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Figure 1: (Le ft) Summary plot of temperature data and (R ight) covariance information between temperature and humidity data.

A b s t r a c t

Traditionally, statistical summaries o f categorical data often have 
been visualized using graphical plots o f central moments (e.g., 
mean and standard deviation), or cumulants (e.g., median and quar- 
tiles) by box plots. In this work we reexamine the box plot and its 
relatives and develop a new hybrid summary plot that combines mo
ment, cumulant, and density information. In view of the important 
role o f plots in decision making, our work focuses on incorporating 
additional descriptive parameters while simultaneously improving 
the comprehensibility of the summary plots using advanced visual 
techniques. In many complex situations providing a comprehensive 
view of the data requires additional summary characteristics, there
fore, we submit that these additional parameters, like higher-order 
central moments can be valuable elements o f multi-dimensional 
summary displays.
CR Categories: G.3 [Probability and Statistics]: Multivariate 
Statistics [1.6.9]: Visualization Information Visualization, Vi
sualization Techniques and Methodologies
Keywords: Summary Statistics and Plots

1 I n t r o d u c t i o n

As the sophistication of scientific simulation and measurement de
vices increases, so too docs the quantity o f data generated. In re
cent years, we have witnessed an unprecedented demand for the vi-
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sual analysis o f ever higher resolution datasets. Examples include 
large-scale simulations of important physical phenomena and 3D 
radiological scans o f the human body. A clear understanding o f im
portant characteristics in the data through direct inspection is not 
practical. As such, summary techniques play an important role in 
data analysis by extracting salient features or descriptors, which 
can then be presented graphically. This distillation o f the data al
lows the scientist or decision maker to understand and interpret the 
essential structure data by providing a direct visual, yet quantita
tive comparison of categories and a global overview of the entire 
dataset.

Cumulant statistics, such as median and quartile values, arc 
among the most commonly used summary statistics. These statis
tics partition the data into equally sized groups, revealing insights 
into the layout o f the data such as the range of values and where 
the ma jority o f the data lie. While these quantities arc important, 
they do not provide information about more subtle yet equally im
portant characteristics o f the data set such as whether the data is 
peaky or skewed. I lighcr order moments, however, do indicate this 
kind of information and thus arc useful in summary plots. Addi
tionally, density information, if available, should be included with 
a data summarization.

Creating a summary plot style that clearly conveys essential 
structures is difficult when additional information is included. Typ
ically, the box plot [ 15] is used to convey the quartile range o f a data 
set. The principal advantage of the box plot is its elegant simplic
ity o f design. Overlaying large amounts o f information on top of 
the box plot leads to visual clutter that diminishes the effectiveness 
of the summary. In this work, we have abbreviated the box plot 
and created moment glyphs designed to reduce visual clutter while 
staying highly informative. The presentation relics on the presence 
of redundant visual information to reinforce interpretations as well 
as ensure that our presentation method remains informative, even if 
some of the statistical modalities arc missing. Our goal is to create
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a highly informative summary plot that maintains the acsthctic ap
peal of the box plot while introducing additional parameters which 
provide insight into the data distribution.

In order to create effective visualizations of data summaries sev
eral challenges must be addressed. The first is understanding how 
statistically to abstract and summarize the data. Typically, cumu- 
lant information is used to express a data summary. While this type 
of summary expresses important information about a distribution, 
these values alone may not be enough. For example, one may come 
across two distributions, one uni-modal (having one data value oc
curring most frequently) and the other multimodal (multiple most 
frequent values) whose box plot signatures arc the same. Investi
gating just the box plot could lead to the erroneous assumption that 
the two distributions arc very similar. The addition of higher or
der moment statistics reveals not only distinctions in modality, but 
other characteristics o f the distribution such as skew and pcakincss. 
In this work, we seek to create a foundation for understanding how 
these statistical modalities can work to create an effective data sum
mary.

