View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by The University of Utah: J. Willard Marriott Digital Library

A revised \ersion of this paper was published in Proceedings of the 24th Intemational Conference on Software Engineering (ICSE 2002),
Orlando, FL, May 2002. Please read and cite the published ICSE 2002 peaper in preference to this report

Static and Dynamic Structure in Design Patterns

Eric Eide Alastair Reid

eeide@cs.utah.edu reid@cs.utah.edu

John Regehr Jay Lepreau

regehr@cs.utah.edu lepreau@cs.utah.edu

University of Utah, School of Computing
http:/Amww.cs.utah.edw/flux/

Technical Report UUCS—-01-014
November 1, 2001

ABSTRACT

Design patterrs are a valuable mechanism for emphasizing struc-
ture, capturing design eqoartise, and facilitating restructuring of
software systers. Patterrs are typically applied in the context of
an dgject—oriented language and are implemented so thet the pat-
tem participarits correspond to dbject instances that are created and
connected at run—tine. This paper describes a conplementary re-
alization of design patterrs, in which the pattem participents are
statically instantiated and connected components.

Our approach sgparates the static parts of the software design
from the dynamic parts of the system behavior. This sgoaration
mekes the software design more amenable to amalysis, enabling
more effective and domain specific detection of system design er-
rors, prediction of run—tine behavior, and more effective gptimiza-
ton This technique is gpplicable to inperative, functional, and
dyject—oriented languages: we have extended C, Scheme, and Java
with our component model. In this paper, we illustrate this ap-
proach in the cortext of the OSKit, a collection of gperating system
components written inC.

1. INTRODUCTION

Design patterms allow people to uderstand computer software in
terms of stylized relatiaships between program entities. a pat-
tem identifies the roles of the participating entities, the responsi-
hbilities of each participant, and the reasons for the connections be-
tween them Patterms are valugble during the initial development
of a system because they help software architects outline and plan
the static and dynamic structure of software before the structure is
implemented. Documented patterns are useful for subsequent sys-
tem maintenance and evolution because they help mairntainers un-
derstand the software inplementation in tenrs of well-understood,
abstract structuring conoepts and goals.

The converttional approach 1o realizing patterms [12] prinarily
uses classes and djects 1o implement participents and uses inher-
itance and dgject references to inplement relatiaships between
participants. The parts of pattens defined using classes and in-
herttance are static and therefore essier to understand and analyze.
However, they are less flexble because treir role in patterrs and in
the whole system is hardwired into their inplementation. In con-
i, parts of patterms that are defined using dojects and references
aremore dynamic, and therefore more flexible but harder to uder—

This researchwas sugported by the Defense Advanced Research
Projects Agency and the Air Force Research Laboratory, under
agreement number F33615—00—C—1696. The U.S. Govermment is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation hereon.

stard and aralyze.

This paper describes a conplementary approach to realizing pat-
ters based on sgparating the static parts of a patten from the dy-
namic parts. The static participants and relatiaships in a pattem
are realized by component instances and component interconnec-
tias that are setat compile— or link=ting, while the dynamic partic-
ipants cortinue to be realized by dojects and doject references. Ex-
pressing static pattermn relationships as component intercomections
provides more flexibility than the conventional approach while re-
taining much of the ease of understanding and aralysis.

To illstrate the tradeoffs between these approadches, consider
writing a network stack corsisting of a TCP layer, an IP layer, an
Ethermet layer, etc. The usual inplerentation strategy, used in
mainstream operating systars, is for the implementation of each
layer todirecty refer o the layer above and below itexoept in cases
where the demand for diversity is well-uderstood (e.g., to support
different network intexrface cards). This approach commits toa par-
taular network stack when tre layers are being written, making it
hard to change decisions later (e.g., adding lovlevel packet filter-
ing in order o drop denial-of—senice packets as early as possible).

An altemative inplementation strategy is to inplement the lay-
ers using the Decorator] pattem with dbjects. each layer is imple-
mented by an dbject that invokes methods in dojects directly above
and below it The dbjects implementing each layer provide exactly
the sane interface (e.g., methods for making and breaking connec-
tions, and for sending and receiving padkets on comections) allow-
ing the designer to build a large variety of network stadks. In fact,
network stads can be reconfigured at run—tine, but thet is more
fledbility then most users reguire.

Our design and inplementation approach offers amiddle ground.
Having identified the decorator patterm and having decided that the
network stack may need to be reconfigured, but not at run-tine,
each decorator would be inplemented as a component thet inports
an interface for sending and receiving padkets and exports the same
interface. The choice of network stack is then statically expressed
by connecting different sets of components together. The besis of
our approach is o permit system configuration and realization of
design patterms at conpile- and link-tine (i.e, before software is
deployed) rather then at init- and run-tire (i.e., after itis deployed).

By matching the expected need for recorfiguration against the
degree of astraction, we achieve the following. (1) We are able to
build a range of different network stacks meeting both our currentt
and anticipated needs. (2) Network stadks are configured using
a separate language thet hides the inplementation cetails of each
component. This makes it possible for the system to be reconfig—

Unless otherwise noted, the names of specific pattens refer t
those presented in Gamma etal.’s Design Patterms catalog [12]

https://core.ac.uk/display/276277561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eeide@cs.utah.edu
mailto:reid@cs.utah.edu
mailto:regehr@cs.utah.edu
mailto:lepreau@cs.utah.edu
http://www.cs.utah.edu/flux/

ured at the component level. (3) We can statically detect config-
uration errars such as conecting a layer thet expects IP padkets
to a layer thet provides Ethermet packets. Such mistakes are nost
commonly made by non—domain exqperts but even domain eqerts
can lose track of all the different architectural invariants in a com-
plex system if the system is reconfigured enough tines. (For ex-
ample, Linux kermel develgpers plan to use the CML2 costraint
language [22] to prevent incorsistent kermel configurations from
being kuilt) (4) The system is sufficiently constrained thet it can
be optimized effectively. Comell’s Ensemble project [16] shons
how far one can go when statically optimizing stads of network
layers. they were able 1o double the performance of a 41dayer net-
work stadk

In the network stack exanple, the berefits come at some cost in
fledbility. we have eliminated the ability to reconfigure the net-
work stack at run—tire. Our design strategy helps the progranmer
identify such trace—offs and consider how they affect the implemen-
tation

Our cottributias are &s follons:

¢ We describe an approach to realizing pattens that clearly sep-
arates the static parts of the design from the dynamic parts, making
the systemmore amenable to optimization and to analyses thet de-
tecterrors or predict run—tine behavior (Section 3).

We defire a systenatic method for applying our approach
existing patterms (Section 3.1).

We show that our approach is gpplicable to three major pro-
gramming language paradigms that support the unit component
model: inperative languages, exenplified by C [23]; functioral
languages, exenrplified by Scheme [10]; and dject—orientsd lan-
guages, exerrplified by Java [18] (Sections 2 and 3). We demon-
strate our approach with two exanples from the OSKit [11], a col-
lection of gperating system components written in C (Sections 3.2
and 3.3).

We evaluate the approach by applying it 1o each pattermn de-
scribed by Gamma et al. [12] (Section 3.4) and by amalyzing its
aosts and berefits (Section 4).

In summary, although the berefits of separating systemarchitec-
ture from component inplementations are well-knoan, the distinc-
tive features of this paper are: we show a gereral approach thetcan
be applied t many patterms and in multiple language paradigTs;,
we corsider the static—dyramic decision in the cortext of design
patterms; and we thoroughly evaluate when 1o apply and when not
to apply our approach.

