
REFERENCING AND RETENTION
IN BLOCK-STRUCTURED COROUTINES

*
Gary Lindstrom
Mary Lou Soffa+

UUCS - 79 - 116

November 1979

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

Work supported in part by grant MCS-78-03832 from the National
Science Foundation to the University of Utah.

Work supported in part by grant MCS-79-06102 from the National
Science Foundation to the University of Pittsburgh.

ABSTRACT

The combination of coroutines with recursive procedures is character­
istic of many modern higher-level languages offering advanced control
structures (e.g. SIMULA-67, SL5, Interlisp, etc.). We say a language has
btook-structured aorout'Lnes (BSCRs) when static nesting considerations
govern the usage of this control combination. Starting with the BSCR
control description work of Wang and Dahl, this paper pursues further the
implications of static program structure on BSCR programs in a compilation-
oriented setting. Disciplines on BSCR reference assignment and individual
control actions are defined, offering enhanced implementability and program
comprehensibility. Of particular interest is a scope-based discipline on
"detach" operations, which avoids the formation of idle chain subheads, an
implementationally undesirable condition. The retention requirements of
BSCRs are analyzed under a range of possible remote accessibility conditions,
and two deletion strategies are then defined, keyed to these requirements.
The first uses a special form of scope-sensitive reference counting, and
the second does mark-sweep garbage collection, again exploiting static
program structure. Space and time estimates for both methods are given,
along with avenues for continuing research.

2

1. INTRODUCTION

1.1. Importance of logical parallelism.

Logical parallelism as a programming concept is growing in importance as
higher-level programming languages (HLLs) become more widely adopted. Applica­
tion areas such as systems programming, real time control, simulation, and
heuristic searching are but a few of the domains better served by HLLs possess­
ing control structures that go beyond a purely stack-based hierarchy. The
term coroutine, originally introduced by Conway [6] to characterize the
coexistent phase organization often found in compilers, is commonly used to
describe such logically parallel program units.

When coupled with recursion in HLLs, coroutines become an extremely flex­
ible tool for algorithm specification. In such a combination recursion
contributes dynamic storage allocation and hierarchical environment sharing,
while coroutines contribute control versatility within those environments.
From these two bases a remarkably wide range of control effects can be achieved,
including backtracking [10], pattern-directed invocation [16], and deferred
evaluation [9], among many others.

While this versatility is clearly an asset, it is also a liability in
that poorly structured control regimes can be encouraged. Thus while languages
of this variety possessing purely dynamic control semantics have obvious
experimental merit (e.g. SL5 [11]), other languages incorporating coroutines
into more compilation-oriented languages with static block structure are likely
to have greater ultimate impact. We term this class of languages block struc­
tured coroutine (BSCR) languages. Within this domain, SIMULA-67 [8] offers
the most advanced design generally available today.

1.2. Disciplines on BSCR usage.

SIMULA-67 illustrates well the benefits to be obtained by placing disci­
plines on BSCR usage. These benefits include:

a) implementation economies (such as compile-time reference
security);

3

b) useful semantic concepts offering structure (such as "operating
chain", "attachment" vs. "detachment", etc.) in an other­
wise amorphous control domain, and

c) convenient control "packages" of higher-level notions (such as
the time-based pseudo-parallel control in the system class
SIMULATION).

A formal description of SIMULA-67's control behavior (in part) has been
offered by Wang and Dahl [23]. However, this early work focused on points
(b) and (c) above, and ignored such issues as reference variable scoping
rules and the enforcement of control event disciplines. In this paper we
address these issues and others, both conceptual and implementational, which
arise when BSCR disciplines are chosen especially to exploit program static
structure.

1.3. Overview.

We begin by reviewing Wang and Dahl's axiomatic method for describing
BSCRs in section 2, along with some clarifying observations on possible
BSCR control states. The method is extended in section 3 to include corou­
tine instance reference variables, constrained to obey certain static
scoping rules. The implementation of our selected control event and
reference scoping disciplines is treated in section 4. As a prelude to the
consideration of BSCR deletion strategies, we present postulates in section
5 that define the retention requirements of our class of BSCRs. In section
6 an incremental deletion strategy V' is described, based on a new scope-
based approach to reference counting. Since V' is not complete (in that it
overlooks certain cyclic structures), a companion method V" is presented in
section 7, based on a form of scope-based mark-sweeping (garbage collection).
Section 8 provides a summary and evaluation of our results.

1.4. Previous work.

There have been a wide variety of approaches to the formulation of
coroutines; indeed, the title of Mcllroy's unpublished but widely circulated
memo accurately reflects the situation to this day [17]. Of the few dealing
explicitly with scoping issues, the work of Krieg [14] and Vanek [22] are
most notable. The latter is of particular interest as a contrast to this

4

work, since in Vanek's approach BSCRs are defined without appeal to program­
mer manipulatable reference variables.

Approaches to coroutine implementation based on reference counting may
be found in [2 , 12]; coroutine implementation through garbage collection
is studied in [1, 3]. A mixed strategy involving both reference counting
and garbage collection may be seen in [4]. Verificational aspects of
coroutine programming have been approached in [5, 7].

5

2. PRELIMINARIES

Wang and Dahl approach the description of BSCRs by considering an abstract
representation of run-time control states. This representation consists of the
set of dynamic procedure1 instances (activations) in existence at any moment,
and key relationships that exist among those instances. The relationships of
interest are the dynamic (i.e. control) and static (i.e. textual) connections
among the instances.

2.1.1. Primitive symbols. Following the notation of Wang and Dahl, we
make use of the following primitive symbols:

S: the set of all procedure instances in existence;

a:.SC, for x £ S: the return link of x, a pair of the form:

t ip: return code pointer, epi calling instance];

D : a function S -»• S denoting dynamic enclosure {called -*■ caller) ,
with D(x) = x.SC.ep-,

P: the processor, in S by extension. By special convention,
P.SC.ep = D(P) = the currently operating instance, and
P.SC.ip = the program counter of P;

T: a function S - {P} S denoting static enclosure (.declared •+■

declarer) ;

a binary relation on S, defined to be x -*■ y = x j- P and D(x) =

y, its trcinsitive closure is z + j/ = x -*■ y or_ (x j- P and
D(x) £ y) , and its transitive and reflexive closure is

* — *
x -*■ y = x = y or_ (x ? P and D(x) ■+ y) .

2.1. Wang and Dahl's approach to control description.

1Blocks in the Algol-60 sense are considered here to be subsumed by the
more general notion of procedures. Moreover, since recursion can readily be
simulated by LIFO coroutine control, we assume every procedure instance is
created as a coroutine.

6

=>: a binary relation on S, defined to be x => y = x 7* P and
T(x) = y ; its transitive closure is x => y = x => y or

+ .
(x f P and T(x) => y) , and its transitive and reflexive

* _ * closure is x => y = x = y or_ {x ? P and T(x) => y) . We
denote T (y) = { x \ x => y }.

OC: the set of instances dynamically linked from D(P), i.e. { y \
it

D{P) -*■ y }, is termed the operating chain (OC) . An in­
stance x is said to be active iff .a; e OC. If s is active
and i + i/(we say y is "to the right of" x on the OC.

2.1.2. Control events. Using this notation, we can characterize a
class of possible control events. These comprise instance creation (proced­
ure invocation), instance termination, and the coroutine control exchange
actions Swap(a:) and rOtate(x, y) . Initially, D(P) = P.

a) invocation: Assume D(P) = y and y invokes a procedure x
declared local to an instance s. More precisely, x will
refer to a procedure closure consisting of a code entry
point code(x), and a static environment env(x), equal to z,
providing a data context for accesses of nonlocal variables
from within instances of x. Then the result of an invoca­
tion of x is the creation of a new instance x of x,

' adjoined to S, with T(x) := 2 , X.SC := D(P).SC (thereby
setting D(x) = y), and P.SC := [code (x), x].

b) termination'. Assume D{P) = x ¥ P- The termination of x causes
P.SC to be set to x.SC, and x to be deleted from S.

c) s w a p(X) : This event causes the SC variables of x and P to have
their values interchanged, i.e.:

x.SC _____ __ P.SC

If x £ OC, the effect of S w a p(x) is a return of control to
its caller, without termination of x (i.e., x "detaches")
a;.SC saves the reactivation point of x.

7

If x £ OC, the effect of swap (a:) is the establishment of
D(P) as the current caller of x, and the resumption
of x at its reactivation point (i.e. x is "called").

d) rotate (a;, y) : This event causes the SC variables of x, y and
P to have their values permuted as indicated below:

The effect of rotate(x, y) is equivalent to Swap(x) follow­
ed immediately by Swap(y) in an indivisible action.