The presentation o f density and moment information as an aug
mentation of the box plot can increase the information content of 
the plot while maintaining its concise form. The box plot has a 
canonical feel; the “signature” o f the plot is easily recognizable and 
docs not need much explanation to allow for a full understanding. 
Our goal is to create a summary plot that incorporates higher order 
information smoothly with the box plot in hopes that the summary 
plot will similarly develop into an easily recognizable signature of 
the data summary.

2 B a c k g r o u n d

The main goal o f this work is to present summary statistics in a 
concise, informative manner while conveying the greatest amount 
o f information about the underlying data distribution as possible. 
As such, previous work from data visualization and statistical tech
niques for graphical presentation is examined.

describe population sizes or confidence [ 10] to more extreme mod
ifications to express density [9, 4], modality, or multivariate data 
summaries [ 11, 8, 13],

A variation of the box plot most closely related to the work pre
sented here enhances the traditional plot by thickening the quartile 
lines to express skew, modality, and kurtosis [5]. While this ap
proach is straightforward and clean, we desire a representation for 
these values that has greater visual impact and a more intuitive in
terpretation.

2,3 From Plots Towards Better Data Comprehension
While a box plot is effective in expressing information about a sin
gle data distribution, more complex data sets require methods for 
navigating the data space to achieve more a complete data under
standing. Brushing [3] is a technique that allows the user to select 
categories o f data and sec the correlation of the remaining data set. 
Similarly, the contour spectrum [2] plots an assortment o f metrics to 
provide a quantitative understanding o f the data, and allows the user 
to select specific values for the metric variables which arc reflected 
in the plot and guide the user towards relevant visualizations.

3 T h e  ID S u m m a r y  P l o t

The main challenges encountered in creating the hybrid summary 
plot involve creating visual metaphors which encourage a mean
ingful interpretation of the data. While the meanings of summary 
information arc well known, the visual presentation of this infor
mation has yet to be completely described in an effective manner. 
Extensive previous work has produced a generally universal treat
ment ofcumulant summary information in a clean, concise manner. 
The box plot has been refined numerous times, resulting in a highly 
effective style o f presentation, including the incorporation of ad
ditional information such as density. Our goal is to maintain the 
clean style introduced by the box plot while increasing the amount 
of summary information.

2.1 Graphing Principles and Techniques
Creating graphics for data presentation is a difficult task involving 
not only decisions about data display but also data interpretation. 
Often, the graphic is intended to show specific characteristics o f the 
data, and the presentation style should make this intended purpose 
clear. Poor presentation style can be distracting or even mislead 
the viewer to erroneous conclusions. To alleviate these situations, 
design practices for effective data visualization arc outlined in nu
merous sources [16, 6, 14]. These references not only direct the 
scientist towards the “correct” graphical technique for data types, 
but also describe how a visualization is interpreted by the viewer 
and suggest methodologies to influence this interpretation.

2.2 Statistical Plotting Techniques
One of the most common approaches to graphing summary statis
tics is the box plot [15] (or range bar [12]). A variety of box plots 
can be seen in Figure 4. Typically, the box plot is used to divide 
the data into four equally sized groups by drawing a box that ex
tends from the upper to the lower quartile, and dividing this box by 
a line at the median. Lines (or “whiskers”) locate the minimum and 
maximum values in relation to the quartile range and outliers can be 
indicated with an open circle. This approach is an effective method 
for quickly summarizing and comparing data distributions.

The box plot can also used to show additional information be
yond the five number summary. A survey of the introduction and 
evolution of the box plot can be found in [5]. The variations of 
the box plot range from simply changing the width or notching to
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Figure 2: Anatomy of a Summary Plot

The hybrid box plot that we arc introducing can more formally 
be titled the summary plot. In this display not only is the quartile 
information present in the form of a slightly modified box plot, but 
also a collection of moments and density information. The anatomy 
of a summary plot can be sec in Figure 2. As shown in this figure, 
we use an abbreviated form of the traditional box plot to convey



the minimum and maximum values, upper and lower middle quar- 
tiles and the median. F.ach o f the central moments is expressed as 
a glyph, the design of which reflect the semantic meaning of the 
moment. Finally, a histogram is added to convey the density of the 
distribution.