2. THE UNIT MODEL

Our approach 1o realizing pattes is nost reedily expressed in
terms of units 9, 10], a component definition and linking model
in the qairit of the Modula—3 [13] and Mesa [20] module systens.
The unit model emphasizes the notion of components as reusable
architectural elemrents with well—defined interfaces and dependen-
des. It fitswell with the definitias of “component” in tre literar
ture [24, p. 34] but differs from other component models thet em-
phasize concems such as separate conpilation and dynamic com-
ponent assarbly. In the unit model, components are conpile— or
link—=tinreparts of an assenbly: i.e,, software modules, not run—tine
ayjects.

Three sgparate inplementations of theunitmodel exist: Knit [23]
for C, Jiazzi [18] for Java, and MzScherme [10] for Scheme. The
inplementations differ in details both because of tedhical differ-
ences in the base languages and because of stylistic differences in
the way the base languages are used. For the purpaoses of this peper,
we focus on the common features of the three inplementations.

Draw

IWetgt LAl

| Wetet | Fle
Win32_Widgets Win32_Files
W2 W2

Figure 1: Atomic and compound units

2.1 Atomic and Compound Units

An atomic unit can be thought of as amodule with threeparts: (1) a
st of irrports which name the dependencies of the init ie, tre
definitions thet the unit requires; (2) a setof exports, which name
the definitions thet are provided by the unit and made available to
other units; and (3) an inplementation, which must include a def-
inition for each export, and which may use any of the inports as
required

Each inport and export is aport with a well—defired interface.
An interface hes a name and senves to group related tems, much
like an interface or axstract class in an OOP language. The three
inplementations of the unit model make different dhoices about
what makes up an interface. In Knit, an interface refers to sets of
related C types, function prototypes, and variable declaratias. In
Jiazzi, port interfaces are like Java packages: they describe partial
class hierarchies and the public methods and fields of classes. In
MzScheme, because Scheme uses rutine typing, interfaces are
sinply lists of function names.

Definitions thaet are not exported are inaccessible from outside
the it The inplementation of a unit is usually stored in a file
separate from the unit definition, allomng code thet was not in-
tended for use as a unitt to be packaged up as aunit

Although all inplementations of the unitmodel use atextual lan-
guage to define units, in this paper we use a graphical notation
avoid inessential details and to emphasize the underlying structure
of our systers. The saller boxes in Figure 1 represent atomic
wnits. The exqport interfaces are listed at the top of a unit, the im-
port interfaces are listed at the bottom, and the name of the unit
is shoamn in the center. Consider the topmost unit, called Draw. Tt
hes the ahility to loed, save, and render imeges, encapsulating the
main parts of a sinple image viewing program eqorts (ie,
implerents) one portwith interface and inports two ports:
one with interface and a second with interface .

Units are instantiated and interconnected incompound units. Like
atomic units, compound units have a setof inports and a set of ex-
ports that define connection points to other units. The implemen-
tation of a compound unit carsists of a set of unit instances and
eplicit interoonections between ports on these instances and tte
inports and exqports of the compound unit. The result of compaosing
units isa new wunit, which is available for further linking.

Figure 1 as a whole represerts a compound unit composed of
three other units. In this figure, an instance of is composed
with an instance of and an instance of
Files. Within acompound unit, connections are defined explicitly.
this is necessary when there is more that one way to connect the
wnits. Although not shown in this exanple, a system designer may
freely aeate nmultiple unit instances from a single unit definition
(e.g., two instances of Draw).

2.2 Exploiting Static Configuration

One of the key properties of progranmming with the unitt component
model is that component instantiation and intercomection are per-
formed when the program is huilt instead of when the program is
executed. This allons implementations of the unit model to make
use of additional resources thet may be available at conpile— and
lirk—time. ponerful aralysis and optimization tedmniques; in tre
case of embedded systerrs, orders of maegnitude more cycles and
memory with which 1o perform analyses; test cases, test scaffold-
ing, and debugging builds; and firelly, freedom from real-world
aostraints such as real-tie deadlines. All three unit inplementa-
tias check the component conposition for type errors. Knit, how-
e, implements additional features thet exploit the static rature of
unit conpositions.

Constraint checking. Even ifevery linkinaunit composition is
“correct” acoording 1o local corstraints such as type safety, the sys-
tem as awhole may be incorrect because it does not meet glaoal
arstraints. For exanple, [23] describes a design castraint used
by operating system designers. “bottom-half code,” executed by
intermypt handlers, must not invoke “top-Halfcode” that executes in
the context of a particular process. The reason is thatwhile top-talf
code typically blocks when a resource is terporarily unavailable,
storing its state in the process’s stadk; an interrypt handler lads a
process context and therefore must not block. The problem with
enforcing this constraint is that units containing bottom-half code
(e.g., device drivers) may invoke code from other units thet, transi-
tvely, invokes a top-alf unit. Keeping tradk of such conditias is
difficult, especially when working with lov—level systens code thet
is highly intercomected and not strictly layered. To address this
problem, Knit unit definitias can include constraint annotations
that describe the properties of inports and eqoorts. Constraints can
be declared eqlicitly (e.g., that inported functios are invoked by
bottom-half code) or by description (e.g., that the inport properties
are sstby the eqorts). At system build—tine, Knit propagates unit
properties in order to ensure thet all costraints are satisfied

Cross—component inlining. When source is available, Knit in-
lines fuction definitions across component boundaries with the
help of the C conpiler. By eliminating most of the overhead as-
sociated with conponentization, Knit reduces the need 1o choose
between a clean design and a fast inplementation.

2.3 Using Units Without Language Support

The unit model makes it possible for a software architect to de-
sign a systemfrom components, describe local and global relation-
ships between components, and reuse components both within and
across system designs. These are the features that make it useful
to develop and apply units for expressing design patterms. In par-
tiaular, our unit—esed approach to realizing patterms relies on these
features of the unit model:
Programming to interfaces. The only comections between

components are through well—typed interfacess.

¢ Configurable intercomponent connections. Unitinportsde-
scribe the “shapes” but not the providers of reguired servicss. A
system architect links unit instances as part of a system definition,
not as part of a component’s base (e.g., C ar Java) inplementation.

Static component instantiation and interconnection. Units

are irstantiated and linked when the system is built, not when the
systemis run

« Multiple instantiation. A single unitdefinition can be used to
create nultiple unit instances, each of which has a unique identity
at system build—tine. Each instance can be linked differentdy.

It is possible T make use of features of the unit component
model without support from languages such as Knit, Jiazzi, and

MzScheme. However, without support, some berefits of the model
may be lcst. For instance, a C++ programmer might use tenplate
class=s o describe units: this can provide gptimization berefits but
does not help the system desigrer check aonstraints of the sart de-
scribed previasly. A C progranmer might use the C preprocessor
to achieve similar results. In sum, although unit tools can provide
important berefits, people who cannot or decide not to use our unit
description languages can nevertieless take advaritage of our gen-
eral approach to realizing design patterrs.

3. EXPRESSING PATTERNS WITH UNITS

The essence of a design pattem is the set of participants in the pat-
tem and tre relatiaships thet exist between those participants. As
outlined in the introduction, the converttional approaches to de-
scribing and realizing patternrs are based on the idions of dgect—
oriented programming. At design—tine, the participants in the pat-
tem correspond o classes. At run-ting, the pattem is realized by
ogject instances thet are created, inftialized, and connected by ex-
plict statenents in the programcode. This style of inplementation
allons for a great deal of run—tine fledbility, but in some cases it
can disguise information about the static properties of a system—
information that can be used to check, reason about, or optimize
the overall system

The key idea of this paper is thet it is both possible and fruitful
1o sgparate static knowledge about a pattem gpplication from dy-
namic knowledge. In partiaular, we believe thet static irformetion
should be “lifted out” of the ordinary source code of the system
and should be represented at the level of unit definitions and con-
nections. The unit model allons a system architect to describe the
staticproperties of a systemin a clear manner, and to separate “con-
figuration concems” from the base inplenentations of the system's
parts.

