
PPE-level Protocols for Carpet Clusters1

Mark R. Swanson
Leigh B. Stoller

UUCS-94-013

Department o f Computer Science
University o f Utah

Salt Lake City, UT 84112, USA

April 11, 1994

Abstract

We describe the lowest level o f a suite o f protocols for workstation cluster multicomputers:
the parts implemented in hardware by a Protocol Processing Engine (PPE) and the software level
immediately above the PPE. The stated goal o f this work is extremely low end-to-end latency com­
munications on independent workstations connected by a packet switching communication fabric.
The workstations are expected to run a commercial operating system and must present the same
security characteristics as traditional protocols. We begin with a realization o f sender-based proto­
cols. Such protocols can avoid much o f the copying that slows down traditional approaches and can
also reduce the overhead involved in demultiplexing packet streams and notification o f recipients.
Finally, we present some measurements o f an early prototype.

1 I n t r o d u c t i o n

We describe the lowest level o f protocols for workstation cluster multicomputers: the parts imple­
mented by the Protocol Processing Engine (PPE) and the software level immediately above the
PPE. We maintain a sender-based [2] flavor, but have sought to simplify mechanisms at this level
wherever possible. We seek primarily to determine an appropriate (economically implementable)
level o f functionality for the PPE.

2 O v e r v i e w

The basic design goals are, o f course, motherhood and apple pie: low latency, high throughput, and
low impact on the host resources-both cpu cycles and bus capacity. The specific areas we intend
to address to achieve these goals are several:

'This work was supported in part by a contract from Hewlett Packard Laborities.

1. avoiding extraneous copies of the data;

2. relying on hardware support (DMA) to do the unavoidable copy whenever it is profitable;

3. providing a d irect interface with low total overhead for cases where DMA is actually uneco­
nomical or inappropriate;

4. relying on hardware to perform packetization and reassembly o f large messages;

5. minimizing demultiplexing and dispatching overheads and moving some portion o f them into
hardware;

6. avoiding context switches when the expected latency of a remote transaction is less than the
cost imposed by a context switch;

7. reducing the number o f interrupts needed to continue transactions that do result in context
switches.

8. minimizing operating system costs for common operations.

9. taking advantage of the characteristics o f the interconnect.

In specifying these activities, two constraints must also be satisfied:

1. minimizing the complexity o f required hardware support;

2. maintaining acceptable levels o f security.

2.1 Avoiding Copies

In general, to avoid unnecessary copy operations, a protocol must allow for the data to be sent
directly from user memory and to be received directly into user memory. For the receive operation,
therefore, it must be possible for the device driver (or hardware) to determine from the (packets of
a) message where the data must go.

Practically speaking, avoiding copies for received messages means that receive buffers must
be wired, since otherwise the possibility o f page faulting arises. Page faulting involves significant
latency, on the order o f milliseconds, with one o f three possible outcomes:

1. stalling the receipt o f new packets;

2. introducing intermediate buffering, which implies the need for undesirable copying;

3. dropping packets which are (temporarily) undeliverable.

None o f these is desirable; none o f them fits within the design goals. Therefore we accept the need
for wired receive buffers. It is also likely that the PPE will be provided only with physical, rather
than virtual, addresses for receive buffers. Address translation hardware would only complicate the
PPE, making it either more expensive or slower, and adding no real value, since the virtual pages
will be backed by wired physical pages.

Wiring o f send buffers is not strictly necessary for processor mediated or direct transfers, wherein
the processor reads each word o f the message and writes it to the device. The consequences of
page faults are less dire-as long as the software ensures that no page faults can occur within a
single packet transmission, only the sending process and possibly its receiver are affected by an
increase in latency. The device, as we propose it, should be available for other processes to send
messages/packets in the meantime.

2.2 H a r d w a r e Copying

The cost function for message sending is complex, including host resource components, specifically
cpu cycles and memory bus bandwidth, as well as controller latency and interconnect bandwidth
components. We expect that providing two modes o f operation will allow optimization o f selectable
components o f the cost function based on application and system needs. The processor mediated,
or direct 10 (DIO), mode already has been touched on briefly. A DMA mode is also envisioned
for cases where cpu cycles can be better spent on work other than message sending and where
latency is less o f an issue. Since no VM hardware is envisioned for the PPE, DMA-type transfers
will require wired send buffers and physical addresses.

In message receipt, the unavoidable copying is always performed by the PPE hardware, as
mentioned above.

2.3 Packetization and Reassembly

Packetization is a relatively simple task, being inherently serial; it imposes no need for additional
copy operations and entails the maintenance o f only a little state. One difficulty arises in the event
that the device stops accepting packets due to congestion in the fabric or delays in the receiving
node. In our design, a heuristic will need to be devised to determine when the transfer should be
deemed “stalled” and the DM A engine must be freed for other messages.

