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Abstract

We introduced the use of Turing’s reaction-diffusion pat-

tern formation to support high-level tasks in smart sensor

networks (S-Nets). This has led us to explore various bio-

logically motivated mechanisms. In this paper we address

some issues that arise in trying to get reliable, efficient pat-

terns in irregular grids with error in inter-node distances.

1. Introduction

Sensor networks are a crucial part of the IT infrastruc-

ture, and intelligent utilization of them is of increasing im-

portance. Sensor network research to date has focused

mainly on the development of new sensing technologies and

the systems aspects (OS, network communication, security,

etc.) of such networks. Much remains to be done at the

higher level of information extraction, interpretation and ex-

ploitation of networked sensor systems. Our central thesis

is that bio-based engineering will lead to strong solutions in

this domain; that is, we propose to identify and ultimately

incorporate effective computational strategies used by bio-

logical systems. The challenge is to identify mechanisms

that lead to algorithms or paradigms that are reliable, inex-

pensive and ubiquitous in many applications.

Others have explored the use of both reaction diffu-

sion and more general diffusion methods in computer vi-

sion and robotics. For example, Fukuda et al. describe

the use of reaction-diffusion techniques in robot motion[7].

Moreover, as described by Peronna et al.[30], multi-scale

descriptions of images (i.e., scale-space) can be done by

embedding the original image in a family of images ob-

tained by convolving the original image with a filter;

Koenderink[18] have shown that this is equivalent to finding

the solution of the diffusion equation:
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Figure 1. Robot Path in Reaction Diffusion

Pattern ( ✑ is the fire control point; ✒ is the
robot load point)

We believe that it will be quite useful for S-nets to use sim-

ilar methods to analyze sensed data of various sorts.

For example, consider a forest fire scenario: sensor de-

vices are dropped into a wide geographic area, establish a

network, compute coordinate frames, calculate gradients,

and produce a stripe pattern of off-on signals that can be

used by fire fighting agents to go to a fire control point by

following on devices (pattern == 1) and return by follow-

ing off devices (pattern == 0) (see Figure 1). Such patterns

can be computed by very robust reaction-diffusion systems

derived from models of biological pattern formation.

Our general research program is to explore a small set

of biological mechanisms, and we hope to make significant

contributions by providing (1) biologically realistic models

and efficient computational counterparts, (2) fault tolerant

frameworks in which to run them, and (3) demonstrations of

their application in human interface and large-scale sensor

networks. In addition, we are building Smart Sensor Net-

work simulation, emulation, and experimentation testbeds

[13]. Here we describe some initial results in the first of



these areas.

2. Background

Sensor networks have received increasing attention over

the last few years. For example, DARPA’s SensIT program

envisioned long-lived, cheap sensor devices [19]. David

Culler’s work on sensor networks explores the rich design

space of low-power processors, communication devices and

sensors [14]. NSF has recently funded an STC Center for

EmbeddedNetwork Systems headed by Deborah Estrin that

will develop algorithms for wireless and distributed sensing

systems [26].

Some examples of issues addressed by these vari-

ous projects include: power minimization [32, 35], self-

configuration [4, 21], data handling [3, 15, 22], systems is-

sues [8, 31, 36], and fault tolerance [36]. In general, higher-

level exploitation of sensor networks applies standard se-

quential or distributed algorithms to the data. Some work

in this area includes calibration [34] and habitat monitoring

[24].

Our own work started in the late 90’s [12], and has

mainly addressed the creation of an information layer on top

of the sensor nodes. This includes distributed algorithms

for leadership protocols, coordinate frame and gradient cal-

culation, reaction-diffusion pattern formation, and level set

methods to compute shortest paths through the net [5, 6, 11].

The information processing issues include the represen-

tation of information and knowledge, the processing of that

information, and the development of efficient, robust, scal-

able algorithms. Our thesis is that the exploitation of dis-

tributed sensor and communication devices by a team of

mobile robots or agents offers performance and capability

advantages in terms of speed, energy, robustness and com-

munication requirements. We are developing capabilities

to perform cooperative computations and provide local and

global information about the environment.