Consider, for exanple, an application of the Decorator patter
this patterm allons a designer to add additional resporsibilities to
an atity (e.g., component or doject) in away that is trarsparant
the diets of thet entity. One mightt apply Decorator to protect a
rnon—thresd—safe singleton component with amutual exclusion dec-
orator (which aoquires a lock on entering a component and relesses
the lock on exit) when using the component inamulti—threaded en-
viroment. In an doject—oriented setting this pattem would often
be realized by defining three classes: one abstract class to define
the component interface, and two derived classes corresponding to
the concrete component and decorator. At init—ting, the program
would create instances of each concrete class and establish the ap-
propriate doject connections. Whi le workable, this implementation
of the pattem can disguise valusble information about the static
properties of this system Frst, it hides the fact thet there will
be only one instance each of the component and decorator. Sec-
ond and more iportant, ithides the design corstraint thet the bese
component must be accessed only through the decorator: because
the realization of the pattem doesn’tenforce the constraint, future
changes 1o the programmay violate the rule

To overcome these problems, we would realize the Decorator
pattem at the level of units, as illustrated in Figure 2(a). We aeate
one unit definition to encapsulate the base component definitian; by
instantiating this definition eactly once, we make itclear thet there
will be only one instance in the firal program Further, we anno-
tate the unit definition with the constraint thet the inplementation
is n'on—threed-safe. We then areate a separate unit definition toen-
capsulate our decorator, and include in the definiion a specification
thet itinports a non—threed—safe interface and exports a threed-safe
ore. The resulting structure in Figure 2(a) makes itclear that there
is one instance of each participant and thet there is no access O

Client Client

|_Component |_Component

|_Component |_Component

Decorator Decorator

|_Component LCom'ponenl LSlrlal egy

|_Component LCom'ponenl LSlrlalegy
Component} Component] Strategy

(@) Decorator (b) Strategized Decorator

Figure 2: Units realizing Decorator patterms

the base component exoept through the decorator. Units make the
static structure of the system dear, and unit compositions can be
checked by tools to enforce design castraints. Of course, unit def-
initions are reusable between systens (and within a single system):
we can include the decorator instances only as needed. Ifwe desire
gregter reuse, we can apply the Strategy patterm o our decorator
sgparate itswrapping and locking aspects as shown in Figure 2(b).
This structure provides greater fledbility while still allomng for
cross—oaTponent reasoning and optimization when the strategy is
statically known.

In sum, our approach to realizing pattens pronotes the berefits
of staticknowledge within patterms by moving such inforration t
the level of units. The unitmodel allons us to describe and separate
the staticand dynamic properties of a particular pattem goplication,
thus making it possible for us o exploit the features described in
Section 2.2. In the rest of this section we define a method for ap-
plying our approach, denonstrate the method in detail on a sall
exanple, denorstrate the effect of our method on a large exam-
ple, and consider how the method applies 1o each of the pattens in
Gamma et al.’s Design Pattems catalog [12]

3.1 A Method for Expressing Patterns with
Units

In realizing a pattem via units, the software architect’'s task is
identify the parts of the pattem thet correspond to static (conmpile-
tine or link—tine) knowledge about the patitem and its partidipants,
1o “lift” that knowledge out of the implementation code, and then
1o trarslate that knowledge into parts of unit definitions and con-
rnections. This process is necessarily specific to individual uses
of a pattem each tine a pattem is gpplied, the situation dictates
whether certain parts of the patitem correspond 1o static or dynamic
knowledge. In our experience, honever, we have found that many
pattems are commonly applied in sittatians that provide significant
amounts of static information, and which therefore allow system
architects to eloit the features of the unit model.

We have found the following general procedure 1o be useful in
analyzing the gpplication of a patterm and trarslating thet pattem
into unit definitians, instances, and linkages. Because pattens are
ordinarily described in terms of doject—oriented structures (Classes,
interfaces, and inheritance), we describe our method as a trarslation
from dgject—orierted concepts to parts of the unit model.

1 Identify the abstract classes/interfaces. Many pattern de-
sripticns contain one or more participating aostract classes that
sene to define acommon interface for a set of derived classes. The
adostract classss therefore sene the same purpose as interfaces in
the unit model; the three inplementations of the model all allow
related operations (and types, if needed) to be grouped together
in named interfaces. The exact tramslation from astract cless to
unit interface depends on whether or not the derived participants
are “static participaits” in the gpplication of the pattem at hand, as
described next

2. ldentify the “static’ and “dynamic” participants within
the pattermn. Within the cotext of a pattem, itis often the case ttet
some pattem participants will be realized by a stell and statically
known number of instances. For exanple, in uses of the Abstract
Factory pattem (see Section 3.2), there will often be exactly one
Concrete Factory instance in the firal system (within the scope of
the pattem). The number of instances does not need to be exactly
one: what is inportant is thet the nunmber of instances, their con-
arete classes, and the inter—instanoe references are all known stati-
cally.

We refer to these kinds of participants as static participants, and
in the steps below, we realize each of these participants as an indi-
vidual unit instance—essartially, realizing the participant as a part
our static architecture, rather then as a run—tine ooject.

If a pattern participant is not static we refer to it as a dynamic
participant. In this case, we will trarslate the participant as a unit
that will encapsulate the participent class and will be able to pro-
duce instances at run—tine.

3. Define the interfaces for static participants. Following tre
class hierardhy of the pattem, the software architect defires the in-
terfaces (definitions in a unit specification language) to group the
operations tret will be provided by the static participats. The ar-
chitect may choose to create one interface per class (i.e, one In-
terface for the new gperations provided at each level of the dass
inheritance hierarchy), or may group the gperatios at a firer gran-
ularity.

Because each instance of a staticparticipartwill be implemented
by a unique unit instance in the realization of the pattermn, the iden-
tity of each instance is part of the static system architecture and
need not be represented by an dbject at run—tine. Therefore, inthe
trarslation from class to wnit interface, the methods thet costitute
the interface to a static participat can be trarslated as ordinary
functions (or as class static methads, in the case of Jiazzi), ad
data menmbers can be trarslated as ordinary varigbles (static mem-
bers). Further, any method argurents thet represent references
static participants can be dropped from the translated function sig-
rature: these argurents will be replaced by inports 1o the unit
instances (i.e, eplicit, unitdeel connections between the static
participants).

4. Define the interfaces for dynamic participants. Following
the dlass hierardhy of the pattem, the designer now creates the in-
terfaoss for the dynamic participants. As described for the previous
step, the designer may choose to areate one or saveral interface def-
initions per class.

Unlike the static case, each instance of a dynamic participant
nmust be represented by a run—tine doject (or other entity ina non-
OOP language). This means thet in translating the participant class
o wnit interfaces, the designer must include the definition of the
type of the run—tine dyjects, as the inplementation language re-
quires. With Jiazzi, this is straigitforvard Jiazzi unit interfaces
ocontain Java class definitios. In Knit, the interface would include
a C type name along with a sst of functions, each of which takes
an instance of that type as an argurent (i.e., the “self’ parareter).

MzScheme is the sinplest because Scheme uses run-tine typing,
the unitt interface does not need to include the type of the dynamic
pattemn participants atall.2

Although the interfaces for a dynamic participant must include
the dass of the participant dbjects, the unit model allons the de-
signer to avoid hard—ooding class inheritance knowledge into the
interfaces. By writing our units so that they import the superclasses
of each exported class, we can implement our dynamic participant
classss inamanner corresponding toMiXins [7, 18]. In otherwords,
we can represent the static inheritance relationships between pat-
tem participants not in the definitians of our units or in the unit
interfacss, but in the connections between units.