Packet arrival is asynchronous, making reassembly an event-driven process. The events also tend
to be “small-grained” , each involving a single packet of relatively small size. Utilizing an interrupt
and/or context switch for each packet arrival would consume significant host resources and would
result in high per-packet latencies. This is in contrast to the sender, which can produce a stream
of packets without high-cost interrupts or context switches; such a system would be inherently
unbalanced. The expected nature o f the interconnect also renders reassembly more complex than
packetization. Packets can arrive out of order and packets from several messages can be interleaved.

We view efficient reassembly as a very critical process for achieving low latency and providing
balance within the system. Hardware support must be adequate to eliminate the need for packet
receipt interrupts, to establish the appropriate context for each packet’s delivery, to determine
message completion, and, in general, to overcome the inherent speed “advantages” o f senders.

2.4 Demultiplexing and Dispatching

One way in which interface hardware can help lower communication costs is by interpreting sim­
ple in-host routing directives to deliver notifications (see Section 3.3) o f message arrival to the
appropriate process. Each message will carry such information, indirectly specified by data in its

constituent packet’s headers. The mechanisms we describe also provide the application with the
flexibility o f focusing all message arrival events into one notification area or spreading them across
several such areas.

When the PPE is requested to interrupt the cpu for message arrival, the information necessary
to service that event will be made directly available to the kernel. The kernel will not be required to
perform searches or to interpret packet headers to determine which process (es) need be awakened
to process the message.

2.5 Context Switch Minimization •

We provide mechanisms to allow the process flexibility in dealing with communication events.
Message arrival interrupts are selectable on a connection basis and can be dynamically enabled
or disabled (via kernel mode code). We expect that the choice o f polling vs. kernel-supported
waiting for communication events will be a tuning process and should not be pre-empted by the
PPE design.

2.6 Minimizing O S Costs for C o m m o n Operations

The most common operations, and therefore the most performance critical ones, are message trans­
mission and reception. For these operations, we propose special lightweight system calls rather than
user access to the interface. We take this approach for the following reasons:

• Latency for small messages will be dominated by bus transaction times and these times are
essentially the same for user mode approaches as for kernel mode approaches.

• Latency for large messages is dominated by bandwidth (memory and/or interconnect) and will
be DM A driven; the details o f user vs. kernel mode 10 will not materially affect performance.

• User space 10 requires significant protection support from the hardware, while such protec­
tion can easily (and efficiently) be provided by kernel mode software. This is an interface
complexity argument.

Uncommon operations, such as connection establishment and buffer management are expected
to be infrequent. They will likely be handled via traditional system interfaces (though the system
calls will necessarily be new).

2.7 H a r d w a r e Complexity

The hardware support provided by the PPE must itself introduce minimal latency and impose only
reasonable cost. Designs employing complete cpu’s are unlikely to perform adequately at reasonable
cost. Protocol operations in the hardware requiring searches and complex decision making are ruled
out.

Significant savings in bus transactions (especially in the face o f bus contention) may be realized
by providing memory on the PPE itself. The cost of sufficiently fast memory will likely dictate
that only modest amounts o f store will be available on the PPE.

2.8 M aintaining Security

The desired level o f security is essentially that o f current networking implementations in Unix-based
systems. User code should not be able to compromise the local system or a remote system by use of
these protocols. A user process should not be able to compromise other processes, local or remote,
with which it is not in direct communication via these protocols. The extent to which a user process
can compromise a process with which it does communicate via these protocols will be limited to
two kinds o f attack:

1. a sender may cause messages to be written anywhere within the bounds o f the receiver
specified buffer. Our protocols do not constrain the sender’s access within this region.

2. a process may fail to adhere to a higher level protocol based on these protocols, leading to
faults in the other processes it communicates with.

We view these as application programming errors which are beyond the scope o f our efforts to
resolve.

2.9 Capitalizing on Interconnect Characteristics

Where the interconnect provides functionality normally provided by higher-level protocols, we
should take advantage o f it. This includes features such as the following:

• flow control within the fabric;

• guaranteed packet delivery;

• hardware generated and checked checksums;

• uniformity o f the interconnect.

3 O p e r a t i o n a l D e s c r i p t i o n

Having described the general characteristics o f our approach, we now present an operational de­
scription, that is, we detail the steps involved in sending a message, in receiving a message and
in processing a message. The required data structures and hardware support for each activity are
introduced as we go along. Connection establishment protocols will be addressed in a separate
document.

3.1 Message Transmission

The message transmission process begins with the transition o f the user thread into supervisor
state2. The virtual memory context remains that o f the user process, augmented with access to
kernel data structures and to the PPE device in 10 space. The user call must include:

2In our testbed system which is Hewlett Packard PA-RISC-based, this is accomplished via a gate instruction.
The implementation on other systems will differ, of course.

struct sslot {
short remote_node;

short this_node;
short remote_slot;

struct _s_control {
interrupt 1,
busy 1,
reserved 5,
type 2;
incarnation 8,

} control;
unsigned remote_offset;
unsigned buffer_base_phys;
unsigned buffer_base_virt;
unsigned buffer_size;

unsigned receiver_link;
unsigned completion.flag;

>

Figure 1: The sending slot.

