
Our LIPS Are Sealed�
Interfacing Logic and Functional

Programming Systems

Gary Lindstrom�

Jan Ma�luszy�nski�

Takeshi Ogi�

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ����� USA

March ��� ����

Abstract

We report on a technique for interfacing an untyped logic language to a statically poly	
morphically typed functional language
 Our key insight is that polymorphic types can be
interpreted as �need to know� specications on function arguments
 This leads to a crite	
rion for liberally yet safely invoking the functional language to reduce application terms as
required during unication in the logic language
 This method� called P	unication� enriches
the capabilities of each language while retaining the integrity of their individual semantics
and implementation technologies
 An experimental test has been successfully performed�
whereby a Horn clause logic programming �HCLP� interpreter written in Common Lisp
was interfaced to the Standard ML of New Jersey system
 The latter implementation
was employed �i� on untyped or dynamically typed data� even though it is statically typed�
�ii� lazily� even though it is strict� and �iii� on alien HCLP terms such as unbound variables
� without the slightest modication�

�This material is based upon work supported by the National Science Foundation under Grants CCR�
������� and ASC��������	

�Department of Computer and Information Science
 Link�oping University
 S���� �� Link�oping
 Sweden	
�Kyocera Corp	
 ����� Tamagawa�dai
 Setagaya�ku
 Tokyo
 Japan	

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

� Motivation

There have been countless attempts to combine the best features of functional program	

ming �FP�� e
g
 functional notation� higher order objects� lazy evaluation� etc
� with those

of logic programming �LP�� e
g
 �don�t know� nondeterminism� computation on non	ground

data� constraint	based search� etc
 Most of these approaches are described as �amalgama	

tion�� i
e
 homogenization into a new language
 At best� this semantic stew emerges as a

pur�ee� at worst� a goulash
 In any case� the contributing languages surrender their semantic

integrity� and combining their implementation technologies becomes problematic

We address this problem from a di�erent perspective� in keeping with the trend toward

�open systems
� Our approach invokes the Standard ML of New Jersey �SMLNJ�

FP language �FPL� system as a reduction server to an LP language �LPL� client� written in

Common Lisp

This work builds on the approach presented in �BM��� to integrating a logic language

with an external functional language
 The declarative semantics of this integration is dened

in terms of an equational logic
 The operational semantics suggested there is based on

an extended unication method� called S�uni�cation
 S	unication is inherently incomplete

since it combines term unication with function application� restricted to ground arguments

We present here an extended form of S	unication� taking into account polymorphic type

information
 This allows us to relax the ground argument requirement in many cases

� Language Requirements

We assume that the FPL is �i� purely functional in e�ect �i
e
 semantically benign use

of imperative features is permitted�� �ii� statically polymorphically typed� �iii� applicative	

order �strict� non	lazy� call	by	value�� and �iv� equipped with constructor	based user dened

types
 The LPL is not assumed to be statically typed� since many of today�s LPL�s� including

most versions of Prolog� are untyped
 However� we assume that the type signatures of all

accessible FPL data objects �including function identiers� are known to the LPL

The polymorphic type domain underlying our LPL and FPL combination is shown in

Fig
 �
 This includes the core of Standard ML �Myc���� since�

�
 Primitive data types int� bool� string etc
 are subsumed by �T�� ���� Tn� Dtype� with

n � � and parentheses omitted

�
 Function data types T� � T� are subsumed by �T�� T�� func

�
 Tuple types are subsumed by �T�� ���� Tn� cross

�

Note that substitution on Tvar�s creates a partial order on T� whereby T� v T� i� there

exists a substitution � such that T�� � T�
 Traditional surface representations will be used

henceforth� e
g
 int� �� �� � list� � list � �� etc

� LPL Terms

Our term language TL is a rst	order LPL term language extended by a binary functor

apply� with the interpretation that apply�fn� arg� means �rewrite this term by evaluating

fn arg in the FPL�

Term ��� Var j Constant j Functor�Term�� ���� Termn� �n � ��

j apply�Term�� Term��

Var denotes logical variables� and Constant denotes atomic symbols �e
g
 integers�
 The

syntax Functor�Term�� ���� Termn� is reserved for constructions �i
e
 constructor applications��

where the constructor may be �i� known to both languages �e
g
 cons������� or �ii� unknown

in the FPL �e
g
 foo������
 We consider parentheses to be optional for nullary constructors�

i
e
 f and f�� are synonyms
 The construction tuple�Term�� ���� Termn�� for n � �� represents

functor	less tuples
 Once again� more congenial surface representations will often be used

henceforth� e
g
 ��� �	 �rather than cons��� cons��� nil���� �true� false j X	 �rather than cons�true�

cons�false� X���� ��� true� �rather than tuple��� true��� and �
� �rather than apply�plus� tuple���

