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Abstract 

YAMA is an CommonLisp program for creating microcode PROMS. 
It lets you specify the microcode in a fairly high level language that 
provides various features found normally in sophisticated assemblers. 
The salien t features of YAMA are 

1. Provision for record and enumerated data types at micro assem
bly level. 

2. Provision for a flexible and heirarchical microword format. 

3. Provision for horizontal and vertical microprograms with the help 
of special syntactic constructs. 

4. Provision of various directives to tailor the code according to 
one's taste. 

It produces the "bit" pattern for the microwords. The input spec
ifications are in a data definition language called MICRO which has 
a data declaration part, a directives part and a specification section. 
This report contains the summary of the design of the micro assembly 
language and the construction of the micro assembler and also serves 
as the user's guide. 
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1 Introduction 
YAMA is an CommonLisp program for creating microcode PROMS. 
It lets you specify the microcode in a fairly high level language that 
provides various features found normally in sophisticated assemblers. 
It produces the "bit" pattern for the microwords. The input speci
fications are in a data definition language (MICRO) which has three 
distincts parts. 

1. Declaration: Here you specify the general format of the mi
croword in your application. 

2. Directives : Here you instruct the assembler how to organize 
the microwords in the control store. 

3. Specification: Here you describe the microinstructions to do a 
specific task. 

The report is organized in the following manner: 
We begin with a discussion on reasons for choosing CommonLisp to 

implement the micro assembler followed by the description of the the 
section on MICRO contains the abstract syntax of the micro assembly 
language being used. We then describe the construction of the micro 
assembler and how to go about using it (with a terminal session). 
The next section contains some more examples of the micro assembly 
language followed by a section on error recovery and debugging. 

2 Using CommonLisp 
YAMA has been implemented in CommonLisp which is available on 
the HP Bobcats. It is helpful to know that the MICRO is based on 
the CommonLisp syntax. This is used in the specification of numbers 
and comments in the source file and also for debugging the source 
programs. 

2.1 Numbers 

The user has the luxury of specifying numeric data in binary,hexadecimal 
and decimal notations supported by CommonLisp. If you want to 
specify a number in a base other than decimal, you use the form 

#xnumber in hex notation and 
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# bnumber in binary notation 

2.2 Comments 
Anytime YAMA reads a semicolon (j) it ignores everything until the 
end of the line. This is used for placing comments in your source files. 
Since microcode is by nature very cryptic, it is a good idea to use lots 
of comments. Since YAMA uses the lisp "read" function for input, 
it ignores extra tabs, spaces and blank lines and the user is free to 
intersperse them to improve the readability of the source code. 

2.3 Identifiers 
You will soon want to give things like the control signals, control 
store locations some symbolic names. CommonLisp allows you to 
use identifiers of any length and are unique to the last character. 
It is ad visible to use reasonably long names to improve readability 
and facilitate others to understand what the source code is trying to 
achieve. 

2.4 Syntax 

Users without prior exposure to Lisp may find the use of s-expression 
based syntax rather cumbersome. But it is very logical and not diffi
cult to get accustomed to. 

3 MICRO 
In this section an attempt is made to explain the various features of 
the MICRO data definition language. It tells the specification writer 
how to write his microcode. 

First we shall present the abstract syntax of the MICRO assembly 
language. Then we shall examine each facet of the assembly language 
in detail in the the subsequent subsections. 
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3.1 Abstract Syntax of MICRO Assembly Lan
guage 

%% The abstract syntax of the micro-assembly language is presented 

Y.Y. It is evident that it is a data definition language which allows 
Y.Y. the user to declare the fields and formats of the microinstructions 

%Y. The syntax is basically LISP like C I understand that it is cumbersome 
Y.Y. with the myriad parantheses but believe me you will get used to it) 

Lang -) Decl Micro-instr* 

Micro-instr -) [Label] Micro-ops* Directives* 

Directives -) "C" ORIGIN Offset")" 

I "C" RESERVE num ")" 

Decl -) "C" RECORD recName CFieldName num BITS 
Implementation Default)* ")"* 

I "C" ENUM FieldName Implementation ")" 

Implementation -) Expn I Decl 

Expn -) num I Label I OR Expn Expn ICONCAT Expn Expn 

Micro-ops -) "C" CREATE-REC RecName 
CFieldName Implementation)* ")"* 

"C" CREATE-REC RecName 
IC"FieldName CREATE-REC RecName 

"C" FieldName Implementation ")"* 11)11 11)11 

Label -) id 

FieldName -) id 
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RecName -> id 

Offset -> Label "+" num I Label "_" num I num 

Default -> num 

id -> any valid Pascal identifier 

num -> any valid number in Common Lisp (binary.hex.octal or decimal) 

3.2 Declaration 

MICRO supports three user defined types. 