3.1 Quartiles and the Histogram
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Figure 4: Variations of the box plot. From top to bottom: the range 
bar [12], the box plot [15], the quartile plot [14], and our abbreviated 
box plot.

slightly outside the boundary of the box, emphasizing the position 
o f the median and insuring this position docs not get lost with the 
addition o f more information.

Figure 3: Histogram (top), cumulant histogram (middle) 
plot (bottom ).

and violin

One of the simplest ways to describe a data distribution is to cal
culate the quartiles o f the data set. A quartile partitions the ordered 
data into four equally sized subsets such that 25% of the data is 
less than the lowest quartile, 50% of the data is less than the next 
quartile (i.e. the median) and 75% of the data is less than the high
est quartile. There arc conflicting conventions concerning whether 
the term "quartile” refers to the specific data value that cuts off the 
partition or the subset. In this paper we adopt the former definition 
in order to be able spatially to place the quartile values. Figure 3 
demonstrates this distinction, plotting a single data distribution as 
density and cumulative histograms. At the top of the figure, a his
togram is displayed; the height at each point reflects the density of 
the distribution at that data value. Below is a cumulant histogram in 
which density is successively added. Reference lines illustrate the 
quartile partitioning. At the bottom is a violin plot [9] displaying 
both the distribution density and cumulant information in a compact 
form.

The calculation of the cumulant quartile is based on the his
togram. The histogram employs a user specified number o f bins 
to sort the data based on value, giving a rough estimate of the den
sity of the data distribution. From the histogram, the quartile values 
arc found using a straightforward counting algorithm. The position 
o f the quartile value is determined by dividing the number of data 
points by the desired quartile position, and counting the sorted data 
in the histogram until the quartile position is rcachcd.

The traditional approach to presenting quartile information is 
through the box plot. Using this tcchniquc, a box is drawn around 
the intcr-quartilc range (the range between the upper and lower mid
dle quartiles), the median position is denoted by a line through the 
box, and lines extend to the minimum and maximum values. In ef
forts to maximize the ratio o f information to ink consumption and 
improve acsthctics, the box plot has been refined numerous times. 
Four versions o f the box plot can be seen in Figure 4. The topmost 
plot is the range bar, invented by Mary F.lcanor Spear [12], next 
is John Tukcy's box plot [15], F.dward Tuftc's quartile plot [14], 
and finally our abbreviated box plot. Our plot closcly resembles 
Tukcy's box plot with a few distinctions. First, the edges o f the box 
have been removed along with the ccntcr o f the median and quartile 
lines. The motivating factor in this changc is to rcducc the visual 
elutter that occurs when moment and density information is over
laid with the box plot. Additionally, the median lines arc extended

R G B  
log sqrt(linear) linear

R G B
combined

Figure 5: The three color channels of the histogram color map.

In addition to summarizing the distribution of the data through 
the box plot, the density information itself can be added to the vi
sualization in the form of a histogram. This is similar to the violin 
plot [9] in that wc show the density amount by varying the width of 
the quadrilaterals used to represent the bins of the histogram. Addi
tionally, the histogram is color mapped based on the density. This 
color mapping is a redundant mapping combining the three color 
maps shown in Figure 5. On the left (red) the color map is the nor
malized log density. Next, (green) the color map is square root of 
the normalized density and finally, (blue) normalized linear density. 
While cach o f these encodings can stand alone, wc preferred the re
dundant encoding due to the fact that the darkest stripes appeared 
in the areas o f the highest density and the resulting color is visually 
pleasing.