����

� Datatypes� Common� Alien� and Mixed

Some types in T represent values that are meaningful to both the FPL and LPL
 These

values include common primitive types �int� bool�

�� and certain constructions� e
g
 tuples

and lists
 The surface representation of these values will generally need conversion as they

pass between languages �e
g
 the FPL value �v�� ���� vn� will need to be converted to the LPL

T ��� Tvar j �T�� ���� Tn� Dtype

Tvar ��� � j � j ���

Dtype ��� Identi�er

All schemes are implicitly closed �via outermost �� ��� ��

Figure �� FPL polymorphic type domain

�

term tuple�v�� ���� vn� � see x��� but we assume that no semantically signicant mapping

issues arise

There are� in addition� data values that each language can manipulate but must regard

as semantically �alien
� For example� the LPL must appeal to the FPL for interpretation

of non	constructor functions� while the FPL cannot be expected to make sense of logical

variables� ill	typed expressions� or insu�ciently instantiated constructions such as �� j X	

� cons��� X�� where X is an unbound variable
 Hence the data under manipulation will in

general be� from the perspective of each language� a mixture of common� private and alien

objects

� A �Need to Know� Strategy For Term Reduction

Clearly one cannot expect the FPL to reduce terms such as apply�plus� tuple��� true��
 Yet

one might hope that apply�head� ��� X	� could yield �� and even that apply�tail� ��� X	� could

yield �X	
 How might such a �liberalized� sense of function application be safely obtained�

By observing that variables in function domain types indicate �hands o�� treatment
 Thus

length� � list � int means that list elements� �i� are not inspected by length� �ii� need not

be evaluated� �iii� can be objects �alien� to the FPL� and �iv� need not even be typeable�

static FPL typing notwithstanding�

Note this type scheme interpretation signicantly extends the interpretation customarily

observed in SML� which construes the polymorphic type � list � int to be the union of all

its monomorphic instances �int list � int� bool list � int� int list list � int� etc
�

Our strategy is embodied in a mechanism for enlisting the FPL as a reduction server

as needed by the LPL during unication
 Our approach is thus �yet another� version of

extended uni�cation �DV���� which we term P�uni�cation
 A term apply�fn� arg� is reduced

lazily� i
e
 as needed during unication� but only when �i� fn has become a function� and

�ii� arg has become acceptably instantiated to the degree dictated by the domain type of fn

Examples are given in Fig
 � �resulting substitutions are omitted�
�

We will dene P	unication in three increasingly precise presentations
 In each case�

the method will be described operationally by means of prioritized� symmetric rules for

eliminating term disagreement pairs
 We omit the occur check in each case to simplify the

presentation
 In the presence of apply terms the occur check becomes more elaborate� since

e
g
 the terms X and apply�
� tuple�X� ���� where
 is the addition function� are uniable

In this paper we focus on the problem of using types for interfacing functional and logic

�The fact that unifying �P� Q� and apply�apply�map� add��� ���� Y�� suspends rather than succeeds with fP
�� �	� Q �� apply�add�� Y�g is a consequence of our FPL strictness assumption	

�

U V

P�unify�U� V �

X apply�length� Y�

succeeds

� apply�length� � ��

fails

� apply�length� �R� S��

succeeds

� apply�length� �R� S j T��
suspends

�P� Q� apply�apply�map� add��� ���� Y��

suspends

��� �� apply�apply�map� length�� ����� Y�� � ���

succeeds

Figure �� P	unication examples

programming systems
 A proper treatment of the occur check problem would follow the

approach of S	unication �BM��� Bon���

P�uni�cation Formulation ��

�
 fv� xg� where v is an unbound variable� and x is arbitrary� Bind v to x� and remove

this pair from the disagreement set

�
 ff��t���� ���� t��n��� f��t���� ���� t��n��g� where f� and f� are constructors� If f� �� f�� or

n� �� n�� fail� otherwise� remove this pair from the disagreement set and add the pairs

ft��i� t��ig for i � �� ���� n� �subsumes constants and tuples�

�
 fx� yg� where x � apply�fn� arg��

�a� If the FPL can be invoked without type error to reduce x� do so and reconsider

this pair

�b� If x might be instantiated to meet condition �a�� defer consideration of this pair

until that possibility is resolved a�rmatively or negatively

�c� Otherwise� fail

The apply rule is the focus of this work� and will be made more precise in the following

sections

Failure arises in ��c� because no instantiation of arguments could permit reduction of the

apply term� even in the �liberalized� sense being dened here
 Hence a fundamental typing

error has been detected� and the apply term is meaningless in both languages

�

Because of the concept of deferred pairs� a non	failed P	unication results generally in

a set of bindings and a set of deferred pairs� which may or may not be processed at later

unication steps� depending on subsequently produced variable bindings
 A formal presen	

tation of this idea in the context of S	unication can be found in �Boy���� where su�cient

conditions for the absence of deferred pairs upon non	failed termination of a program are

given and in �KK��� where an implementation of this concept is described

Note that constructions receive special treatment with respect to other function appli	

cations
 In particular� they� �i� enjoy a special syntax f�t�� ���� tn�� �ii� can �if f is known

to the FPL� be either applied by the FPL or be selected directly upon by the LPL during

unication� and �iii� have an LPL meaning even if they do not conform to the FPL�s static

typing
 Hence we contrast X
Y and cons�X� Y�� in the case that X becomes � and Y becomes

true
 That is� cons��� true�� while malformed as an FPL object� can continue to serve as a

valid construction in the �untyped� LPL� while �
true is meaningless in both languages

