
Performance Analysis and Optimization of Asynchronous Circuits 

Prabhakar Kudva, Ganesh Gopalakrishnan*, Erik Brunvand* Venkatesh Akella 

Department of Computer Science 
University of U tab 

Salt Lake City, UT 84112 

Abstract 

Asynchronous/Self-timed circuits are beginning to at­
tract renewed attention as promising means of dealing with 
the complexity of modern VLSI designs. Very few anal­
ysis techniques or tools are available for estimating their 
performance. In this paper we adapt the theory ofGeneral­
ized Timed Petri-nets (GTPN)for analyzing and comparing 
asynchronous circuits rangingfrom purely control-oriented 
circuits to those with data dependent control. Experiments 
with the GTPN analyzerarefoundto track the observed per­
formance of actual asynchronous circuits. thereby offering 
empirical evidence towards the soundness of the modeling 
approach. 

1 Introduction 

Asynchronous (or Self-timed [13]) circuits are begin­
ning to attract renewed attention as promising means of 
dealing with the complexity of modern VLSI designs. One 
of the widely touted advantages of asynchronous circuits is 
that they exhibit better average case performance (here. and 
elsewhere, performance means overall speed or through­
put). In this paper. we propose performance analysis tech­
niques for asynchronous circuits based on timed Petri nets 
that might help corroborate such claims. Features of our 
work include the ability to handle circuits with data de­
pendent execution times, as well as the consideration of 
arbitration and resource usages. 

Performance evaluation of synchronous circuits is al­
most always carried out in terms of the clock cycle time. 
The performance analysis problem is much more difficult 
for asynchronous circuits as they do not employ a global 
clock. In addition, the execution of asynchronous circuits 
is concurrent as well as data- and resource-dependent in 
nature. We believe that timed Petri nets can model systems 
with these characteristics. 

Related Work and Overview or Approach 

Asynchronous circuit performance analysis has been con­
ducted at an analytical level by Sparsoe [19] and Williams 

·Supported in part by NSF Award MIP-921S878 

1063-6404/94 $4.00 © 1994 IEEE 
221 

Department of ECE 
University of California, 

Davis, CA 95616 

[21], who study asynchronous pipelines. Petri Nets have 
been widely used for studying asynchronous computations 
[16] as well as for modeling as well as synthesizing syn­
chronous and asynchronous circuits. They have also been 
widely used in performance analysis studies at the system 
level. Basically one can observe two categories of works 
in this area. In the first category, decision-free Petri net 
structures are used to model computations [18] while in the 
second category. Petri nets with decisions (or "choices'') are 
allowed [22, 10]. Recent work on asynchronous circuit per­
formance analysis falling under the first category include 
the works of Burns and and Williams [5, 21]. These authors 
model the computation as a constraint-graph and solve per­
formance equations using linear programming techniques. 
Work by Hulgaard et al. [8] adapt the work by Burns and 
provide an algorithm to find exact bounds on the time sep­
aration of events in a branch-free process graph. Nielson 
and Kishinevsky [17] address the problem of determining 
the cycle time and critical paths through timing simulation. 
These works do not consider data dependent behaviors, 
arbitration for resources, and/or conditional branches. 

The main contribution of this paper is to demonstrate 
that using an existing Generalized Timed Petri Net (G1PN) 
model [10] (detailed in Section 3), it is possible to hierar­
chically model a wide class of asynchronous circuits and 
systems in a uniform manner. while taking into account 
arbitration. resource usages, as well as data dependent be­
havior. 

2 Modeling Self-timed Circuits 

We assume two-phase transition signaling (up-going and 
down-going transition of a signal have the same mean­
ing) and assume one wire per bit of data with the data­
bundling assumption[20]. For concreteness, we assume 
macromodules-style circuits [20, 3, 2]. Macromodule cir­
cuits can be classified as control blocks (CB). datapath 
~locks (DB), and data-dependent control modules, or pred­
Icate blocks, PB (the latter two are illustrated in Figure 1). 
Examples of primitive CBs include the XOR gate, the Muller 
C-ELEMENT, and the CAll module. In Figure I, the delay 
!ine associated with DB models its worst-case delay. PB 
Implements data-dependent control flow, e.g., conditional 
branches. 



'--

.. 1_ .. --" 
..,_ .. _- ..... 

Figure 1: Models for DB andPB 

A self-timed circuit can be represented by a one-safe 
Petti net [14, 6] which is obtainable by composing the Petti 
nets corresponding to various circuit elements. The name 
of a wire is attached to each Petti-net transition, and the 
firing of the Petri-net transition represents a signal transition 
on this wire. Each Petti net has inltial places (IP) and 
fiNJl places (FP) that are disjoint, and correspond to the 
input- and output-ports of the circuiL The operation of 
a self-timed circuit is modeled by placing tokens in IP 
(corresponds to a reqlll!st) and waiting for tokens to appear 
in FP (corresponds to an acknowledge). The environment 
of the circuit is responsible for placing the tokens in IP and 
removing the tokens from FP. 