1. RECORD: Similar to a Pascal record. The abstract syntax for 
a record declaration is 

(RECORD (RecName (field 1) (field 2) ... (field i) .. » 

2. ENUM: Semantically similar to enumerated data type in Pascal. 
The abstract syntax of the ENUM declaration is 

(ENUM (component-1 implementation-i) 
(component-2 implementation-2) 

(component-i implementation-i) 
) 

where component-i is an identifier and implementation-i is a lit
era bitvector. 

3. LITERAL: could be a label or literal bit vector. 

The user is expected to first define the general format of the mi
croword. The microword is of type record (as in Pascal or C).It has a 
unique name and fields. Each field itself could be of any of the three 
types. Hence, the overall structure is that of a tree (heirarchical). 

The abstract syntax for the field is as follO\vs: 

(FieldName FieldSize BITS 
Field-Implementation Default 

) 
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FieldName is an unique identifier. 
FieldSize is an integer. 
Field-Implementation could be of Enumerated Type or a Record 

Type. 
Default is again a literal bitvector which is used if a certain appli

cation does not use the field in question. 
It would be nice to illustrate the above with a concrete example. 

(RECORD (instr (dbus 4 bits (ENUM 
(acc .x2 ) 
(mar 3)) 
(lxa) ) 
(alu 4 bits (RECORD (function 
(shift 3 bits (7)) 
(logical_op 1 bits 

(ENUM (not IxO) 
(exor .bi)) 

(lxO)))) 
(lxb)) 

(next 4 Bits (8)) 
) 

) 

The name given to the microword is instr. It has three fields 
namely dbus,alu and next. The db us field is of size 4 and is im
plemented as an enumerated type whose components are mar and ace 
and the default implementation of the dbus field is Ixa which is a lit
eral quantity specified in the hexadecimal notation. The components 
of the enumerated type mar and ace are in turn specified as literal 
bitvectors in decimal and hexadecimal notation. The alu field is of 
size 4 and is implemented as a record called function which in turn 
consists of two subfields shift and logical-op respectively. The shift 
subfield is implemented as a field called shift and the logical-op field 
is implementated as a enumerated type. Each of these subfields again 
has a fixed size and a default option as discussed above. Finally the 
last field of the instr microword is the next field which has a size of 4 
and whose implementation is decimal 8. Note that for fields which are 
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not implemented as records ore enumerated types there is no necessity 
for a default option. 

3.3 Directive 
The MICRO data definition language enables the user to specify di
rectives to the YAMA microassembler to tailor the microwords in the 
control store to his/her requirements. The following directives are 
permissible . 

• ORIGIN: It enables the user to change the location counter; so 
that the next microword could be placed at an address of his/her 
choice. 

Example:-

(i) (ORIGIN #xffff) 
(ii) (ORIGIN label +/- offset) 

In the first directive the location counter is changed to the hex 
address ffff while in the second case the location counter is 
shifted relative to a previously specified label. 
RESERVE: This directive enables a user to skip some locations 
in the control store probably for future usage. 

Example:-

• (RESERVE nloc) 

The above directive is very simple: it advances the location 
counter by nloc locations. 

3.4 Specification 

Finally, we shall see how the user can write the microcode in 
MICRO after having defined the format of the microword as 
described in the declaration subsection and specified the required 
directives to the assembler. Note that in the absence of any 
specific ORIGIN directive in the begining, forces the assembler 
to start from address O. 

The general format of a microinstruction in MICRO is as follows 
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(create-rec instr 
(dbus ace) 
(alu CREATE-REC function (shift tbi) (logical-op not)) 
(next txf) 
) 

The microinstruction format has been illustrated with an exam
ple based on the declaration which was described in the previ
ous subsection. The microcode described above instantiates a 
structure of the type instr with portion of the microword des
ignated by dbus represented by the implementation of acc and 
the portion designated by next represented by the bit pattern 
"1111". The alu portion of the microword is itself instantiated 
to a structure of the type function and its subfields represent the 
appropriate bit patterns corresponding to shift and logical-op 
fields. 