	 Reduction Desiderata

How should an apply�fn� arg� term be reduced during P	unication� We claim the fol	

lowing properties are desirable�

�
 Safety� No reduction service request should cause an FPL type error

�
 Laziness� Subterms in apply�fn� arg� terms should be reduced only if their values are

needed �i� by an FPL reduction� or for successful completion of a P	unication step

For example� we aspire not to apply acker in apply�head� ��� apply�acker� ����� ��	��

since under a lazy evaluation regime we need not evaluate the elements of a list to

which head is applied

�
 Maximality� FPL evaluation requests should include a maximal composition of func	

tion applications� consistent with our laziness criterion
 Thus add��add��add��add��������

should be evaluated in one service request� rather than in four

In fact� laziness and maximality are somewhat opposing criteria
 We will achieve a prag	

matically attractive middle ground by means of �i� sealed envelopes� �ii� maximal consensus

types� and �iii� minimal term �truncations� bearing these types

�

 Sealed Envelopes

Our type	based �need to know� strategy lets us encapsulate data objects alien to the

FPL in carriers that hide the identity of these objects along with their type idiosyncrasies

This is accomplished through�

�
 Augmenting T to include a nullary type constructor union� which will be attributed to

subterms whose type is not germane to an FPL reduction request

�
 A term constructor seal�Term� of type � � union
 A seal application constitutes a

static typing boundary
 We denote the TL term language augmented with seal as the

augmented term language ATL

�
 An FPL datatype de�nition datatype union � seal of int

�
 An LPL � FPL interface convention�

�a� On output to the FPL� seal�x� is translated to seal���� where � � loc x� the address

of the expression x in the LPL address space

�b� On input from the FPL� seal�i� is translated to deref�i�� the expression at address

i
�

To illustrate� consider t � head ��� true	
 This is not acceptable to the FPL� due to its

heterogeneous list ��� true	
 However� if t is reformulated as head �seal�loc ��� seal�loc true�	�

then the FPL can be invoked to return seal�loc ��� which yields � upon dereferencing

� Attributing Types to TL Terms

P	unication� as outlined in x�� presumes testability of an apply term for error	free FPL

reducibility
 Our formal realization of this criterion is based on a notion of type attribution

for TL terms� which permits �i� a maximal type notion for TL terms� guaranteeing reduction

safety� and �ii� a type	driven reduction scheme meeting the laziness and maximality criteria

of x�

We begin by adapting the Hindley	Milner type attribution method �Mil��� to apply to

ATL terms
 This done by�

�
 Interpreting apply�fn� arg� as having type �� where the type of fn is constrained to

�� �� and the type of arg is constrained to �

�If addresses are unstable
 as with compacting garbage collection
 then symbolic names can be used	

�

�
 Interpreting constructions f�t�� ���� tn�� where f has an FPL	type� as apply�f� tuple�t��

���� tn��� if n � �� and apply�f� t�� if n � �

�
 Viewing as untypeable�

�a� Unbound variables� and

�b� Constructions foo�a� ���� where foo is an LPL	only constructor
 Note this implies

untypeability of LPL	only symbols� e
g
 a in ��� a	

�
 Interpreting seal�t� to have type union� as per x�� independent of whether t is typeable

This extension to the Hindley	Milner method preserves its principal type property

Theorem � If t � ATL has a type� then t is attributed a most general type� i�e� all other

attributable types can be obtained by substitutions on this most general type�

Proof� If t has a type� then all its subterms must be typeable� except possibly those within

seal����� occurrences
 Let us substitute seal�true� in t for each occurrence of seal������ and

call the new term t�
 Clearly� the set of types attributable to t and to t� are the same
 But

t� is now isomorphic to an ordinary FPL term� which has a principal Hindley	Milner type

Moreover� our extended method reduces to the Hindley	Milner method on t�
 Hence our

method must yield a principal type for t�� and that must be the principal type of t
 �

We denote the principal type of t � ATL� if it exists� by � �t�
 Let t be a TL term
 A

truncation t� � ATL of t is constructed from t by the introduction of zero or more unnested

seal constructions
 Let trunc�t� be the set of all truncations of t
 A subterm occurrence s

in t� � trunc�t� is sealed if s is immediately surrounded by a seal construction� or appears

within a sealed subterm occurrence
 We say t� v t� if every sealed subterm occurrence in

t� is sealed in t�
 Observe that v is a partial order on trunc�t�� and forms a �nite� lattice�

with � � seal�t�� and 	 � t

We now change the ordering on our type domain T to deal more e�ectively with the

e�ects of truncation
 The primitive type union is repositioned such that �i� � v union v ty

for all ty �� � �or any other type variable�� and �ii� the same ordering holds recursively under

type constructors� e
g
 � list v union list v int list� etc

If t � TL possesses no subterms with principal type � then we say it is ��free
 Henceforth

we will assume all TL terms are �	free

Theorem � Let t � TL be ��free� Then � is monotonic on trunc�t�� wherever it is de�ned�

That is� if t� and t� are both typeable truncations of t� with t� v t�� then � �t�� v � �t���

Proof� Let t� and t� be two typeable truncations of a TL term with t� v t�
 The typeability

of a truncation t is equivalent to the existence of a most general unier �mgu� � solving a

�

set of equations eq�t� on type variables dom��� associated with the nodes of t that are either

unsealed or directly sealed �i
e
 occurrences of seal������

Since t� and t� are typeable� �� � mgu�eq�t��� and �� � mgu�eq�t��� both exist
 Let

v�t� be the type variable associated with the overall term t
 Since t� and t� are truncations

of the same TL term� v�t�� is v�t��
 Hence � �t�� � v�t����� and � �t�� � v�t���� � v�t����

Let tr�t� denote the equations in eq�t� of the form Ti � union arising from directly sealed

subterms in t� and e�t� denote eq�t�
tr�t�
 Then eq�t�� � e�t���tr�t��� and eq�t�� � e�t���

e�� where e� � �e�t��
e�t����tr�t��
 Note thatmgu�eq�t��� � mgu�mgu�e�t����mgu�tr�t���� �

mgu�mgu�e�t���� tr�t���� and mgu�eq�t��� � mgu�mgu�e�t����mgu�e���

Since mgu�eq�t��� exists� so must mgu�e��
 By �	freeness� all type variables in dom�e��

must be bound to values union or greater
 We say two mgu�s � and �� obey � v �� i�

dom��� � dom����� and �v � dom���� v� v v��
 We have dom�tr�t��� � dom�e��� so

mgu�tr�t��� v mgu�e��� hence mgu�eq�t��� v mgu�eq�t���� and � �t�� v � �t��� �

A word of explanation is appropriate concerning our exclusion of ATL terms possessing

subterms of principal type �
 Such subterms must denote �fully polymorphic� FPL values�

which are anomalous
 Expressions denoting such objects include� �i� head nil� �ii� f �� where

fun f x � f x� and �iii� f �� where fun f x � raise exception�
 In short� �	typed expressions

can never deliver values� due to inescapable divergence or exception

� Maximal Types of TL Terms

Let us dene t� � trunc�t� to be FPL�safe if t�� as outputted under the seal interface

protocol described in x�� is typeable by the FPL

Theorem � Every typeable truncation of a TL term is FPL�safe�

Proof� Follows by an argument similar to that for Theorem �
 �

Note that at least one typeable truncation always exists for any t � TL� since at worst

we can seal t in its entirety

Theorem � If t� and t� are two typeable truncations of a term t� then t� t t� is typeable�

Proof� Our proof uses the notation introduced in the proof of Theorem �
 To prove

typeability of t� t t� it su�ces to prove existence of mgu�eq�t� t t���
 Denote by e�t�� t��

the intersection of the sets e�t�� and e�t��� and by e��t�� the set e�t��
 e�t�� t��
 Hence

�What happens if a TL term is not ��free� Consider t � apply�head�nil�
 with Hindley�Milner principal
type �
 and trunc�t� � ft
 seal�t�g	 The maximal typeable truncation of t is t itself with type �
 but its
maximal type is union	 Hence � is not monotonic on trunc�t�	

�

eq�t� t t�� � e�t�� � e��t�� � tr�t� t t�� and we seek to prove existence of its mgu

Clearly the set e�t�� has a unier since t� is typeable
 The set e��t�� has a unier since

it is a subset of e�t��
 The set tr�t� t t�� includes the equations arising from the directly

sealed subterms of t� t t�
 The set e��t�� � �tr�t� t t��
 tr�t��� is a subset of eq�t�� and

has a unier
 The remaining equations in tr�t� t t�� share no variables with this set
 Thus

e��t�� � tr�t�t t�� also has a unier
 Now mgu�e�t��� e��t�� � tr�t� t t��� can be computed

as mgu���� ���� where �� � mgu�e�t��� and �� � mgu�e��t�� � tr�t� t t���

We now show existence of mgu���� ���
 Consider the set V of variables of e�t�� denoting

the types of the directly sealed subterms of t�
 Since the type equations in e�t�� include

no occurrence of union �� binds these variables at most to type variables �or leaves them

unbound�
 Otherwise they could not be bound to union and t� would not be typeable
 On

the other hand� �� binds every variable of V to a type not including the variables of V �

since these variables characterize types of the disjoint subterms of t� t t� truncated by the

boundary of t�

Two cases should be considered

Case �� No variables of V are bound by �� to a common type variable
 In this case