2.2. Selected previous results.

2.2.1. Law and Order. In the interest of semantic coherence and en­
hanced implementability, Wang and Dahl define four "Law and Order" invariants
that circumscribe the range of desirable run-time control states. These are:

(LOl) P £ 5; the processor is never deleted;

(L02) D is 1-1; all instances are linked by D into one or more
, cycles; ' ,

(L03) for all x ^ P: T(x) £ S; instance deletion observes static
nesting order, and

*(L04) for all x ? P: D(x) -> T{x); a subtle condition relating
D and T link nesting.

2.2.2. Control event conditions. Certain conditions are imposed on
control events in order to provide a run-time discipline that will ensure the
Law and Order objectives listed above. Assume D (P) = w. Then these conditions
are:

a) oan invoke (Cl): whenever the language permits w to invoke a
*procedure x, with env(x) = z, we may be sure that w => 2;

*we denote this by w Cl x implies w => eny(x);

*b) oan swap (CS): w CS x implies w => T{x) , and
* *c) can rotate (CR) : w CR (x , y) implies w => T{x) = > T{y) .

Wang and Dahl prove that these control event conditions are sufficient
to preserve (L01) - (L04). The following fact, which will prove useful to
us subsequently, is also established:

if ^
(L05) for all W, x- W £ OC and W => x implies w -* x.

This condition states that all T links on the OC are local to the OC, and
point to the right. '

2.2.3. The deletion strategy V. As mentioned in section 2.1.2, instance
termination includes the action of deleting that instance from 3. Wang and
Dahl extend this deletion policy to a more comprehensive policy V that provides
for deletion of instances located off the OC:

Assume D(P) = x y , x ? P. As the (only) result of the
termination of x, P.SC := ar.SC (thereby setting-2?(P) = y) ,
and T [x) is deleted from S.

V is then proven to be "safe", in the sense that (L01) - (L04) are preserved.
One corollary (via (L02)) is that V always deletes entire D cycles.

2.3. T link relationships among chains.

Law and Order conditions (L01) - (L05) imply a certain structural regu­
larity on T link relationships among chains. We summarize this structure
for further reader orientation and to aid in later sections. First, a few
additional definitions:

I * * Tchain (x) , X e S : denotes { z / e S | x y or_h ^ x hence chain (P)
= OC;

L : denotes the set of idle chains, defined to be { chain(x) j
x e S and chain(x) / OC };

C: denotes the set of all chains, i.e. L union { OC };

h(L), L £ L: denotes the head instance of L, i.e. the object of the
swap (or rotate) that created L;

9

H: denotes the set of all head instances, i.e. { h(L) | L £ L }, and

=>: we extend (without confusion) the relation => on S to apply
as well to C. Let L, M be in C. Then L => M iff L M
and there exist x £ L, y £ M such that x => y. Similarly,

+ *we assume => and => to be extended to C as well.

We now show that =>, as is the case on S, imposes a tree structure on C
as well. "'

Theorem 1. T links on OC do not cross. More formally, for all
it it it

x, y £ OC: x -*■ y T{x) -*• T(y) implies x = y or y = T(x) or T(x) = T{y) .

Proof. Suppose not. Then there must exist instances x and y £ OC
such that x * y £ T(x) T(y) ; call this property TCross(#, y) . Select
x and y such that for no 3 : x £ 3 ^ y, TCross(a;, z) or TCross(s, y) .
If x y , (L04) is clearly violated. Otherwise:

Case 1_. For all s such that X ^ 3 ^ y , z T{z) -*■ y. Then
D(x) => y ; since y * iZ7(jt:) ^ T(y) , D(x) ?> T(x) , contradicting (L04) .

Case 2_. For some z: x -*■ z y , z -*■ y -*■ T(z) . But then if
y T{z) i T(y) , TCross (3 , y) ; if T(y) ■+ T(z) , TCross(a:, z) . Since
these are the only two possibilities for T(z) by (L05), our choice
for ar and y is contradicted.

* * it *Corollary JL. ^ -*■ z x e OC and w => x implies z => x*

Corollary 2. Let L be in L . Then (i) T (h(L)) & L, and (ii) for .
all 3 £ L, T{z) £ L or_ T (z) = T (h (L)) .

*Proof. (i) Let h(L) = X. Then at the creation of L, D(P) => T{x),
* +by CS or CR. Since x £ OC at that time, by (L05) we have D (P) ■+ x -*■ T(x)

Hence T (x) = !T(h(L)) remains on the OC when L is formed.

(ii) Suppose not. Then for some z e L, at the creation of L we have
‘ D(P) * 3 $ x i T{z) , by (L05). Since D(P) => T(x), by Corollary 1

* * necessarily z => T(x). Clearly 3 f T{x), so T(z) => T(x). By hypothesis,
T(z) j- T(x) = T(h(L)) , so T(z) => T(x) . Then again by (L05) we have

“I”
z -*■ x T (z) ->■ T(x) , contradicting Theorem 1.

10

Proof. Let the node set of the tree be C, and an arc be present from L

to M i f f L => M. By (L 0 5) , the OC has no outgoing arcs; this is the root

of our tree. By Corollary 2 , i f L E L then L => M i f f T(h (L)) £ M. Hence

the outdegree of L is one, and we have a tree.

Theorem 2_. The relation => forms a tree on C.

11

3. REFERENCING

In the formalism of section 2 , there is an im plicit assumption that

the names of procedure instances are directly accessible at the source

program level (i .e . for use in Swap(x) and r o t a t e s , y)) . Such names, how­

ever, are dynamically created and must be manipulated through the use of

reference variables as interm ediaries. We now extend our formalism to deal

exp lic itly with such v ariab les . Our goal here w ill be to sharpen the con­

trol event defin itio ns and conditions of section 2 , in preparation for their

e f f ic ie n t implementation in sections 4 through 7.

3 .1 .1 . Notation . The following additional notation w ill be needed:

Z: symbols in ZoWQJt ccu>e. 6CJvi.pt. letters w il l denote reference

variables , i . e . those permitted to assume procedure

instance names as values?

t{<L) : denotes the instance containing the declaration of 2. as a

local variable ;

E: (for "environment descriptors") denotes the set of all refer­

ence variables currently existing (i . e . local to any

existing instance);

denotes the instance currently referenced by £; may also

be the special value nil, which is the in it ia l value of

a ll Z e E; •

stat(x) : for x £ S denotes the static depth of x, defined to be :

‘ stat(P) = 0 ;

stat(x) = stat(T(x)) + 1 for x f P ;

dispix, i) : for x £ S and 0 <_ i <_ statix) , denotes the instance

statically enclosing x at depth i ; that i s ,

j ftat(x) - i (x)

(disp(D(P), •) is the display vector of P , used in most

block structure implementations for accessing the v ari­

ables nonlocal to the currently operating instance [19].)

3 .1 . Reference variables.

12

3 .1 .2 . Scoping considerations. We now define a notion of textual scoping

for reference variables . In a manner sim ilar to that employed in Algol-68 [21]

and Simula-67 [8] , we in s ist that the procedure instance immediately surroun­

ding (statically) an instance x must also surround the declaration of any

variable 2. that references x. We formalize this constraint as follows through

a "can reference" (CRF) relation on E x S :

*
£ CRF x implies t(&) => T(x) .

By ordinary id e n t ifie r scoping ru les , a relation sim ilar to CRF must

exist between the currently operating instance and the instance within which

any directly accessible reference variable 2. is declared. Without confusion,

we extend CRF to express this relation on S x E as w ell :

' D(P) CRF e implies D(P) => t(Z) .

*
Note, by transitiv ity of =>, we have

D{P) CRF e CRF x implies D(P) => T (x) •

Thus the range of instances directly referenceable from D{P) is a subset of

those whose declarations are accessible by ordinary block structure consider­
*

ations. Moreover, every x such that D(P) => T(x) is accessible i f by foresight:

(i) there are no intervening id e n t ifie r clashes, and (i i) an Z is present at

some appropriate block level (e .g . T(x)) referencing x.

Instances may be indirectly referenced from D(P) through a variety of

language structures, including parameter mechanisms and remote accessing (e .g .

" £ . i " constructs in Simula-67). While instance accessib ility through param­

eters w il l not be considered here, the fu ll implications o f remote accessing

w ill be discussed in sections 5 through 7.

3 .1 .3 . Operations on reference v a ria b les . Two prim itive operations are

defined on E ; -

a) remref z ("remove re fe re n c e "), where = y C S (i .e . £+ + nit)'.

the reference to y is cleared from £, and nil is installed

in its place .