3 Generalized Timed Petri-net Theory 

Timed Petri Nets 

A GTPN (P, T, A, Mo, D, F, R) [10] is a Petti net which 
has been augmented to include a set of firing durations (D), 
a set of firing frequencies (F), and a possibly empty set of 
resources (R) associated with ~h transition, in addition to 
the usual fields of the set of places P, the set of Transitions 
T. the flow-relation A ~ ((P x T) U (T x P», and the 
initial marking Mo. Each transition is associated with a 
start firing event and an end firing event in between which 
the firing of the transition is in progess for a deterministic 
firing duration of D units of time. The removal of tokens 
from a transition's input places occurs at start firing while 
the placement of tokens on a transitions's output places 
occurs at end firing. While the firing of a transition is in 
progress, the time to endfiring, called the remaining firing 
time (RFI), decreases from D to zero. Thus, the state of 
a GTPN includes the distribution of tokens and the RFI' 
values of currently active transitions. Each transition of a 
GTPN is generated by a set of start firing or a set of end 
firing events that occur simultaneously. The maximal set 
of transitions that can start firing simultaneously defines 
the next state of a G1PN. The frequencies, F, associated 
with ea:h transition are used in assigning probabilities to 
the next state of the Petri net. 

222 

Modeliq of delay and firin& frequendes 

The key timing parameter employed in our work is D, the 
delay of a transition. D can be obtained from a library, 
through experiments, or through known timing estimation 
techniques. Additional conventions in delay modeling are 
now explained. 

A transition in the Petti net indicating a signal transition 
at the output of a gale is annotated by the delay of the gate, 
while a Petti-net transition indicating a signal transition at 
the input of a gale is annotated by the delay of the wire 
from the output of the driving gale to this input. For DBs, a 
transition indicating the acknowledge signal from a DB is 
annotated by the average case delay of the DB. Transitions 
indicating acknowledge signals from a PB are annotated by 
the sum of the average cae delay of logic block associated 
with the PB and the delay of the Select element used in 
generating the aclcnowledge transition. 

Firing frequencies (F) can be assigned to any transition. 
In case of a place with two or more arcs leading out of 
it (indicating a choice), branching frequencies may be as­
signed based on data dependent branching information. We 
note that the equivalent circuit paradigm of such an occur­
rence in the Petri net is a PB, which is a Select element 
whose conttol signal behavior is data dependent. All othez 
transitions are assumed to have a firing frequency of 1. 

Background on GTPNA analysis 

We present below a quick overview of the GTPNA anal­
ysis techniques from Holliday [10], for the sake of com­
pleteness. Some of the relevant tezminology and the0-
rems of Markov Chain theory are also presented here. A 
detailed discussion of the Discrete-TIme Markov Chains 
and their relationship to stochastic Petti nets are described 
in [1, IS]. The suonglyconnected components of the state 
space (when viewed as a directed graph) are the classes of 
the Markov Chain. The condensed graph (one vertex for 
ea:h class) is a directed acyclic graph with one rooL In the 
case of a finite state space, the interior vertices of the con­
densed graph are called transient classes. The leaf vertices 
of the condensed graph are called recll11'ent classes 'R. In a 
typical evolution of the system being modeled, the system 
starts in a state in the root of this condensed graph. It then 
filters through the transient classes until it is absorbed by 
one of the recurrent classes. Once absorbed it stays in that 
recurrent class permanently. 

In a G1PN, we are interested in the long run (or "stealy 
statej behavior. Once absorbed in a particular recurrent 
class, the long run probability distribution over the states in 
the recurrent class needs to be computed. This stationary 
probability distribution n 1t is easy to find since it is the 
unique solution to the set of equations n1t = n1tP1t and 
EiE1l ni = l, wheremattixP1l = {Piili,j E'R}. Here, 
Pai refezs to the probability of visiting state j from state i 
where both states are within the recurrent class 'R. The fact 
that E..t E.1t ITj = 1 ~ds to the fact that the set of 
states x IS a recll11'ent class, I.e., once execution enters 'R, 



it does not leave 'R. Both Pij and Pi are obtained from the 
underlying state graph of the timed Petri net [9]. Equation 
nR = TInPn corresponds to the fact that in the long run, 
instead of having a probability of going from state i to 
state j in the recurrent class 'R (as defined by the transition 
matrix), we now have a vector of prObability values TIn of 
visiting each state i in the recurrent class 'R-. 

