
PPE Interface and Functional Specification 1

Mark R. Swanson
L. Brad Stoller

Terry T. Tateyama

UUCS-95-013

Department of Computer Science
University of Utah

Salt Lake City, UT 84112, USA

August 8, 1995

Abstract
This document describes the interface and functional specification of a Protocol Processing Engine
(PPE) for workstation clusters. The PPE is intended to provide the support necessary to implement
low latency protocols requiring only low resource (cpu and bus bandwidth) consumption.

1 I n t r o d u c t i o n

We describe the function of and the interface to a device to aid in protocol processing for workstation
cluster multicomputers: the device is referred to (perhaps a bit inappropriately) as the Protocol
Processing Engine (PPE). The protocol base which we envision the PPE supporting is a sender-
based protocol. The bulk of the actual protocol implementation is intended to be done in (kernel-
level) software.

2 O v e r v i e w

The specification will begin with short descriptions of the majority of the control and status registers
of the PPE. The function of these registers will be explained in greater detail in later sections.
Next we deal with message transmission, defining the set(s) of registers used to initiate a particular
transmission, the data structures tha t the PPE must interpret, and the expected software-visible
behavior entailed in a transmission. A similar discussion of message reception follows. Following
this are sections dealing with initialization and fault handling which complete the specification.

1This work was supported by a contract from Hewlett Packard, and by the Space and Naval Warfare Systems
Command (SPAWAR) and Advanced Research Projects Agency (ARPA), Communication and Memory Architectures
for Scalable Parallel Computing, ARPA order #13990 under SPAWAR contract #N00039-95-C-0018

1

struct ppe_csrO {
unsigned

r e s e t 1 ,
enable 1 ,
reserved 10 ,
i ncarnat i on 4,
local_node_num 16;

>;

Figure 1: The PPE control register.

3 G l o b a l P P E C o n t r o l R e g i s t e r s

A number of registers are used by the software to configure the PPE and to provide global addresses
to it. Unless otherwise specified, the registers are assumed to be 32 bits in width. Specific bit
assignments within control registers are intended merely as suggestions; aggregation of functions
within control registers is also merely suggestive.

Note th a t additional registers were specified as described in Section A.2.3.

3.1 P P E control reg ister (PCSRO)

The PPE control register (see Figure 1) is set by the kernel and is read-only to the PPE. The fields
of PCSRO have the following meanings:

• reset - when set by the kernel, the PPE should reset to its initial state; see Section 7.

• enable - when set by the kernel, the PPE should process incoming and outgoing messages;
when not set, the PPE should refuse any packets ejected from the fabric and refrain from
injecting any packets into the fabric; the PPE will complete any injection or ejection ongoing
at the time enab le is reset.

• incarnation - a quantity specified by the kernel which the PPE uses as part of incoming
packet validation; see Section 6.1;

• local_node_num - contains the node’s unique number within the cluster (16 bits should be
adequate).

3.2 P P E sta tu s reg ister (PCSRl)

All fields in the PCSRl (see Figure 2) are to be written by the PPE and are read-only to the kernel
(except where noted). The fields have the following meanings:

• ready - the network interface is ready to accept packets from the PPE and the PPE itself is
ready to process incoming and outgoing messages.

2

struct ppe_csrl {
unsigned

ready 1.
i n t _ h i 1,
i n t _ l o 1,
i d l e 1.
nbqr_erapty 1,
nbqr_f ul l 1,
r e served_ l 6,
send_desc_cnt 4,
reserved_2 16,

>;

Figure 2: The PPE status register.

• in tJii - set by the PPE when the AQR transitions from empty to non-empty; cleared by the
software when it is ready to accept more interrupts; this is both a status and control field.

• int Jo - set by the PPE when the NQR transitions from empty to non-empty; cleared by the
software when it is ready to accept more interrupts; this is both a status and control field.

• idle - set by the PPE when it is neither injecting nor ejecting a packet; used in conjunction
with enable in PCSRO to allow the software to determine when shared state in PPE memory
may be safely modified.

• nbqr_empty - set by the PPE when the NBQR goes empty. An interrupt should be generated
as a signal to the kernel to check this register and replenish the pointers in the NBQR.

• nbqr_full - set by the PPE when the NBQR reaches its maximum capacity. Writes to a full
NBQR on the PPE are ignored.

• send_desc_cnt - the number of send descriptors (see Section 5.2) provided by the PPE.

3 . 3 N o t i f i c a t i o n Li s t H e a d s R e g i s t e r (NLHR)

The Notification List Heads Register (NLHR) - contains the base physical address (in P P E memory)
of the table of pointers to notification lists.

3 . 4 P P E - M a i n t a i n e d Q u e u e s (NQR,AQR)

The PPE will also present two registers which represent the heads of PPE-maintained queues of
interrupt “tokens” . The width of the registers and the size of the “tokens” are both 32 bits. The
two registers are:

3

• message event Notification Queue Register (NQR); the size of the queue backing NQR should
be 256 entries.

• message Acknowledgment Queue Register (AQR); the size of the queue backing AQR should be
256 entries.