3. Reaction Diffusion Patterns in S-Nets

The biological thrust of our work is to model and un-

derstand sensing and signaling in biological systems, and to

ascertain how that can be applied to smart sensor systems.

Specifically, we incorporate known bio-based information

processing strategies and network architectures in order to

improve S-Net organization and information processing ca-

pabilities.

We have previously described pattern forming reaction-

diffusion methods for S-Nets [5, 6]. Other researchers have

proposed diffusion models as well; for example, [16] pro-

poses directed diffusion - a datacentric communication co-

ordination technique that “enables energy savings by select-

ing empirically good paths and by caching and processing

data in- network.” The focus of such work is more on the

networking and operating systems aspects of the sensor net-

work, whereas our work is more concerned with the sensor

network as a computation engine itself. More closely re-

lated to our work is that of Justh and Krishnaprasad [17]

who propose the active coordination of a large array of mi-

croactuators by means of diffusive coupling implemented as

interconnection templates, and Nagpal [28] who describes

methods to create patterns of diverse geometry. We believe

that this style of research will reap great benefits in 2 as-

pects: (1) networkmorphogenesis, and (2) sensed data anal-

ysis.

As Meinhardt points out [25], “the control of develop-

ment in a higher organism is one of the major unresolved

problems in biology ... in a developmental system a signal-

ing and signal-receiving mechanism must exist which en-

ables the cell to communicate in a manner appropriate to its

position ... [the] goal is to show which interactions of sub-

stances can lead to such signaling systems and how the cells

then can respond to these signals in order that stable states

of determination are attained.” This matches our view of

the core issues, and we see that their solution can heavily

impact sensor network algorithms as well. For a recent col-

lection of work on reaction-diffusion pattern formation, see

Maini and Othmer [23].

To date, we have assumed a dense set of sensors and have

found it useful to develop a pattern in the network by means

of a distributed reaction-diffusion mechanism. For exam-

ple, striped patterns can be formed along the temperature

gradient so that mobile robots can move along the white

stripe toward a fire and along a black stripe to return to

base (see Figure 1). We use Turing [33] and other reaction-

diffusion mechanisms [27] to generate such patterns in S-

Nets. The basis of this mechanism is a set of equations that

captures the reaction and diffusion aspects of certain chem-

ical kinetics: ✓✕✔
✓✕✖ ✄✘✗☎✙ ✔✛✚ ✌✎✜✣✢✤✞ ✔

(1)

where
✗☎✙ ✔✥✚

describes the reaction and
✜✣✢ ✞☞✦

expresses the

diffusion component. The simplest such systems have two

morphogens or variables; one of these acts as the activa-

tor and the other acts as the inhibitor (i.e., some cells will

have more morphogen over time, and other cells less – this

uneven distribution leads to the pattern). The two variable

system can be modeled by:✓✕✧
✓✕✖ ✄✩★✪✗☎✙ ✧✬✫✮✭✯✚ ✌✰✢ ✞ ✧✱✫ ✓✕✭✓✕✖ ✄✲★✕✳✪✙ ✧✱✫✴✭✵✚ ✌✷✶✯✢ ✞ ✭

(2)

where
✧
and

✭
are the concentrations of the morphogens,✶

is the diffusion coefficient and
★
is a constant measure

of scale. The functions
✗☎✙ ✧✬✫✮✭✯✚

and
✳✸✙ ✧✬✫✮✭✯✚

represent the

reaction kinetics. As an example, we have explored the

generation of spatial patterns using the Thomas system of



equations [27]:

✗☎✙ ✧✬✫✮✭✯✚ ✄✡✹✻✺ ✧ ✺✽✼✾✙ ✧✬✫✮✭✯✚✂✫ ✳✪✙ ✧✱✫✴✭✵✚ ✄❀✿❁✙❃❂❄✺ ✭✵✚ ✺❅✼✬✙ ✧✱✫✴✭✵✚
✼✬✙ ✧✱✫✴✭✵✚ ✄ ❆ ✧❇✭❈ ✌ ✧ ✌✎❉ ✧ ✞ (3)

where
✹
,
❂
,
✿
, ❆ , and ❉ are the positive reaction param-

eters. They define a domain in which the Thomas equa-

tions become linearly unstable to certain spatial distur-

bances (noise). This domain is referred to as Turing space

where the concentrations of the two morphogens will be-

come unstable and result in the stripe patterns. The pattern

is the result of each network device running the equations

locally while diffusing to its neighbors; a stable solution is

thresholded to produce a binary value at each sensor, and

the total of these gives the pattern in the S-Net.