13

b) 2 setref a ("set r e fe r e n c e ") , where 2.t = nil and a is an

expression evaluating to the name of some y £ 5 : i f

2 CRF y, then 2 is made to point to y (otherwise, an

error o c c u r s).

Note that for our later implementational convenience we assume remref

is never done when £+ = nil-, s im ilarly , 2. setref a is done only when 2+ =

nil and ct has a non-nil value. Thus an arbitrary statement of the form

2. := a would correspond to the code sequence:

1_f f ni 1 then remref &;

i f a f nil then 2. setref a .

3 .2 . Control events with referencing.

3 . 2 .1 . Extended d e f in it io n s . To support the mechanics of referencing ,

we choose to make the following changes to the specifications of section

2 .1 .2 :

a) invocation■. Assume D(P) = y and y has access to a procedure

closure x = [code (x) , env(x)] . Then an invocation of

x , denoted new x , causes the following actions: a new

instance x of x is created (adjoined to S) , T(x) :=

env{x), x.SC := [code(x), x] , and the operator new

returns x as its value. (A typical application would be

o f the form 2 Setref new X .) Note that in contrast to

2 . 1 . 2 . a , the execution of x does not commence, since P .SC

is unchanged; instead , L *= L union { x } .

b) termination: Assume D(P) = y and y terminates. Then a

detach (y) is done (see (c) be lo w), and y.SC.ip :=

undefined. Note that y is not automatically deleted ;

this w ill be handled more comprehensively in sections 6

and 7 . For our later convenience we denote T = { y e S |

y .S C .ip = undefined } .

c) swap : As indicated in 2 .1 .2 .C , swap is actually a combined sp eci­

fication of two d istin ct control events, coroutine detach­

14

ment and reactivation (c a l l) . In the interest of program

clarity and im plem entability, we follow the lead of

Simula-67 and denote each case separately . Let a be an

expression evaluating to some instance y. Then:

c a l l (a) , for y £ OC: y .SC and P .SC have their values

interchanged. Chain (y) is thereby removed from L,

and appended to the le ft end of the OC.

detac h (a), for y £ OC: y .SC and P .SC have their values

interchanged. C hain (y) is thereby created, and ad­

joined to L.

d) rotate (a , 6) : equivalent to { detach (a); c a l l (3) h

3 .2 .2 . Extended conditions . Our revised control events do not require

any changes to be made to the Cl condition of 2 . 2 .2 . However, some m odifi­

cations are necessary to CS and CR. Moreover, we choose to bu ild in at this

time an added constraint on idle chain reactivations. I t is programmatically

important that dynamic enclosure relationships among instances w ithin an idle

chain be preserved over that c h a in 's creation and reactivation . That i s ,

suppose x i y on the OC, and X £ c h a in (y) = L £ L after a detach (or ro ta te),

i . e . x and y are id led together. Then upon reactivation of L we wish x t y

to hold once more, rather than y * x. This policy may be ensured by con­

straining call to take only arguments which are members of H, i . e . id le chain

head instances.

a) can detach (C D): Suppose detach(a) is to be executed. Then

necessarily :

(CD1) a must evaluate to some y e S (hence is non-nil in

v alu e ;

(CD2) D(P) => T{y) , and

(CD3) y £ OC. ,

b) can call (C C): Suppose ca ll(a) is to be executed. Then

necessar ily :

(CC1) a evaluates to some y £ S ;

15

(CC2) Z?(P) => T(y);

(CC3) y £ H, and

(CC4) y fZ T.

c) can rotate (C R): Suppose rotate(a , 3) is to be executed. Then

necessarily :

(CR1) ot evaluates to some x £ S;

(CR2) 3 evaluates to some y £ Si

(CR3) D(P) => T{x) => T{y)-,

(CR4) X £ OC;

(CR5) y £ H, and

(CR6) y t T .

16

4. IMPLEMENTING REFERENCING

The conditions described in section 3 may be implemented e ffic ie n tly

using a combination of compile-time and run-time checks. We consider each

condition in turn.

4 .1 . CRF.

The referenceability relation CRF has two aspects, as sp ecified in

section 3 . 1 .2 .

*
4 . 1 . 1 . ^ S_. The condition <L CRF y, i . e . t{£) => T{y) , may be checked

at run-time by verify ing that stat(t(2.)) >_ stat(y) - 1 , and that disp (t(£) ,

Stat(y) - 1) = T(y) . Note that i f D{P) CRF 2. (e .g . <L is being accessed

d ir e c t ly) , the test can be made in fixed time through use of P 's display

vector. Otherwise, this test w ill require stat(t(z)) - stat (y) + 1 steps

along the T link sequence from £ (£) .2

4 . 1 .2 . j* E_. The condition D(P) CRF £, i . e . D(P) => £(£) , may be

compile-time checked as per ordinary id e n t ifie r scoping rules.

4 .2 . CC and CD.

The ver ificatio n of conditions (CD1) and (CC1) require simply a non-nil

value check at run-time. Conditions (CD2) and (CC2) can be accomplished as

per section 4 . 1 . 1 . Condition (CC4) is t r iv ia l . Conditions (CD3) and (C C 3),

however, require some elaboration. We assume an H membership b it in each

instance x, denoted H bit(x) , set by new and detach, and cleared by c a ll .

4 . 2 .1 . (C C 3). We implement the test for y z H as a run-time test for

Hbit(y) = 1.

4 . 2 . 2 . (C D 3). Implementing the test for y e OC is more challenging ,

since Hbit(y) = 0 for both y £ OC and y £ L £ L, where y / h (c h a in (y)) .

Stepwise traversal o f the OC looking for y is unattractive, as is the idea

of an OC membership b i t . A better approach exists exploiting Theorem 1 and
*

the fact that (CD3) is only tested when Z?(P) => T(y) .

2In the simple case £:=<$, where 0. and ̂ are accessed d irec tly , no run time

CRF tests are necessary i f stat(t(fa)) < stat{t(Q.)) .

17

*
Suppose D(P) -> T{y) and y e OC is to be v e r ifie d . Consider each yi e OC

such that T{y .) = T(y) , numbered from le ft to right . By (L 0 5) , we have
ie -

D(P) -*■ y2 + • • • ■* T(y) • I f y £ OC/ y = y^ for some 1 <_ i _< k . By

Corollary 1 of Theorem 1 , we find each y. as follow s. Let b = stat(y). Then yn =

disp(D(P) , b) , y^+j = disp(D{y^) , b) for 1 <_i <_k-l, and D (y = T(y) . Hence:

isonOC(i/): { test /o r y e 0C, given D(P) => }

begin z := £ (?) ; foundy := fa lse ;

whi1e z f T(y) and not foundy do

begin z := disp{z3 b)\

foundy := z = y, '

z := D{z)

end;

isonOC := foundy

end .

4 . 3 . CR.

Conditions (CR1-2) and (CR4-6) correspond directly to sim ilar conditions

. * *
discussed in section 4 .2 . We consider now condition (C R 3), D(P) => T (x) =>

Tiy) . In a manner analogous to that for (CC2) and (C D 2), we implement (CR3)

by the following run-time checks: ‘ ~

(i) statiDiP)) >_stat(x) - 1 >_stat(y) - 1;

(i i) disp (D(P) , stat(x) - 1) = T{x), and

(i i i) disp (DU?), statiy) - 1) = Tty).

We observe that a ll these tests can be accomplished in fixed time using P 's

display vector. Moreover, we note that in the special case where rotate (2., ^)

is being done on two reference variables directly accessible from D(P) , steps

(i i) and (i i i) may be elim inated.

Theorem 3. Suppose D(P) CRF £ and D(.P) CRF with ef = a; £ 5 and
* *

= y e S. Then d(P) => T(x) => T{y) i f f stat(x) >_stat{y) .

*
P ro of, clearly T{x) => T{y) implies stat(x) >_ statiy) . Now assume

the latter . By CRF, D(P) => t(e) => T(x) and D{P) => t(£) => T(y) . Now

either D[P) => T{x) => T(y) , and we are done, or D(P) => T{y) => T (x) .

The latter contradicts our assumption of stat(x) >_ stat(y) .

18

As discussed in section 4 .2 , Hbit(a;) may be used to detect immediately

u *
i f x £ n but not i f s £ OC, even given D(P) => T (x) . This d iff ic u lt y is

caused by the possible presence of idle chain subheads, which we now define ;

D e f in it io n . Suppose x £ L £ L, Then x is said to be a subhead of

L i f f x % H and T (X) g l . By Corollary 2 o f Theorem 1 , T(x) = r (h (L)) . .