The PPE will place items on these queues on the occurrence of events described in later sections.
Whenever the enqueuing of an item causes a queue to transition from empty to non-empty and the
corresponding interrupt bit in PCSR1 is off, the PPE must interrupt the host. A read of one of these
queue registers serves to remove the item read from the queue. I.e., reads by the software are the
mechanism for draining these queues. Reading from an empty queue should return zero and not
otherwise change the state of the queue. The PPE is allowed to stall on an attem pt to enqueue an
item onto a full queue; it is not allowed to discard queue entries. The queues should all be empty
on a reset of the PPE.

3 . 5 T h e S o f t w a r e M a i n t a i n e d Q u e u e (NBQR)

The PPE will provide a Notification Block Queue Register (NBQR), writable by the software, which
should be backed by a queue on the PPE. The size of this queue should be 256 entries. This queue
will hold the physical addresses of empty notification structures in host memory.

4 N o t i f i c a t i o n

The PPE provides a general notification mechanism to inform the processor of several kinds of
events. The general mechanism is described here; specific details for each case can be found in:

• Section 5.3.2 (Transmission Completion).

• Section 6.2 (Message Reception).

• Section 5.4.2 (Ack Packets).

• Section 8 (Faults).

• Section A.2.6 (Miscellaneous Packets).

The PPE uses a note_index to index into a table of notification list heads (see Figure 3).
The software initializes the entries of this table to contain unique tokens and pointers to empty
notification objects. The software never subsequently writes the head fields of the table entries;
those pointers are strictly changed only by the PPE thereafter. The software will occasionally
change the token fields. The software may read the head fields of the entries to detect when the
PPE has added an item to a notification list.

Although the notification list heads are in PPE memory, the actual notification objects are
located in host main memory. The PPE should be able to write an entire notification object in one
bus transaction, whereas the cpu (and hence the software) would likely require a transaction per
word to read the notification from PPE memory.

4

s t r u c t p p e _ n o te l is t_ t {
n o te _ t * head;
s t r u c t {

unsigned token :31,
unsigned enqueue : 1 ;

>;

Figure 3: An entry in the notification list table.

s t r u c t n o t i f i c a t io n {
sh o r t ty p e _ s p e c if ic ;
s t r u c t _ n o te _ co n tro l {

ty p e _ s p e c if ic :14,
so ftw are :2 ;

} c o n tro l;
unsigned ty p e _ s p e c if ic ;
unsigned ty p e _ s p e c if ic ;
n o te _ t * n e x t;
unsigned m e ta d a ta [4] ; /* o p tio n a l * /

} * n o te_ t;

Figure 4: The common notification entry structure.

The source of the note_index varies with the type of event causing the notification. The base
of the table is at the address specified in the NLHR. The table entry includes a pointer, in the head
field, to an empty notification object (see Figure 4).

The PPE forms a notification object as follows:

• The fields labeled ty p e_ sp ec if ic are filled according to the type of event.

• the n ex t field is a pointer to a new empty notification object; it comes from the P P E ’s
notification block queue. The address of this empty notification must also be written back to
the location in the PPE Notetable specified by node_index.

The PPE procedure described above maintains the invariant tha t the table entries always point to
empty notification objects a t the end of the notification lists.

The software views any notification with a zero n ex t field as empty. When the PPE fills a
n ex t field with a pointer to a new empty object, the software assumes it can process the now
non-empty notification object. Thus, it is required tha t the PPE always fill in the n ex t field of
a notification last - when the rest of the fields are valid. The software maintains its own table of
notification list heads th a t parallels the P P E ’s table, but may point a t earlier entries in the lists.
Notifications on a given list are always processed in the order in which the PPE posts them. The

5

NLHR

PPE
N o te ta b le

0 0x00F002560
1 0 0xCOFCO512
2 0 0xC0F01024 >
3 0xC0F00128
N

INT N N

Next
Note

0
0
0

0x00000000

PPE
Note Q u e u e

QHead oo
8OLL.O
9_CL_

OxOOFOOOOO

CMCOOOO OOLl_o
so

QTail

<■ N B Q R

0X00F00032 0x00F00064
0 0 0
0 0 0
0 0 0
0 0 0

Figure 5: An empty notification list

only synchronization necessary between the software and the PPE is provided by the setting of the
nex t field. The software “consumes” notifications; it performs the following actions after processing
a given notification:

• the pointer in the object’s n ex t field is stored into the appropriate slot of the software’s
notification list table;

• the object’s n ex t slot is zeroed;

• the address of the object is enqueued on the P P E ’s notification object queue by writing it to
the NBQR register.

Finally, the PPE pushes the token field of the n o te _ lis t_ h d r onto the message event notifica­
tion queue iff enqueue is set in the n o te _ lis t_ h d r. If this causes the queue to become non-empty,
and if in t_ lo in the PCSR1 is not already set, the PPE issues an interrupt to the CPU. The software
will subsequently read NQR to remove entries from the queue for processing. As noted earlier, the
software may change these token fields as necessary to obtain correct interrupt behavior.