Patterns in the S-Net can be used to support many high-

level algorithms or activities:

❊ stripe, spot or ring patterns can be used as encoders

for physical or logical purposes; for example, a robot

can keep track of how far it has traveled (physical), or

communication packets can travel along certain stripes

to minimize power cost or to avoid congestion (logical)

❊
certain sets of patterns form a basis set for 2D images

(e.g., Haar or Hadamard basis sets); any map (topo,

etc.) or image can then be encoded in terms of the co-

efficients associated with the respective basis images.

❊
the patterns can be used as a reference wave so that

sensed data (or features derived from it) can be en-

coded as an interference pattern (i.e., a hologram)

❊ moving waves can also be computed, and thus the S-

Net can serve as a signal carrier or modulator.

Understanding the precision and reliability of pattern for-

mation is then of high importance.

4. Relevant Issues in Pattern Formation

Some work has already been done to determine the range

and type of patterns possible with the Turing pattern for-

mation approach. Theoretical aspects have been studied

and regions of the parameter space characterized as they

relate to pattern formation (i.e., the parameters are the co-

efficients in the PDEs) [1, 10, 20]. Others have investi-

gated how pattern formation is influenced by number of

cells, time scale, and initial condition variation. In par-

ticular, Bard and Lauder [2] showed that “stable repeating

peaks of chemical concentration of periodicity 2-20 cells

can be obtained in embryos in periods of time less than an

hour. We do find however that these patterns are not reli-

able. Small variations in initial conditions give small but

significant changes in the number and positions of observed

peaks.” They showed that this method has difficulty produc-

ing exact patterns reliably. We have found other difficulties

in producing the patterns necessary to support higher-level

tasks. We describe these here and propose some solutions.

4.1 Topology vs. Metrology

A major issue is that most of the reaction-diffusion work

is based on the topological configuration of the cells; that

is, diffusion occurs at the cell level and patterns are formed

at the cell level. Thus, the equations are solved for cells -

and not at specific locations in space. This means that even

though stripes exist, their width is measured in cells - not in

units of length (e.g., meters). For the applications that we

envisage, e.g., using stripes as distance encoders for mobile

agents who use the S-Net, it would be more useful for the

stripe dimensions to be related to physical units of length.

One possible solution to this problem is to exploit the

physical dimension of the cell (in our case an S-Net de-

vice). The dimension of the stripe can be tied statistically

to the number of nodes per unit area. Assume that there are❋ ✞ devices per unit area; then there are ❋ devices per unit

length (assuming a uniform distribution). Thus, if there are● devices per stripe width, then the width of a stripe is given
as: ❍ ✄ ●

❋
where

❍
is the width in physical units. We have found this

to be a useful approximation.

4.2 NonUniform Placement of Cells

Another major factor in the nature of the pattern, and

even its possibility of forming, is noise and error in the vari-

ous parameters of the system. As Bard and Lauder [2] have

shown, small variations in initial conditions yield signifi-

cant changes in the patterns formed. However, since we

get to initialize the morphogen concentrations in our com-

putational context, this problem can be countered by using

specific initial values to achieve the required patterns.

A more significant issue for us is that the reaction-

diffusion pattern formation equations assume that the inter-

cell distance is uniform (and usually equal to 1). Our S-

Nets, however, do not form a uniformly spaced grid in 1D

or 2D; in fact, we generally assume that the sensor devices

are randomly dropped in the environment. In addition, the

diffusion part of the equations uses the inter-node distances

in the computation of the second derivative. Two concerns

are:

❊ these distances are not uniform, and
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Figure 2. Basic Turing Pattern in 1D

10 cells 20 cells 60 cells✹
mean value 1.84 9.31 19.22✹
stdev 1.2849 1.8185 1.3377❂
mean value 1.14 9.49 19.27❂
stdev 1.2872 1.0683 1.1534

Table 1. Mean and Stdev for Morphogens
✹

and
❂

❊ in an actual implementation, there will be some

amount of error in the inter-node distance determina-

tion.