mgu���� ��� exists and is obtained by binding the variable ���x� to the type ���x� for every

x � V

Case �� Some variables x and y in V are bound by �� to a common type variable

 Case �a� Both x and y occur either in ��� tr�t��
 eq�t�� or in ��� tr�t��� eq�t��
 If ���

applies� ���x� � ���y� � union
 If ��� applies� then by the assumption of typeability

of t� terms ���x� and ���y� must be uniable� since e��t�� is a subset of the uniable

set eq�t��
 From these observations one can conclude existence of mgu���� ���

 Case �b� One of the variables x� y� say x� occurs in tr�t��
 eq�t�� while the other

occurs in ��� tr�t�� � eq�t��
 In that case there exists a variable z in tr�t�� � eq�t��

which is bound by �� to the same variable as x
 This is because y is both in eq�t��

and eq�t�� while x is not in eq�t��
 As they are bound to the same variable they must

�communicate� over the boundary of t� in t�
 The mgu of e�t�� binds z to a variable

since it is bound to union by the mgu of eq�t��
 It also must bind z and y to a common

variable since �� does that
 Hence e��t�� which is a subset of e�t�� can only bind y

to a variable
 Consequently ���x� � ���y� � union which allows us to conclude the

existence of mgu���� ���

Given that Case � and Case � are exhaustive� we see that the set e�t�� � e�t�� has an mgu

�

�

The maximal typeable truncation of a term is the lub of its typeable truncations
 Hence

every term has a unique maximal type� yielded by its maximal typeable truncation
 This

permits us to extend � to be total on TL� by dening � �t� to be the type of the maximal

Hindley	Milner typeable truncation of t

Note that the maximal type of t may be assumed by more than one of its truncations

Consider for example t � head ��� true	
 The maximal type of t is union� obtained from

both t� � seal�head ��� true	� and t� � head �seal���� seal�true�	
 However� t� � t�� so t�

corresponds to a greater amount of FPL reduction
 Indeed� maximal typeable �FPL	safe�

truncations indicate maximal FPL reductions
 This leads to�

P�uni�cation Formulation ��

When reducing t � apply�fn� arg� in Step � of Formulation ��

 Compute the maximum typeable truncation t� of t

 If t� � seal� ��� �� suspend

 Otherwise� reduce t� and continue

Unication of two TL terms fails when �i� both of their types are of the form � � � �since

we decline to unify functions for soundness reasons�� or �ii� their types are not compatible�

as explained in x��

This strategy is safe �by Theorem �� but sacrices laziness �consider the apply�head� ���

apply�acker� ����� ��	� given earlier�
 We assert informally that it is also maximal

� Implementing Type Attribution

Truncation enumeration and typeability testing can be merged into a simple� accept	

ably e�cient algorithm succinctly expressible in Prolog �see Fig
 ��
 Let R�t� denote our

Prolog representation of TL term t
 R�t� � e�T� S�� where�

�
 T is a Prolog term representing a type attributed to t� i
e
 int� bool� union� etc
�

cross�T�� ���� Tn�� list�T��� arrow�T�� T��� or �an unbound variable� for un	

typed terms�

�
 S is a Prolog term representing the syntax of t �

��

type�e�R� apply�F� A��� ��

F � e�arrow�D� R�� ��� A � e�D� ��� type�F�� type�A��

type�e�cross�T�� T	�� tuple�E�� E	��� ��

E� � e�T�� ��� E	 � e�T	� ��� type�E��� type�E	��

type�e�list�T��� cons�E�� E	��� ��

E� � e�T�� ��� E	 � e�list�T��� ��� type�E��� type�E	��

type�e�list���� nil���

type�e�int� S�� �� integer�S��

type�e�bool� true���

type�e�bool� false���

type�e�arrow�list�T�� T�� head���

type�e�arrow�int� arrow�int� int��� plus���

type�e�arrow�arrow�T�� T	�� arrow�list�T��� list�T	���� map���

type�e�arrow�X� X�� ident���

���

type�e�union� ����

Figure �� Type attribution in Prolog

t S

V � Var var�V�

f�t�� ���� tn� f�t�� ���� tn�

�f an LPL�only constructor� �subsumes constants and tuples�
apply�t�� t�� apply�R�t��� R�t���

�includes FPL�constructions� see x��

Hence� nil � e� � nil�� foo��� true� � e� � foo��� true��� apply�add�� X� �

e� � apply�e� � add��� e� � var�X����� etc

Note that in the algorithm of Fig
 ��

��

�
 Typing of subterm occurrences is attempted in a top	down� left	right order

�
 Clause type�e�union� ��� implicitly seals a given subterm� as last resort

�
 Sealed subterms are unnested

�
 Type union is the only attribution to variables and LPL	only constructions

�
 All typeable truncations are enumerated� with principal types� in topologically sorted

order �maximal rst�

�
 Backtracking is somewhat �intelligent�� in that attributing union to a subterm will