4.1 A n E xam p le o f P ostin g and C onsum ing a N otifica tion

In Figure 5, the notification list head at index 3 in the table (labeled “PPE Notetable”) points
at an “empty” notification object, labeled D. At the head of the notification object queue (labeled
“PPE Note Queue”) is a pointer to another “empty” notification object, labeled A.

6

PPE
Note Queue

QHead

NLHR

CNI
a 8 § QTail

8U- au_ 8
8 <— NBQR

9o O

PPE
N o te ta b le

0 0 OXOOF00256

1 0 OXOOFOO5I2

2 0 0x00f01024

3 Jxdeadbee OxOOKXXXD

N

INT NN

Next
Note

0x00090045 --> 0
0x00000169 0
0x00001024 0
OxOOFOOOOO 0x00000000

0x00F00032 0x00F00064
0 0
0 0

■> 0 0
0 0

Figure 6: A notification list with one entry

In Figure 6 , the PPE has added a notification object to the list a t index 3. It formed the
notification in the previously empty object, D. The n ex t field contains the pointer to A, the empty
object th a t was previously at the head of the notification object queue; A has been removed from
tha t queue by the PPE. Also note tha t the entry in the 3rd slot of the PPE Notetable has been
updated to point a t the empty object A.

In Figure 7, the software has consumed the notification. It has returned the object it consumed
(D) to the notification object queue, after zeroing its n ex t field.

7

NLHR

PPE
_ Note (•able

0 0 OxOOF00256

l 0 0X00F00512

2 0 CIX00F01024

3 IxdeodbeefOxOOFOUUUU

N

-►
►
►

INT N N

Next
Note

0
0
0

PPE
Note Queue

QHead CM 00'Q CO CNI
OO 8 III! 8
8 8 g
o o o

QTail

-< NBQ R

0x00000000

(D

0X00F00032 0X00F00064 0x00F00128
0 0 0
0 0 0
0 0 0
0 0 0

@

Figure 7: The notification list after the entry is consumed

8

5 M e s s a g e T r a n s m i s s i o n

At the highest level, the PPE should provide the functionality of accepting a pointer (in the form
of a physical address) to a message body, a message length in word-aligned bytes, and packet
header information. It should then packetize tha t message as necessary, inject the packets into the
network with properly formed headers, and finally notify the sender when the entire message has
been injected.

We begin with a proposed format for the packets, since the information it carries is central
to the discussions tha t follow. We then describe the send descriptor sets used to control the
packet/message transmission processes. Finally, we describe the details of typical message trans­
mission sequences for the DMA, DIO, and special cases.

5.1 Packet Form at

The packet header must transport all of the information necessary to implement the sender-based
protocols. An example format is given in Figure 8. The size of some fields is open to debate and
the location of most fields within the header is immaterial to the protocol implementation. More
detailed discussion of the use of the packet header fields will appear in later sections.

5.2 Send D escrip tor R eg ister Sets

The interface for message transmission should be implemented by a number of send descriptor reg­
ister sets. We encourage the inclusion of more than one set, and urge the implementation of at least
four. We expect fairness in the allocation of packet injection opportunities when multiple sets are
provided. For example, round robin injection of one packet from each active send descriptor would
be acceptable. More complex scheduling/prioritization of message transmission is the responsibility
of the software.

Each descriptor set consists of 16 registers, (see Figure 9) The control registers supply all of
the information describing a message to be transm itted.

• The msg_address register receives the physical address of the message body to be transm itted.
This is either a pointer into main memory (in the DMA case) or a pointer into PPE memory (in
the DIO case) depending upon the d ire c t_ io bit in the send descriptor’s c o n tro l 1 register.

• The ad d ress 1 register gets the slot number (d s t_ s lo t) used by the receiving PPE to uniquely
identify the receiver channel. It also stores the note_index the PPE must use when configured
to post a notification object after the entire message has been injected into the interconnect
fabric.

• The controlO register receives initial values for certain packet header fields, which are used
by the receiving PPE, as well as the o f f s e t within the receiving buffer.

• The c o n tro l 1 register contains fields controlling the sending P P E ’s handling of the message,
as well as the message size in bytes. Note tha t both the msg_size and receiving buffer o f f s e t
are limited to 16 Mbytes.

9

struct pkt_hdr {
struct {

unsigned fab_bits 4
dst_node 12,
more_fab_bits 16;

} addressO;
struct {

unsigned dst_slot 16,
src_node 12,
reserved 4;

} addressl;
struct {

unsigned use_msg_size 1 ,
use_msg_offset 1 ,
ack_pkt 1 ,
reserved 1 ,
incarnation 4,
remote_offset 24;

} controlO;
struct {

unsigned reserved 4,
meta_data_flag 1 ,
meta_len 3,
msg_size 24;

} control1;
struct {

unsigned hdr_checksum 16,
reserved 16;

} control2;
unsigned long meta_data[4]; /* optional */

unsigned
unsigned short
unsigned short

pkt_data[0..32]; /* arbitrary length */
pkt_checksum;
padding;

Figure 8: The packet format.

10

- d ire c t_ io - the PPE should function in a DIO manner; see Section 5.3;

- con tro l_pk t - used to form special payload-free packets; see Section 5.4.1

- n o t i f y - when set, the PPE is instructed to form a notification and enqueue it after it
sets the done bit; see Section 5.3.2; '

- go - when set, the PPE is expected to use the send-descriptor for transm itting; when
not set, the PPE should ignore the send.descriptor.

