
YAMA : Yet Another MicroAssembler

Description && User's Guide

Venkatesh Akella

Dept. of Computer Science

University of Utah

Salt Lake City

Utah 84112 USA

Email: a.kella~cs . utah. edu
October 3, 1988

UUCS-88-016

Abstract

YAMA is an CommonLisp program for creating microcode PROMS.
It lets you specify the microcode in a fairly high level language that
provides various features found normally in sophisticated assemblers.
The salien t features of YAMA are

1. Provision for record and enumerated data types at micro assem
bly level.

2. Provision for a flexible and heirarchical microword format.

3. Provision for horizontal and vertical microprograms with the help
of special syntactic constructs.

4. Provision of various directives to tailor the code according to
one's taste.

It produces the "bit" pattern for the microwords. The input spec
ifications are in a data definition language called MICRO which has
a data declaration part, a directives part and a specification section.
This report contains the summary of the design of the micro assembly
language and the construction of the micro assembler and also serves
as the user's guide.

Contents

1 Introduction 1

2 Using CommonLisp 1
2.1 Numbers .. 1
2.2 Comments. 2
2.3 Identifiers 2
2.4 Syntax. 2

3 MICRO 2
3.1 Abstract Syntax of MICRO Assembly Language 3
3.2 Declaration . 4

3.3 Directive ... 6
3.4 Specification. 6

4 YAMA - How it Works? 8

5 Running YAMA 10

6 More Examples 12

7 Errors 16
7.1 Debugging Aids . 16
7.2 Bugs 17

1 Introduction
YAMA is an CommonLisp program for creating microcode PROMS.
It lets you specify the microcode in a fairly high level language that
provides various features found normally in sophisticated assemblers.
It produces the "bit" pattern for the microwords. The input speci
fications are in a data definition language (MICRO) which has three
distincts parts.

1. Declaration: Here you specify the general format of the mi
croword in your application.

2. Directives : Here you instruct the assembler how to organize
the microwords in the control store.

3. Specification: Here you describe the microinstructions to do a
specific task.

The report is organized in the following manner:
We begin with a discussion on reasons for choosing CommonLisp to

implement the micro assembler followed by the description of the the
section on MICRO contains the abstract syntax of the micro assembly
language being used. We then describe the construction of the micro
assembler and how to go about using it (with a terminal session).
The next section contains some more examples of the micro assembly
language followed by a section on error recovery and debugging.

2 Using CommonLisp
YAMA has been implemented in CommonLisp which is available on
the HP Bobcats. It is helpful to know that the MICRO is based on
the CommonLisp syntax. This is used in the specification of numbers
and comments in the source file and also for debugging the source
programs.

2.1 Numbers

The user has the luxury of specifying numeric data in binary,hexadecimal
and decimal notations supported by CommonLisp. If you want to
specify a number in a base other than decimal, you use the form

#xnumber in hex notation and

1

bnumber in binary notation

2.2 Comments
Anytime YAMA reads a semicolon (j) it ignores everything until the
end of the line. This is used for placing comments in your source files.
Since microcode is by nature very cryptic, it is a good idea to use lots
of comments. Since YAMA uses the lisp "read" function for input,
it ignores extra tabs, spaces and blank lines and the user is free to
intersperse them to improve the readability of the source code.

2.3 Identifiers
You will soon want to give things like the control signals, control
store locations some symbolic names. CommonLisp allows you to
use identifiers of any length and are unique to the last character.
It is ad visible to use reasonably long names to improve readability
and facilitate others to understand what the source code is trying to
achieve.

2.4 Syntax

Users without prior exposure to Lisp may find the use of s-expression
based syntax rather cumbersome. But it is very logical and not diffi
cult to get accustomed to.

3 MICRO
In this section an attempt is made to explain the various features of
the MICRO data definition language. It tells the specification writer
how to write his microcode.

First we shall present the abstract syntax of the MICRO assembly
language. Then we shall examine each facet of the assembly language
in detail in the the subsequent subsections.