A principal goal o f this work is to summarize the distribution of 
a data set. The histogram is an estimation o f that distribution and 
while its presentation with moment plots is redundant, wc can imag
ine a situation in which wc do not have the data distribution but arc 
given only summary data. Thus, the summary display should not 
only reiterate the distribution when presented with the histogram, 
but also be able to convcy it independently.

3.2 Moments
The moments o f a distribution arc statistical measures o f ccrtain 
characteristics, the most well known moments being mean and stan
dard deviation. The main distinction between the summaries pre
sented by the quartiles and the moments is that the quartiles give



information about the location and variation changcs in the data, 
while moments express specific characteristics o f the distribution 
such as “pcakincss” . One of the drawbacks of using only a box plot 
to summarize a distribution is that multiple, distinct distributions 
can have the same box plot signature; for instance a bimodal and 
uni-modal distribution could have identical quartiles. Adding mo
ment information exposes these types of distinctions while main
taining the simplicity of the quartile summary.

The following is a list o f the equations used to calculate the var
ious moments, as well as the notation that will be used throughout 
the paper:

Given a data set {x,- p. wc define the following quantities:
Expected Value of x: <  x  >

Central Moments: ftk — jj x£Lo(jr' — ^ 1 )*
Mean: ^  l r J *Hi — N A = 0A'
Variance: f t  — J) X/Lo (x i f* 1 )~
Standard Deviation: 0 = s / P I
Skew: r = ^ j
Kurtosis: v* — ^K — a 4
Excess Kurtosis: *■ =  $ -  3
Tail: r — jf'Lf=o(xi — /Jl)5

where N  is the number o f data samples.
Table 1: Moment Notation and Equations

A valuable way to gain intuition into how moments express char
acteristics o f a data distribution comes from the use of moments in 
physics (Figure 6). In this example, a beam is placed on a fulcrum, 
the position of which is dictated by the mean [1], The moments can 
then be thought o f as weights used to balance the beam, each mo
ment having a specific role in dynamically balancing the system. 
While this approach is not meant to be a physically based expla
nation of moments, those unfamiliar with the role o f moments in 
statistics may find this abstraction helpful.
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Figure 6: Moment Arm Abstraction
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Figure 7: Mean and median glyphs align when values are equal.

eye. The width of the lines making up the cross arc constructed 
so that when the mean and median arc displayed at the same loca
tion, the glyphs line up, forming a straight line across the plot. This 
emphasises normal distributions, and quickly reveals when a distri
bution varies from a Gaussian. A close up of this can be seen in 
Figure 7. Standard deviation is rendered as two glyphs on the plot, 
as arc all even moments. Two blue curved lines arc placed on cither 
side of the mean to express the average variation from the mean.

3.2.2 Skew
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Figure 8: Distributions with small (le ft) and large skew (right).

Skew is a measure of the degree of asymmetry of a distribution; 
that is, the amount that the data is pushed to one side or the other. 
Figure 8 shows various distributions with skew varying from small 
to large. Based on the balance beam abstraction (sec section 3.2), 
wc use a large triangle to denote skew in the summary plot and place 
it so that it rests on the end of the distribution with the most weight 
and pointing at the tail. Mathematically, wc calculate the placement 
of the skew glyph by first finding skew as defined in Table 1 and 
placing the glyph — y  distance away from the mean, with the apex 
of the triangle pointing toward the tail o f the distribution.

3.2.1 Mean, Variance and Standard Deviation
The most familiar and frequently used moments arc mean and vari
ance (the first and second moments). The average of the data values 
is an estimator o f the mean o f the underlying distribution, or the ex
pected value of a random variable. Variance is a measure of the 
dispersion of the data indicating the distance a random variable is 
likely to fall from the expected value. Standard deviation is simply 
the square root of variance. For the summary plots, wc use only 
mean and standard deviation, as standard deviation is derived from 
variance.