- meta_data - when set, the PPE is expected to include the data from the four m etadata
fields of the send descriptor in the first outgoing packet. The m etadata is to be stored in
the receiving P P E ’s appropriate r s l o t and included in a “message received notification”
when the entire message has been reassembled in the receiver’s main memory.

• The m etadata registers can be used to convey additional information about the message (for
example, a message type) to be interpreted by the receiver.

• The status registers are associated with each send descriptor by which the PPE communicates
status back to the software. The s ta tu s field definitions are as follows:

- bytes_to^go - the number of bytes of the message not yet injected.
- busy - the PPE sets busy when it is actively using the send.descriptor to inject a packet;

it is set at the initiation of each packet injection and reset when the packet injection
completes or aborts.

- s t a l l e d - the PPE sets s t a l l e d whenever the ongoing send has been stalled by the fabric
for flow control reasons; the PPE resets it when it again attem pts to inject a packet; the
PPE must also reset s t a l l e d whenever the software sets go in the associated control
register.

- done - the PPE sets done when it has finished injecting all packets specified by the
send descriptor; the PPE will never inject any packets using a send descriptor with done
set; the PPE must reset done whenever the software sets go in the associated c o n tro l 1
register.

The remaining registers are reserved for future use.

5.3 M essage T ransm ission M echan ism s

There are two mechanisms for configuring the send descriptors to transm it messages (and two
special forms of data-less messages, in which case either mechanism can be used). The software
can configure the PPE to operate in Direct Memory Access (DMA) mode or DIO mode.
In D M A m ode, the software writes a pointer to the message body (in the host’s main memory)
to the msg_address of an available send descriptor. The PPE is then responsible for pulling the
data across the host’s data bus to be packetized and injected into the network fabric.

In D IO m ode, the software downloads the message body into PPE memory before initiating the
packetization/injection process through an available send descriptor. While the msg^address field

The one-bit control definitions (in the control 1 register) are as follows:

11

still points to the address of the message body, in this case, the message body has already been
downloaded to the P P E ’s private memory. DIO mode is actually a misnomer. It is more properly
viewed as PPE-buffered output mode.

Thus, a message transmission sequence is as follows:

1. (DIO mode only) the kernel allocates a region of PPE memory and copies the message body
there.

2. the kernel selects an available send descriptor; the PPE provides no direct support for this,
the software performs all necessary accounting.

3. the kernel initializes the appropriate registers of the send descriptor;

4. the kernel writes the c ont ro l 1 register last, setting go and, if appropriate, n o t i f y . The
msg_size field must be set with the same write.

The order given is mandatory: the last step only makes sense after all of the other registers are set.
When go is set by the kernel, both s t a l l e d and done must be reset by the PPE. It is an error for
the software to set go when busy is in the set state.

The PPE must also be able to accommodate data-less messages (see Section 5.4), which should
result in the formation and injection of a packet consisting only of a header.

5.3.1 Packet Form ation

The PPE is expected to packetize messages, inserting appropriate headers and checksums. The
bulk of the information needed for the packet header comes from the send descriptor registers.

• dst_node, d s t_ s lo t, and msg_size come directly from the send descriptor;

• remote_of f set is initialized from the o f f s e t field of the controlO register for the initial
packet of the message; as each packet is sent, remote_of f set must be incremented by the
PPE by the size of tha t packet; the PPE may keep this incremented value in private state or
it may use the controlO register itself;

• use_msg_size and use_msg_offset of controlO are used only for the like-named fields of
the first packet of a message; the PPE should send zeroes for subsequent packets; this may
be accomplished by having the PPE zero these bits in the controlO register after the first
packet is injected.

• ack_pkt in the packet header is simply a copy of th a t field in the controlO register; the PPE
should never modify this bit.

The other information necessary to form a complete packet header comes from other sources:

• src_node comes from local_node_num in PCSEO

12

• hdr_checksum is generated by the PPE on a per-packet basis. [H eader checksums are neither
seen nor generated by the software. While we think they are a good idea, we leave them entirely
in the hands o f the P P E im plem entors.]

Depending upon the d ire c t_ io bit, the body of the packet will either be pulled from the host’s
main memory across the data bus (DMA mode) or simply read from the P P E ’s own memory (DIO
mode).

As packets are successfully injected, the PPE is responsible for updating the msg_address, controlO ,
s ta tu s 1, and s t a t u s 2 registers in the corresponding send descriptor.
In order to minimize communication overhead, packets should be as large as the network can
reasonably accept.

5.3.2 T ran sm issio n C o m p le tio n

When a message transmission completes, the PPE is expected to post a notification if n o t i f y is
set in the c o n tro l 1 register. The PPE should use n o te .in d e x field of the send descriptor to locate
the appropriate notification list head. (See also Section A.2.7.)

There is currently no type-specific information in a transmission completion notification object.