2

3.1 Abstract Syntax of MICRO Assembly Lan
guage

%% The abstract syntax of the micro-assembly language is presented

Y.Y. It is evident that it is a data definition language which allows
Y.Y. the user to declare the fields and formats of the microinstructions

%Y. The syntax is basically LISP like C I understand that it is cumbersome
Y.Y. with the myriad parantheses but believe me you will get used to it)

Lang -) Decl Micro-instr*

Micro-instr -) [Label] Micro-ops* Directives*

Directives -) "C" ORIGIN Offset")"

I "C" RESERVE num ")"

Decl -) "C" RECORD recName CFieldName num BITS
Implementation Default)* ")"*

I "C" ENUM FieldName Implementation ")"

Implementation -) Expn I Decl

Expn -) num I Label I OR Expn Expn ICONCAT Expn Expn

Micro-ops -) "C" CREATE-REC RecName
CFieldName Implementation)* ")"*

"C" CREATE-REC RecName
IC"FieldName CREATE-REC RecName

"C" FieldName Implementation ")"* 11)11 11)11

Label -) id

FieldName -) id

3

RecName -> id

Offset -> Label "+" num I Label "_" num I num

Default -> num

id -> any valid Pascal identifier

num -> any valid number in Common Lisp (binary.hex.octal or decimal)

3.2 Declaration

MICRO supports three user defined types.

1. RECORD: Similar to a Pascal record. The abstract syntax for
a record declaration is

(RECORD (RecName (field 1) (field 2) ... (field i) .. »

2. ENUM: Semantically similar to enumerated data type in Pascal.
The abstract syntax of the ENUM declaration is

(ENUM (component-1 implementation-i)
(component-2 implementation-2)

(component-i implementation-i)
)

where component-i is an identifier and implementation-i is a lit
era bitvector.

3. LITERAL: could be a label or literal bit vector.

The user is expected to first define the general format of the mi
croword. The microword is of type record (as in Pascal or C).It has a
unique name and fields. Each field itself could be of any of the three
types. Hence, the overall structure is that of a tree (heirarchical).

The abstract syntax for the field is as follO\vs:

(FieldName FieldSize BITS
Field-Implementation Default

)

4

FieldName is an unique identifier.
FieldSize is an integer.
Field-Implementation could be of Enumerated Type or a Record

Type.
Default is again a literal bitvector which is used if a certain appli

cation does not use the field in question.
It would be nice to illustrate the above with a concrete example.

(RECORD (instr (dbus 4 bits (ENUM
(acc .x2)
(mar 3))
(lxa))
(alu 4 bits (RECORD (function
(shift 3 bits (7))
(logical_op 1 bits

(ENUM (not IxO)
(exor .bi))

(lxO))))
(lxb))

(next 4 Bits (8))
)

)

The name given to the microword is instr. It has three fields
namely dbus,alu and next. The db us field is of size 4 and is im
plemented as an enumerated type whose components are mar and ace
and the default implementation of the dbus field is Ixa which is a lit
eral quantity specified in the hexadecimal notation. The components
of the enumerated type mar and ace are in turn specified as literal
bitvectors in decimal and hexadecimal notation. The alu field is of
size 4 and is implemented as a record called function which in turn
consists of two subfields shift and logical-op respectively. The shift
subfield is implemented as a field called shift and the logical-op field
is implementated as a enumerated type. Each of these subfields again
has a fixed size and a default option as discussed above. Finally the
last field of the instr microword is the next field which has a size of 4
and whose implementation is decimal 8. Note that for fields which are

5

not implemented as records ore enumerated types there is no necessity
for a default option.

3.3 Directive
The MICRO data definition language enables the user to specify di
rectives to the YAMA microassembler to tailor the microwords in the
control store to his/her requirements. The following directives are
permissible .

• ORIGIN: It enables the user to change the location counter; so
that the next microword could be placed at an address of his/her
choice.

Example:-

(i) (ORIGIN #xffff)
(ii) (ORIGIN label +/- offset)

In the first directive the location counter is changed to the hex
address ffff while in the second case the location counter is
shifted relative to a previously specified label.
RESERVE: This directive enables a user to skip some locations
in the control store probably for future usage.

Example:-

• (RESERVE nloc)

The above directive is very simple: it advances the location
counter by nloc locations.

3.4 Specification

Finally, we shall see how the user can write the microcode in
MICRO after having defined the format of the microword as
described in the declaration subsection and specified the required
directives to the assembler. Note that in the absence of any
specific ORIGIN directive in the begining, forces the assembler
to start from address O.