• a logical connection identifier;

• the offset, within the send buffer, o f the data to send;

• the size o f the data to send;

• the offset within the receiver’s buffer where the data will be placed;

• some flag or option values.

3.1.1 Validating the Arguments

The connection identifier is process-specific; it is range checked and then used to locate a send slot
(sslot; see Figure 1) which contains the actual connection description. Send slots are software-only
data structures; the PPE need not be aware o f their structure. The fields o f a send slot are defined
as follows:

• remote_node - fabric address o f the destination node.

• this_node - fabric address o f the source node.

• remote-slot - index o f the target rslot on the receiving node.

• control - flags and and other control bits:

— interrupt - If set, the PPE interrupts the CPU when the message transmission completes.
— busy - the state o f the connection dictates that no transmissions be sent via the sslot.
— reserved
— type - message (or packet) type.
— incarnation number (see Section 4.1).

• remote_offset - offset within the receiver’s buffer at which the sender can start placing mes­
sages.

• buffer_base_phys - physical address of the associated send buffer.

• buffer_base_virt - virtual address of the associated send buffer.

• bufferjsize - size in bytes o f the send buffer.

• receiver Jink - link to the corresponding receive slot.

• completion_flag - a location the PPE can mark to indicate completion o f a transmission.

The s s lo t contains a busy bit, which can be used by the software to mark the connection
using the sslot as busy. For example, when the request part o f a split-phase RPC3 is sent, the
associated sslot can be marked busy until the reply is received; alternatively,the busy bit can be
cleared when the message is known to have arrived at the destination node. Once the send slot is
validated by the kernel, the offset supplied by the user is compared to b u ffe r_ s iz e ; if the offset
is greater, the call returns with an error. The sum of the user-provided size and offset is also
compared to the b u ff er_size ; if the sum is greater, an error is returned. It is desirable to perform
range checking on the remote buffer at this point. This entails obtaining the remote buffer size
at connection establishment and making it part of the s s lo t . This size is compared against the
sum of the message size and remote offset provided by the user. The benefit lies in earlier fault
detection, since it is assumed the receiving PPE would still perform such a range check to contain
even erroneous writes to only the receiving node’s memory to specified buffer areas.

3.1 .2 In itiating th e Transm ission

The PPE should present a small number (we currently envision four) o f send-descriptors (see Figure
2) which are used by the kernel to initiate and control message transmission. Each one contains
fields for routing and remote message placement information to form packet headers, and each also
contains the information to drive DMA for PPE-controlled packetization:

• status - control and status register:

— busy - the PPE is actively using the send_descriptor to transmit a packet;
— stalled - the ongoing send has been stalled by the fabric for flow control reasons;

3By split-phase RPC we mean that the calling process chooses not to block waiting for the reply. Control returns
to the process, which can perform other work and later explicitly check for the expected reply.

struct send_descriptor {
struct sd_status {

unsigned

} status;
short

short
short
short

struct _pkt_control
unsigned

unsigned
unsigned
unsigned
unsigned

busy
stalled

done
in_use

interrupt
completion

direct_io

go

bias;

dst_node;
src_node;

dst_slot;
control;
remote_offset;

*local_address;
msg_size;
*completion_address;
pkt_buffer[PKT_SIZE];

Figure 2: A PPE send descriptor.

— done - the PPE has finished sending all packets specified by the send_descriptor;
— in.use - a process is preparing the send.descriptor for a message transmission or a trans­

mission is in progress;
— interrupt - the PPE is instructed to issue an interrupt when it sets the done bit;
— completion - when set, the PPE should write the sd_status word to the location specified

by the completion_address field of the send_descriptor (before posting the interrupt if
in terru p t is set).

— directJo - the PPE should take data from the send_descriptor pk t_bu ffer rather than
doing DMA;

— go - when set, the PPE is expected to use the send.descriptor for transmitting; when
not set, the PPE should ignore the send_descriptor.

bias - typically the count of packets in a message.

remote_node - fabric address o f the destination node.

this_node - fabric address o f the source node.

control - see _pkt_control in Figure 3.

• remote_offset - offset within the receiving buffer where the message will be placed.

• locaLaddress - physical address used by the DMA engine to acquire the message data.

• msg_size - size in bytes o f the message.

• completion_address - address o f a location to which the PPE can write jcompletion status.

• pkt.buffer - a buffer large enough to hold an entire packet’s payload; it may not be present
in all send.descriptors.

Initiating a transmission involves finding a free send.descriptor, loading it with the appropriate
values, and telling the PPE to proceed. The kernel turns off interrupts for the duration o f this
process, which is expected to be very short (see Section 7 for current measurements).