5 .3 .3 C o n tro l o f O ngoing D M A T ran sm issio n s

The kernel may reset go while DMA is in progress. The kernel might do this to:

• timeshare the available send descriptors,

• to safely free up a wired send buffer,

• or as part of the termination actions for a process.

The PPE m ay complete sending any partially sent packet or it may abort it. In order to facilitate
saving the state of an interrupted message transmission, the kernel must be able to determine how
much of the message has been transm itted. We define the situation where the kernel requires this
information be correct as: when busy is reset (and go has been reset by the kernel) by the PPE
on completion (or abortion) of the current packet injection. The kernel needs “message progress
sta te” ; we suggest tha t this information be provided via the bytes_to^go field of the send descriptor
status register.

It is the kernel’s responsibility to wait for busy to be in the reset state before utilizing the
message progress state and before manipulating other control bits. This information would also be
useful to the kernel in monitoring the progress of very long transmissions; serving this purpose would
require updating the message progress state more frequently, perhaps on every packet injection.
The software depends on one assumption about the packetization process. Packets must be formed
from data from monotonically increasing addresses; i.e., if packet I was taken from address X,
packet I+ l will s ta rt a t location X+N, where N is the size of a packet.

13

If the software resets go while busy is in the set state, it is possible tha t injection of the current
packet completes and done is set. In tha t case, the PPE should perform all normal transmission
completion actions described in Section 5.3.2.

When the go bit is reset and busy is set, it is possible tha t injection of the current packet is/will
be stalled. In th a t case, when the stalled attem pt to inject a packet terminates, s t a l l e d should
be set a t the same time tha t busy is reset. The PPE should make no further attem pts to inject
the packet until go is once again set. [This allows the kernel to perform whatever higher level flow
control actions it might implement. Simply allowing busy to be be reset might lead the kernel to
attempt continuing a stalled transmission prematurely.]

5.4 D ata-L ess P ackets

This section describes the two anticipated types of data-less packets the sender-based protocols will
use.

5.4.1 Control Packets

When con tro l_ p k t is set in the send descriptor, the PPE should form a packet header in the normal
manner from the send descriptor registers, but it should transm it only the header, regardless of the
specified msg_size, and immediately set done in the status register.

The software currently uses con tro l_ p k t for only one purpose: when the transmission of a
message actually consisted of a number of DMA transmissions and an empty packet with the
total message size (along with the use_msg_size bit) must be sent to complete transmission of the
message.

5.4.2 Ack Packets

The ack-packet is a part of the fast message reception/acknowledgment mechanism. It has no pay­
load, but may carry general data in the rem ote.of f s e t and msg_size fields of its header. Reception
of such a packet should immediately result in the posting of a “message received notification” (see
Figure 11) using ack_note_index of the r s l o t and filling in the m sg_offset and msg_size fields
from the packet header. The ack .pk t bit in the notification should be set to 1.

It is possible tha t an ack packet will arrive in the middle of another message reception destined
for the same r s l o t . The processing of the ack packet should not disturb the message reception by
causing changes to r s l o t state.

14

unsigned *msg_address;
s t r uc t {

unsigned f a b _ b i t s 4
dst_node 12,
more_fab_bi ts 16;

} addressO; /* f a b r i c d e s t i n a t i
s t r uc t {

unsigned d s t _ s l o t 16,
note_index 16;

} address 1; /* node d e s t i n a t i o n
s t r uc t {

unsigned use_msg_s ize 1,
use_msg_of f se t 1,
ack_pkt 1,
reserved 1,
i ncarnat i on 4,
o f f s e t 24;

y controlO;
s t r u c t {

unsigned reserved 8,
bytes_to_go 24;

y s t a t u s l ;
s t r u c t {

unsigned d i r e c t _ i o 1,
control_pkt 1,
n o t i f y 1,
g° 1,
meta_data 1,
meta_cnt 3,
msg_size; 24;

y c o n t r o l 1;
s t r u c t {

unsigned busy 1,
s t a l l e d 1,
done 1,
reserved 29;

y s t a t us 2 ;
unsigned reserved;
unsigned metadata [4] ;
unsigned reserved [4] ;

Figure 9: A PPE send descriptor control register set.

15

struct rslot {
unsigned buf f er_bas e_phys ;
unsigned b u f f e r _ s i z e ;
short note_index;
s t r u c t _r_contro l {

u_short v a l i d
i n d i r e c t

} cont ro l ;
s igned
unsigned
unsigned
short

do_acks
n o t i f y
r eserve

1 ,
1 ,
1 ,
1 ,
12;

bytes_to_go;
msg_size;
m s g _ o f f s e t ;
ack_note_index;

Figure 10: The receive slot.

6 M e s s a g e R e c e p t i o n M e c h a n i s m s

At a high level, the function of the PPE for message reception is to accept a (possibly misordered)
stream of packets, validate each packet header, and, based on information in the packet header
and additional information fetched from PPE memory, deposit the payloads of those packets into
appropriate locations in host memory. The PPE is expected to determine when a complete message
has arrived and to perform appropriate notification actions. We will first discuss packet reception
and then describe message reception and notification.

6.1 Packet R ecep tion

When a packet is received by the PPE, its payload is to be deposited into host memory a t a location
specified by an r s l o t (see Figure 10).