5. Create a unit definition for each concrete (static or dy-
namic) participant. With the interfaces now defined, the desigrer
can write the definitions of the units for each participant. The unit
definition for a dynamic participart encapsulates the class of tre
dynamic instances; normally, in the context of a single pattem,
these kinds of units will be instantiated once. The unit definition
for a static participant, on the other hand, encapsulates a sirgle in-
stance of the participent. The unit definition for a static participent
may be instantiated as many ties as needed, each tine withapos-
sibly different set of inports, t areate all of the needed static par-
tcipatt instances. In either case, the exqports of a unit correspond
1o the senvices thet the participant provides. The inports of a unit
correspond to the comnections described in the pattermy the inports
of each unit instance will be connected to the exports of other unit
instances that represent the other (static and dynamic) participents.

6. Within a compound unit definition, instantiate and con-
nect the participant units. Within a compound wnit, the designer
describes the pattem as awhole. The inplementation of the com-
pound unitt specifies how the participent units are 1o be instantiated
and connected 1o one another. The comnections between units fol-
low raturally from the structure of the pattern and its gpplication in
the curent context. In addition, one must import services thet are
required by the encapsulated participants.

The above considers just one patterm applied before any code is
written In practice, participants have roles innmultiple patterms and
patterms are applied during code evolution. These corsiderations
necessitate changes such as aritting the enclosing compound unit,
moving some participarts outside the compound unit, or choosing
1o treat a static participant as dynamic to avoid extensive changes
1o tre inplenentations of the participats. The system designer
may wartt to make additional changes, such as aggregating groups
of interfaces into single interfaces, to reduce the complexity of tre
unit descriptios.

3.2 Example: Managing Block Devices

We illustrate our approach in the context of a concrete system The
OSKit [11] is a collection of components for building gperating
systens and standhlore systens. The components are written in
C and include code taken from the Mach research gperating sys-
tem from FreeBSD, from NetBSD, and from Linux. The OSKit
axsists of over 230,000 lires of code, much of which is being in-
dependerttly maintained by the developers of the “donor” systens.
Although the OSKit iswritten inC, some partsare distincly dgect—
oriented a lightweight subset of Microsoft'scom isused inanum-
ber of places. The OSKit has been used o build large systens like
operating system kerrels and file seners, to implement advanced

If the patter structure relies on inplementation inheritance, dy-
namic method dispatch, or other essentially OOP features, these ca-
pebilities must be enulated when trarslating the pattermn o Knit or
MzScheme wnits. In our eqoerience, this is sometimes tedious but
gererally not too diffiault

languages directly on the hardnare, and for shaller prgjects like
embedded systerrs and bootlceders.

As an inftial exanple, consider the problem of managing block
1/0 device drivers, which provide lovlevel acoess toblod<—oriented
storage media such as disks and tgpes. An gperating systemisgen-
erally configured at build—tine to include one device driver for each
kind of supported block device: e.g., IDE bus, SCSI bus, and flgopy
disk drive. At run—tine, the goerating system queries each driver
for information (e.g., the type and cgpebilities of tre driver): the
driver disoovers the physical devices that itmanages, and at the re-
quest of the 0S, creates run—tine dbjects to represant each of these
devices. To make iteasy to configure OSKit—based systerrs with
different sets of block device drivers, we apply the Abstract Fac-
tory pattern as illustrated in Figure 3. In OOP terms, we defire a
common abstract class (BlockDevice) to be supported by all block
devices, and we define astract classes (BIKIO and Driverlnfo) for
the products thet each driver may produce. The actual drivers and
products map 1o concrete classes as shoan.

Having identified the patterm at hand, we can now apply the stgs
of our method to trarslate the pattern structure into appropriate unit
definiions. Hrst (step 1) we identify the abstract classes. clearly,
these are BlockDevice, BIKIO, and Driverinfo. Next (step 2): be-
cause each device driver can manage nultiple physical devices, we
need at most one instance of each driver in any systemwe might
build (We need zero or one, depending on whether or not we
choose 1o support a particular kind of device.)) Thus, each of our
oconcrete factories is a static participent. In contrast, since we do
not know the number of physical devices that will be present at
run—tine, each concrete product class is a dynamic participant.

We now defire tre interfaces for our static participants (step 3).
The interface 1 each conarete factory class is defined by the ab-
stract BlockDevice class we therefore define a corresponding
LBlockDevice interface. As described in Section 3.1, we traslate
the BlockDevice methods into ordinary C functions, because we
do not need 1o represant our static participants as run-tine dyjects.

In defining the interfaces for our dynamic participants (step 4),
we need 1o trarslate the participant's methods inaway that allons
us to identafy instances at run-tine. Because we are using Knit, we
trarslate the BIKIO and Driverinfo classes into unit port interfacss
that include C types for the products. In addition, each product
method becomes a C function that takes a run—tinre instance.

Next (step 5) we areate the unit definitians for each of our con-
arete participants. This is a straightforvard mapping from the pat-
tem strnucture: the eqports of each unitt are determined by the pro-
vided interfaces (i.e, the participents’ classes), and tre inports are
determined by the connections in the pattem structure

FArnally, we aeate a compound unit in which we irstantiate the
units that we need, and connect those instances according o tre
pattem (step 6). For exanple, to aeate a system with just IDE
sygport, we would define the unit instances and links shown in
Figure4. The wnit definttias thet we created in stgs 1-5 are
reusable formany systens, but the structure of the firal unitcompo-
sitian in step 6 is often specific toa particular system configuration.

Our method describes the process of areating gppropriate unit
definitions, but itdoes not address the problem of unit inplementa-
tat i.e, the source code. We have found, honever, that appropri-
ate inplementation is often straightforward. In the exanple above,
the OSKi't units are inplemented by existing OS device driverswith
Iittle or no modification. Most changes, ifneeded atall, can be im-
plemented by Adapter units that wrap the existing code. Furtter,
the device—specific code can be isolated in the units that define our
products. This means thaet we can write one unit definition for our
factory instead of one each for IDE, SCSI, and Floppy. Each in-

Bloddavice
aeehis)
aselhatty)
T e I
ICE S 05 Hapy
aselhatty) aselhatty) aselhatty)

LBRIEITTETRYN

Client
BIKIO
X

ICEBIKO | SCSI BIKO L——H Fqgy BIKO

Drvaldnio
.7

IDE Driverinfo +—H SCSI Driverint —HFloppy Drivarinfo

Figure 3: Using the Abstract Factory pattern to manage block devices in OSKit—based systens

Client
BadOaice

BakDaice

BakOeice
IDE
1BKO | Dhirfo

1BKO | Diverirfo

IDE BIKIO IDE Driverinfo

Figure 4: Result of applying our method to Figure 3

stance of this factory inports the units thet defire a related family
of products. Knit's castraint system can be used to statically en-
sure that the system designer does not accidentally connect amis-
matched st of products.

3.3 Example: OSKit Filesystems

Having illustrated the method in detail in the previous section, we
now show the result of applying the method to a more conplex
example. Figure 5 shows one possible configuration of a filesys-
tem in the OSKit. The primary parts of the systemare: Main,
an gpplication that reads and writes files FS Namespace, which
inplements filgatts (like) on top of the nore
primitive file and directory abstraction, Ext2FS, a filesystemfrom
the Linux kermel distribution; and Linux IDE, aLinux device driver
for IDE disks. The other units in the system connect these primary
parts according to the Abstract Factory, Adapter, Decorator, Strat-
egy, Command, and Singleton patterrs. Al participents in these
pattenrs are curently inplemented as described with one excep-
tian (Command) described below.