Finding a free send_descriptor entails reading the status field for each send_descriptor and
testing the in_use bit. Acquiring the send-descriptor entails setting in_use. Since interrupts are
off, setting in_use can be delayed until a write to the status register is required. In the event that
no free send.descriptor is available, interrupts are re-enabled and control passes to the “busy PPE”
handler (see Section 3.1.6). Having found a free send.descriptor, the kernel performs the following
steps:

1. it reads the first two words o f the s s lo t and writes them to the first two words o f the
send.descriptor.

2. it reads rem o te .o ffse t from the s s lo t , adds the remote offset supplied by the call, and
writes the sum to the send.descriptor remote_of f se t.

3. it forms the local physical address for DMA from the offset supplied in the call and buf f er_base_phys
from the sslot. It writes this to the send.descriptor loca l_address.

4. it computes the number of packets in the message and writes it to the send.descriptor b ias .

5. it writes the size from the call to the send.descriptor msg_size.

6. for some systems, it will flush the message contents from the data cache to ensure consistency
with main memory.

7. it writes a control word to the send.descriptor statu s which sets go and in_use (and possibly
in terru p t).

8. it re-enables interrupts.

The format o f the initial two words o f the sslot and send.descriptor is very fabric dependent;
we have tailored them for the proposed R2[l] fabric packet header (see Figure 3). The fields o f the
packet header are as follows:

• dst_node - the fabric address o f the destination node.

• src_node - the fabric address o f the source node.

• dstjslot - the receive slot the message is intended for.

• - control (and status) bits:

— use_msg_size - causes receiving PPE to remember the msg_size from this packet.
— use_msg_offset - causes receiving PPE to remember the msg_offset from this packet.
— use.bias - causes the receiving PPE to use the bias from this packet.
— reserved
— type - message (or packet) type. >
— incarnation number (see Section 4.1).

• offset - offset o f the message within the receive buffer.

• pkt_size - the size, in bytes, o f the packet (to allow short packets).

• bias - typically the number o f packets in the message.

• msg_size - the size o f the message in bytes.

• hdr_checksum - hardware generated checksum of the packet header.

An alternative design that sought greater portability across fabrics at the cost o f PPE complexity
would involve storing a table of connection information or preformatted packet headers on the
PPE and supplying the PPE with an index into this table via the send_descriptor rather than the
supplying the actual routing information.

Normally, use_msg_size, use_msg_off set, and use_bias are all set in the control word. They
are used by the receiving PPE; this is covered in detail in Section 3.2.

When using DMA, the size o f all packets but the last is fixed at PKT.SIZE bytes, where PKT_size
is a fabric dependent parameter; the final packet may be short. The number o f packets is simply
(msg_size + PKT_SIZE - 1) / PKT-SIZE; more complex message models (see Section 3.1.4) com­
pute this value differently.

The PPE forms packets sequentially from the data described by the send_descriptor. As each
packet is sent, the PPE increments remote_offset in the send_descriptor. The current value
of remote_offset is placed in each packet header to direct the receiving PPE in depositing the
packet’s data. use_msg_size, use_msg_off set, and use_bias bits in the send.descriptor control
are zeroed by the PPE after the initial (and each following) packet is sent. That is, only the initial
packet sent in a DMA-processed message will have these bits set in its header.

3.1.3 Initiating Direct IO

A direct interface (DIO) is also supported for messages comprising a single packet. All the valida­
tions and send.descriptor setup o f the DMA case are performed, with the following exceptions:

• the kernel does not set local_address in the send.descriptor, but copies packet data directly
into the send.descriptor pkt_buff er;

s tru c t pkt_hdr {
unsigned sh ort dst_node;
unsigned sh ort src_node;
unsigned sh ort d s t_ s lo t ;
s tru c t _p k t_con tro l {

unsigned

> c o n tr o l ;
unsigned
unsigned
unsigned short
unsigned short
unsigned short
unsigned short

use_m sg_size :1 ,
use_m sg_offset : 1,
use_bias :1 ,
reserve :3 ,
type :2 ;
in carn ation :8 .

o f f s e t ;
m sg_size;
b ia s ;
p k t_ s iz e ;
r e p ly _ s lo t ;
hdr_checksum;

Figure 3: The R2 packet header.

• the kernel never needs to flush the message contents from the data cache;

• the kernel sets d ir e c t_ io in the status word it writes to the send_descriptor.

[It is an open question at present whether all send.descriptors should have a packet buffer, i.e., can be used
for DIO, or if just a subset are so equipped. Either a status bit, dio.capable can be provided, or the capable
send_descriptor or set of send.descriptors will be statically known to the kernel.] For fabrics with large
packet sizes, it may be desirable to re-enable interrupts before copying the data. The in_use bit
could then be used to reserve the send_descriptor and allow safe re-enabling o f interrupts.