�short circuit� type attribution search on subterms that must agree in type
 For

example� once union is attributed to true �by implicitly sealing it� in �true� apply�acker�

tuple����� ��	� attribution of union to the apply term will ensue without attempting

any type attribution of tuple����� �

�� P�uni�cation Formulation �

We can now precisely dene our P	unication algorithm
 Given the preliminary algorithm

in x�� we need only rene the case where x � apply�fn� arg�� and y is either a construction

or an apply term
 Let L � R��x� y	�
 First� we solve type�e�T� L��� obtaining �max� the

maximal type of L

 Case �� �max � list�arrow� � ��� Fail�

 Case �� �max � list�union��

� Case �a� Only one truncation of L has this type� viz
 �seal�x�� seal�y�	� Suspend

� Case �b� More than one truncation of L is attributed type list�union�
 Let t�

be a minimal typeable truncation of L greater than �seal�x�� seal�y�	� Reduce x

and y using their respective truncations in t�	 and reconsider this pair�

 Case
� list�union� � �max� Let t be a minimal truncation of L with type �max�

Reduce x and y using their respective truncations in t	 and reconsider this pair�

This �max type � min truncation reduction strategy is our key to achieving both max�

imality and laziness
 The favorable enumeration order of typeable truncations provided by

the algorithm in Fig
 � means that we can abort the solution of type�e�T� L�� as soon as

the second distinct binding for T results �and select the truncation constructed immediately

prior�
 This strategy encourages laziness� as the following examples indicate

��

 �max � list�union�� Let L � R��apply�head� �X	�� apply�head� �Y	�	�
 The maximal

typeable truncation of L is tmax � �apply�head� �seal�X�	�� apply�head� �seal�Y�	�	� and

the minimal truncation with this type is tmin � �seal�apply�head� �X	��� seal�apply�head�

�Y	��	
 Two other typeable truncations lie between tmax and tmin� viz
 t� � �apply�head�

�seal�X�	�� seal�apply�head� �Y	��	 and t� � �seal�apply�head� �X	��� apply�head� �seal�Y�	�	

Unfortunately� t� and t� are incomparable� and t� u t� � tmin� which indicates no

reduction of the two terms
 Selecting either t� or t� will cause some reduction to

take place� and constitute progress toward success or failure of the unication step

�successful� in this case�
 Which truncation to choose is imponderable� so an arbitrary

selection must be made
 Of course� a more aggressive �less lazy� implementation may

opt for reduction as indicated by tmax� which is always unique �and outputted rst by

our algorithm�

 �max � list�union�� Now let L� �apply�head� �false	�� apply��rst� tuple�true� apply�acker�

tuple����� ����	� where � ��rst� � �� � � �
 The maximal typeable truncation tmax

of L is L itself� with type list�bool�
 However� another typeable truncation of t exists

with the same type� t� � �apply�head� �false	�� apply��rst� tuple�true� seal�apply�acker�

tuple����� �����	
 We elect to reduce according to t� in the spirit of laziness� thereby

avoiding evaluation of acker����� �

One may ask� what are su�cient grounds for turning suspension �Case �a� into failure�

When the maximal typeable truncations of all ground instances of L seal both arguments of

its list� An e�ective test for this is easily implemented�

 Solve susp�e�T� L��� where procedure susp
� renames type
�� with added clause

susp�e�X� var�X���� positioned before the nal clause susp�e�union� ���

 If there is only one typeable truncation of L with type greater than union �necessarily�

with both of its list elements sealed�� fail
 Otherwise� suspend

Note the trick in clause susp�e�X� var�X���� of pressing a variable X into service as its

own �unbound� type denotation
 This veries that a potential type consensus exists for all

uses of X
 Hence we will detect that �i� f�
X� ��g and f�
X� ��Xg should suspend� but �ii�

f�
X� trueg� f�
true� ��g� and fapply�length� X�� �
Xg should fail

�� Type Retention� Polymorphism� and Lazy Copy�

ing

Our type attribution method for TL terms has another important monotonicity property�

��

Type Term Representation
union union� �

int union�int�

� list union�list� ��

union list union�list�union� ���

int list union�list�union�int���

� list list union�list�union�list� ����

Figure �� Monotonic term representation of types

Theorem � Let t and t� be typeable TL terms� with t� 	 t� for some substitution �� Then

� �t� v � �t���

Proof� Let t�� be t� with a seal����� surrounding each occurrence in t of a variable bound

by �
 Clearly� t�� is typeable� and has the same type as t
 Since t�� v t�� by Theorem �

� �t��� v � �t��� hence � �t� v � �t��
 �

Since type attribution is monotonic on variable instantiation� could we retain prior attri	

butions of a term t to give us a �head start� on subsequent typings� The answer is yes in

principle� but several complications arise

�
 A term representation for types must be designed that permits type attributions to be

