The positive and negative sense magnitude limits, respectively, preceed a normalized wrench representing 
the effect of a particular interaction force. 

If we wish to identify the null space of this contact system, we perform the singular value decompo­
sition of the composite \V matrix. 

1 0 -1 0 
0 0.707 0 0.707 

W [\V; I W; 1 0 0 0 0 
0 0 0 0 
0 0 0 0 
0 -0.707 0 0.707 
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SVD [W] ::} ~ = diag[1.414 1.0 1.0 1.0 0.0] 

-1 0 0 0 0 0 
0 0 1 0 0 0 

U 
0 0 0 0 1 0 
0 -1 0 0 0 0 
0 0 0 0 0 0 
0 0 0 -1 0 0 

[ -00707 
0 0 0 

_0_
707 1 0 0.707 0.707 

_0.~07 V = 0.707 0 0 0 
0 0 0.707 -0.707 
0 -1 0 0 

There are four non-zero singular values which defines the rank of the contact system to be four. 
Coorespondingly, the first four column vectors in U define the space spanned by the contact system, and 
the fifth column vector in V defines the null space of the system. The magnitude of a wrench applied 
within the null space of the contact system may be increased within the magnitude limits without 
producing a net external wrench on the object. Therefore, we define the family of such solutions as: 

2 Internal Wrench Commands for External Tasks 
The ,V matrix defined in section 1.1 is augmented by the external wrench desired as follows ... 

Waug = [-wext I W 1 
A reaction force equal in magnitude and opposite in direction is assumed to act on the object, and 
is, therefore, added to the wrench system created by finger/object interactions. The null space of the 
resulting augmented vector space defines the particular solution of the original system for this external 
wrench, and when constrained by the magnitude limits at each contact, describes the homogeneous 
solution space of the original system. A quadratic programming search through this solution space is 
used to identify the solution which minimizes the magnitude of the internal wrenches required for the 
task. 

The procedure is given a geometry for the grasp which defines the contact positions and the geometry 
of the hand. This information is used to determine limits on the magnitude of the forces that may be 
generated by the hand and/or transmitted by the contact surface. These constraints are expressed in the 
local coordinate frame, that is, along vector directions normal to and tangential to the contact surface. 

The contacts are then grouped into disjoint sets for which internal wrenches are not desired. This is 
a modification of the vitual fingers approach of Arbib et al. in that we wish to define sets of contacts 
that do not produce useful internal wrench systems for particular tasks. The wrench system produced 
over the set can then be described by an orthogonal basis which spans the same vector subspace as the 
constituent wrench vectors. \Ve may then condense the \V matrix by using (learning) appropriate sets 
of virtual contacts for particular classes of tasks. Commands submitted to a virtual contact must be 
decomposed into commands for each independently expressed interaction force. 

2.1 Posing the Problem 

\Ve augment the W matrix representing the contact system by including the negative external wrench 
command in the first column. If we require the example presented earlier to be capable of producing a 
unit force in the x direction and a unit moment about the z axis, The 'Y matrix becomes ... 
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w = [ Wa WI W2 W3 W4 ], or 

-1 1 0 -1 0 
0 0 0.707 0 0.707 

W 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
-1 0 -0.707 0 0.707 

The family of solutions which occupy the null space of this augmented contact system is then: 

(0.6324)wa +(0.3162)W1 -(0.4473)W2 -(0.3612)w3 +(0.4473)W4 
-(0.707)W1 -(0.707)W3 

The system of equations representing the null space can be generalized as follows. 

[ A,a," )'10'11 >'lO'1n 

][ 
Wa 

1 [ r 1 
>'20'20 >'20'21 >'2O'2n WI 

>'mO'ma >'m O'ml >'mO'mn wn 

2.2 Constraining the Solution Space 

The system of equations representing the null space of the augmented \V matrix is now subject to 
constraints which are enumerated according to rules that fire based on the type offorce being considered. 

External Constraint: for wo 

1 

Constraints for Wj(J~) where jj is a normal force 

m 

L >'jQjj ~ -negative magnitude limit for Wi, and 
;;;:;1 

m 

L >'iO'ii < positive magnitude limit for Wi, or 
j;;:; 1 

m 

- L >'jO:;j > -positive magnitude limit for Wj. 
;;;:;1 
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In order to express the effects offriction on the solution space!.. we first define a geometric magnification 
factor which relates the magnitude of Wj to the magnitude of fj, that is, 

liil 
Kj = ItVjl' 

With such a relationship, we may convert wrench commands into force commands, and thus, express 
frictional force constraints. 

Constraints for Wjuj), where jj is a tangential force with associated normal force, lk 

m 

m m 

Kj L:: A.a'j < JiK/;; L:: A.aib or, 
.=1 .=1 

m 

Kj L:: A,a'j 
.=1 

m 

m 

JiK/;; L:: A,aik < 0, or, 
.=1 

L:: A.[-Kja'j + JiK/;;a,kJ > O. 
.=1 

L:: Aiajj < positive magnitude limit for Wj, or, 
.=1 

m 

- L:: Ajaij > -positive magnitude limit for ti'j. 
i=1 

m 

If~1 > -Jilf~l, so that, 
»1 m 

Kj L A,aij > - JiKk L A,aib or, 
;=1 ;=1 

m 

L A;[Kjaij + JiKkaikJ > O. 
;=1 

L:: A.a'j ~ -negative magnitude limit for Wj. 
;=1 

(4) 

(5) 

(6) 

(7) 

Equations 1 through 7 delimit the allowable volume of the solution space. The procedure used to 
select a solution from this space is a straight forward quadratic programming technique. The specific 
procedure used is part of the II\1SL mathematical library. Given objective functions of the form, 
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Figure 2: Minimal Grasp Forces required to produce External Wrench 

Figure 3: Minimal Grasp Forces required to produce External 'Wrench 

subject to constraints of the form, 
A1x = b1 , and 

A 2 x 2: b2 , 

the procedure moves along the solution space surface toward the position which minimizes the object 
function. The euclidean length of the solution vector can easily be expressed in the form of this objective 
function. 

'Vhen the svstem described earlier is solved in this manner, the result is a solution for the minimal 
X force system 'required to accomplish the task. This force system is illustrated in Figure 2. 

Another example is presented in Figure 3. Illustrated is a two dimensional object interacting with 
three contacts. The magnitude limits for each contact are the result of a kinematic analysis of the 
hand geometry which achieves the contacts. 'Vhen a task consisting of a moment about the -z axis is 
submitted to the procedure, it yields the minimal force interaction presented in the Figure. 
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