3.1.4 Initiating Complex Message Transmission

The messages described so far have been “simple” . They are comprised o f contiguous packets and
the message length is known before the send is initiated. There are situations where these conditions
may not hold. One possibility is a message that needs to scatter blocks of data throughout the
receiver’s buffer. Another is the case where a stream of data is sent via DIO and its total length is not
known until the end of the stream is reached (this could occur, for example, in an application that
attempts to marshal arguments for an RPC directly into the fabric rather than into an intermediate
buffer).

For a “scatter” message, the transmission o f the message will likely comprise a number of
DMA-mediated transmissions. The kernel would compute the total number o f packets involved
and write that number to b ia s in the send .descriptor for exactly one o f the transmissions, as well

as setting use_bias for that same transmission. It is not clear what message offset, if any, would
be appropriate for notifying the receiving process o f a “scattered” message; it may either be left
unspecified or an interface to higher level protocol code will be needed to allow specification o f the
offset. A similar situation obtains for the message size. Since out-of order delivery o f the packets of
a message is an accepted characteristics of the underlying fabric, a “scatter” message could make
concurrent use o f multiple send descriptors. While the PPE sends one portion of the message using
one send descriptor, the kernel could be initiating the send o f another portion using a different send
descriptor. This would allow pipelining of the setup and transmission times o f consecutive message
portions.

For a “stream” message, a series o f DIO packets would be used. The message offset o f the first
packet would be the one needed for notifying the receiving process; hence, use_m sg_offset would
be set in the send.descriptor for the first packet. The message size and number o f packets would
not be known until the last packet was ready to go. use_msg_size and u se .b ias would be set for
this last packet and msg_size and b ias in the send.descriptor would be set appropriately.

3.1.5 Controlling Transmission

Once the transmission is initiated, subsequent behavior on the sender’s part is largely application
dependent. The send call includes an options argument which specifies the desired behavior. If
the send was the request part of a synchronous request/reply pair (e.g., the call part o f an RPC),
the sender may block waiting for the reply (see Section 3.2), possibly setting up some timeout
mechanism as well. We avoid discussion o f initiating the timeout mechanism in this case, since
it can be performed after the transmission is initiated and thus does not add directly to the
transmission latency.

The send may also be non-blocking, either since it is a reply itself and no response to it is
expected, or because the sender wishes to overlap other work with the transmission and remote
message service time. In either case, the sender may need to be able to determine when the
transmission has completed, possibly to allow reuse of the send buffer space. For short messages,
the sender could simply spin until done is set in the send.descriptor status field. This must be done
atomically along with ensuring that the send.descriptor still “belongs” to the desired transmission.
Since interrupts will have been re-enabled, the send.descriptor could well be in use by another
process. One way to identify the transmission described by a send.descriptor is by the value stored
in its com pletion_address. Uniqueness can be assured by using a wired physical address within
the sender’s space. The com pletion_address can also be used to specify a location where the
PPE should write the sta tu s of the send.descriptor when a message transmission completes. This
behavior is enabled by setting com pletion in the send.descriptor s ta tu s when the transmission is
started.

3.1.6 Dealing with a Busy P P E

A number o f conditions could result in a busy PPE, i.e., all o f the send.descriptors o f the PPE
being marked in use and not yet done. An obvious cause would be the initiation o f concurrent very
long transfers by one or more processes. Another case arises when one or more send.descriptors
are in use but are not “making progress” . Flow control within the fabric can cause this situation

to arise if the receiver is slow in accepting packets or has actually stopped accepting packets. The
s t a lle d bit in the send.descriptor statu s will be set each time the PPE fails, due to flow control,
in an attempt to send a packet using the send.descriptor. It is reset on a successful attempt. The
rem ote_offset in the send.descriptor is also an indicator o f progress. If it does not change in a
“reasonable” amount o f time, the software may conclude that the transfer is being subjected to
flow control. The software may set busy in the statu s of the send.descriptor and then proceed
to “unload” the state o f the send.descriptor, making it available for other transmissions. The
software is responsible for continuing the unloaded transmission at a later time. In the event that
the destination had actually gone down, the sending node will eventually be informed and the
transmission terminated and an error status returned at the com p le tion ^ la g location, if it was
provided. We expect that the com p letion ^ la g address will always be supplied for this reason, but
that the com pletion bit in the send.descriptor will only be set for non-polling senders. A polling
process may decide to become a non-polling process by setting com pletion in the send.descriptor.

3 .2 M e ssa g e R e c e p t io n

Message reception occurs asynchronously. Each packet contains sufficient information to enable
the PPE to deposit its payload directly into memory. In particular, each packet’s header contains
an rslot index which identifies the receive slot (see Figure 4) to be used in processing the packet.
The fields o f the receive slot structure are as follows:

• packets_to_go - used by the PPE to determine when a message is complete.

• msg_size - extracted from any packet header with use_msg_size set; copied into the notifica­
tion entry on message completion.

• msg.offset - extracted from any packet header with u se jn sg .o ffs e t set; copied into the
notification entry on message completion.