�raised� by variable binding
 This not true of the representation used in Fig
 �� since

union v int� but union may not be instantiated to become int
 Such a representation

is illustrated in Fig
 �

�
 The type attribution code of Fig
 � can be amended to use the representation shown

in Fig
 �
 However� care must be taken that sealed subterms are given �xed union

attributions� lest ��� true	 be attributed type bool list
 This can result from the union� �

attribution of seal��� being raised by unication with the type of true to union�bool�

A suitable defense is to use type�e�union�fixed�� ��
 as our �sealing� rule
 In

contrast� susp�e�union�X�� var�X���� gives exactly the right �optimistic� typing

e�ect
 However� in both cases the union� � argument bindings must be undone� if the

type attributions are to be permanently retained

�
 The most severe impediment to retaining type attributions is the unfortunate collision

of the �cultures� underlying polymorphism and lazy copying
 Consider� for example��

goal G � type�e�T� tuple�X� X���� where X has been bound in a prior unication

step to e�list�T��� nil�
 The sharing of X�s binding in G will cause the code in

Fig
 � to bind T to cross�list�T��� list�T���� which incorrectly attributes only one

�For clarity
 we revert in this example to our prior type representation	

��

degree of polymorphism to G
 The correct binding is cross�list�T��� list�T	��

The implication is that we must copy the type attribution of every bound variable on

each dereference � a very disheartening prospect indeed

For these reasons� we advocate the simplicity and space economy of building transient

type attributed e�T� R�t�� representations of TL terms only as needed during P	unication

Since this would be done by direct traversal� type variables would be created anew �i
e

�polymorphically�� for each subterm encounter� independent of whether or not that term�s

representation is physically shared �example� buildexp���� e� �nil����

Note that this construction would only be undertaken when unication cannot proceed

without reducing an apply term
 Hence ordinary LPL proceeds unimpeded �indeed� more

e�ciently than if type attributions were permanently associated with every term�

�� What About Equality�

The only primitive polymorphic �actually� overloaded� operator in SML is equality

Types required to admit equality are indicated by special type variables� denoted ��
 Con	

sequently� functions which apply equality to their arguments indicate this fact in their type

signatures� e
g
 mkset � �� list � �� list which removes duplicates from a list
 We can easily

distinguish types with equality in our domain by incorporating all �� type variables� and

ensuring that �� variables in function argument types do not unify with function types or

types containing union�s
 The e�ect of this on P	unication is suggested by the following

examples�

�i� P	unifying � with length�mkset �X� Y� Z	� suspends�

�ii� P	unifying � with length�mkset� ��� �� �	� fails

�� Experimental Test

An experimental test of P	unication was successfully performed using �i� an HCLP

interpreter written in Common Lisp� and �ii� the SMLNJ implementation� each running as

a separate Unix process �Ogi���
 Given that these processes communicate by stdin stdout

character streams� a quirky pragmatic di�culty arises� how to capture FPL results that

don�t print in full detail �e
g
 functions� ref values� and truncated print representations��

The answer lies in yet another trick
 Suppose we invoke head �add�� ident	
 The printed

result is val it � fn � int � int
 Although �appropriately enough� we cannot inspect the

function returned� we can capture it by binding it to a global symbol� achieved by exporting

��

e
g
 val genfn� � it� and henceforth referring to the function by its external name genfn�

One may ask why we did not implement our HCLP interpreter in SML� and avoid the

overhead of interprocess communication
 In fact� we began our implementation in SMLNJ�

with condence that we could �nesse� the function application by the SML diction fn arg

Alas� we quickly learned that such is not possible within the expressive limits of SML�s

static type system� due to the need for unboundedly polymorphic user dened datatypes

The upshot is yet another conrmation of the folkloric fact that static typing is lovely until

one undertakes �system� programming

�� Related Work

In addition to the S	unication work mentioned earlier� the freeze thaw notions in se	

quential implementations such asMu�Prolog� and representative approaches to narrowing�

are relevant
 Barklund and Millroth �BM��� discuss dealing with alien ��hairy�� data struc	

tures in Prolog� their techniques bear some similarity with our sealed envelopes
 A sound

treatment of dynamic typing in an extension of SML is described in �ACPP���
 Our type

union is very similar to their type dynamic� however� we also consider partially instantiated

and lazily evaluated expressions
 In contrast� their treatment includes a typecase expression

permitting dynamic type testing within the source language
 The work most vitally related

to ours is that of Phil Wadler �Wad���� who derives theorems about functions working simply

from their type signatures� and that of Mary Sheeran� who has applied category theoretical

interpretations to type signatures for similar results

The issue of types in logic programming has been studied by many authors �see �Red���

and �Pfe��� for recent surveys�
 The approaches can be classied as prescriptive �e
g

�Han����� where type declarations restrict the success set of the program� and descriptive�

where types �declared as e
g
 in �MO��� or inferred as in e
g
 �Mis���� describe properties of

the success set of the program
 �A recent paper �LR��� reconstructs the Mycroft	O�Keefe

type system as a prescriptive one
� Types of the predicates of a logic program are in the focus

of attention of both categories
 Introduction of types is often motivated by their potential

for early detection of errors and by their usefulness for program analysis and optimization