The d s t_ s lo t field of the packet header is used as an index into the table of r s lo t s in PPE
memory. The r s l o t contains state of interest to the PPE for the message in progress as well as
information of a more static nature provided by the software. The inclusion of the per-message
information within the r s l o t is allowable because the software guarantees th a t at most one message
will be in flight to a given r s l o t a t any time.

The specific tasks performed by the PPE on packet arrival are:

1. the PPE reads the packet header from the fabric, computes the checksum, and compares it
to the packet header checksum; if they are unequal, the packet is an error packet.

2. it checks whether the dst_node is equal to the local_node_num in PCSRO; if they are not

16

equal, the packet is an error packet.

3. it range checks the r s l o t index (d s t_ s lo t in the packet header); if it is greater than the the
configured number of r s lo ts , the packet is an error packet.

4. it reads the r s l o t , selected by d s t_ s lo t in the packet header, from PPE-resident memory;

5. it checks whether v a l id is set in the r s lo t ; if it is zero, the r s l o t is invalid and the packet
is an error packet.

6. it checks whether in c a rn a tio n in the packet header is equal to in c a rn a tio n in the PCSRO;
if they are not equal, it is an error packet.

7. it checks whether ack_pkt is set in the packet header; if it is, the PPE forms and posts a
notification and does no further processing with the packet; in particular, the following range
checks are not performed; see Section 5.4.2;

8. it compares rem ote_off s e t from the packet header against b u ff e r_ s ize in the r s l o t ; if the
rem ote_off s e t is greater, the packet is an error packet.

9. it compares the sum of remote_of f s e t and p k t_ s ize from the packet header against b u f fe r _size
in the r s lo t ; if the sum is greater, the packet is an error packet.

10. it copies the packet data into main memory a t the location formed by the sum of remote_of f s e t
from the packet header and buffer_base_phys from the r s lo t ;

11. if u se jn sg_size is set in the packet header, msg_size from the packet header is stored into
the msg_size in the r s lo t ; also, msg_size is added to bytes_to_go of the r s lo t .

12. if use_m sg_offset is set in the packet header, o f f s e t from the packet header is stored into
the msg_off s e t in the r s lo t .

13. bytes_to_go in the r s l o t is decremented by the incoming packet’s size and is written back
to the r s lo t ; when it becomes zero, a complete message has arrived and notification action
must be taken (see Section 6.2). bytes_to^go must be written back to the r s l o t even when
it goes to zero. This ensures tha t bytes_to_go has the proper initial value, zero, for the next
message.

6.2 M essage R ecep tion

When a complete message has arrived, the PPE is responsible for notifying the host. The notifica­
tion can involve one or both of the following actions:

1. If do_acks is set in the r s l o t of the completed message, the PPE must enqueue the rslot
index onto the AQR.

2. If n o t i f y is set in the r s l o t , the PPE should form and post a notification object.

17

s t r uc t n o t i f i c a t i o n {
short d s t _ s l o t ;
s t r u c t _not e_contro l {

unsigned
src_node
reserved

} cont ro l ;
s t r u c t {

unsigned
reserved
i ncarnat i on
o f f s e t

} controlO;
s t r u c t {

unsigned
reserved
meta_data
meta_len
msg_size

} c o n t r o l 1;
not e _t *
unsigned

y *note_t ;

: 12,
: 4;

4,
4,

24;

4,
1 ,
3,

24;

next ;
metadata[4]; / * o p t i on a l * /

Figure 11: The message reception notification object structure.

The PPE posts a notification using not e . index of the r s l o t . The specific structure of a message
reception notification object is shown in Figure 11. The PPE should form the type-specific parts
of the notification object as follows:

• the d s t _ s l o t field can come from the last (or any) packet of the message;

• the msg_offset and msg_size must come from the r s l o t ;

• The ack_pkt bit in the notification should be 0.

18

7 R e s e t a n d I n i t i a l S t a t e

When the kernel sets r e s e t in the PCSRO, the PPE should initialize itself. Any internal copies of
control registers should be refreshed from the software visible registers. Internal state relating to
messages in progress, either incoming or outgoing, should be discarded. The queues of interrupt
tokens should be reset to an empty state. The status registers for all send descriptors should have
busy and s t a l l e d reset and done set. Only when all these actions are completed should the PPE
set ready in the PCSRl. Software will be responsible for reinitializing r s lo t s and the notification
list heads table.

8 F a u l t s

Whenever an error packet is detected, the PPE is expected to post a notification, using zero (0) as
the note_index. The packet should be discarded without further processing. The specific format
for an error packet notification is shown in Figure 12. The PPE should form the type-specific parts
of the notification object as follows:

1. error s ta tu s - status bits set by the PPE to indicate the type of error;

2. dst_node - for error packets, this may not be the local node and thus must be supplied in the
notification;

3. src_node - used in error handling to return error messages to the sender.

The software is responsible for taking appropriate actions based on the kind of error the packet
represents.