Abstract Factory. Figure 5 cottains two aostract fectories: the
Linux IDE and OSEnv/x86 uwnits. (In both cases, only the en-
closing compound unit is shown.) The OSKit defines an interface
(called the “OS Environment Interface”) for all conmponents to use
when manipulating interryats, setting tiners, allocating menory,
and so on. This interface axstracts the more dotrusive details of
the uderlying platform In Figure 5, this interface is inplemented
by OSEnv/x86 for the Intel x86 hardware butwe could have cho-
sen OSEnv/StrongARM for the StrongARM architecture or OS—

|_Main

Main

|_FS_Namespace

|_FS_Namespace

FS Namespace

I_FileSysObj

I_FileSysObj

FS Instance
Singleton

|_FileSys |_BlockDeviceOb

— T

|_FileSys |_BlockDeviceObj
Lock Filesys BlkDev Instance
Decorator Singleton
|_FileSys |_BlockDevice
|_FileSys |_BlockDevice
LinuxFS —» FS Lock BlockDevice
Adapter Decorator
|_LinuxFileSys |_BlockDevice
|_LinuxFileSys |_BlockDevice
Ext2FS Linux —> BlkDev
Adaprter
I_LinwxIrternals |_LinwBlkDev |_LinuwBIkOp

N

I_LinuxBlkDev I_LinuxBlkOp
Linux IDE Encode BlockOp
Abstract Factory Command
I_Linuxinternals _LinuxBlkCmd
I_Linuxinternals |_LinuxBIkCmd
OSEnv —> Linux Simple Disk Strategy
Adapter Strategy
|_OSEnv
I_OSEmv
OSEnv/x86
Abstract Factory

1_x86

Figure 5: A possible configuration of an OSKit filesystem

Env/Linux torun as auser—ode Linux program (The latter choice
would necessitate a different choice of device driver.) It is appro-
priate to fix on a particular platform at this stage because moving
to another would reguire the systemto be reuillt

Adapter. The hybrid nature of the OSKit gives rise to many
adgpters. The OSEnv/Linux adgpter inplements Linux intermal
interfaces in tens of the OSKit—standard LOSEnNv, allonring us o
include Linux—derived units in the system The LinuxFSMFS and
Linux”BlkDev adgpters inplement standard OSKit interfaces for
filesystens and block devices using the intermeal Linux interfaces
for these things. Being able to use Linux—derived units is extrerely
useful for OSKit systens: instead of writing and maintaining new
filesystens and device drivers, the OSKit exloits the hard work
of the Linux community. The OSKit uses this approach to provide
30 Ethermet drivers, 23 SCSI drivers, and 11 filesystens.

An interesting part of the LinuxFSAFS and Linux”BlkDev
adgpters is thet they have both static and dynamic aspects. The
static aspect adgpts the static interfaces of the participants. those
used for inftialization, firelization, and mouriting a filesystemon
adisk partition The dynamic aspect adgpts the interfaces of dy-
namic participants, wrapping Linux block device dbjects as OSKit
block device dyjects, Linux filesystem dbjects as OSKit filesys
tem dyjects, and Linux file and directory dojects as their OSKit
equivalents. This illustrates how our approach corplements tre
converttional gpproach: our units make itapparent which decisions
are static (e.g., the decision to use Linux components with OSKit
components) and which are dynamic (e.g., how many fileswill be
opened, which fileswill be opened).

Decorator. Ifthis is a multi—threaded system we nmust take care
to acquire and release lods when accessing the filesystemand de-
vice driver adyjects. The decorators Lock Filesys and Lock Blodk—
Device acquire lodks when entering the decorated aojects and re-
lease lodkss when leaving.

ft would be a serious error 1o omit one of these lock decora-
tors (leading 1o race conditions) or 1o ireert it in the wrong place
(leading todeadlock), sowe use the constraint systemto check thet
they are placed corectly. This may seem like owerkill in such a
sinple configuration, but the reader will gppreciate thet this isjust
one of many rules that must be enforced and that we have amitted
many units thaet would appear in a complete system The conplete
system— including units for bootstrapgping, console 1/0, memory
allocation, threads and locks, etc— ocorsists of over 100 unit in-
stances.

Strategy. Disk drivers can gptimize disk operations by coalesc-
ing reads and writes on adjacent blocks and can gptimize disk seeks
by reordering read and write requests. The series of actual requests
issued to the disk is determined by a strategy unit. In Figure 5,
we have selected the Simple Disk Strategy unit (which queues
requests in the order they are issued) but we could have chosen a
strategy that coalesoes disk gperations or reorders requests using an
elevator algorithm (The elevator strategy is not yet inplemented.)

Command. The Simple Disk Strategy unit menipulates a list
of autstanding reguests, and these regests are parts of a Command
pattem. The participants in this pattem are aunrently integrated
within the inplementation of the Simple Disk Strategy unit, but
could be sgparated as shown in Figure 5 into a separate unit En-
code BlockOp which provides a sgoarate function for each kind
of request (e.g., read or write). This unit would aconstruct reguest
dyjects and pass them to Simple Disk Strategy, which would pro-
cess the reguests.

Singleton. In this system we made a design decision to have
a single device and a single filesystem instance. One could imag-
ine using a device driver inplementation that supports just one in-
stance of thet device type or a filesystem inplementation that sup-
ports just one instance of thet filesystemtype. But this is not what
Linux components do. Most Linux device drivers and filesystens
are written to sugport nmultiple instanoss of a device or filesys

tem To overcore this mismatch, we use the BlkDev Instance
and FS Instance units that each create and manage a single in-
stance of the corresponding dynamic dojects. These wnits are ef-
fectively adgpters, making dynamic pattem participents appear as
if they were static

3.4 Discussion

The previous sectios demonstrate our approach to utilizing design
pattens in the context of two exanple systens. In both exanples
we had a mix of static and dynamic participants. the static par-
ticipants were realized by unit instances corresponding to “doject
instances” while the remaining dynamic participarits were realized
by units thet areate the pattemn participant dojects at run—tine. In
both examples we were able to lift a great deal of static knowl-
edge totre lewvel of our units, but the exact amount depended on tre
patterms and their goplication 1o the particular design problens at
hand.

Although the staticand dynamic parts of many patterms will vary
from situation to situation in gereral, iN CONMMMON USe, nost pat-
tem structures contain many participants and connections thet are
in fact static these parts can be fruitfully lifted out of the partic-
ipants’ source inplerentations and then managed at tre level of
units. To test this claim we analyzed the structures of all of te
patterrs described in Gamma et al.’s Design Pattems catalag [12]
For each, we considered common uses of the patterm in the domain
of OSKit—based systens (i.e., conponert—based systens software).
We then applied cur method 1o trarslate the pattern structures into
gopropriate units and unit parts.

Table 1 summarizes the results of our study. Each row of the
table shows the tramslation of the participarts within a single pat-
tem, according to their gpplication in the OSKit. Owerall, the tr
ble shows that most participents frequently correspond 1o static
design—tine informeation and are therefore realizable within our unit
model as desig-tine entities (These are the colunns under the
“Design—Time/Static Participants” heading.) Abstract classes map
raturally t unit interfaces. Participants thet are singletons within
the context of a pattern map naturally 1o unit instances that inple-
ment these participants. In some cases, a participant both defines
an interface and represants a concrete instance, as indicated in tte
t=ble. For exanple, in the Facade pattern, the Facade entity hes
both interface and inplementation roles. In some cases, the de-
signer may choose to inplement a particular participant in nore
then one way: for instance, the designer may choose to implement
a Client participant as a unit instance, or as a st of ports thet al-
low tre dient t be connected at a later stage of the overall design.
In other cases, the gopropriate inplementation of one participant
depends on the daracteristics of another: in the Decorator pat-
tem, for exanple, the gopropriate realizations of Decorator and
Concrete Decorator differ according to the “singleton—+ess” of the
Concrete Comporent. Where the common trarslation or use varies,
we have indicated this with italics and we list the participatt in
nmultiple categories.