The addition of mean and standard deviation into the summary 
plot is very straightforward. The mean is rendered as a dark red 
cross with a small circle in the center, denoted by a stylized bull’s

3.2.3 Kurtosis
Kurtosis is a measure of how peaked or flat topped a distribution 
is compared to a normal (Gaussian) distribution. Excess kurtosis 
is the standard kurtosis measure normalized by the kurtosis of a 
Gaussian. An example of distributions with different kurtosis can 
be seen in Figure 9 where a flat, box-like distribution can be seen on 
the far left. This type o f distribution has large, negative kurtosis (i.e. 
kc <  0) and is called platykurtic. Moving right, the kurtosis values 
increase, getting very close to a mesokurtic (normal) distribution 
(i.e. Kc =  0) and moving on to a highly peaked, leptokurtic (i.e. 
Kc >  0) distribution.

The glyphs chosen to represent kurtosis reflect the aforemen
tioned categories o f kurtosis. The glyphs arc rendered using a deep



K u r t o s i s

Figure 9: Distributions with small (left) to large (right) kurtosis.

purple color and arc sealed so that their size reflects their magnitude 
away from 0. To distinguish between flat and peaked, the glyphs as
sume a flat or sharp shape depending on the sign of kurtosis. Thus, 
for a highly positive value, the glyph is very pointy, and the more 
negative the kurtosis value, the flatter the glyph.

3.2.4 Tail
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Figure 10: Distributions with small (left) and large (right) tail values.

The final moment that wc add to the summary plot is what wc 
refer to as tail, which is based on the fifth central moment /J5. The 
quantity is sensitive to distribution asymmetry farther way from the 
mean when compared to the skew. Tail will have a high magni
tude when there arc additional modes in the distribution or strong 
outliers. Like skew, tail is rendered as a triangle pointing in the di
rection of asymmetry. However, unlike skew, tail is rendered on the 
same side o f the mean as its sign. The tail glyph is rendered as a 
sharp arrow head, where both the size and sharpness is dependent 
on the tail quantity. The visual cffcct o f this glyph should indicate 
that there arc a significant number of samples biased far from the 
mean. Figure 10 shows a set o f distributions which have tail values 
varying from very negative to very positive. The ccntcr distribution 
is a Gaussian.

4 J o i n t  2D S u m m a r i e s

While a statistical summary for a ID categorical data set is highly 
useful, methods for comparing multiple, correlated data sets arc 
ncccssary to understand how samples with multiple distinct data 
values arc related. In this scction wc explore methods for sum
marizing categorical data with pairs o f values associated with cach 
sample. Note that wc drop the summary of cumulants for higher 
dimensional distributions. Wc do feel, however, that the cumulant 
summary is important even in higher dimensions, and there docs 
exist a generalization of the box plot, known as the bag-plot [11]. 
Unfortunately, the bag plot approach docs not ncccssarily have the 
same corrcspondcncc to cumulant distributions as docs the box plot. 
It is a suitable approximation for many applications, but wc will de
fer discussion o f multivariate cumulant summaries to future work.

4.1 Joint Density

Figure 11: The  jo int histogram.

The density of a set o f samples drawn from a 2D distribution can 
be directly visualized using a joint histogram. A joint histogram 
can be generated by subdividing the 2D domain into NxN bins, and, 
for cach sample, incrementing the bin-count indexed by its pair of 
data values. Our system displays the joint histogram by rendering 
a quadrilateral at cach bin location sealed by the squarc-root o f the 
normalized density for that bin.

When multiple categories arc summarized simultaneously using 
joint histograms, they tend to producc aliasing artifacts due to the 
regularity o f the bin spacing. To alleviate this problem, wc jitter the



position of the quadrilaterals for each bin, where the magnitude of 
the jitter is inversely proportional to the quadrilateral’s scale. This 
constraint ensures that the quadrilateral is drawn at a randomized 
location, but is always inside the bin.