This has led us to investigate the impact of non-uniform

spacing on the pattern computation.

The basic 1D Turing reaction-diffusion mechanism pro-

duces a pattern as shown in Figure 2, and takes about 700

iterations to converge. A set of 1,000 experiments were run

with different initial conditions for 10, 20 and 60 cells in

1D. Table 1 gives the results for the mean and standard de-

viation of morphogens
✹
and

❂
.

We also investigated the frequency of the stripe pattern

on equispaced points; Figure 3 gives the mean and stan-

dard deviation of the pattern frequency on 20, 60 and 120

points over 1,000 trials. A reaction is considered to have

converged if morphogen
❂
changes by less than

❈❏■❇❑❇▲
on 5

consecutive iterations.

Next consider what happens when error is introduced

into the inter-device distances (this is the same as sim-

ply having irregularly spaced points since the distance, al-

though in error, will be calculated once at the start of the

S-Net formation and stay the same thereafter). The point

locations are determined as follows:
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Figure 3. Mean and Standard Deviation of Fre
quencies of Patterns

random error total iterations frequency

0 830 10

0.05 450 10

0.1 320 10

0.2 190 8

0.3 130 8

0.4 130 6

Table 2. Position Error vs. Time to Converge

and Stripe Frequency

❊ start with 60 equispaced points, 1 unit length apart,

❊ add uniform noise to the location as: ▼❄◆✪❖ for ◆ ✄P ✫ ❈☞■ ✫❘◗ ■ ✫✮❙ ■ ✫✴❚ ■
.

Table 2 gives the total number of iterations for the pattern to

emerge visually and the stripe frequency for a given amount

of error in the inter-device distances. Beyond this number

of iterations, the amount of morphogen in some cells grows

without bound. Note that as error increases, the stripe fre-

quency decreases.

Figure 4 shows an interesting result: the number of it-

erations required to converge decreases with an increase

in error. Thus, it is more efficient to have non-uniformly

spaced points, and the larger the variation in the inter-node

distance, the faster the convergence. We have investigated

the use of Chebyshev points (60 of them), and the reac-

tion process converged in 3000 iterations. The frequency is

somewhat higher using Chebyshev points, though (see Fig-

ure 5). points. Figure 6 shows a typical pattern formed with

30 % error in the inter-node distance. However, the fact that
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we threshold the morphogen level leads to minimal impact

from the shape of the pattern.

4.3 Pattern Formation by Simple Diffusion

In some applications it may be desirable to form lin-

ear stripes or rings more simply than by using reaction-

diffusion systems. In this case, we propose to use diffusion

directly as a pattern formation mechanism. This is achieved

as follows:

❊
diffuse a counter value (modulo n), and

❊ threshold at k for stripes of width n-k.

This can form circular patterns (from a point source) or lin-

ear patterns (from a line source).

5. Conclusions and Future Work

We have discussed here some of the issues related to pat-

tern formation in irregular meshes of S-Nets. Our main re-

sult is that patterns can indeed be formed, however, the pat-

tern can vary based on inter-node distances. However, we

have determined that such meshes can lead to much more

rapid pattern formation.

Some further issues that we hope to resolve in the near

future include:

❊
the diffusion part of the equation is typically computed

by a finite difference approximation. Given the sensi-

tive nature of the equations involved, we intend to look

at other models of diffusion: e.g., random walk or flux

differences. In fact, these may lead to more robust or



efficient computational methods. (See [9] for a good

review of diffusion phenomena.)

❊
Only a few pattern forming systems have been stud-

ied in any detail. A wider search for action specific

mechanisms may yield a toolkit of algorithms for spe-

cific system goals. We also intend to look at other new

techniques for pattern formation, such as reported by

Peletier and Troy [29] who study a family of fourth

order differential equations.
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