In sunmary, Table 1 shons that our approach to realizing pat-
ters is gpplicable to many patterms. most have common gpplica-
tians in which many or all of the participants represent static sys-
tem design knowledge that can be utilized by tools for design rule
checking, code gereration, and system optimization. This goplies
even when a participant is dynamic and is realized by a unit thet
produces dyjects at run—tine. In these cases, we can use our unit
model to define our run—tine classes/types in terms of mixins, thus
increasing the potential reuse of our unit definitians and implemen-
tatias.

Desig=n—Tine/Static Par ticipants

Realized By Unit

Realized By Unit(s)

Dynamic Participants

Realized By Port(s) Realized By Unit

Interface Impl'ing the Instance(s) On Unit Instances Defining the Class
Pattem (Method Steps 1, 3, 4) (Method Steps 2, 5) (Method Step 5) (Method Steps 2, 5)
Abstract Factory Avstract Fectory Concrete Factory Client Concrete Product
Apstract Product Client
Builder Builder Concrete Builder Product
Director
Factory Method Product Concrete Creator Concrete Product
Creator
Prototype Prototype Client Client Concrete Prototype
Singleton Singleton
Adapter (class) Target Client Client Adaptee
Adapter
Adapter (coject) Target Client Client
Adaptee
Adapter
Bridge Abstraction (intfc.) Abstraction (inpl.)
Refined Abstraction (intfc) Refined Abstraction (impl.)
Inplementor Concrete Inplementor
Compasite Component Client Client Leaf
Composite
Decorator Component Concrete Component Decorator Concrete Component
Concrete Decorator Decorator
Concrete Decorator
Facade Facade (intfc.) Facade (impl.)
subsystem classss
Hyweight Fiyweight Flyweight Factory Client Concrete Flyweight
Client Unshared Conc. Flyneight
Proxy Subject Proxy
Real Subject
Chain ofResp. Handler Concrete Handler Client
Client
Command Command Client Client Concrete Command
Invoker
Receiver
Interpreter Aostract Bpression Context Client Terminal Bression
Client Nortterminal Expression
Iterator terator Concrete Aggregate Concrete Herator
Aggregate Concrete Aggregate
Mediator Mediator Concrete Mediator
colleague classes
Memento Originator Caretaker Memento
Caretaker
Observer Subject (intfc) Subject (inpl.) Concrete Observer
Cbsernver Concrete Subject
Concrete Observer
State Context (intfc) Corttext (impl.)
State Concrete State
Strategy Strategy Concrete Strategy
Cortext
Terplate Method Abstract Class
Concrete Class
Visitor Misitor Concrete Msitor Concrete Misitor
Element Object Structure Concrete Element
Object Structure

Table 1: Summary of how the participants within the Design Pattems catalog [12] are commonly realized within the unit model, for
common situations in the design of OSKit—based systens (component—based, C language systems). Participants are classified accord-
ing to their common and primary realizations; certain uses of patterms will dictate different realizations. Where common use varies,
participants are italicized and are listed in all applicable categories. Some participants have both interface and implementation roles
as shown. Participants that map to unit instances usually also require interface definitions to describe their ports.

4. ANALYSIS

The key feature of our approach is that we express static pattem
relatiarships in a component configuration language insteed of ex-
pressing those relationships in the component implerrentation lan-
guage. In this section, we cetail the berefits and aosts of this sepa-
ration of concerns.

4.1 Benefits of Our Approach

Our technique for realizing patterms has three main consegquences.
Airst, because static pattem information is located in single place
(our compound units) and because component interconections are
fully resolved at build—tine, it is possible for tools O perform a
more thorough analysis of the software architecture then in the con-
vertional approach to realizing pattarms. Second, because the unit
language hes a single purpose— 1o express components, their in-
stantiatias, and thelr intercomections— it is possible to provide
features in the language that make this task essier. Third, because
the task of pattern conposition is moved out of the inplementa-
tios of the participants, those inplementations can be sinpler and
are less likely 1 be hard—wired 1o function only in fixed pattem
roles. These three consequences leed 1o berefits in the aress of er-
ror detection, performance, and ease of understanding and reuse,
which we explore in the follomng sections.

4.1.1 Checking Architectural Constraints

In the conventional approach 1o realizing design pattems, itcan be
difficult o enforce static system design aostraints. the rules are
encoded “inplicitly” in the inplementation, making them difficult
for people 1o find and for tools to enforce in the face of future sys-
temewvolution. Our approach torealizing patters hes the follomMng
advartages over the converttional method.

The constraint checker detects global, high—level errors. The
costraint checker within the Knirtt unit compiller can detect “glaoal”
enors that involve many parts of a system whereas a converttioral
language type system is restricted to detecting relatively local er-
rors. Such global aonstraints often deal with high-ewel system
composition issues—e.g., ensuring that domain—specific properties
hold across many intercomected components—whereas conven-
ol type systens and tools are restricted to detecting relatively
lonevel and gereral types of errors such as uncaughtt exogptions [1],
dereferenced null pointers [6], and race conditions [8]

Constraints express domain—specific design rules. As justmen-
tioned, a software architect is often interested in detecting domain—
soecific erors. For exanple, recent versions of RTLINux [26] per-
mit normal (user—evel) application code to be called from a hard
real-tine kemel. Without going into detail, an essential require-
ment of such applications is thet they never invoke a system cll
while running in real-tinre mode. We have used Knit's castraint
system 1o check this costraint for RTLinux gpplications: i.e, 1O
verify, at campile—tinge, thet there are no paths from an gpplica-
tion's realtine sigal handler into the Linux kermel.

Design errors are separated from implementation errors. In
partiaular, this reduces the level of exqpertise required in order to
use (or reuse) a component correctly, inside or outsice of a pattern

The constraint checker need not deal with the base imple-
mentation language. Our corstraint checker deals only with the
unit specification language, notwith the source code of the compo-
nents. Because the unit language is sinple, the costraint checker
issinple and precise. Further, itwould be easy toextend with more
poverful and perhaps more patterm—specific reasoning methods in
the future. In contrast, 1o detect design enrars in a converttionally
realized design pattem, a tool would need to deal with all the com-
plexties of the base inplementation language: logps, recursion,

exogptions, typecssts, virttel functions, pointers, and so on. Such
a tool is therefore difficult to create— greatly raising the barrier to
developing domain—specific analyses—and is often inprecise.

Many architecture description languages can provide the advan-
tages described above: like our tools, they achieve this by separat-
ing the description of the architecture from the inplenentation of
the components, and by being domain—specific insteed of gereral—
purpose. Bringing these features tobear on the realization of design
pattens is one of the strangths of our tools and approach.

4.1.2 Performance Optimization

Another strength of our approach is thet static patterm knowledge
is readily available for system gptimization. The conventioral ap-
proach to realizing patterrs uses language features that introduce
indirectians toachieve greater fledhility. These indirectionrs— prin—
cipally indirect function calls— impose a perfornmance peralty thet
can often be avoided in our approach.

Static inmplementation enables many optimizations. When
component instances are connected statically, indirect function calls
are often tumed into direct calls. This affords the conpiler the op-
portunity to inline function calls, thus eliminating overhead and ex-
posing additional and often more significant opportunities for op-
timization, especially those thet specialize a function for aparticr-
lar context. In addition, highly optimizing conpilers, or conpilers
aided by a source transformration that Knit can perform are able to
inline functions across module boundaries. In previous work [23],
we used Knit to implement a network router made of very svall
components. (Each packet traversed 10—20 components while be-
ing forwarded.) Applying cross—corponent inlining eliminated the
oost of many function calls but, more significantly, enabled the C
compiler to apply all of its intrajroocedural optimizatios. The
owerall effect of this gptimization was 1o reduce the execution tine
of the routing conmponents by 35%.

