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Abstract 

Routing an entire circuit requires partitioning the cir­
cuit (routing area) into smaller, localized routing ar­
eas. Using non-rectangular, rotated switch box shapes 
(and therefore non-manhattan routing layout) has the 
pot ential to simplify the partitioning of the circuit into 
routable areas and to use "dead space" on a chip for 
routing. The method described in this paper for gener­
ating non-rectangular, rotated switch boxes borrows ideas 
from computer graphics. 

1 Introduction 
Automated wire routing is an important problem in the 
design of VLSI circuits. It involves finding the solution 
to two problems: subdividing the circuit into smaller, 
routable pieces and routing the wires. Usually, wire 
routing is performed on a square grid, thus providing 
the rectangular switchboxes that are used in the many 
good routing algorithms presently available. For some 
circuits, partitioning would actually be simplified if non­
rectangular switchboxes could be used. For example, 
although much effort is used to rectangularize circuit 
modules, some elements are generally conceived as being 
non-rectangular . For example, the parallel multiplier is 
generally drawn conceptually as a parallelogram rather 
than as a rectangle (see Figure 1). The internal routing 
of the multiplier circuit can be easily converted to form 
a rectangular module. Alternatively, non-rectangular 
switchboxes can be used for routing outside the multi­
plier. Figure 2 shows some potential non-rectangular 
switchboxes created by the placement of a multiplier 
implemented as a parallelogram. 

Routing algorithms are generally restricted to routing 
in rectangular areas [1, 2, 3, 4, 5, 61. In addition, 
there are some algorithms that deal with angled routing 
[7,8]. To avoid rewriting these for many different cases, 
we propose a method for transforming non-rectangular, 
four-sided switchboxes into rectangular switchboxes and 
back again, thereby permitting conventional routing al­
gorithms to deal only with rectangles and manhattan 
routing. The method is borrowed from computer graph­
ics and is known as transformational geometry which 
includes the perspective projection. 

1 This paper also appears in the Proceedings of the First Great 
Lakes Symposium on VLSI, March 1991. 
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Figure 1: Parallel Multiplier Circuit 
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Figure 2: Switchboxes Caused by placing a Parallel 
Multiplier 



2 Coordinate Transformation by Ma-
trix Algebra 

Computer graphics involves manipulating models of 3-D 
shapes to appear as 2-D objects on a computer screen. 
These transformations of 3-D shapes involve the use of 
matrices that describe rotation, translation, shear, mir­
roring and perspective, and vectors that describe the 
vertices of shapes. All of the manipulations are per­
formed in a homogeneous coordinate system involving 
one extra dimension. A 3-D homogeneous coordinate is 
a vector of length 4 and its 3-D transformation matrices 
are 4-by-4. Foley and Van Dam describe this in great 
detail in [9]. 

Many simple transformation matrices can be multiplied 
to form a single matrix that embodies all of the suc­
cessive transformations. Thus, a drawing composed of 
many lines (wires) can be transformed using a single 
matrix multiplication for each point once the complete 
transformation matrix has been composed. 

As noted above, the dimension of the graphics area de­
termines the size of the transformation matrices as well 
as the number of elements in the coordinate vectors. 
Switchboxes are modelled as 2-D objects in a 3-D space 
(that is, the z coordinate values are generally all 0). Us­
ing a 3-D model permits more complex transformations 
such as the perspective projection. Homogeneous coor­
dinates for 3-D space are formed by appending a fourth 
value, w (always equal to 1), to the normal x, Y and z 
values: 

(x,y,z)=}[x Y z w] 

This vector is then multiplied by a 4-by-4 transforma­
tion matrix and the values in the vector are divided by 
w (usually 1). 

[x Y z 

Zl 

w' 

2.1 Single Transformations 

1 (1) 

The standard, single transformation matrices for rota­
tion, translation, shear and perspective projection are 
shown in Figure 3. 
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a) 

[ 
cos( B) - sin (B) 0 0 

1 
sin( B) cos( B) 0 0 
0 0 1 0 
0 0 0 1 

b) 

[ 
1 0 0 0 

1 
0 1 0 0 
0 0 1 0 
Xtran.late Ytranslate 0 1 

c) 

[ ~"'"' Yshear 0 0 

1 
1 0 0 
0 1 0 
0 0 1 

d) 

[ ~ 
0 0 0 

1 
1 0 0 
0 0 1 

0 0 ~ 

Figure 3: Single Transformation Matrices 
a~ Rotation of B degrees around the z axis 
b Translation of x + Xtran.late,Y + Ytranslate 
c) Shear of x + XshearY,Y + YshearX 
d) Perspective projection 
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Figure 4: Examples of transformations of a rectangle. 
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Switchbox shapes defined by all of these operations may 
appear in circuit layouts. Figure 4 demonstrates all the 
possible four sided shapes provided routing is available 
on a 45 degree angle. Figure 4a shows a simple trans­
lation, 4b a rotation about (0,0), 4c a shear in the x 
direction. Figures 4d and 4e provide examples of more 
complex transformations. These shapes are created by 
perspective projections. 