4.2 Covariance

For multivariate distributions, the covariance matrix is the ana
logue of variance in 1D distributions. The covariance of two data 
sets, {avIJLq, can be defined by:

I N
V ij = <  (a ,- —  /-( ,) (a - /  — f i j )  > =  j j — -  ( x j k —  /-( ,)  (a jk —  f i j )

k— 0

where /J,- and /J/ arc the means for each data set. Covariance is 
a measure of how the two data sets vary in relation to each other. 
For our presentations, the covariance matrix is used to transform 
a unit disk, the way in which the disk is stretched visually relates 
to covariance of the data sets. Since we arc actually interested in a 
multivariate analogue of standard deviation, we scale the covariance 
cllipsc-disk glyph by,

.  \ /  CVtnaxscale = ---------- ,®vmax
where cvmax is the maximum eigenvalue of the covariance matrix. 
Figure 12 shows the covariance ellipse between the first categories 
of the temperature and humidity data sets. The covariance glyph 
is laid on top of the joint histogram, and for reference, the mean 
and standard deviation of both data sets arc extended into the joint 
space using lines. In this case the 1D summary plots for each o f the 
variables represents the marginalized distribution.

4.2.1 Skcw-Variancc
Just as covariance is the analogue of variance, higher order multi
variate moments can also be described as matrices. The so called

“skcw-variancc” of two data sets, {a,}J^0, {a/}^=0 can be expressed 
by two matrices, P'o; i and Vp where:

Vjmjn = <  (av — -  Hj )" > =  X  (x 'k Wj)"
jV 1 A'—0

In general, these matrices arc neither symmetric, nor positive def
inite. Vfi p and V)\ arc, however, the transpose of one another; 
therefore we only need one to capture the information expressed by 
both. Skew variance is visualized using four sharp arrows pointing 
in the direction of the skew. These directions arc defined by the col
umn vectors o f Vpp and V)\ ;o. As with covariance, skcw-variancc 
visualizations arc scaled by

. \j cvmaxscale =  --------- ,SVmax
where cvmax is the maximum eigenvalue of the skcw-variancc ma
trix.

4.3 Continuous 2D Categorical Data

Standard
Deviation

Figure 13: Electric potentials of the heart data.

The previous sections discussed the visual summary of a lim
ited number of categories with 1D and 2D distributions. We now 
consider the case of a continuous 2D domain with a 1D distribu
tion. One can think of this case as having a continuous 2D array 
of categories. Our system treats the summary visualization as a 
height field. Figure 13 shows an example of a stochastic numerical 
simulation of the electric potential in the human torso [7]. The sim
ulation domain is a 2D second-order finite clement mesh. The goal 
of the simulation is a study of variation in electric potential induced 
by perturbations of conductivity in various organs. To gather the 
data, the simulation was run 100,000 times with different random 
perturbations of lung conductivity. That is, we have 100,000 sam
ples from the stochastic solutions distribution for each clement in 
the domain. Our summary of the data presents the mean (red), stan
dard deviation (blue), skew (yellow-orange), and kurtosis (purple). 
Just as with the ID summaries, we use /Ji — y  to place the skew,



indicating the “heavy” side of the distribution. At every position in 
this data set excess kurtosis is less than or equal to 0, indicating a 
flat distribution. The opacity for all higher-order moments is pro
portional to their magnitudes, i.e. they arc only visible if they arc 
significant. This scalc term is identical to the one used to scalc the 
size of these glyphs in the ID summary plots. A flat image of the 
domain colored by mean potential is mapped below the height field 
summary for rcfcrcncc.