The general format of a microinstruction in MICRO is as follows

6

(create-rec instr
(dbus ace)
(alu CREATE-REC function (shift tbi) (logical-op not))
(next txf)
)

The microinstruction format has been illustrated with an exam
ple based on the declaration which was described in the previ
ous subsection. The microcode described above instantiates a
structure of the type instr with portion of the microword des
ignated by dbus represented by the implementation of acc and
the portion designated by next represented by the bit pattern
"1111". The alu portion of the microword is itself instantiated
to a structure of the type function and its subfields represent the
appropriate bit patterns corresponding to shift and logical-op
fields.

The next example illustrates the use of label and the default
option.

(fetch (create-rec instr
(dbus ace)
(alu CREATE-REC function (shift 'bi) (logical-op not))
(next Ixb)
)

)

(create-rec instr
(dbus mar)
(next fetch)
)

Note the definition of the label "fetch" in the first microinstruc
tion and its use in the next field of the record type instr. This is
valid because in the declaration of the record instr we have spec
ified the implementation of the field next to be of type literal.

Also note that in the second microinstruction we have not spec
ified any code for the alu field. It was totally omitted. It is

7

perfectly valid because in the declaration of the instr record we
have specified a default option for the alu field which will come
handy now. The result is the compactness of the microinstruc
tions. Probably, the current user has nothing to do with alu.

Finally, we shall discuss an example which portrays some of the
advanced featurs supported by our MICRO data definition lan
guage.

(create-rec instr
(dbus OR mar ace)
(next fetch)
)

(create-rec instr
(dbus CONCAT mar ace)
(next fetch)
)

The "OR" and "CONCAT" keywords in the microinstruction
instruct the YAMA microassembler to perform bitwise logical
OR and concatenate operations on its arguments. The code pro
duced for the dbus portion of the microword in the first microin
struction will be "0011" while in the second microinstruction it
will be "1110". One very common application for such a feature
would be in a microengine for a single bus architecture wherein
you would like to push the contents of a particular register into
more than one destinations at the same time.

4 Y AMA - How it Works?

This section is intended for those who wish to make some changes
to the source code at a later day. If you wish to merely use the
YAMA, you can skip this section without any loss of contiuity.

YAMA is architecturally identical to any high level language
compiler. It has the usual four phases.

1. Lexical Analysis:

8

It was our desire to keep the lexical anaylsis phase as clean
as possible. Sowe adopted lisp like s-expression based syn
tax for the data definition language though it entails in the
extra burden of matching parentheses, otherwise, the scan
ner itself would be an enormous amount of code resulting in
complications in debugging and maintanence.
The outer level (user accessible) assemble function asks for
the file name containing the source code and initialises the
data-structures before passing the control to the function
called do-assembly which reads the input and calls the
workhorse function generate-code-for-micro-instruction
which does the parsing based on the keyword in the input
instruction.
Lexical errors are detected and appropriate error messages
are printed on the screen.

2. Syntax Analysis:
The simplicity of the data definition language renders the
parser to be a simple function which looks at the keyword
and branches to an appropriate procedure to parse the in
struction. proc-org parses the ORIGIN directive while
proc-res deals with the RESERVE directive. proc-rec
function parses the declaration section of the source code.
Finally, if no errors are detected during the course of the
specification of declarations and the directives (Le. no static
errors) the assembler proceeds with the microinstructions.
During the course of the parsing every effort is made to
detect violations of the MICRO grammar and appropriate
error messages are printed.

3. Semantic Analysis: As in most compilers, there is no
definite demarcation between the semantic analysis and the
syntax checking phase. Both are done almost concurrently.
The things we look for here are the bounds on the field sizes,
define before use restriction (for example in usage oflabels),
type of the field usage and declaration, duplicate definitions
(of field names, labels etc) and correct usage of the various
identifiers with respect to the semantics of the MICRO data
definition language.

4. Code Generation: We follow the technique which is nor
mally called "syntax directed translation". We process one

9

microinstruction at a time and produce the code which in
our case is the address of the microinstruction in the control
store and it implementation in the form of a bit vector. First
the size of the bit vector is estimated from the declaration.
Then we fill up the slots corresponding to all the specified
fields and then finish off by filling up the unspecified slots
with defaults. Anytime an error is detected, we simply abort
the code generation by flashing a relevant error message.