Let S be the set of states in recurrent class 'R- and let S1 
be a state in S. Also, define RelTime(s1) to be the time 
spent in state S1 relative to the long-run time for'R. The 
long-run time for any state S1 in a recurrent class 'R- defined 
as 

. ( EkES TimelnState(k) TIk 
LongRunTlme S1) = TI 

'I 
(1) 

where TimeInState(k) is the time spent in state k 
which is determined from the user given timing annotations 
in the Petri net and ~ is the probability of visiting state 
i in the long run. Note this notion of long-run time is 
analagous to the notion of cycle time for the same state if 
data dependent choice were not present. ReITime(st) is 
given by 

. TimelnState(s1) TIsl 
RelTlme(s1) = EkES TimelnState(k) TIk (2) 

We also can obtain for each recurrent class, the utiliza­
tion of the resources while in that class. The expectation 
of Resource Usages for a recurrent class, E[Resusages], is 
given by 

E[ResUsages] = L ResUsages(k) RelTime(k) (3) 
kES 

where ResU sages( k) is the amount of resources used 
while in state k of the recurrent class. 

Performance Estimation 

In estimating the performance of asynchronous circuits, we 
employ the long-run time, the RelTime in a state and re­
source usage as performance measures. Our usage of long­
run time in this manner is related to Zuberek's [22] use of 
this notion on examples with a single recurrence class. It is 
important to note that long run time is useful in the compar­
ison of different designs and serves as a numerical measure 
with which to compare the designs. For example, Zuberek 
has suggested that by using this approach two architectures 
can be compared against each other, although he does this 
only for systems that can be modeled as Petri Nets with a 
single recurrence class. The ratio of the performance of an 
optimized and unoptimized design gives us a fair idea of 
the amount of improvement we can see in the optimization 
process. 

223 

Table 1: Table of experimental results 
Circuit Numof Perf. (ns) CPU (secs) 
Name states Long Run Time (GTPN) 

EXOPT 223 1620 0.25 
EX-RF 223 1420 u.25 

EX-MVPC 223 1560 0.25 
WAVE} 428 1010 0.13 
WAVE2 428 1490 0.13 
WAVE3 428 212U U.13 

ARP 44 0.05 
ARP-OPT 44 0.05 

4 Results and Conclusions 

We have been able to analyze reasonably large examples 
and obtained performance estimates in less than a second of 
CPU time in most cases as shown in Table 1. First, the ex­
ecution unit of the NSR [4] processor was modeled, shown 
as EXOPT in Table 1. Then, optimizations were performed 
on this model, and the long run times for a particular state 
of interest were compared. In the second example, that of a 
crossbar arbiter [7], the probabilities of connection requests 
for the crossbar switches was varied and the performance 
was compared in terms of the long run times, as shown in 
WAVEl, WAVE2 and WAVE3. Finally, an Asynchronous 
Reordering Pipeline [12] was also analyzed. ARP is an 
unoptimized version of this circuit and ARP-OPT an opti­
mized version based on data dependent probablities of the 
reordering requests. These examples are discussed in detail 
in [11]. 

Although the GTPN analysis tools are very efficient in 
generating the reachability graph and use good numerical 
techniques for analysis, the problem of state explosion in 
generating the reachability graph of the Petri net can be 
significant in some cases. This was noticed while trying 
to analyze another version of the crossbar arbiter called 
the crisscrossing arbiter [7] which is very decoupled in its 
execution. This analysis could not be completed even for a 
4x4 crossbar switch. Therefore, more efficient techniques 
to generate the reachability graphs are necessary. 

Statistical reasoning can, in general, introduce errors in 
the analysis, because of the fact that the performance of the 
underlying net is abstractly represented by its long-run time. 
For the NSR processor's execution unit, we observed that 
our analysis gave results in close agreement (in the sense 
of tracking) with the actual chip's measured performance. 
The exact magnitude of the error will be studied in our 
future work. 

Another possible source of inaccuracy in our current 
approach is the following. In modeling the delay exhibited 
by data blocks whose computations are data dependent 
at a fine-grain level (e.g., carry-completion addition), we 
currently take the average delay exhibited by those units 



with respect to the distribution of the data being handled 
by those units. A more direct way to incorporate the data 
dependent delays of data blocks has to be investigated. 
Finally. macromodule based circuits lend themselves very 
well to Petri net based analysis. HOWever. we would also 
like to consider other classes of asynchronous circuits as 
part of our future work. 

References 

[1] AJMONB MARsAN. O. B •• AND CONTE. O. Perfor­
mance Models of Multiprocessor Systems. The MIT 
Press. 1986. 