2.2 Simple 2-D Transformations 

When non-rectangular switchboxes are encountered, the 
transformation(s) required to render that switchbox as 
a rectangle must be discovered. The simplest transfor­
mations to discover and use are rotation, translation 
and shear. 

Given an original, non-rectangular switchbox (the 
real routing area) in which coordinates are denoted 
[Xi, Yi, Zi, Wi], we desire to produce a rectangular switch­
box (the desired routing area) in which coordinates are 
denoted [x:,1/;, zL w:]. By definition, the switchbox re­
sides in the xy plane for these simple transformations 
and Zi = O. The transformations ensure that z: = 0 
also. If the elements of a transformation matrix are 
denoted Afij, then 

Afl1 X i + Af21 Yi + Af31zi + Af41 x~ • (2) 

Af12 xi + Af22 Yi + Af32 zi + Af42 yi (3) 

Af13 xi + Af23 Yi + Af33Zi + Af43 z~ • (4) 

Af14 xi + Af24 Yi + Af34 Zj + Af44 
I 

Wi· (5) 

Given the four vertices of a real switchbox (it must be a 
parallelogram), the simple, 2-D transformation matrix 
may be discovered by solving the system 

Yl 
Y2 

Y3 

Y4 

1 
1 
1 
1 

x' 1 
x' 2 
X~ 
X' 4 

y~ 1 y~ 
y~ 
y~ 

(6) 

and then substituting values from the solved system into 
the transformation matrix as follows (without perspec­
tive projection): 

o 
o 
1 
o 

(7) 

The desired, non-rectangular area can now be routed 
with traditional algorithms when the shape is a paral­
lelogram (a sheared rectangle) with applied rotations 
and transformations. When the non-rectangular rout­
ing area is a trapezoid, a perspective projection is re­
quired. 

2.3 Perspective Projection Transforma­
tions 

A number of methods are used to enhance the realism 
of images displayed on a computer screen. One of these 

4 

Figure 5: Perspective Projection 

is perspective projection (Figure 5). Drawing objects 
on the screen (the projection plane) that are farther 
away from the viewing point (the centre of projection) 
smaller than those that are closer gives the impression 
that these objects are more distant. Therefore, a rectan­
gular area having one edge slanted away from the view­
ing point, will be drawn as a trapezoid on the screen to 
provide this appearance. 

The transformation for calculating the projected points 
is defined as 

'I [i 0 0 n [ Xi 
1 0 

Yi Zi 0 0 
0 0 

[ x = :.t+1 4+1 0 1 (8) 

In an image, the distance from the projection plane to 
the centre of projection is usually known and the trans­
formation matrix is easily created. In transforming non­
rectangular switchboxes to rectangular ones, only the 
vertices of the projection are known - the task is to dis­
cover the transformation matrix that transforms a rect­
angle into the trapezoidal perspective projection. By 
applying the inverse of this transformation matrix, we 
can transform a trapezoidal routing area into a rectan­
gular routing area. Once routed, the rectangular rout­
ing area and all wires within it are then transformed 
back into the trapezoidal area using the original trans­
formation matrix. 

Figure 6 shows all that is known about the two areas. 
Since perspective projection is a 3-D transformation, Zi 
and z: are now included. Since the real area (Figure 6b) 
is on the projection plane, the z: values are all O. Lim­
iting the projection to produce only vertical, horizontal 
and 45 degree edges (we achieve this by angling the rect­
angle 45 degrees away from the projection plane), and 
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Figure 6: Projection of the desired area (a) to the real 
area (b) 

constraining one edge (we choose the bottom) ofthe de­
sired rectangular area to be on the projection plane, we 
get 

X4 = Xl = xi 
X3 = X2 = x' 

Y - y' - y - y' - Z - z3 - z - z' - 0 1-1- 2 -2- 1 -1- 2 -2-

Y3 = Y4 = Z3 = Z4 

y~ = y~ = Z~ = Z~. 

We know the values for Xl, X2, X3, X4, Y1, Y2, Zl and 
Z2 . 'yVe need only solve for d (from equation 8) which 
reqUIres Z3. 