4 . 4 . 1 . Subhead absence. We now argue that the absence of idle chain

subheads improves the implementability of (C D 3). Further benefits w il l become

evident in sections 6 and 7 .

Theorem 4. I f no subheads exist on chains in i, then (CD3) may be

implemented as an Hbit(y) = 0 test .

P ro o f. Clearly , i f Hbit(i/) = 1, y £ H, so y ? OC. Now suppose
*

D (P) => T(y) and Hbit(zy) = 0 . Then e ither y £ OC, and we are done, or

y £ c h a in (y) £ L. Since T{y) £ OC, y must be either in H or be a sub­

head of chain (y). Both are impossible by assumption.

' 4 . 4 . 2 . Subhead creation . Id le chains with subheads are created when

detaches are done on instances not statically surrounding the currently oper­

ating instance.

Theorem 5_. Suppose D(P) = W => T(y) and a detach is done on y . Then
*

c h a in {y) has no subheads i f f W => y .

P ro o f . Assume c h a in (y) is formed with no subheads. Then y £ H
* *

and for a ll z £ chain (z/) , z -> y . In pa rtic u lar , w => y .

* * *
Now assume w => y . Consider any z such that w * z + y . By Corollary

*
1 o f Theorem 1 , z => y . Hence c h ain (y) has no subheads.

4 . 4 .3 . Preventing subheads. By Theorem, 5 , id le chain subheads can be

. *
avoided, with no other loss o f f l e x ib il it y , by enforcing (CD31) D(P) => y

ie »
rather than (CD3) D(P) => T (y) . This may be achieved, i f desired , in one of

two w ays:

a) By adopting (CD31) , with implementation stat(y) <_stat(D(P)) and

disp(.D(P) , stat(y)) = y, or

4 .4 . Idle chain subheads.

19

b) By expressing detaches in terms of surrounding block labels,

e .g . :

detach {<proaedure identified), and

rotate (<prooedure identified, <referenae expressions .

Option (b) is not only more compilable and avoids awkward run-time

errors, but also yields a more readable, statically comprehensible program

text. Similar conventions are now being advocated for exception handling

in block structured languages.

20

5. RETENTION REQUIREMENTS

In preparation for our discussion of reference-based instance deletion

strategies , we assess the retention requirements imposed by the referencing

and control event conditions described in section 3.

5 .1 . Instance ac cessib ility .

Instances must be retained as long as their presence may be instrumental

to the program 's continued execution. C learly , a ll instances which may b e ­

come active must be retained , as must instances containing variables that

may be accessed from potentially active instances. Such variables are said

to be remotely accessed. ■

To illu stra te , assume that £+ = x, and that i is an id e n t if ie r . Let us

interpret the notation £ . i as denoting the variable declared local to x

under'i (assuming it e x is t s) . Then at least three p o lic ies on the legality

of e .i are po ssible :

Policy (a) : no_remote ac cessib ility is perm itted, i . e . constructs

of the form £ .i are prohibited ;

Policy (b) : single-level remote ac cessib ility is perm itted, i . e .

e .i is permitted i f the variable denoted is not

- a reference v ariable , and

Policy (c) : multi-level remote ac cessib ility is perm itted, i . e .

e . i . f is permitted i f e .i denotes a reference

variable and e . i . f ex ists , etc .

C learly , a severe remote accessing policy such as (a) presents earlier

opportunities for deletion at the cost of programming f le x ib i l it y . Policy

(c) weights these two features in an opposite fashion. Policy (b) provides

an attractive balance, o ffering certain programming conveniences (e .g . the

use of terminated instances as simple data reco rd s), while perm itting reason­

able tim eliness in instance deletion .

21

5 .2 . The sets Act and Ret.

We may formally define the retention requirements in our class of BSCR

languages with the aid of. two subsets of S:

Act: the set of instances which at present are not deletable ,

due to their potential activatab ility (entrance onto

O C) , and

R&t: the set of instances which at present are either potentially

activatable, or are referenceable from a potentially

activatable instance .

By inspection of the control events of section 3 and the remote access­

ing p o lic ies above, we may define Act and Ret to be the smallest subsets of S

satisfy ing the following postulates:

(AR1) Act is a subset of RoX;

(AR2) OC is a subset of Act;

(AR3) x e H and x £ Act implies chain (a;) is a subset of Act;

(AR4) Under remote accessing p o licies (a) and (b) :

£(£) £ Act and £+ j1 nit implies £+ £ Ret;

under policy (c) :

t(£) £ Rut and e+ ? nil implies £+ £ Ret;

(AR5) x £ Rlt and x £ H and x t T and T(x) £ Act implies

x £ Act.

Conditions (AR1-3) are obvious, and (AR4) follows directly from the

d e fin itio n of our remote accessing p o lic ie s . Condition (AR5) embodies (C C 3),

the relevant condition on c a ll , which is the only means by which instances can

become a c tiv e .

5 .3 . Instance deletion and term ination.

We now c larify the meaning of instance deletion and term ination, and

define the ap plicability of such actions in terms of R&t and Act.

22

D e fin it io n . The deletion of an instance x involves its removal

from S (i . e . , the av a ilab ility of its storage for

reuse) . The termination o f x involves a;.SC : =

[undefined, x] , and H b it(x) : = 1 (i . e . , x is made

into a singleton idle chain that is no longer c a l la b le) .

Under policy (a) , we may at any time delete instances

in S - Act.

Under p olic ies (y and (c) , we may at any time delete

instances in S - RoX, and terminate instances in

ReX - Act - T (i . e . , make T = ReX - Act).

As mentioned in section 5.1> policy (a) clearly does present greater

opportunity for instance deletion . However, an "aggressive" deletion strategy

under policy (a) would pose the problem of either locating (and clearing) a ll

references to an instance in RsX - Act prior to its deletio n , or dealing

securely with the problem of "obsolete" references to potentially recycled

storage. For this pragmatic reason, we w ill assume henceforth that policy

(a) is implemented as a variation of policy (b) , with remote accessing pro­

h ib ited .

5 .4 . Properties of RoX and Act.

C learly , the construction of ReX and Act can be done through any order

of application of (AR1-5). For our later convenience in inductive proofs,

we w ill assume that instances enter ReX and AcX one by one , and that the

following ordering is observed:

a) (AR1) has top priority (i .e . i f a; enters Act - Rzt, then it

enters ReX without d e la y) , and

b) when (AR2) or (AR3) are applied , the elements of the chain

enter Act (and, by (a) , Re.t) in right to le ft order.

Given this standard construction method, we have:

23

(AR6) I f a? enters A ct, x = P or_ T(x) £ Act already.

Proof. By (b) above, this order w ill be observed within

chains. An instance x with T(x) % chain (a:) enters Act only

by (AR5), with T(x) £ Act already by requirement.

(AR7) I f x enters Rzt, x - P or T (x) £ Rzt already.

P ro of. We proceed by induction on the assumed construction

order of Rzt and Act. I f x j- P enters RZt by (AR1) , T(x) £ Act

already by (AR6); hence T(x) £ Rzt already by assumption (a) .

Otherwise, x must enter Rzt by (A R 4). No matter which policy

is in e ffe c t , t(Z) £ Rzt already. By CRF, t(Z) => T{x) , so by

induction T(x) £ Rzt already.

Given (AR6) and (A R 7), we can prove the following useful fact.

Theorem 6 . I f policy (b) (or (a)) is in e ffe c t , then (AR4-5) may

be combined as fo llow s :

(AR4') t(Z) £ Act. and £+ ^ rvit implies £+ £ Rzt and _

(Zi £ H and Zf 0 T implies Zf £ Act) .

P ro o f . Since (AR4') includes (A R 4), we need only check that (AR41)

subsumes (AR5) as w ell . (AR5) is crucial to instances that enter Act

by virtue of f ir s t being in RZt. Instances enter Rzt - Act by (A R 4).

On such an occasion we have t (Z) £ Act, with t(Z) => T{Z‘t") by CRF. By

(AR6) , we are sure T(e.+) £ Act, so the remaining conditions for (AR5)

may be incorporated directly into (AR4') .

24

6. SCOPE-BASED REFERENCE COUNTING

6 .1 . Overview. '

Wang and D ahl 's deletion strategy V (section 2 .2 .3) provides for the

deletion o f T(x) upon the termination of x. With the introduction of re fe r ­

encing, V is no longer appropriate because:

a) terminated instances may no longer be automatically deleted i f

remote referencing is perm itted, and

b) other opportunities for deletion can be occasioned by remref

operations and detaches that are de facto terminations

due to loss o f instance ac cessib ility .