19

s t r u c t n o t i f i c a t i o n {
short
s t r u c t {

d s t _ s l o t ;

i n v a l i d _ r s l o t
rs l o t _r ange
bad_dst_node
bad_of f s e t
bad_s i ze
bad_hdr_ chksum
bad_body_chksum
bad_incarnat ion
reserved

> er ror _s t a t us ;
unsigned
short
short
not e _ t *
unsigned

*note_t ;

f i l l e r ;
dst_node;
src_node;
n e x t ;
metadata[4]; / * unused * /

Figure 12: The individual error notification entry structure.

20

Structure Count/Entries Size Space
rslots 1024 32 32K
dio bufs 64 128 8K
notification list heads table 1024 8 8K
PPE queues 12K
other 4K
Total 64K

Figure 13: Example partition of 64K of PPE resident memory.

A A p p e n d i x e s

A .l O n-board M em ory

The provision of a modest amount of memory on-board the PPE appears to offer noticeable per­
formance advantages. The advantages come from three sources:

1. reduced waiting by the PPE for G SC +/host memory bus cycles;

2. reduced consumption of host memory bus cycles by the PPE;

3. avoidance of cache interactions for structures shared by PPE and software.

Figure 13 is one possible partition of 64K of memory into pools/tables of structures described
in this document. The numbers in the figure would be adequate for a cluster of modest size,
perhaps 32 or 64 nodes. The allocations are also somewhat flexible, for example, the sizes of the
rslot table and notification list heads table may, in practice, be modified from those shown here.
dio_buf s have not previously been discussed; they are part of an alternative approach to direct
output outlined in Section A .1.3.

A .1.1 R slo ts

The inclusion of r s lo t s on the PPE simplifies both the PPE and the software. The PPE would
otherwise be required to cache some r s lo ts ; this, in turn, would necessitate some mechanism to
allow the kernel to force the PPE to refresh its cache from host memory resident r s lo ts . This also
simplifies kernel software, since the kernel can write directly to the PPE-resident r s lo t s without
concern for cache interactions. The frequency and scope of changes to r s lo t s is such tha t the cost
of having to do single word writes to 10 space should not be a problem. On the other hand, the
frequency with which the PPE must access r s lo t s - one read of the entire structure and (at least)
one write, per packet received - is a powerful motivation for putting r s lo t s on the PPE.

A .1.2 N o tifica tio n L ist H eads

This table is primarily used by the PPE, after being initialized by the kernel. The PPE will read
and write the table on every message complete reception. The kernel will occasionally (infrequently)

21

change the token field of an entry; it should never need to read or write the head field after the
initialization phase.

A .1.3 B u ffered D irec t O u tp u t

This may potentially result in greater latency for the direct output case, since the copy to PPE
memory and the injection of the packet are inherently serialized. We expect, however, th a t direct
output will be useful primarily for short messages (in the range of 1 to 2 data cache lines), so the
non-overlapped injection time should be insignificant and the bus cycles to write the data to the
PPE should remain constant (as compared to the other direct output design).

22

This section describes the refinements, compromises, and actual parameters used in the physical
realization of the PPE.

A .2.1 M ulticom puter Architecture '

The PPE prototype was designed to interface HP715 workstations with a new interconnect fabric
from HP Labs called FedEx. ,

The HP715 offers a high-capacity, multi-mastered internal bus with an expansion slot.

The FedEx interconnect interface provides two bi-directional high-bandwidth I/O ports which
we use as dedicated one-way transmission and reception channels.

A .2.2 PP E Functional Partitioning

This document was primarily partitioned into three main functional blocks for implementation
in three separate Actel Field Programmable Gate Arrays (FPGAs). The partitions are shown in
Figure 14.

Descriptions for the main functional blocks can be found in

• Section 5 (Message Transmission)

• Section 4 (Notification)

• Section 6 (Message Reception)

The other functional blocks include:

• Slipstream - another HP proprietary ASIC which implements the necessary HPPA functions
and protocols over the GSC+ bus.

• Sender Dual-Port RAM - contains the Send Descriptors as well as DIO Buffers.

• Receiver Dual-Port RAM - contains the R s lo ts , the Notification Table, and some scratch
pad locations for processing received packets.

• Sync FIFO - adds speed matching for the FedEx network. The CRC16 checksums are calcu­
lated in this block because the Actel FPGA used to implement the sender function was too
slow.

• RCV Pkt - deposits packets into the Receiver dual-port RAM to be copied into the host’s
main memory. The CRC16 checksums are checked in this block.

A .2 Im p lem en tation N o tes

23

Figure 14: The functional partitions

24

Because the Slipstream ASIC only passes 8 usable bits of address information to the PPE while
the PPE uses 96KB of on-board memory, we added some additional registers and pseudo-registers
to allow the kernel software to address the entire PPE memory.

The host accesses the PPE’s XMT_RAM by writing a pointer in the PXR_Ptr register (at offset
address 0x040). Once this pointer is set, there are three methods to access the XMT_RAM:

• Static Address (through PXR_MEM at offset 0x044) ■

• Auto-Increment (through PXR_MEM_INC at offset 0x048) for copying large blocks of contiguous
data.

• Paged Addresses (at offsets 0x200 through 0x2FC) in which the PPE uses bits 15 through
8 (of PXR_Ptr) as a page number and splices in the low byte of the address (the offset) to
generate the effective address into the XMT_RAM.