Using equation 8, 

(9) 

X' x'2 I 
d= 3 Z - Y 

X3 - X~ 3 - X2 - X~ 3 
(10) 

Routing usually assumes uniform spacing of the hori­
zontal and vertical wires. Given the orientation of the 
trapezoidal switchbox with parallel edges parallel to the 
X axis, the uniformly spaced horizontal wires on the 
real switchbox will be mapped by non-uniformly spaced 
wires on the desired rectangular switchbox. Uniformly 
spaced vertical wires on the desired rectangular switch­
box will be mapped to angled wires (at 45 degrees) on 
the real trapezoidal switchbox when routing is complete 
and the transformation is applied. 
Viewing vectors emanating from the centre of projec­
tion and passing through routing grid points in the real 
routing area provide the desired mapping on the desired 
routing area (Figure 7). Constraining the system such 
at Yi = Zi and defining Y.witchbox as the spacing between 
horizontal wires in the real switchbox, the equation that 
describes these vectors is 

Y.witchbox 
Y = Z = d Z + Y.witchbox (11) 

Solving for y, we obtain 

d . Y.witchbox 
y= 

d - Y.witchbox 
(12) 

and the point in the desired area that corresponds to a 
point in the real switchbox is 

[

X d . Y.witchbox d· Y.witchbox 1] . 
d - Y.witchbox d - Y.witchbox 
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Figure 7: Side view of a perspective projection 
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Figure 8: An example of a complex transformation 

Examples are presented in Figures 4d and 4e which 
demonstrate sample equations which are required. 

2.4 Composed Switchbox Transformations 
for Routing 

The examples in Figure 4 involve only single transforma­
tions of a rectangular area. The example in this section, 
as shown in Figure 8 involves the composition of a num­
ber of transformations, including a rotation, a transla­
tion and a perspective projection. We briefly show the 
mathematics involved in obtaining the transformation. 

Using equation 7, we form a system of linear equations 
that describe all of the transformations except the per­
spective projection, obtaining 

[ 5 
0 0 1 15 Ii] -5 0 0 1 25 

LFigure8 = _~ 4 0 1 21 
4 0 1 11 11 

for which the solution is 

LF;, .. ~ = [ ~ 
0 0 0 -1 1 

1 
1 0 0 -1 -1 
0 0 0 0 0 
0 0 1 20 10 



Thus, the transformation matrix representing the rota­
tion and translation is 

[ 

-1 
-1 

TPigure8 = 0 
20 

1 0 
-1 0 

o 1 
10 0 

The inverse transformation is used to place the real 
points into the correct orientation. The inverse trans­
formation matrix for the rotation and translation is 

o 
o 
1 
o 

Now we compute the required perspective projection. 
From equation 10, 

d= (-5)-=-\-1) ·4=5 

and the perspective projection matrix is 

o 
1 
o 
o 

o 
o 
o 
o 

Combining the two matrices, we obtain 

[ 

-1 
-1 

o 
20 

1 0 
-1 0 

o 0 
10 0 

which will be used to transform the routed area and its 
wires back to its original trapezoidal shape. 

Now, the multiplication required is: 

[ x ~ 5-y 
~ 
5-y 

3 Conclusions 

1 
-1 

o 
10 

o 
o 
o 
o 

(13) 

This powerful transformational approach to routing 
non-rectangular switchboxes achieves its results by per­
mitting routers to work in their accustomed carte­
sian domain using "orthogonal" wires and rectangular 
switchboxes. We have purposely limited it in this pre­
sentation to work on 45 degree angles although the gen­
eral method can be used for any angle. 

It has the potential to simplify module design where the 
module is best implemented in a non-rectangular shape. 
It permits routing to be done using algorithms that are 
limited to rectangular shapes. These rectangular rout­
ing areas can then be transformed to non-rectangular 
shapes that border the non-rectangular module. 
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It will be particularly effective where three layers of 
routing are available since there can be sets of verti­
cal, horizontal and diagonal wires. For example, the 
horizontal wires could be on the middle layer, the ver­
tical wires on the top layer and the diagonal wires on 
the bottom layer. If the desired routing algorithm(s) 
can handle obstructions, the non-rectangular switchbox 
can be routed using the bottom (diagonal) and middle 
(horizontal) layers. Then, a rectangular switchbox su­
perimposed over the non-rectangular switchbox can be 
routed using the top (vertical) and middle (horizontal) 
layers. 

As routing methods are developed to deal with rectilin­
ear shapes other than rectangles (say L- or T-shaped 
areas), this transformational approach can also be ap­
plied to these algorithms permitting them to route com­
plex shapes under any combination of the transforma­
tions presented here: rotation, translation, shear and 
perspective projection. 
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