In this section we define a new deletion strategy V exploiting a form

of scope-based reference counting. While V is economical and incremental,

it is not complete in the sense that some deletion opportunities may be

overlooked (namely, those involving c ircular references of a particular form).

Section 7 deals with a companion strategy V" that ameliorates this short­

coming through a form of scope-based garbage collection .

6 .2 . Ext f ie ld s .

References to an instance X from outside T (x) have a greater retentive

influence on x than do those from w ithin T (x) . For this reason, we choose

to count such instances in a f ie ld ext(x) . Thus:

ext(x) = |{ e | e+ = x and t(z) ?> x }|

6 . 2 .1 . M aintaining ext f ie ld s . For each x e 5 , ext(x) may be maintained

economically as fo llow s:

i) new: ext(x) : = 0 upon creation of X;

i i) 2. setref a , where a evaluates to x:

i f stat{t{&)) < stat(x) or disp{ t{ £.) , stat(x)) ? x

then ext(x) := ext{x) + 1 , and

i i i) remref e , where £+ = x:

i f stat{t{2.)) < stat(x) or_ disp(t(e.) , stat(x)) f x

then ext(x) := ext(x) - 1.

25

Again we observe that i f D(P) CRF £, actions (ii) and (i i i) each take

fixed time through the use of P 's display vector. .

6 . 2 .2 . Exploiting ext counts. The u t ility of ext counts in detecting

deletion and termination opportunities may be seen by the following theorems.

Theorem 1_. x e H and ext(x) = 0 implies x £ ReX.

Proof. Since P f. H, the proposition is tr iv ia lly true for

X = P. We proceed by induction on the assumed construction order

of ReX and AcX. Consider the moment when x enters ReX. I f it

enters by (AR3) and (A R 1), X £ H. Otherwise, it must enter by

(AR4) , with t(e.) £ ReX already and = x. I f t (e) =/> x < ext{x) > 0
*

because of e.. Otherwise, t (e) => x, so x £ ReX already by (AR7) , a

contradiction.

Corollary 1_. I f x £ H and ext(x) - 0 , T(ar) and ReX are d is ­

jo in t .

P roof. Follows directly from Theorem 7 and (A R 7).

Corollary 2 . I f x £ H and ext(x) = 0 , chain (a;) and Act

are d is jo in t .

P ro o f. By Theorem 7, x ReX, hence x £ Act. By (AR3) and (AR5) ,

chain [x) and Ac.t are then necessarily d is jo in t .

Corollary 3. I f x £ H and ext(x) = 0 , T(x) may be deleted

and for each subhead y £ c h a in (x), T(y) may be deleted i f ext(y) =

0 and terminated otherwise. .

P roof. By Corollary 1 , x(a:) is d is jo in t from ReX and may be

deleted . By Corollary 2, y 0 AcX for each subhead y £ chain (a;) .

Hence T (y) may be terminated. I f ext(y) = 0 , T (y) may then be

deleted since y w ill then be a head instance (of a singleton c h a in) .

6 .3 . V1 invariants .

Before describing the operation of V in d e ta il , we specify its desired

behavior through a l is t of invariants that are to be preserved (in addition-

to (LOl- 4)) :

26

for all e £ E, et = nil or et £ S.

I I * . |

for a ll x £ S, ext(x) = |{ e £ E | t(£) ?*> x: } | .

for a ll L £ L, ext(h (L)) > 0 .

for all x £ T,

a) Z? (ar) =

b) t(x) is a subset of T, and

•c) i f policy (b) is in effect, for all £ £ E such that

t(£) = r , et = nil.

6 .4 . Opportunities under U r.

Given properly maintained ext count f ie ld s , the instance deletion and

termination opportunities provided by Theorem 7 and its corollaries may be

exploited as fo llow s.

6 . 4 .1 . Detection . There are three occasions upon which the conditions

for V can apply .

i) remref <L, with e.+ = X: i f ext(x) is brought to zero and x £

H, we may delete x(a;) and terminate x(z/) for each

subhead y in c h a in (X) .

i i) detach a , with a evaluating to X: i f ext(x) = 0 , we may again

' delete T(a;) and terminate T(y) for each subhead y in the

newly created c h a in (x) .

i i i) terminate, with D(P) = X: i f ext{x) = 0, we may delete t(x)}

' otherwise, we may terminate T {x) .

6 .4 .2 . E f fe c t s . The reference counting assumed under V requires

certain effects in instance deletion and termination beyond those defined in

section 5 .3 . We sharpen these specifications here, in preparation for their

algorithmic accomplishment in section 6 .5 .

i) x(a?) deletion'.

* .
a) for a ll e such that t(z) => x, i f £+ ^ nil and

*
et ?*> x, remref e.

(RCl)

(RC2)

(RC3)

(RC4)

27

i i) t(x) termination-.

a) i f ext(x) = 0 , delete r (x) . Otherwise:

b) Under policy (b) :

1) for a ll <l such that t(e) = x, remref <L}

2) for a ll y such that T(y) = x, delete T (y), and

3) terminate x.

c) Under policy (c) :

1) for a ll y % T such that T(y) = x, terminate T (y) , and

2) terminate x.

6 .5 . Implementing V .

The processes o f T-tree deletion and termination sp ecified above are

highly recursive. Not only are they statically recursive in traversing T (x),

but also dynamically recursive due to rippling e ffe c ts . That i s , the dele ­

tion o f T (x) may cause the deletion (or termination) o f a d isjo in t T(y) to

be triggered through a remref operation w ithin T (x) . Moreover, the termina­

tion of T (x) can cause under policy (c) the cascaded deletion of several

subtrees of T (x) in unpredictable order. These effects can cause not only

bookkeeping problems but uncontrolled space requirements i f not carefully

implemented.

6 . 5 . 1 . The worklist W. For these reasons we implement T-tree deletion

and termination as cooperating algorithms processing a queue of instances

needing their attention . We term that queue the worklist W. Fortunately,

a ll such needy instances can relinquish their previous chain membership, so

we can implement W as a special pseudo-chain, with its front ("head ") pointed

to by Wfront, and its rear by D(Wfront). Then:

i) i f x £ W with ext{x) = 0 , T {x) is to be deleted ; otherwise,

T (x) is to be terminated.

ii) we assume W is sorted such that stat(x) >_stat(D(x)) for x £

W and x not at the front of W.

b) for all y £ T (x) , remove y from S.

28

6 . 5 . 2 . Seeding W. Instances enter W through one of the three occasions

sp ecified in section 6 . 4 . 1 . By examination of these conditions, we observe

that one common algorithm s u ffic e s : queuechain (f ig . 1) . We assume that each

such program event causes a queuechain invocation, followed by processqueue.

Rippled remrefs may cause further W loading (via Schedule), but these are

handled in due course by the same continuing processqueue execution.

6 . 5 . 3 . Representing T (x) . We assume each instance x has two link fields

deso and sib, representing T(a;) as follows. Suppose x has k descendants y .,
"Is

each such that Tty.) = x. Then:
'L'

i—1
sib (desoix)) = y ., 1 < i < k, and

k
sib {desc(x)) = nil.

' While this unidirectional linking of siblings w ill occasionally cause

in e ffic ienc y when "random" deletions are to be done, such occurrences w ill

be kept to a minimum. The alternative is b id irectional linking , which we

judge to be unnecessary.

6 . 5 . 4 . T-tree d e letio n . The implementation o f deletetree (x) is given

in f ig . 2 . We make the following observations:

i) Only x i t s e l f w ithin T (X) requires a random deletion from a

s ib lin g l is t .

ii) The two pass nature of deletedesc is required so that accesses

of stab (ft) do not occur after £+ has been destroyed. I f

each 2 carries stat(z^) as part o f its value, or i f one

may be sure the space possessed by instance £+ cannot

immediately be reallocated, the two passes can be merged.

i i i) For e ffic ien cy , we implement deletedesc recursively . The depth

of recursion is lim ited by the program's maximum static

depth, and therefore represents a known space requirement.

iv) Since W is sorted by nonincreasing stat order, W and t (x) are

d is jo in t . Hence we are free to delete any y e T(x) w ith ­

out affecting W.

29

queuech ain (x): {x a head instance; x and subheads
of chain(x) are to be inserted into W}

begin local y , z ;

1 := D (x) ; {make z point to left end of chain(x)}

schedule (x); {sort x into W}

loop y := d is p (z , s t a t (x)) ; {y := next subhead (or x)}

exit i f y=x ;

z := D (y) ; .