Static implementation makes performance less sersitive t©
code changes. To eliminate virtal function calls, a conpiler re-
lies on aglobal (or near glabal) analysis of the program being goti-
mized. These analyses are necessarily affected by subtle features of
how the program is expressed: a consequence is thaet any change t©
thatprogram could potential ly change the amalysis resultand there-
fore change whether or not the gptimization can be goplied. In
a performance—sarsitive sittation (e.g., in real-tine code), loss of
an gptimization may affect program correctness. By making static
knowledge exlicit, our approach to patterms helps to reduce tte
complexity of the resulting system thus promoting corpile—tire
analysis and making “global” performance less sersitive 1o local
code changes.

4.1.3 Ease of Understanding and Code Reuse

In the converttional approach to realizing design patterms, one takes
into acoount the role of each participant when inplementing the
participart—ar; if the pattem is gpplied after inplementation, one
nmodifies the participant to reflect their roles in the pattem. In our
approach, because units do not contain direct references to other
participants, units often need no nodification inorder to be used in
a partiaular role in a pattem. Avoiding even srall changes o tte
participants leads to significant barefits.

The approach is usable when code cannot be changed. The
inplementation of a participarit may be unchangeable if the code
hes multiple users with different needs, if the source code is not
awailable, or if the code is being actively maintained by a sepa-
rate organization. For instance, the develgpers of the OSKit camnot
practically afford to change the Linux components thet they incor-
porate: they must deal with the code as tiswritten

A participant can be used in multiple patterms. Separating
a participant’s role from its inplementation is bereficial when tre
inplementation can be “reused’ 1o serve in many different roles,
perhaps concurrently in several different patterns. The unit model
allons a programmer to separate a participant’s primary implemen-
tation from any code needed to adgpt that inplementation toa par-
tiaular pattem role. by areating a unit conposition, a prograner
can “weave” code at the inports and eqports of a participant unit
instance.

Code is not obfuscated with indirections. The conventional
realization of a design pattem often achieves fledbility by intro-
ducing additioral lewels of indirection thet are agparent in the im-
plementations of the participarts. This indirection can cbscure the
primary purpose of the code. For exanple, before applying the unit
model 1o the OSKit, we relied on dyjects, factories, and registries
to enable reconfiguration. Over tine, much OSKit code came to
look like the following:

clientos = registry—>lookup(registry, clios_iid);
fsn = clientos—>create_fsnamespace(filesys);
file = fsn—>lookup_path("/usr/bin/latex");

The code was often further conplicated to deal with run-tirre er-
rars. In any partiaular system, honever, the values of

and were fixed in the system configuration, and knowable at
conpile—tine. After applying our approach, such code could often
be sinplified tojust

file = lookup_path("/usr/bin/latex");

making it clear that the selection of
ton isa static not dynamic, system property.

4.2 Costs of Our Approach

Our approach 1o realizing design patters is not gopropriate for all
situatios and design problens. The follomMing paragraphs summa-
rize the aosts and potential problens of our approach.

Our approach only specifies the static parts of pattems. The
main goal of our approach is 1 use an extermal comporent lan-
guage 1o specify the static aspects of a system architecture. It is
inggorogpriate (and often infeasible) t use our approach to specify
fundamentally dynamic elements of software architecture.

Our approach commits code to being static or dynamic. One
can imegine that having carefully used our approach (With itsem-
phasis on static participants and relationships) o realize apattem, a
change of requirerents might tum a relationship from static to dy-
namic, reguiring thet the patterm be re—inplerented using the con-
ventional dgject—oriented approach (with its enphasis on dynamic
participants and relationships). This is a problem while itis easy
10 use a dynamic system in a static situation, it is not o easy O
use a static system in a dynamic way. Therefore, when using our
approach, one should design systens in such a way that expected
changes in the system requirenents are unlikely 1o require chang-
ing the static and dynamic natures of pattem participents— but we
recognize thet this is not always possible.

’s implementa-

Our approach requires support for the unit component model.

To fully berefit from our approach, one needs language sypport in
the form of an advanced module or conponent systemand, ickeally,
a aorstraint checking system This inplies several aosts: one must
switch o using new tools, leam the component definition and link-
ing language, leam to use the castraint checking language, and
convert existing codebases 1o use the component language. This
can be a significant undertaking. As described in Section 2, how-
ewer, itis possible to use existing tools and techniques to achieve
some (but not all) of the berefits of the unitt component model.

10

Our approach can obscure the differences between pattems.
When one looks at the unit diagrans of participants and relation+
ships, it is clear that sometines, different pattens look the same
when realized in our approach. However, this doservation is also
e of the conventional approach 1o realizing pattems. many pat-
terrs are realized in similar ways but differ significently in their
purpose.

5. RELATED WORK

Gamma etal.’s Design Patterms book [12] triggered a flurry of pa-
pers on inplementing patterms in doject—oriented languages. Here,
we consider representatives of partiaular styles of inplementation.
Bosch [3] describes a language LayOM for constructing C++ classes
by adding a number of layers to a sinple class. By using layers
corresponding 1o partiaular patterms, Bosch sohves the traceabil-
ity problem—thet it is hard to find and identify patterrs in one’s
code—and enables pattem inplementations to be reused. How-
ewver, because tre layers form part of the class description, the role
of each pattermn participant is hardwired and the participants cannot
be used in other patterms without being modified. Bosch makes no
mention of static amalysis, detecting design errars, or gptimization.
Marcos et al. [17] describe an approach thet is closer to aurs:. the
code that implements participants is clearly separated from the code
thet defines their roles in patterms. The difference is thet their ap-
proach is based on run—tine reflection within a metaprogranming
system (clos), and so they do not support static aralysis or op-
timization Tatsubori and Chiba [25] describe a similar approach
1o that of Marcos et al., except that it uses OpenJava’s conpile-
time metaprogranming features. Like Marcos et al., they sepa-
rate roles from participants and, because they use conpile—tine
metaprogramming, it should be possible to perform static analy-
sis However, OpenJava does not provide anything like Knit's unit
costraint system

Krishnamurthi et al. [15] describe an approach to pattem im-
plementation based on McMicMac, an advanced macro system for
Scheme. Their approach is like that of Tatsubi and Chiba: pat-
terrs are expanded statically (enabling optimization) and the appli-
cation of pattens is not separated from the definitions of the partic
ipants. Unlike OpenJava, McMicMac provides source—correlation
and eqparsion—tracking fecilities that allow envors to be reported in
terms of the code that users wrote instead of its expansion, but there
is no overall framework for detecting global design enors

Baumgartrer etal. [2] discuss the influence of language features
on the inplementation of design patterrs. Like us, they note thet
Gamma etal.’s pattem descriptians [12] would be very different in
a language that directly supports abstract interfaces and a module
mechanism separate from class hierarchies. Baumgartner also lists
anumber of other useful features including mixins and nultimeth-
ods. MultiJava [5] adds some of these features 1© Java, erabling
them to cleanly support the Visitor pattern and 1o describe “open
class=s.” Our colleagues’ paper on Jiazzi [18] shows how the open
class pattem can be realized with units. Bruce et al. [4] describe
virtLal types and show how they apply to the Observer patterm. Al
of these papers describe language features that address problens in
implementing patterms in doject—oriented languages, but their focus
is on the technology, not the approach enabled by that technology.