5 D i s c u s s i o n

While the box plot has been used, almost universally, to summarize 
statistical data for nearly 60 years, there arc many characteristics of 
a distribution that it cannot express. The mean or cxpcctcd value 
of the distribution, for instance, is one such characteristic. Without 
this moment in the summary, a user may incorrectly assume that 
the median and mean arc the same or closcly correlated. Certainly, 
the same can be said about summaries based solely on the mo
ments. This is especially true when the only moments considered 
arc the first two, mean and variance. Such a summary would im
ply a symmetric uni-modal distribution, like a Gaussian. Wc have 
not frequently seen normal distributions summarizing arbitrary dis
tribution data in scicntific simulation and imaging. Together, box 
plot, cumulant and moment summaries express different, yet com
plementary aspects o f the data. However, they may still fail to ex
pose important subtleties o f the distribution. The density plots or 
histograms simply summarize the the data itself While the his
togram summary makes the modes of the data easily discernible, it 
docs not allow the user to predict the median or mean values. By 
combining all three summary methods, wc can feel more confident 
in the analysis o f the data and the questions that the summary is 
intended to help answer.

The display system for our summary plots was implemented us
ing OpcnGL, which allows a user to interactively explore multi
dimensional summaries. Interactive control o f view point and sum
mary content is essential when the goal is to compare many cate
gories with multivariate distributions, i.e. joint summaries, or muti- 
dimcnsional categories, e.g. continuous 2D categorical data. The 
depth complexity of such summaries can be overwhelming for arbi
trary viewpoints in static 2D images. When the goal is a 2D image, 
interactive control allows the user to sclcct view points that focus 
on key aspects o f the summary yet includc essential context. The 
generation of summary snapshots utilises “gl2ps”, a freely avail
able library for directly converting OpcnGL images to Encapsu
lated PostScript (F.PS). This mcchanism allows us to preserve the 
resolution independent characteristics o f the original vector art.

The assembly of our summary plots also emphasizes the con- 
ccpt o f marginal summary. As seen in Figure 1 (left), wc show 
summaries for cach category, but add an additional summary that 
covcrs all categories to the left o f the value scalc. This “marginal” 
summary expresses global data characteristics that may not be ob
vious in the individual category plots. This conccpt extends easily 
to joint distributions, where the ID summaries for cach value be
come a marginal summary for the 2D distribution, as seen in Fig
ure 1 (right).

The development o f this work is driven by the needs of largc- 
scalc simulation and medical image analysis. This data generally 
has on the order o f millions of samples per category. The kind 
of summary generated for this data is extremely robust; millions of 
samples arc generally sufficient for reliable moment and density es
timation. When the number o f samples available for cach category 
is substantially fewer, the measurement o f highcr-ordcr moments 
can break down. These moments, e.g. skew, kurtosis, and tail, 
can be extremely sensitive to outliers when there arc not enough 
samples to adequately characterize the underlying distribution. The 
density plot (histogram) visualization bccomcs extremely important

in this ease. This aspect o f the visualization should make it readily 
apparent to the user that the summary is based on a sparse number 
of samples. Our conccrn here motivates further research on incor
porating measures o f sufficient statistics as part o f the summary.

Our future work will focus on further generalizations of sum
mary plots to higher dimensions, both in terms of multivariate dis
tributions and multi-dimensional category domains. Wc arc also 
interested in the automatic detection o f distribution characteristics 
such as multi-modality and correlating with specific analytic distri
butions (e.g. Normal, Poisson, Raleigh, Chi-squared, ctc...). Our 
log-tcrm goal is the development and release of a fully interac
tive system for summary visualization that provides direct acccss to 
the summary proccss, which will utimatcly allow interactive sum
maries embedded in electronic report documents.

6 C o n c l u s i o n

The box plot is a highly cffcctivc means for conveying cumulant 
summary statistics. Using the box plot as inspiration, wc have 
created a hybrid summary plot that incorporates cumulant statis
tics, density, and high-ordcr moments. Wc have demonstrated a 
generalized approach for provide joint ID comparisons as well as 
summaries o f 2D categorical data. Our system aims at reducing 
visual clutter, while redundantly encoding information and simul
taneously presenting a large amount o f data as a visual signature. 
The presentation o f data in a summarized and easy to read form can 
quickly communicate large amounts o f data, emphasize meaningful 
characteristics, and facilitate visual comparisons.
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