D (y) := D (x) ; D (x) := y {insert y in front of x on W}

end;

H b it(x) := 0 {prevents rescheduling of x}

end

processqueue : {process W doing tree deletions and/or termina­
tions until W is empty}

begin local y ;

while W front/nil do

begin y := D (W front); {remove leftmost element of W]

rf y=Wfront then W front:=nil

else D(Wfront) := D (y) ;

i f ext (y)= 0 then

deletetree(y)

else term inatetree(y)

end

end

Fig . 1_. V' worklist management (Schedule code omitted) .

30

d e le te tr e e (x) : {delete all y such that y=>x}

begin deletedesc(x , x) ; { process descendants of x}

remove(x, T (x)) ; {do "random” removal of x as desc. of T(x%

destroy(x) {reclaim x's storage}

end

$
deleted esc (z , x) : {given z=>x, clear all refs in t (z) departing

t (x) j and destroy t (z) except z;
all y referenceable from x(z) still exist}

begin local w, y ;

c le a r r e fs (z , x) ;

y := d e s c (z) ;

while y ^ nil do {process descendants of z}

begin de1etedesc(y , x) ; y := s ib (y)

end;

y := d e s c (z) ;

while y^nil do {destroy immediate descendants of z}

begin w := s ib (y) ; destro y (y);

y := w •

end;

desc (z) := ni 1

end

c le a r r e fs (z , x) : {given z=>Xj clear all refs in z departing x(x)}

begin local e ;

for each e such that t (e)= z do

vf e t^nil then

if s ta t (e+)£ stat (x) and e+^x then remref e

end

Fig . 2_. Tree deletion within V (remove and destroy code omitted) .

31

v) Since queuechain is invoked only on idle chain heads, and e le ­

ments of W are no longer in H, any instance scheduled via

a rippled remref action must currently be unscheduled.

vi) A t (.x) scheduled for termination may in fact be ready for

deletion when reached by processqueue i f ext(x) = 0 by

that time. I f so, deletion occurs rather than termination.

6 . 5 . 5 . Tree term ination, in contrast to deletetree , term inatetree(x)

can cause subtree deletions within j(x) in unpredictable order (f ig . 3) . For this

reason, we exploit the w orklist W to process such rippling effects rather

than through recursion. Again, the static depth order imposed on W is

crucial, so that we neither delete instances while scheduled, nor schedule

them redundantly (thereby malforming W) .

6 . 5 . 6 . E f f ic ie n c y . As observed above, the space required for the

operation of V is proportional to the maximum program static depth. This

remains true even i f for speed purposes we maintain a Wdisplay vector p er­

m itting fixed-time insertion into W.

The time required under V is linear with respect to the number of

instances deleted or terminated, except for:

i) occasional random removals from descendant lists (remove in

d e le tetre e), and

ii) the examination (once) of each of the previously terminated

immediate descendants of each newly terminated instance.

32

term inatetree (x): {terminate t (x)}

begin local y ;

term (x); {terminate x itself}

y := d e s c (x) ; {nil i f policy(b) holds}

while y / nil do {use W for deso. needing term./del.}

begin i f e x t (y)= 0 or y .S C .i p ^ undefined then

schedule (y);

y := s ib (y)

end '

t e r m (x): {terminate x} i.e . make into non-CALLable singleton chain}

begin x .S C .ip := undefined;

D(x) := x;

H b it (x) := 1;

i f po licy (b) then {only x need be retained}

deletedesc(x , x)

end

Fig. 3. Tree termination in V .

7. SCOPE-BASED GARBAGE COLLECTION

7 .1 . Overview.

Deletion strategy V just described offers incremental storage reclam­

ation at reasonable space and time cost. I f sibling reference cycles are

not created, or i f the parents of such siblings are deleted (or terminated

under policy (b)) before space exhaustion occurs, V suffices permanently.

However any complete implementation of the control forms under discussion

must provide a back-up mechanism for detecting such cycles and deleting

them through a thorough search for sets Ret and Act-

In this section we present V " , a mark-sweep or garbage collection

approach to this problem. While an implementation may rely solely on V " ,

we w ill assume V" supports V and therefore must observe invariants (RC1-4)

of section 6 .3 . As is the case for V ' , V" exploits the structure of t (P) to

economic advantage.

7 .2 . Marking.

We offer two approaches to Ret and Act marking. The first , Mark!,

directly implements the search implicit in (AR1-5). The second, Mark2, is

optimal in space and time but fails in the special case of the combined

presence of multi-level remote accessing and idle chain subheads.

7 . 2 . 1 . Markl. Let us assume the existence of two unused bits in each

instance x ; ret(x) and act(x) , all zero between mark-sweep activations.

Then Markl, given in fig. 4, sets ret(x) = 1 i f f x e Rzt, and act(x) = 1

i f f x £ Act. Mark! may be appraised as follows:

i) the space requirement of Mark! may be criticized because:

a) two bits are needed per instance, and

b) the mutual recursion between Setret and Setact is

bounded only by |Rg.<t| . (A link permutation

scheme along the lines of [20] might offer an

iterative solution at the cost of added com­

plexity .)

34

s e t r e t (x) : {mark xzRet (if not already) <$ pursue consequences}

i f ret(x)=0 then

begin local e ;

ret(x) := 1;

i f policy (c) then {(AR4)}

for all e such that t (e)= x do_

i f e i / n i 1 then setr e t (e +) ;

i f x^P and H b it(x)= l and x .S C .ip ^ undefined and

a c t (T (x))= l then setact(x) {(AR5)}

end

s e t a c t (x) : {mark xzAct (if not already) <$ pursue consequences}

i f a c t (x)= 0 then

begin local y , e ;

ac t(x) := 1; s e tr e t (x) ; {(AR1)}

i_f H b it(x) = l or x=P then { (A R 2 - 3) }

begin y := D (x) ;

• while y?x do

begin se ta c t (y); y := D(y)

end

end ;

rf policy (b) then {(AR4)}

for all e such that t (e)= x do_

i f e-t̂ ni 1 then s e t r e t (e +) ;

y := d e s c (x) ;

while y^nil do {(A R 5)}

begin i f ret(y)=1 and H bit(y)=l and y .S C .i p ^undefined then

se ta c t (y);

y := s ib (y)

end

end

Fig- £• Fully general R zt and A at marking under V " starts with setact(P).

35

ii) the time requirement of Mark! may be c r it ic ize d because the

loop in setact implementing (AR5) prevents Mark! from

running in time proportional to the number of instances

marked.

7 . 2 .2 . Mark2. Despite these shortcomings of Mark!/ no better marking

algorithm has been found for the general case. I f , however, we assume either

the absence of id le chain subheads or the prohibition of multi-level remote

accessing , another approach exists which is " id e a l " in the following senses:

i) only one mark b i t , mark(x) , is used in each instance x",

i i) a purely iterative algorithm s u ffic e s , using only a fixed set

of working variab les , and

i i i) the algorithm runs in time proportional to the number of in ­

stances marked.

In a manner sim ilar to that used in queuechain (section 6) , Mark2 (f ig . 5)

uses a w orklist W of instances scheduled for processing. However, instances

enter W by complete chains, rather than indiv idually as in queuechain.

Although such chains must retain their integrity after processing, they can

temporarily be concatenated together with boundaries marked by the Hbit of each

"head" instance. I n it ia l l y , the OC is put on W. Then:

i) we work through W from le ft to r igh t , marking the current

instance x and examining its referenced instances y .

■ i i) each unmarked such instance y i s :

a) marked, and

b) i f y is a head instance , c h ain (y) is put on W.

i i i) whenever the current instance X has H b it (x) = 1 , we reform

c h ain (x) as an idle chain. ■

iv) when W is about to become empty, we h alt .

7 .3 . V alidating Mark2.

We w ill now argue the correctness of Mark2. First, three definitions.

36

Mark2: {,Single bit3 iterative marking algorithm}

begin local front, rear, x , y, e ;

front := P; rear := D (P) ; x := rear; {OC established as W}

loop mark(x) := 1 ;

for all e such that t (e)= x do

i_f e f^ nil then

i_f m ark(et)=0 then

begin mark(e+) := 1 ;

i f H b it (e f)= l then

begin {splice chain(ei) at front of W}

y := D (e +) ; D (et) := rear;

. D (front) := y ; front := et

end

end

exit i f x=front;

i f H b it(x) = l 0£ x=P then

begin {reform chain(x)}

y := D (x) ; D(x) := rear; D (front) := y ;

rear := y ; x := y

end

else x := D(x)

end

end

F ig . 5_. Special case R&t marking under V" .