• control - Various state and control bits:

— valid - when set, the PPE can use the slot for packet delivery.
— indirect - specifies that the buffer_base_phys actually points to a page map o f the

buffer.
— incarnation number (see Section 4.1).
— type - message (or packet) type.

• buffer.base.phys - the physical address of the receive buffer or o f a page map for the receive
buffer.

• buffer_size - the total size o f the buffer.

• notes - physical address o f a notification list; see Figure 5.

• serviceid - an identifier supplied to the receiving process.

• nextfree - index o f next free slot entry. Used only by the processor to maintain a freelist.

struct rslot {

struct

unsigned
unsigned
unsigned

} ppe_write;

struct {
unsigned
unsigned
notelist_t
struct _r_control {

u_short valid
indirect

reserve
type
incarnation

} control;

} ppe_read;

struct {
short

short
unsigned

} cpu_only;

packets_to_go;
msg.size;
msg_offset;

buffer_base_phys
buffer_size;

♦notes;

1.
1,
4,
2;
8 ,

nextfree;

serviceid;
buffer_base_virt

Figure 4: The receive slot.

• buffer.base.virt - the virtual address o f the receive buffer.

A table containing the PPE-specific portions o f the rslot may be implemented in memory on
the PPE. Since each packet arrival requires access to an rlsot entry, significant bus traffic could be
generated if the tables reside in main memory; in addition, the potential for delay in gaining access
to main memory could increase reception latency. An alternative approach for reducing these costs
would be to provide some form of caching on the PPE for recently-used rslots. Such a caching
strategy would modestly complicate the following sequence. On packet arrival, the PPE performs
the following steps:

1. it checks the destination node; if it is not for the local node, the packet is an error packet.

2. it range checks the rslot index (dst _s lo t in the packet header); if it is out o f range, the packet
is an error packet.

3. it reads the PPE portion of the rslot selected by d st_s lo t into a buffer; future references to
“rslot” imply this buffered copy;

4. it checks whether v a lid is set in the rlsot; if it is not set, the packet is an error packet.

5. it checks whether in carn ation in the packet header is equal to in carn ation in the rslot; if
they are not equal, it is an error packet.

6. o f f s e t , and the sum o f o f f s e t and pkt_size, from the packet header are both range checked
against buf f e r_size in the rslot; if the sum is out of range, the packet is an error packet.

7. it copies the packet data into main memory at the location formed by the sum of buf f er_base_phys
from the rslot and o f f s e t from the packet header; the size o f the payload is specified by
pkt_size in the packet header.

8. if use_msg_size is set in the packet header, msg_size from the packet header is stored into
the msg_size in the rslot;

9. if use_m sg_offset is set in the packet header, o f f s e t from the packet header is stored into
the msg_of f se t in the rslot;

10. if use_msg_bias is set in the packet header, b ia s from the packet header is added to packets_to_go
o f the rslot.

11. packets_to_go in the rlsot is decremented; if it becomes zero, a complete message has arrived
and notification action must be taken (see Section 3.3);

12. packets_to_go, msg_size, and msg_off se t o f the buffered rslot are written back to the rslot
entry in the table.

typedef struct n ote list {
lo ck _ t
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

* n o t e l i s t _ t ;

lo ck ;
re f_ co u n t ;
head;
t a i l ;
mask;
s iz e ;
in te rru p t;
pad;

Fields:

• lock - protect against concurrent updates by PPE and cpu.
• ref.count - count of rslots pointing at this notelist.
• head - head pointer index into the notes array.
• tail - tail pointer index into the notes array.
• mask - log2 of the notes array size for wrap around.
• size - size of the array; must be a power of 2.
• interrupt - if non-zero, the PPE will generate an interrupt after writing the notification.
• notes - variable length array of note.t structures.

Figure 5: The notification list structure.

3.3 Receiver Notification

When a complete message has been received, the PPE uses the notes o f the rslot to retrieve
the notification list (see Figure 5) header and subsequently write a notification (see Figure 6).
If in terru p t in the notelist structure is non-zero, the PPE posts an interrupt after writing the
notification. Multiple rslots may point to the same notification list; this allows a process to monitor
a single list for requests arriving on multiple rslots. Since the notification list is shared between
the PPE and the cpu, a lock is provided to protect access to the list header. This is only strictly
required if the head and tail indices occupy the same cache line, as they do not share any data in
a write-write fashion. The list is actually represented as a circular queue. On some systems, the
kernel must flush the notelist from the data cache after any modification to ensure that the PPE
sees up-to-date values. Likewise, these systems may require that the kernel purge the notelist from
cache before accessing it, to ensure that the kernel sees the correct value o f the t a i l field.

The formation o f the actual notification uses information from both the current packet (the one
that triggered notification) and the buffered rlsot used in processing that packet. m sg_offset and
msg_size in the notification come from the rslot; the other fields come from the packet header.