At the other end of the spectrum, there are component program-
ming models, module intercomection languages (mils) [21], ad
architecture description languages (ADLs) [19]. Our implementa-
tas of the unit model lie at the intersection of these three ap-
proaches. Units are like com or corba components exoept that
units play a more static role in software design; units are like MiLs
in thet each inplementation of the unit model suygports just one

kind of unit interconnection; and units are like ADLs in that units
sygport static reasoning about system design.

Module interconnection languages are perhaps clossst in purpose
to the unitmodel. The best example we know of using aMIL inthe
way this paper suggests is FoxNet [14], a network stack thet ex-
ploits ML ’spowerful module language. Honever, although FoxNet
clearly uses a number of patternrs, there is no eqlicit statenent of
this fact and consequently no discussion of inplementing a broad
range of patterns using a MIL.

Architecture description languages provide a similar but higner—
lewel view of the system architecture to MILs. This higner—lewel
view is thekey difference. ADLs describe software designs intems
of architectural features, which may include patterms. ADLs may
also provide inplerentations of these features: the details of im-
plementation need not concem the user. In contrast, this paper is
all about those inplementation issues. we describe a method thet
ADL inplementors could apply when adding new patterns to the st
provided by their ad 1. That said, ADLs provide more expressive
languages for describing design rules, specifying components, and
reasoning about system design then is aurently supported by the
unit model. We plan to incorporate more high-evel ADL features
into our unit languages in the future.

6. CONCLUSION

Design patterms can be realized in many ways: although they are
often described in doject—oriented tems, a pattem need not always
be realized in an OOP language nor always with dojects and inter-
connections created at run-tine. In this paper we have presented
a conplementary realization of design patterms, in which patternms
are statically specified in terms of the unit model of components.
While this approach is not applicable to all software architectures,
itcan yield berefits when gpplied to static systens, and to staticas-
pects of dynamic systens. These berefits include verification of ar-
chitectural aonstraints on component conpositions, and increased
opportunities for gotimization between conponents.

7. ACKNOWLEDGMENTS

We thank Mike Hibler for his expert help with the OSKit, and Sean
McDirmid for many fruitful discussions about the unit model and
design patterms. Matthew Hatt, Jason Baker, David Coppit, and Joe
Loyall provided valugble comments on drafts of this peper.

8. REFERENCES

[0 K. AmoldandJ Gosling The Java Programming Languece. The
JavaSeries. Addison-\Wesley, seood ecitian, 1998

[A G. Baungartrer, K. Laufer, adV. F. Russo. On tre interactionof
dgect—ariatad design pattarms and programming langueges.
Tedmical Rgport CD-TR-96-020, Departrrentt of Cavputer
Sciences, PurdLe Lhiversity, 1998
J Bosch Desi as languege costructs Jourmal of

& CI;ecI—O1erIgd1 ng, 11(2):18-32, 19%8.

[4 K. B. Brue and J Vandereart. Saventics-driven languege design:
Satical \irtel in dject-arien=d | In
Nt FoLrcitions of ey g STerics 1568

B C. Aiftn G. T. Leavens, C. Granrbers, ad T. Millstein Multidava:
Modular goendassss ad ic nultiple digaichfor Jaa In

Proc. Ufﬂ”EZOOOAG\/ISI (€o4 m(]]&I—Chented

CTIAT) o et il
), peges 130145, I\/irrmmlls, MN, Qot. 2000.
[6 D. Er'ger B. Crelf, A. Chou, and S. Hallem Checking systemrdes
ng systam-gEdfic progamer-witten aarpileredas=ias. In
Proc of the Fourth Symposiuman Qperating Systerrs Design and
Inplerrentation; peges 116, San Diego, CA, Oct. 2000. USENIX
Asoaation

1

[71 R B. Ardler and M. Hatt. Modular dgject—ariented programing
with units and mixirs. InProc. of the Third ACMISIGRLAN
Intermational Conference an Functional Pragramring (ICAP "98),
peges H—104, Baltinore, MD, Sgpot 1998.

B CH adS. N. Fruend. Type—-besed race detection far Java, In

Proc. of tre ACMISIGPLAN "00 Gorff. onPrograning Languege
Designand Inplenentation (PLDI), Vanocower, Caneda, Jure 2000.

B M FlatthgaTmrgLa'gAagSforOJTpdmtSdt\Aae PhD
thesis Rice Lhiversity, Jure

[10] M. Hattand M. Felleisen Lhits Cool uits for HOT largueges. In
Prac. oftre ACMISIGPLAN 98 Corf. an ing
Designand Inplerrentation (PLDI), peges 236248, Jure 198,

[11] B. Ford, G. Badk, G. Barson, J Lepreau, A. Lin, andO. Shivers The
Flux OSKit A sbstrateforOS and languege ressarch InProc. of
tre 16th ACMSynposiuman QHanrgSystem; Prirciples, peges
3B-51, & Malo, Aae, Oct 1997.

17 E Gammg, R Helm R Jdrsm, and 1 Mlissicks Design Petterrs:
Henents of Reusable Chject-Criented Software. Addison-Wesley,
1995,

[23] S P Harbison Mbdula-3. Prentice Hall, 1991

[14] B. Harper, E. Gogper, ad P. Lee. The Fox prgject: Advanced
develgoent of systars softvare. Carputer Scienoe Department
Tedmical Report 91187, Camegie Mellon Lniversity, 1991

[15] S Knsh‘emrth Y.-D. Blich and M. Felleissn Bqressing

a6 languece aostnuds. InESOP'9
Hmmmmwum 1576 of Lecture Notes
lence, peges 258—272. Singer—\erlag, Mar. 1990,

[16] X. Liy, C. Kreitz, R. ven Renesse, J Hidey, M. Hayden, K. Binren,
andR. Gosteble Building relisble, high—-perforrance
communication systans fromaarporents. InProc. oftre 17thACM
Wunm@araﬂrg%&ammmlples peges 80-92, Dec.

[17_|CNar(I)s,MC‘afrpoadAPircne Ing cesign petterrs &
el astnuots EleCIm’ICJ(lrrHI Q 2(1):17—29,

1999

[18] S McDirmid, M. Hatt, andW. C. Hsieh Jiazz:
arrm"mtsﬁrdd—fad"lcmdm InProc, OfﬂEZ(DlACNI
SIGPLANGY. on Chject-Oriented Programing,
Langueges, and Applications (QCPSLA 01), pegsm—m
Tampa, AL, Oct 2001

[19] N. MedvidovicadR. N. Taylar. A diassificatianand coparismn
framenork for softnare ardhitediure description langeges. |EEE
Transactions on Software Engineering, 26(1):70-93, Jan 2000.

[1 G. Mitdrell, W. Mayberry, and R Saeet. IVesa Language Manuel,
1970,

[21] R Prieto-Diazzand J M. Neighbors. Module interaarectian
langueges. Jourmal of Systens and Software, 6(4), Nov. 1986.

[2Z2] E. Raynond. The CML2 languege: Python inplementation of a
arstraint-esad interactive arfigurator. InProc. ofthe Sth
Intermational Python Gonference, Mar. 2001

[Z3] A. Reid M. Hatt, L. Sller; J Lepreau, andE. Eide. Knit

Component oonposition far systans software. InProc. of the Fourth
Symposiuman Qperating Systens Design and Inplenventation, peges
347-3080, San Diego, CA, Cct. 2000. USENIX Association

] C Spypersd. O]Tpaert&)‘t\/\ae Beyord Qject-Criented
Programming. Addison-esley, 1999,

[5] M. Tatsuoori and S. Chiba, Progannrganntof@gﬁpﬂa‘rs
with aovpile-tine reflectian: In OOPILA93 Warkdop on Reflective
Progranring in G+ and Java, peges 5660, Oct. 1998,

[26] V. Yadkiken The RTLinux manifesto. InProc. of The 5th Linux
BEXpo, Raleigh, NC, Mar. 199,