37

WAZt = { a : | x e W at some time during Mark2 }

MaJikzd = { x | mapkix) = 1 after- Mark2 terminates }

R(Qj , where Q_ is a subset of S:

{ x | for some £ such that t(Z) E ^ et = x £ S }.

The validation of Mark2 involves proving (a) its term ination, and (b)

that MaAhzd. = Rzt. The proof o f (a) is t r iv ia l since W expands only when

new chains are marked. We prove (b) under each of the two alternative pre­

conditions o f Mark2.

7 . 3 .1 . Mark2 under policy (b) .

Lemma 1 . I f policy (b) holds, Wizt is a subset of Act union

T intersect Rzt.

P ro o f. By induction on chains brought onto W. In it ia l ly , W =

OC, a subset of Act by (AR2) . Now consider L £ L brought onto W-.

N ecessarily , h (L) = et for some t(Z) £ W. By induction, t(Z) £ Act

or t(Z) £ T . Clearly t(Z) % T since R (T) = 0 under policy (b) . Hence

t(Z) £ Act, and by (AR4') we have et £ Rzt and either et £ T or et £

Act. I f et £ T then et is a singleton chain; otherwise, L is a subset

of Act by (A R 3). In either case, the induction is complete.

Lemma 2. I f policy (b) holds, Mcudzzd is a subset o f Rzt.

P ro o f. By inspection of Mark2, we observe that MaAkzd = W6Zt

union R((llAzt) . By Lemma 1 and the defin itio n of R we have MCUikzd = a

subset of Act union T intersect Rzt union R(Act) union R(T intersect Rzt) .

Each of these terms is a subset of Rzt by either (AR1-4') or policy (b) .

Lemma 3_. I f policy (b) holds, Act is a subset of WAZt.

P ro o f . By induction on applications of (AR1-AR41) that bring in ­

stances into Act. Clearly OC is a subset of Act. Assume that a l l y

currently in Act are in WAZt. I f x joins Act by (A R 3), necessarily

x ¥ h (c h a in (x)) / already in Act. Hence h (chain(a;)) £ W&Zt, and so is x.

38

Otherwise, x must join Act by (AR41) , with some tie.) £ Act already

and £+ = X, x £ H. By induction t(e) £ WAeX, so chain (a;) w ill enter

W when t(2.) is current, i f not e a r lie r .

Theorem 8_. I f policy (b) holds , ReX = UaAk&d.

P ro o f. By Lemma 2 , MaAkcd is a subset of ReX. I t remains to show

ReX is a subset o f MaJiked. By (AR1-4') , ReX = AqX union R(Act) . By

Lemma 3, AcX is a subset o f W-ieX, which is a subset of MaAked. S im ilarly ,

R(AcX) is a subset o f R(£tf6£-t) , which is a subset o f Ua/iked.

7 .3 .2 . Mark2 under subhead p ro h ib it io n .

Lemma 4. X £ itlAeX implies X = P or_ T (x) £ W6eX. -

P ro of. Follows readily by CRF and induction on instances entering W.

Lemma 5_. I f subheads are prohibited , McUlked = WAZt.

- P ro o f. By inspection of Mark2, W6eX is a subset of Marked. We now

show that Mcvdzed is a subset of WAeX, Consider x £ MOJiked - Wt>eXm

Necessarily for some £(£) £ W6e.tt e+ = x & H. By CRF, t(z) => T (x) ; by

Lemma 4 , T (x) £ W&eX. i f T (x) £ chain (a;) , x £ WAeX, a contradiction .

Otherwise ^ is a subhead, also a contradiction.

Theorem 9_. I f subheads are prohibited , MCUiked = ReX.

P ro o f. By Lemma 5 , we may prove W-beX = ReX. Clearly from Mark2,

mex is a subset of ReX. To show Ret is a subset of W&etr we argue

inductively on the formation of ReX. In it ia l ly ReX = OC, in Wi>eX by

in it ia liza t io n of W. Consider now X # OC entering ReX, under the induc­

tive hypothesis that ReX thus far is a subset of W&et. If x enters Ret

by (A R 4), t(z) £ ReX already and e+ = x. Hence t(£) £ WAeX, implying

x £ Manked, implying x £ W-ieX by Lemma 5 . Otherwise, x must enter ReX

by (A R l) , implying by our standard construction order that already

h (chain(a ;)) e Act and h (chain(a ;)) £ ReX. By induction, h (chain(a :)) £

WAeX, implying x £ W6eX.

39

The rules for instance deletion and termination given in section 5 .3

provide that at any time we may:

delete S - Ret, and

terminate Ret - Act - T-

We now examine efficient means for accomplishing this storage regeneration

given simply knowledge of RCt and T. Ret may have been determined either

by Markl (ret(x) = 1) or Mark2 (mark{x) = 1); notationally, we assume the

latter. T is , of course, characterized by x.SC.ip = undefined.

7 .4 .1 . The set M. Let the set of instances needing termination (i .e .

Rzt - Act - T) be called W. We now prove an important property of W per­

mitting its recognition without explicit knowledge of Act.

Lemma 6. x £ M implies x yt P and (T{x) £ W or_ I is a subhead) .

Pro of. Clearly x £ W implies x f. Act, so x / P . Hence T{x)

exists and is in Rlt - T by (AR7) and (RC4b). I t remains to show

T(x) Act or X is a subhead. I f x £ H, T(x) & Act by (AR5) since

X % Act. Now suppose x H; i f x is a subhead, we are done; other­

wise T(x) £ c h a in (X) and again T(x) & Act since chains are each either

entirely in Act or entirely d is jo in t from Act.

7 .4 .2 . Sweeping with no subheads. Lemma 6 leads directly to the follow ­

ing useful fact :

Theorem 1 0 . I f idle chain subheads are prohibited , M is empty.

Given Theorem 10 , i t is worthwhile to implement sweeping under subhead

prohibition as a special case. Sweepl, given in f ig . 5 , provides an e ff ic ie n t

approach that is scope-based, i . e . involves traversal of x (P) . Since we are

assuming £)" is being implemented in support of V' f V" must decrement ext

counts when destroying references to members of Ret. However, during the

operation of p" we do not wish V' to be triggered, so we assume Schedule

calls w ithin remref are bypassed. As in deletedesc, we are cautious not to

delete any instance that may later have its ext count decremented; hence

two passes through each descendant l is t are used. This would not be necessary

7 .4 . Sweeping.

40

sw eep l(x): {fast sweep algorithm, applicable i f no subheads;
given x £ Ret, delete yer(x) with mark(y)=0;

clear all mark bits except that of x;

. all z referenceable from within x(x) still exist}

begin local w , y , z ;

{recursion and ref clearing pass over desc. list of x}

y := d e s c (x);

while y foil do

begin i f mark(y)=0 then {y % Ret}

deletedesc(y , y)

else sw eep l(y);

y := s ib (y)

end ;

{deletion and mark clearing pass over desc. list of x}

y : = d e s c (x) ; z := x ; {z trails y cm desc. list of x}

while y^n i 1 do

begin w := s i b (y) ;

i_f mark(y)=l then {y e Ret}

begin mark(y) := 0 ; z := y

end else {y £ Ret}

begin sp lic e o u t (y > z) ; {remove y from list, using z}

destroy(y)

end;

, y := w

end ’

end

F ig . 5_. Special case sweeping under V starts with SWeepl(P).

41

The performance of sweep 1 is excellent, since its time requirement is

linear with |S| (despite the two-pass approach), and its space requirement

is bounded by the maximum static depth of the program.

7 .4 .2 . Sweeping with subheads. I f idle chain subheads are possibly

present, we must see to the termination of W instances. However, this may

s t i l l be done in a scope-based manner, as shown by the following theorem:

Theorem 1 1 . I f T(x) e Rzt - W, then x z W i f f (i) x e Ret,

(i i) x is a subhead, and (i i i) h (c h a in (x)) £ Ret.

P ro o f, i f T{x) e Ret - W, T(x) e Act or T{x) e T . i f T{x) e T ,

X g N and x e T implying X is not a subhead. We now assume T{x) £

Act, and show both sides of our equivalence.

Suppose x £ H. Then (i) x £ Ret, and (ii) J is a subhead by

Lemma 6 . Since x £ T, h (c h a in (x)) % T; i f h (c h a in (x)) ■ £ Ret then it

would be in Act by (A R 5), as would x by (A R 3). Thus (i i i) is established .

Now suppose (i) - (i i i) hold . By (i) x £ Ret; by (ii) x £ T since

T members are singleton chains. By (i i i) h (c h a in (x)) % Act, so x Act.