The PPE checks for a full notification queue; if the queue is not full, it will write the notification
into the entry at index la s t ANDed with mask, increment la s t , and write la s t back to the header.
If the queue is full, the notification will be inserted into the notification queue reserved for error

packets (see Section 6); in this case, n o te fu l l in the notification will be set. The process handling
errors (probably the OS) may allow the application to recover in this case, since the message has
been delivered; only the notification was undeliverable.

This notification structure supports individual rslots adequately: some cpu-accessible structure
must be available for notification information, and it must be possible for the cpu to indicate that
the notification has been consumed. If connections were limited to a single message in process4,
a single entry within the rslot would be sufficient. When the receiver finished processing the
notification, it could inform the PPE that the entry was once again free.

More importantly, this structure will support two more complex, but important, cases: streams
that are likely to have multiple incoming messages (like the error packet stream) and processes that
need an efficient means to listen to multiple slots. For enhanced generality, we have thus separated
the actual notification structure from the rslot.

4 C o n n e c t i o n E s t a b l i s h m e n t

In this section we will discuss the information flow required at connection setup, but not the entire
connection establishment protocol. At the lowest level, (one-way) connection establishment entails
these actions:

• allocating an r ls o t ;

• associating buffer space with that r s lo t ;

• associating a notification list with that r s lo t ;

• setting the control field o f that r ls o t ;

• communicating connection information to the sending node/process.

The connection information conveyed to the sender includes the r s lo t index, the receiving node’s
current incarnation number (see Section 4.1), an offset within the r l s o t ’s buffer at which the sender
can deposit data, and the size o f the (portion o f the) buffer associated with the connection being
set up. The o f f s e t within the receiver’s buffer is available to provide disjoint sub-buffers in the
event that multiple senders are allowed to transmit to a single rslot.

4.1 Incarnation N u m b e r s

In order to tolerate the loss and subsequent reappearance o f a node, it is necessary to guard against
packets that are addressed to slots making up connections that disappeared in the node crash.
These packets might be sent from nodes holding connections to the rebooted node at the time it
went down. When such a packet arrives at the rebooted node, use o f the indicated rslot by the
PPE would constitute an error, since the connection it was part o f no longer exists. The rslot might
simply be marked invalid, in which case the PPE would treat it as an error packet. The rslot might

4This is a higher level protocol constraint, in contrast to single message in flight, which is a PPE-level constraint.

struct notification {

short dst_node;
short src_node;
short dst_slot;

short reply_slot;
struct _note_control {

notefull :1,
reserve :5,

type :2;
incarnation :8,

} control;
short unused[7];

unsigned msg_offset;

unsigned msg_size;

Fields:

• dstjiode - except for error packets, always the current node;
• src_node - used in error handling to return error messages;
• dst_slot - used by the kernel to identify the connection on which the message arrived;
• control - Various state and control bits:

— notefull - set by the PPE when it fails to find space in the notification list associated with the
rslot specified by dst_slot.

— incarnation number (see Section 4.1).
— type - message (or packet) type.

• msgjoffset - returned to the application;
• msgjsize - returned to the application.

Figure 6: The individual notification entry structure.

also be valid, however, as part o f a new connection. The PPE must have a mechanism to detect
this case.

A simple approach would entail a rebooting node broadcasting to all other nodes the fact that
it is rebooting. The node would need to wait for replies to the broadcast to be certain that no stale
connections remained. Such a global operation has poor scaling characteristics for large systems,
though we do allow the possibility of limited use of broadcast below.

We have addressed the rebooting node issue by adding an incarnation number to the control
field o f the packet header (see Figure 3). This incarnation number is initialized when the connection
is established. The node holding the receive slot passes back its value o f the incarnation to the
node holding the send slot. The incarnation number is thus stored in the control field o f both the
send (see Figure 1) and the receive slot (see Figure 4), and is passed in the packet header for each

packet sent. When a packet comes in, the PPE compares the incarnation number in the packet
header to the incarnation number in the receive slot. If the numbers do not match, the packet is
ejected as an error (see Section 6).

When a node reboots, it uses an incarnation number that is stored on disk, and writes a new,
incremented value back. This value is passed back during each connection setup in which the node
is the receive side o f the connection. Since the value is only 8 bits wide, it is possible that a machine
could reboot enough times for the counter to wrap around, without a message ever being sent from
a node holding a stale connection. The result would be an incarnation number that looks correct,
but is not. One possible algorithm to guard against this is as follows: whenever a node reboots
and the new incarnation number written to disk will be 0, i.e., the counter has wrapped around,
the node sends a message containing its new incarnation to all other nodes. Only when all the
nodes have responded, or are known to have failed (see Section 6), does the node write out the new
incarnation number to disk and establish new connections. If the node should fail before writing
out the new incarnation number, it will simply repeat the broadcast when it reboots; the only costs
are in message traffic, the delay before the rebooting node can establish new connections, and the
receiving nodes’ time spent processing the incarnation number messages. This processing involves
scanning the s s lo t s , marking any which have the rebooting node as the destination as invalid.
The cost in messages is linear in the number o f nodes, and the messages will be quite small.