The next example illustrates the use of label and the default 
option. 

(fetch (create-rec instr 
(dbus ace) 
(alu CREATE-REC function (shift 'bi) (logical-op not)) 
(next Ixb) 
) 

) 

(create-rec instr 
(dbus mar) 
(next fetch) 
) 

Note the definition of the label "fetch" in the first microinstruc
tion and its use in the next field of the record type instr. This is 
valid because in the declaration of the record instr we have spec
ified the implementation of the field next to be of type literal. 

Also note that in the second microinstruction we have not spec
ified any code for the alu field. It was totally omitted. It is 
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perfectly valid because in the declaration of the instr record we 
have specified a default option for the alu field which will come 
handy now. The result is the compactness of the microinstruc
tions. Probably, the current user has nothing to do with alu. 

Finally, we shall discuss an example which portrays some of the 
advanced featurs supported by our MICRO data definition lan
guage. 

(create-rec instr 
(dbus OR mar ace) 
(next fetch) 
) 

(create-rec instr 
(dbus CONCAT mar ace) 
(next fetch) 
) 

The "OR" and "CONCAT" keywords in the microinstruction 
instruct the YAMA microassembler to perform bitwise logical 
OR and concatenate operations on its arguments. The code pro
duced for the dbus portion of the microword in the first microin
struction will be "0011" while in the second microinstruction it 
will be "1110". One very common application for such a feature 
would be in a microengine for a single bus architecture wherein 
you would like to push the contents of a particular register into 
more than one destinations at the same time. 

4 Y AMA - How it Works? 

This section is intended for those who wish to make some changes 
to the source code at a later day. If you wish to merely use the 
YAMA, you can skip this section without any loss of contiuity. 

YAMA is architecturally identical to any high level language 
compiler. It has the usual four phases. 

1. Lexical Analysis: 
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It was our desire to keep the lexical anaylsis phase as clean 
as possible. Sowe adopted lisp like s-expression based syn
tax for the data definition language though it entails in the 
extra burden of matching parentheses, otherwise, the scan
ner itself would be an enormous amount of code resulting in 
complications in debugging and maintanence. 
The outer level (user accessible) assemble function asks for 
the file name containing the source code and initialises the 
data-structures before passing the control to the function 
called do-assembly which reads the input and calls the 
workhorse function generate-code-for-micro-instruction 
which does the parsing based on the keyword in the input 
instruction. 
Lexical errors are detected and appropriate error messages 
are printed on the screen. 

2. Syntax Analysis: 
The simplicity of the data definition language renders the 
parser to be a simple function which looks at the keyword 
and branches to an appropriate procedure to parse the in
struction. proc-org parses the ORIGIN directive while 
proc-res deals with the RESERVE directive. proc-rec 
function parses the declaration section of the source code. 
Finally, if no errors are detected during the course of the 
specification of declarations and the directives (Le. no static 
errors) the assembler proceeds with the microinstructions. 
During the course of the parsing every effort is made to 
detect violations of the MICRO grammar and appropriate 
error messages are printed. 

3. Semantic Analysis: As in most compilers, there is no 
definite demarcation between the semantic analysis and the 
syntax checking phase. Both are done almost concurrently. 
The things we look for here are the bounds on the field sizes, 
define before use restriction (for example in usage oflabels), 
type of the field usage and declaration, duplicate definitions 
(of field names, labels etc) and correct usage of the various 
identifiers with respect to the semantics of the MICRO data 
definition language. 

4. Code Generation: We follow the technique which is nor
mally called "syntax directed translation". We process one 

9 



microinstruction at a time and produce the code which in 
our case is the address of the microinstruction in the control 
store and it implementation in the form of a bit vector. First 
the size of the bit vector is estimated from the declaration. 
Then we fill up the slots corresponding to all the specified 
fields and then finish off by filling up the unspecified slots 
with defaults. Anytime an error is detected, we simply abort 
the code generation by flashing a relevant error message. 

Most of the functions in the source code are very well docu
mented and self-explanatory. 