Hence x £ W. '

By Theorem 11 , we can recognize "top-level" N instances by searching for

marked subheads on chains with unmarked heads. I f these are terminated as

encountered, lower level M instances may be detected by the anomalous condi­

tion of T(x) £ T and x i T .

The search for such top-level W instances can be incorporated into

Sweep 1 as an extra phase performed on the descendants of x when x £ Ret - W -

T (see the revised algorithm SWeep2 in f ig . 6) . Note that this search cannot

be combined into the existing phases of Sweep 1, since we cannot recognize a

subhead y a fter c h a in (y) has begun being broken up.

To estimate the speed of SWeep2, let us assume for the moment that disp

computations can be done in fixed time (e .g . each instance contains its own

display v e c to r). Then despite the two nested loops new to Sweep2, time

linear with |S| remains. This is because w ithin the overall computation of

i f V" were being implemented alone.

42

sw eep2(x): {same conditions as SWEEP1, except that idle chain
subheads are -permitted}

begin local w, y , z ;

i f x .S C .ip ^ undefined then

i f x?*P and T (x) .S C .ip = undefined then

term(x) {rippled termination}

else {look for w=>x needing termination}

begin y := d e s c (x) ;

while y ^nil do

begin i f H b it (y)= l and mark(y)=0 then

begin {terminate marked subheads of chain(y)}

z := D (y) ;

loop w := d is p (z , s t a t (y)) ;

exit i f w=y; {w is next subhead (or y)}

z := D (w) ;

i f mark(w)=l then

term(w)

end

. end ;

y := s ib (y)

end

end;

I {remainder is code of SWEEP13 but with recursive call
replaced with call on SWEET2}

end

Fig . 6_. Fully general sweeping under V " ; starts with SWeep2(P).

43

SWeep2(P), the outer loop is executed at most once for each y E S, and the

inner loop is executed at most once for each head and subhead in S . I f

disp requires T-link searching we must include this time factor, bounded

by the maximum static depth of the program. The space for Sweep2 is the

same as that for Sweep 1.

44

8. SUMMARY AND FUTURE WORK.

8 .1 . Summary.

Using the control description approach of Wang and Dahl as a base , we

have explored the effects of static program structure on BSCRs in a compila­

tion-oriented setting . Conditions on instance reference assignment (CRF)

and indiv idual control actions (C l, CC, CD, CR) were defined and implemented.

The retention requirements of our class of BSCR languages were postulated , and

used as the formal basis for the development of two compatible deletion

strateg ies . The f i r s t , P ' , uses scope-based reference counting to incremen­

tally detect instance deletion and termination opportunities. The second, V",

does mark-sweep garbage collection to reclaim isolated cyclic structures

overlooked by V '-

The results obtained here suggest that detach operations in BSCR languages

should refer to program units statically surrounding the currently operating

instance. I f this design choice is made, then our implementation approaches

for both condition testing and instance deletion are highly e ff ic ie n t in both

space and time.

8 .2 . Future work.

One omission in this work is the consideration of reference-valued param­

eters . I f , however, these are either excluded or made to obey CRF, our results

stand. I t may w ell be fru itfu l to explore design choices intermediate between

this extreme and that of unrestrained reference passage v ia param eters. One

approach might be the e x p lic it declaration of which references can be exported

or imported; such constructs are now being advocated as a means toward better

program modularization.

Another area for continuing work concerns the adaptation of these results

to execution environments involving true concurrency [13]. Some preliminary

studies have indicated that process reference counting is preferable to garbage

collection , in light of the la t t e r 's apparently greater need for centralized

control [18]- How scoping issues could be exploited in this setting remains

unknown.

45

Fin ally , additional work is merited on the notion of control d iscipline

necessity given particular implementation s tra teg ie s . This line of inquiry

reverses that explored in this paper, in which sample d isc iplines were shown

to be sufficient to safeguard the correctness of an implementation strategy

[15]. With insights in this direction , important questions such as the class

of BSCR programs for which V" is superfluous might be approached.

46

REFERENCES

2.

3.

4 .

5.

6.

7.

8 .

9 .

10.

11.

12.

13.

14.

15.

16.

17.

1. Baker, Henry G ., J r . , and Carl Hew itt, "The incremental garbage collection

of p ro c esses ," Proc. Symp. Al & Prog. L a n g ., SIGPLAN Notices 12 ,8

(Aug. 1977) 55-59.

Berry, D .M ., L .M . C h irica , J .B . Johnston, D .F . Martin, and A . Sorkin ,

"Time required for reference count management in retention block-

structured languages," I n t ' l . J_. Comp. & I n f . S c i . , Part 1 : 7 ,1

(1978) 11-64; Part 2 : 7 ,2 (1978) 91-119.

Berry, D .M ., and A . Sorkin , "Time required for garbage collection in

retention block-structured languages," I n t ' 1 . J_. Comp. & I n f . S c i .

7 ,4 (1978) 361-404.

Bobrow, Daniel G . , and Ben W egbreit, "A model and stack implementation

of multiple environm ents," Comm. ACM 1 6 ,1 0 (Oct. 1973) 591-603.

C lin t , M . , "Program proving: c oroutines ," Acta I n f . 2 (1973) 50-63.

Conway, M .E .., "Design of a separable transition-matrix com piler," Comm.

ACM 6 ,7 (July 1963) 396-408.

Dahl, Ole-Johan, "An approach to correctness proofs of sem icoroutines,"

in Programming Methodology, Springer-Verlag (1978) 116-129.

Dahl, Ole-Johan, B . Myhrhaug, and K . Nygaard, "SIMULA-67: common base

language ," Norwegian Computing Center Publ. S-2, Oslo (1 9 6 8).

Friedman, Daniel P . , and David S . W ise, "CONS should not evaluate its

arguments," Tech. Rpt. 44 (Nov. 1 9 7 5) , Dept, of Comp. S c i . , Indiana

Univ.

Griswold, Ralph E . , and David R. Hanson, "Language fa c ilit ie s for pro- '

grammable backtracking ," Proc. Symp. Al & Prog. L a n g ., SIGPLAN

Notices 1 2 ,8 (Aug. 1977) 94-99.

Hanson, David R . , and Ralph E . Griswold, "The SL5 procedure mechanism,"

Comm. ACM 2 1 ,5 (May 1978) 392-400.

In g a lls , D . , "The Smalltalk-76 programming system ," Pro c . 5th Symp.

P r in c . Prog . Lang . , Tucson (1978) 9-16.

Kahn, G ille s , and David MacQueen, "Coroutines and networks of parallel

p roc e sses ," IRIA/LABORIA Research Rpt. 202 (Nov. 1 97 6).

Krieg , B e m d , "A class of recursive c oroutines ," IFIP Congress 7 4 , North-

Holland (1 9 7 4) , Software Booklet 408-412.

Lindstrom, Gary, and Mary Lou S o ffa , "Control d isc ipline necessity : making

the language as general as the im plem entation," forthcoming tech.

r p t . , Dept, of Comp. S c i . , Univ. of Utah.

McDermott, Drew, and Gerald Jay Sussman, "The CONNIVER reference m anual,"

MIT Al Lab Memo 259 (May 1 9 7 2).

Mcllroy, M. Douglas, "Coroutines: semantics in search of a sy n tax ,"

unpublished manuscript (1 9 6 8).

47

19.

20.

21 .

22.

23.

18. N ori, Anil Kumar, "A storage reclamation scheme for Applicative M ulti­

processing System AMPS," M .S . thesis (Sept. 1 9 7 9) , Dept, of Comp.

S c i . , Univ. of Utah.

Randell, B . , and L .J . Russell, Algol 60 Implementation, Academic Press

(1 9 6 4) . .

Schorr, H . , and W .M . W aite , "An e ff ic ie n t machine-independent procedure

for garbage collection in various l is t stru ctu res ," Comm. ACM 8 ,1 0

(Aug. 1967) 501-506.

van Wijngaarden, A . , B .J . M ailloux, J .E .L . Peck, C .H .A . Koster, M.

S in tzo ff , C .H . Lindsey, L .G .L .T . Meertens, and R .G . F isker , "Revised

report on the algorithmic language Algol 6 8 , " Algol B u l l . 36 (March

1974) . *

Vanek, Leonard I . , "H ierarchical coroutines: a mechanism for improved

program stru ctu re ," Tech. Rpt. 99 (Feb. 1 9 7 9), Comp. Sys. Research

Group, Univ. o f Toronto.

Wang, Arne, and Ole-Johan Dahl, "Coroutine sequencing in a block-structured

environm ent," BIT 11 (1971) 425-449.

48