Most of the functions in the source code are very well docu
mented and self-explanatory.

5 Running YAMA

It is very simple. All you need is an account on any HP Bobcat.
You should have /lisp/bin in your path. Then, invoke GNU
Emacs and do Meta-x "run-hpcl" and you are ready to use the
wonders of CommonLisp. Then you would probably want to
load the microassembler assuming that you have source program
ready with you written in MICRO data definition language. An
example of the terminal session is shown below.

Common Lisp

Part No. 98678A Rev. 1.01
(c) Copyright 1986, Hewlett-Packard Company. All rights reserved.

HP-UX 5.2 I Common Lisp, 22-Feb-88

(load "yamal!)
lIyamall

(assemble)
Please enter the source file name »example

REPORT: No. of Static Errors Detected =0
ASSEMBLY IN PROGRESS .••.......

10

REPORT: No. of Static Errors Detected gO
ASSEMBLY IN PROGRESS

REPORT: No. of Static Errors Detected =0
ASSEMBLY IN PROGRESS

REPORT: No. of Static Errors Detected mO
ASSEMBLY IN PROGRESS

REPORT: No. of Static Errors Detected zO
ASSEMBLY IN PROGRESS

The control store looks like this
ADDRESS MICROCODE

0 .(0 0 1 000 1 0 1 1 1 1)
1111 .(0 0 1 o 0 0 1 0 1 0 1 1)
10000 .(0 0 1 1 1 0 1 1 1 1 1 1)
11011 .(0 0 1 1 1 0 1 1 0 0 0 0)
11100 .(1 1 1 0 1 0 1 1 0 1 0 0)

ASSEMBLY WAS SUCCESSFUL
NIL

(pht *rhU)
key = (FUNCTION INSTR) value is «SHIFT 3 4 (7» (LOGICAL_OP 1 7 (0»:

key = (INSTR NIL) value is «DBUS 4 0 (10» (ALU 4 4 (11» (NEXT 4 8

NIL

(pht *fhU)
key = (SHIFT FUNCTION) value is 7

key = (DBUS INSTR) value is «ACC 2) (MAR 3»

key = (LOGICAL_OP FUNCTION) value is «NOT 0) (EXOR 1»

11

key = (NEXT INSTR) value is 8

NIL

label-list
«(FETCH 15))

instr-num
9

6 More Examples

In this section we shall illustrate the constructs of the MICRO as
sembly language with some more examples especially those which
occur commonly in practice such as conditional/unconditional
jumps and register to register moves. We also choose a suffi
ciently complicated microword format to illustrate our examples.

%% Here are some more examples to demonstrate the adequacy of the above
constructs to write meaningful microcode

1. (ORIGIN offset)

Eg (ORIGIN 16#200)

(ORIGIN loop + 2#101000100)

2. (RESERVE num)

Eg : (RESERVE 16#36) % reserves 36hex locations

12

3. declaration

(RECORD (instr (dbus 12 BITS (ENUM (mar 'x800)
(mdr 'x400)(rl 'x040)
(ace 'x200)(ro 'x080)) (0))

(sbus 4 BITS (ENUM (mar 'blOOO) (mdr 'xl001)
(imm 'bl010) (ro 'bOOOO)
(rl .b0001)(r2 'b0010)) (0))

(memory 2 BITS (ENUM (read .bOl)
(write .blO)(nop 'bOO))(O))

(alu-gen 7 BITS (RECORD (alu
(function 3 BITS
(ENUM (add 'bO)

(sub .bl)
(and 'blO)
(or .bll)
(pass.acc 'bllO)) ('xf))

(shift 3 BITS
(ENUM (shl 'bO)

(shr .bl)
(ror 'blO)
(rol .bll)
(no.shift 'bllO)) ('xf))

(latch 1 BITS
(ENUM (do.latch .bl)
(no.latch 'bO)) ('xf))))(O))

(control 8 BITS (RECORD (ctrl
(source 2 BITS
(ENUM (f.dbus 'bOO)

(f.imm 'blO)
(f.mpc 'blO)