[2] AKELLA. V .• AND GoPALAKRISHNAN, O. SHILPA: 
A High-Level Synthesis System for Self-TImed Cir­
cuits. In International Co1fe~nce on Computer-aided 
Destgn,ICCAD 92 (Nov. 1992), pp. 587-59l. 

[3] BRUNVAND.B. Translating Concll1Tent Commlllllcat­
ing Programs intoAsytachrollOus Circllits. PhD thesis, 
Carnegie Mellon Uni\'Cl'Sity. 1991. 

[4] BRUNVAND.E. TheNSRprocessor. In Proceedings of 
the 26th AnnIlDI Hawaiian International Co1fe~nce 
on System Sciences, Volume 1 (Jan. 1993), T. Mudge. 
V. Milutinovic. and L. Hunter, Eds. 

[5] BURNS. S. Performance evaluation of asynchronous 
circuits. Tech. Rep. lR-91-1. Computer Science 
Dept.. California Institute of Technology. 1991. 

[6] Dn.L, D. L .• NOWICK, S. M., AND SPROUll.. R. F. 
Specification and automatic verification of self-timed 
queues. FormtU Methods in System Design I, 1 (July 
1992).2~2. 

[7] GoPALAKRISHNAN. O. Micropipeline wavefront ar­
biters using lockable c-elements. IEEE Design and 
Test of Computers (1994). Special Issue on Asyn­
chronous Systems. W'mter 1994. 

[8] HBNlUK HULGAARD. STHVBN M BURNS. T. A •• AND 
BORIELLO. O. An algorithm for exact bounds on the 
time separation of events in concurrent systems. Tech. 
Rep. UW-CSE-94-02-02. Department of Computer 
Science. University of Washington. 1994. 

[9] HOWDAY. M.. AND VERNON. M. The OTPN ana­
lyzer: Numerical methods and user interface. IEEE 
Comp Soc. 1986 Fall Joint Computer Conf~nce 
(Nov. 1986). 

[10] HOWDAY. M.. AND VERNON. M. A generalized timed 
petri net model for perfonnance analysis. IEEE Trans­
actions on Softw~ Engineering 13 (Dec. 1987). 
1297-1310. 

[11] KUDVA. P.. OOPALAKRISHNAN. O. C., AND BRUN­
VAND. E. L. Performance analysis and optimization 
for asynchronous circuits. Tech. rep., University of 
Utah. Department of Computer Science. 1994. 

224 

[12] LlBBCHBN. A. AND GoPALAKRISHNAN. G. Dynamic 
reordering of high latency transactions in time-warp 
simulation using a modified micropipeline. In In­
ternational Co1fe~nce on Computer Design (ICCD) 
(1992). pp. 336-340. 

[13] MEAD. C. A. AND CONWAY. L. An Introduction to 
VLSI Systems. Addison Wesley. 1980. Chapter 7 
entided "System Tuning". 

[14] M1SUNAS,D.Pettinetsandspeedindependentdesign. 
C01ll1fUUlicationsoftheACM 16, 8 (Aug. 1973),474-
48l. 

[15] MollOY, M. K. Performance analysis using stochas­
tic petri nets. IEEE Transactions on Computers C-31 
(Sept 1982),417-423. 

[16] MURATA, T. Petri nets: Properties, analysis and ap­
plications. Proceedings of the IEEE (1989). 

[17] NIELsoN, C. D., AND KlSHINBVSXY, M. Performance 
analysis based on timing simulation. Tech. Rep. 
ID-lR:I993-125, Department of Computer Science, 
Technical University of Denmark, 1993. 

[18] RAMAMOOImIY, C., AND Ho, O. Performance evalu­
ation of asynchronous concurrent systems using petri 
nets. IEEE Transactions on Softw~ Engineering 
SE-6, 5 (Sept 1980),440-449. 

[19] SPARSOB, J •• AND STAUNS11lUP, J. Design and per­
formance evaluation of delay insensitive multi-ring 
SU'Uctures. In Proceedings of the 26th AnnIlDl Hawai­
ian International Conference on System Sciences. Vol­
ume 1 (Jan. 1993), T. Mudge, V. Milutinovic, and 
L. Hunter. Eds. 

[20] SU1HBRLAND, I. Micropipelines. C01ll1fUUlications 0/ 
the ACM (June 1989). The 1988 ACM Turing Award 
Lecture. 

[21] WILLIAMS, T. E. Self-Timed Rings and Their Ap­
plications to Division. PhD thesis, Department of 
Computer Science, Stanford University. May 1991. 

[22] ZUBBREIC, W. TImed petri nets and preliminary perfor­
mance evaluation. In 7th AnnIIDllnternational Sym­
posium on Computer Architecture (1980), pp. 88-96. 