The RCV-RAM works much the same way using registers PRR_Ptr, PRR_MEM, PRR_MEM_INC, and
addresses 0x300-0x3FC.

Because much of the kernel interaction will involve the maintenance of the send descriptors
we’ve nailed down a page in the XMT_RAM exclusively for paged access to them through offset
addresses OxlOO-OxlFC.

A .2.3 The Implemented R egister/M em ory Interface

25

+---+
0x000 |R|£ |: : : : : : : : : :|incrntn| local_node_num I PCSRO

0 +---+
0x004 |R|H|L|I|E|F|: : : : : :|dsc_cnt|: : : : : : : : : : : : : : : : I PCSRl

1 +---+
0x008 | : : I N o t i f i c a t i o n Li s t Heads Reg|0 0| NLHR

2 +---+
0x014 | | NQR

5 +---+
0x018 | | AQR

6 +---+
OxOlC | | NBQR

7 +---+

+---+
0x040 | | | 10 0 1 PXR_Ptr

10 +---+ / Page
0x044 | | | PXR_MEM

11 +---+
0x048 | | | PXR_MEM

12 +---+ _INC

+---+
0x080 | | I 10 0 1 PRR_Pt r

20 +---+ / Page
0x084 | | | PRR. MEM

21 +---+
0x088 | | | PRR_MEM

22 +---+ _I NC

+---+
0x100 | | Send

40 : Desc ’ s
OxlFC | I : | (x4)

7F +---+
0x200 | |

80 : XMT_RAM
0x2FC | |

BF +---+
0x300 | |

CO : RCV. RAM
0x3FC | I : |

FF +---+

26

A .2.4 P P E X M T R A M M em ory M ap

The PPE X MT RAM Map has been specified as follows:

0x0000 - 0x003C Send D escrip tor 0
0x0040 - 0x007C Send D escrip tor 1
0x0080 - OxOOBC Send D escrip tor 2
OxOOCO - OxOOFC Send D escrip tor 3

0x0100 - 0x7FFC DIO B uffers

Address Map:
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

+---+-----+
|0 0 0 o lo 0 0 010 01: : : : 10 0 1
+---+-----+
10 0 0 010 0 0 0|0 1|: : : : 10 0 1
+---+-----+
|0 0 0 0|0 0 0 o i l 0| : : : : 10 0 1
+---+-----+
|0 0 0 0|0 0 0 o i l 1|: : : : 10 0 1
+---+-----+
10 1 e ls e |0 0|
+---+-----+

SDO

SD1

SD2

SD3

DIO B uffers

27

A .2 .5 P P E R C V R A M M em ory M ap

The PPE RCV RAM Map has been specified as follows:

0x0000 - OxEFFC

OxFOOO
0xF400
0xF800
OxFCOO
0xFF80

0xF3FC
0xF7FC
OxFBFC
0xFF7C
OxFFFC

RSlots/NLHR (Note L ist Heads ta b le)
(s iz e to be con figu red by softw are)

NQR (256 e n tr ie s) message N o t if ic a t io n Queue
AQR (256 e n tr ie s) message Acknowledgment Queue
NBQR (256 e n tr ie s) N o t if ic a t io n Block Queue

RCV.PKT

NOTE: The OxF. . . r e g is te r s have been reserved f o r use by the hardware.

Address Map:
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

+---+----- +
I d s t_ s lo t | o f f |0 0 | RSlots
+---+----- +
I NLHR + note_index I 10 0 1 NLHR
+ +----- +
II 1 1 1 10 0| 10 0 1 NQR (256)
+---+----- +
11 1 1 1|0 1| 10 01 AQR (256)
+---+----- +
II 1 1 111 01 1001 NBQR (256)
+---+----- +

+---+-----+
I l l l l l l l l l l O O O : : : 10 0 1 RCV_PKT_HEADER (4 /8 words)
+---+-----+
II 1 1 111 1 1 111 : : : : :|0 0| RCV_PKT_PAYL0AD (up to 32)
+---+-----+

28

A .2.6 Miscellaneous Packets

In order to handle non-data type incoming FedEx packets, we’ve agreed that after the packet has
been received in the RCV_RAM packet buffer, the PPE should:

• Post an Error Notification (which contains the packet type from the FedEx header).

• Signal an interrupt through the SlipStream interface.

• Reset the PCSRO: enable bit (to prevent additional incoming packets from overwriting the
packet buffer before the software processes it).

The software will be able to find the non-data packet payload (without the associated FedEx
header) at RCV RAM locations 0xFF80 ~i OxFFFC. (The header will be in the initial notification,
and can be found at RCV RAM location OxFFOO).

A .2 .7 Send D escrip tor note_index R estriction

One final implementation compromise was made to accommodate the pinout limitations o f the
chosen Actel FPGAs in the interface between the sender FPGA and the notification FPGA. Since
there were only 9 otherwise unused pins between the FPGAs, only 9-bit note_indexes can be used.
R slot note_indexes are only limited by the size of the notification table in the PPE’s RCV-RAM.

29