5 Running YAMA 

It is very simple. All you need is an account on any HP Bobcat. 
You should have /lisp/bin in your path. Then, invoke GNU
Emacs and do Meta-x "run-hpcl" and you are ready to use the 
wonders of CommonLisp. Then you would probably want to 
load the microassembler assuming that you have source program 
ready with you written in MICRO data definition language. An 
example of the terminal session is shown below. 

Common Lisp 

Part No. 98678A Rev. 1.01 
(c) Copyright 1986, Hewlett-Packard Company. All rights reserved. 

HP-UX 5.2 I Common Lisp, 22-Feb-88 

(load "yamal!) 
lIyamall 

(assemble) 
Please enter the source file name ....... »example 

REPORT: No. of Static Errors Detected =0 
ASSEMBLY IN PROGRESS .••....... 
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REPORT: No. of Static Errors Detected gO 
ASSEMBLY IN PROGRESS ......... . 

REPORT: No. of Static Errors Detected =0 
ASSEMBLY IN PROGRESS ......... . 

REPORT: No. of Static Errors Detected mO 
ASSEMBLY IN PROGRESS ......... . 

REPORT: No. of Static Errors Detected zO 
ASSEMBLY IN PROGRESS ......... . 

The control store looks like this ........... 
ADDRESS MICROCODE 

0 .(0 0 1 000 1 0 1 1 1 1) 
1111 .(0 0 1 o 0 0 1 0 1 0 1 1) 
10000 .(0 0 1 1 1 0 1 1 1 1 1 1) 
11011 .(0 0 1 1 1 0 1 1 0 0 0 0) 
11100 .(1 1 1 0 1 0 1 1 0 1 0 0) 

ASSEMBLY WAS SUCCESSFUL 
NIL 

(pht *rhU) 
key = (FUNCTION INSTR) value is «SHIFT 3 4 (7» (LOGICAL_OP 1 7 (0»: 

key = (INSTR NIL) value is «DBUS 4 0 (10» (ALU 4 4 (11» (NEXT 4 8 

NIL 

(pht *fhU) 
key = (SHIFT FUNCTION) value is 7 

key = (DBUS INSTR) value is «ACC 2) (MAR 3» 

key = (LOGICAL_OP FUNCTION) value is «NOT 0) (EXOR 1» 
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key = (NEXT INSTR) value is 8 

NIL 

*label-list* 
«(FETCH 15)) 

*instr-num* 
9 

6 More Examples 

In this section we shall illustrate the constructs of the MICRO as
sembly language with some more examples especially those which 
occur commonly in practice such as conditional/unconditional 
jumps and register to register moves. We also choose a suffi
ciently complicated microword format to illustrate our examples. 

%% Here are some more examples to demonstrate the adequacy of the above 
constructs to write meaningful microcode 

1. (ORIGIN offset) 

Eg (ORIGIN 16#200) 

(ORIGIN loop + 2#101000100) 

2. (RESERVE num) 

Eg : (RESERVE 16#36) % reserves 36hex locations 
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3. declaration 

(RECORD (instr ( dbus 12 BITS (ENUM (mar 'x800) 
(mdr 'x400)(rl 'x040) 
(ace 'x200)(ro 'x080)) (0)) 

(sbus 4 BITS (ENUM (mar 'blOOO) (mdr 'xl001) 
(imm 'bl010) (ro 'bOOOO) 
(rl .b0001)(r2 'b0010)) (0)) 

(memory 2 BITS (ENUM (read .bOl) 
(write .blO)(nop 'bOO))(O)) 

(alu-gen 7 BITS (RECORD (alu 
(function 3 BITS 
(ENUM (add 'bO) 

(sub .bl) 
(and 'blO) 
(or .bll) 
(pass.acc 'bllO)) ('xf)) 

(shift 3 BITS 
(ENUM (shl 'bO) 

(shr .bl) 
(ror 'blO) 
(rol .bll) 
(no.shift 'bllO)) ('xf)) 

(latch 1 BITS 
(ENUM (do.latch .bl) 
(no.latch 'bO)) ('xf))))(O)) 

( control 8 BITS (RECORD (ctrl 
(source 2 BITS 
(ENUM (f.dbus 'bOO) 

(f.imm 'blO) 
(f.mpc 'blO) 

(pass.acc 'bllO))('xf)) 
(mask 6 BITS 
(ENUM (zero 'blOOOOO) 

(pos 'b001000) 
(neg 'b000100) 
(carry .bOOOOll) 