5 B o o t i n g

We currently envision having two rslots for each node in a “system” on each node in the system
dedicated to inter-node kernel communication. That is, an rslot per node for incoming requests
and an rslot per node for replies. This is an artifact o f our model o f point-to-point connections.
For carpet clusters o f modest size (up to several hundred nodes) this should not be prohibitively
expensive. For larger configurations, a more complex software protocol (many-to-one, at most one
packet per message connections) could reduce this requirement to two rslots total per node for
inter-kernel communications. We defer consideration of this more complex model, noting that we
believe the specifications above will provide adequate support should we find it necessary to develop
the specialized kernel-to-kernel protocols.

6 E r r o r s

Error packets represent a special case for the PPE. The slot number in the error packet cannot
be used to select an r s lo t - if the error packet was just ejected by the fabric onto the node, it
will likely have been destined for some other node. If the packet attains error status within the
PPE, it is likely because the r s lo t cannot receive the packet for some reason. The current design
entails writing a notification entry to the notification list associated with a reserved r s lo t (e.g.,
rslot 0). The payload will be discarded. The notification includes sufficient information that the
error handling process (likely the OS) can take appropriate action.

As an example of “appropriate action” , consider the case where a node goes down and there
are packets enroute to it. The packets will eventually be ejected by the fabric to some node(s).
The destination node in the packet will not match the receiving node, thus the PPE will place

a notification entry onto the reserved error slot’s notification list and post an interrupt if the
notification list’s in terru p t field is non-zero (which will probably be the case). As stated above,
we currently envision discarding the packet body.

The kernel, at interrupt level, will send a priority packet to the source node indicating that the
original destination node is probably down; the body of this packet will be the original notification.
The kernel may optionally remember that it has sent a crash notification to the source node.
Subsequent error packets with the same destination/source pair could then simply be discarded.
The kernel will mark any local connections with the crashed node as destination to prevent further
local use o f those connections. The kernel will also note that the crashed node is just that-crashed,
affecting future attempts to connect to that node.

The source node should mark the affected connections to reflect the loss o f the destination. It
should, o f course, send no further messages using these stale connections.

Other example errors include packets with bad incarnation numbers and packets addressed
to invalid rslots (both indicating a stale connection), packets which fail the buffer range checks
(should never happen!), packets with bad header checksums (should also never happen), and packets
destined for rslots with full notification lists.

7 P e r f o r m a n c e

The target systems for which the R2 and PPE are intended lie in the future. The performance
characteristics o f these systems will differ markedly from the systems we are developing on. Assum­
ing that the processor architecture remains essentially the same, we have implemented prototypes
o f the send and receive “lightweight” system calls and a simple RPC built on top o f them. The
prototypes were run on HP 720’s with Medusa FDDI controllers as the interconnect.

The basic send path from the start of the system call to the initiation o f the message sending
by the Medusa comprises 70 instructions. O f these, 8 are measurement-related and 24 are Medusa
specific. We expect the 24 Medusa specific instructions to be replaced by 6 PPE-specific instructions
when the PPE becomes available, yielding a code path length o f 44 instructions to do a 1 word
DIO send. A DM A send follows essentially the same path (and has essentially the same cost). The
average CPI (measured) for the 70 instructions was in the range o f 3 to 3.5. This includes accesses
to four data cache lines and 1 read and 7 writes to 10 space (the Medusa).

We expect that on future systems, the cache miss penalties will be larger as will the expense of
10 space accesses, while at the same time absolute times will decrease.

RPC times (1 word of data), user to user, were measured at 120 microseconds. The receive side
was in a kernel polling loop inside a system call; if a context switch had been required instead, we
would expect to add 20 to 25 microseconds on each end for a total o f 170 microseconds. O f the
total, 18 microseconds on each end was spent in an FDDI interrupt, 12 microseconds on each end in
an PPE packet receipt emulation, 5 microseconds in our protocol send path, and 11 microseconds
crawling out o f the kernel system call for receive.

8 C o n c l u s i o n

We have described low-level protocols and a communications fabric interface for carpet clusters.
The combination implements a sender-based protocol and, based on our prototype, will achieve the
low latency and high bandwidth necessary for effective multicomputing with such clusters.

R e f e r e n c e s

[1] D avis, A ., C h erk a sova , L., K o to v , V ., R obinson , I., and RokiCki, T . R2 - a damped
adaptive multiprocessor interconnection component. In Proceedings of the University o f Wash­
ington Conference on Multiprocessor Interconnects (May 1994).

[2] W ilkes, J. Hamlyn - an interface for sender-based communication. Tech. Rep. HPL-OSR-92-
13, Hewlett-Packard Research Laboratory, November 1992.