(pass.acc 'bllO))('xf))
(mask 6 BITS
(ENUM (zero 'blOOOOO)

(pos 'b001000)
(neg 'b000100)
(carry .bOOOOll)

(true 'bllllll))('xf))))(O))

13

(next 13 BITS ('xO»»

1.1. The above declaration depicts the various fields that the microinstru'
1.1. have and their.possible values.

1.1. The micro-ops will be merely to CREATE and instance of the RECORD "in:
1.1. with the fields properly instantiated to the desired values

;;Eg: Unconditional Branch to a label

(CREATE-REC instr (dbus ro) (sbus ro)(memory nop)
(alu-gen CREATE-REC alu

(function pass.acc)
(shift no.shift)
(latch no.latch)
)

(control CREATE-REC ctrl
(source f.imm)

(mask true)
)

(next label)
)

::Eg: Conditional Branch to a label

(CREATE-REC instr (dbus ro) (sbus ro)(memory nop)
(alu-gen CREATE-REC alu

(function pass.acc)
(shift no.shift)
(latch no.latch)
)

(control CREATE-REC ctrl
(source f.imm)

(mask true)
)

(next label)

14

)

1.1. In the above example one can see that the branch condition is tested
1.1. in the mask field.

;;Eg: move the contents of ACC to reg R1

(label (CREATE-REC instr (dbus r1) (sbus ro)(memory nop)
(alu-gen CREATE-REC alu

(function pass . acc)
(shift no.shift)
(latch no.1atch))

(control CREATE-REC ctr1
(source f.mpc)
)

•• note that the mask subfie1d has been left unspecified here.
(next 'bO))

)

1.1. You can see the change in the dbus field value

;;Eg : AND reg R2 with ACC and store the result in R2

(CREATE-REC instr (dbus acc) (sbus r2)(memory nop)
(alu-gen CREATE-REC alu

(function and)
(shift no.shift)
(latch no.latch)
)

(control CREATE-REC ctrl
(source f.imm)

(mask zero)
)

(next 'xf)

)

15

7 Errors

YAMA tries to be reasonably intelligent about catching errors.
It detects most of the lexical, syntactic and semantic errors. Of
course, the lexical analysis is mainly done by the Lisp Read
function and not by the YAMA in particualr. Usually, all the
static errors (those encountered during the parsing of the decla
ration/directive) sections of the source code are detected and the
total count is expressed in the error message while the code gen
eration is suppressed at the first sight of an semantic/run-time
error (encountered during the parsing of the microinstruction).

An attempt is made to classify the type of error and indicate the
place where things have gone wrong and also print the instruction
number at which things got messy. But, it is not always accurate
and it is advisable to look around the instruction where things
went wrong.

Often, if the input is fouled up enough, it triggers a lisp error
which starts with 5 exclamation marks. When this happens, the
assembly aborts and it could mean mismatch in the parenthesis
or improper/unintended use of s-expressions. Here it is advisable
to go through the source program once again manually.

H you are familiar with CommonLisp, it is worth invoking the
"backtrace" option or other debugging aids.

7.1 Debugging Aids

Sometimes, it useful to take a look at the various data struc
tures (symbol tables) to see if right stuff has been placed at the
right place. We essentially have two hash tables called the record
hash table and the field hash table respectively which stores the
various attributes of the records and the fields which have been
discussed in the previous sections. The function pht with the
hash table name as its arguments prints the contents of the de
sired hash table. In addition, we have an a-list to store the
labels encountered in the source file along with their attributes.

16

*label-lisu displays the labels currently in the memory while
instr-num displays the current instruction number. The lat
ter is very useful if you run into a Lisp Error (the one with !!!!!).
You can make where things went wrong.

We hope these will be useful if the error messages are cryptic (or
even vague).

7.2 Bugs

Though the microassembler has been tested for all its modes of
behavious (means all the construct of the language), it cannot be
called foolproof as the tests haven't been exhaustive or regres
si ve. If you think you have found a bug you are ad vised to do
a couple of things, First, make sure that your source program is
syntactically correct and you haven't violated any of the rules of
the MICRO grammar, then send a message to akella@humber,
preferably with a short excerpt from the source file and a photo
of what went wrong.

Wish You Luck !!

17