(true 'bllllll))('xf))))(O)) 
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(next 13 BITS ('xO»» 

1.1. The above declaration depicts the various fields that the microinstru' 
1.1. have and their.possible values. 

1.1. The micro-ops will be merely to CREATE and instance of the RECORD "in: 
1.1. with the fields properly instantiated to the desired values 

;;Eg: Unconditional Branch to a label 

(CREATE-REC instr (dbus ro) (sbus ro)(memory nop) 
(alu-gen CREATE-REC alu 

(function pass.acc) 
(shift no.shift) 
(latch no.latch) 
) 

(control CREATE-REC ctrl 
(source f.imm) 

(mask true) 
) 

(next label) 
) 

::Eg: Conditional Branch to a label 

(CREATE-REC instr (dbus ro) (sbus ro)(memory nop) 
(alu-gen CREATE-REC alu 

(function pass.acc) 
(shift no.shift) 
(latch no.latch) 
) 

(control CREATE-REC ctrl 
(source f.imm) 

(mask true) 
) 

(next label) 
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) 

1.1. In the above example one can see that the branch condition is tested 
1.1. in the mask field. 

;;Eg: move the contents of ACC to reg R1 

(label (CREATE-REC instr (dbus r1) (sbus ro)(memory nop) 
(alu-gen CREATE-REC alu 

(function pass . acc) 
(shift no.shift) 
(latch no.1atch)) 

(control CREATE-REC ctr1 
(source f.mpc) 
) 

•• note that the mask subfie1d has been left unspecified here. 
(next 'bO)) 

) 

1.1. You can see the change in the dbus field value 

;;Eg : AND reg R2 with ACC and store the result in R2 

(CREATE-REC instr (dbus acc) (sbus r2)(memory nop) 
(alu-gen CREATE-REC alu 

(function and) 
(shift no.shift) 
(latch no.latch) 
) 

(control CREATE-REC ctrl 
(source f.imm) 

(mask zero) 
) 

(next 'xf) 

) 
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7 Errors 

YAMA tries to be reasonably intelligent about catching errors. 
It detects most of the lexical, syntactic and semantic errors. Of 
course, the lexical analysis is mainly done by the Lisp Read 
function and not by the YAMA in particualr. Usually, all the 
static errors (those encountered during the parsing of the decla
ration/directive) sections of the source code are detected and the 
total count is expressed in the error message while the code gen
eration is suppressed at the first sight of an semantic/run-time 
error (encountered during the parsing of the microinstruction). 

An attempt is made to classify the type of error and indicate the 
place where things have gone wrong and also print the instruction 
number at which things got messy. But, it is not always accurate 
and it is advisable to look around the instruction where things 
went wrong. 

Often, if the input is fouled up enough, it triggers a lisp error 
which starts with 5 exclamation marks. When this happens, the 
assembly aborts and it could mean mismatch in the parenthesis 
or improper/unintended use of s-expressions. Here it is advisable 
to go through the source program once again manually. 

H you are familiar with CommonLisp, it is worth invoking the 
"backtrace" option or other debugging aids. 

7.1 Debugging Aids 

Sometimes, it useful to take a look at the various data struc
tures (symbol tables) to see if right stuff has been placed at the 
right place. We essentially have two hash tables called the record 
hash table and the field hash table respectively which stores the 
various attributes of the records and the fields which have been 
discussed in the previous sections. The function pht with the 
hash table name as its arguments prints the contents of the de
sired hash table. In addition, we have an a-list to store the 
labels encountered in the source file along with their attributes. 
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*label-lisu displays the labels currently in the memory while 
*instr-num* displays the current instruction number. The lat
ter is very useful if you run into a Lisp Error (the one with !!!!!). 
You can make where things went wrong. 

We hope these will be useful if the error messages are cryptic (or 
even vague). 

7.2 Bugs 

Though the microassembler has been tested for all its modes of 
behavious (means all the construct of the language), it cannot be 
called foolproof as the tests haven't been exhaustive or regres
si ve. If you think you have found a bug you are ad vised to do 
a couple of things, First, make sure that your source program is 
syntactically correct and you haven't violated any of the rules of 
the MICRO grammar, then send a message to akella@humber, 
preferably with a short excerpt from the source file and a photo 
of what went wrong. 

Wish You Luck !! 
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