Our work has di�erent motivations and objectives
 We assume that the external functional

procedures used in our logic programs are typed
 We do not care whether these types have

been inferred or declared by the user
 We leave as the topic of future work the question

how to use them for inferring types of the predicates
 Thus our predicates are not typed

Our main objective is the use of the types of the functional procedures for interfacing them

with our logic programs
 Types provide the only source of information about the external

procedures which are otherwise considered black boxes
 As shown in the paper this infor	

��

mation may often be su�cient to know that an external procedure can safely be invoked

with non	ground arguments
 This allows for improvement of the operational semantics of

logic programs with external procedures described in �BM���� some error denotations under

S	unication can be avoided by using instead our P	unication

Our language allows for the use of higher	order functional procedures but the syntax of

terms is restricted to applicative terms and 		abstraction is not allowed in our logic programs

Higher	order features are commonly supported by functional programming languages and can

be used from logic programs by the interface based on P	unication
 In this way we avoid

full higher	order unication which is required for clean integration of higher	order features in

logic programming� as exemplied by 		Prolog �NM���
 However� as pointed out in �Mil���

many interesting 		Prolog programs can be executed with a restricted kind of higher	order

unication
 In contrast to 		Prolog our functional procedures are external and the only

information about their behavior is given by their type signatures
 This causes inherent

incompleteness of P	unication� which may result in unresolved deferred disagreement pairs

�	 Conclusions

We have employed SML� �i� on alien data types �e
g
 logical variables�� �ii� in a lazy man	

ner� even though it is strict� �iii� on a dynamically typed and untyped terms� even though it is

statically typed � all without changing a single bit of its real �New Jersey� implementation

We view this exercise as an initial experiment in using types as a basis for securely inter	

facing �open languages
� A particularly challenging long term goal is to interface logic �and

functional� languages to object oriented imperative languages� which have rather di�erent�

but equally advanced� notions of polymorphism �CCH����

�
 Acknowledgments

The insights of Sta�an Bonnier� Laurie Hannon� and Charles Clark have been very helpful

in the preparation of this paper

References

�ACPP��� Mart�!n Abadi� Luca Cardelli� Benjamin C
 Pierce� and Gordon D
 Plotkin
 Dy	

namic typing in a statically typed language
 Technical Report ��� DEC Systems

Research Center� June ��� ����

��

�BM��� Jonas Barklund and Hakan Millroth
 Integrating complex data structures in

Prolog
 In Symposium on Logic Programming� pages ���"���� San Francisco�

August ����
 IEEE Computer Society

�BM��� Ste�an Bonnier and Jan Ma�luszy�nski
 Towards a clean amalgamation of logic pro	

grams with external procedures
 In Robert A
 Kowalski and Kenneth A
 Bowen�

editors� Logic Programming
 Proceedings of the Fifth International Conference

and Symposium� pages ���"���� Seattle� ����
 MIT Press

�Bon��� Sta�an Bonnier
 Unication in incompletely specied theories� a case study
 In

A
 Tarlecki� editor� Mathematical Foundations of Computer Science ����� pages

��"��
 Springer	Verlag� ����
 LNCS ���

�Boy��� Johan Boye
 S	SLD	Resolution� An operational semantics for logic programs

with external procedures
 In Jan Maluszynski and Martin Wirsing� editors� Proc�

PLILP��� pages ���"���
 Springer	Verlag� ����
 LNCS ���

�CCH���� Peter Canning� William Cook� Walt Hill� John Mitchell� and Walter Oltho�
 F	

bounded polymorphism for object	oriented programming
 In Proc� of Conf� on

Functional Programming Languages and Computer Architecture� pages ���"����

����
 Also Technical Report STL	��	�� Hewlett	Packard Labs

�DV��� M
 Dincbas and P
 Van Hentenryck
 Extended unication algorithms for the

integration of functional programming into logic programming
 Journal of Logic

Programming� ��������"���� ����

�Han��� Michael Hanus
 Horn clause programs with polymorphic types� Semantics and

resolution
 In Proc� of TAPSOFT��� pages ���"���� ����
 Springer LNCS ���

�KK��� A
 K#agedal and F
 Kluzniak
 Enriching Prolog with S	Unication
 In Proc� of

Phoenix Seminar on Declarative Programming
 Springer	Verlag� ����

�LR��� T
K
 Lakshman and U
S
 Reddy
 Typed Prolog� A semantic reconstruction of

the Mycroft	O�Keefe type system
 In Proc� of ILPS� pages ���"���
 MIT Press�

San Diego� ����

�Mil��� R
 Milner
 A theory of type polymorphism
 J� of Comp� and Sys� Sci�� ���������"

���� ����

�Mil��� Dale Miller
 A logic programming language with lambda	abstraction function

variables� and simple unication
 Technical Report MS	CIS ��	��� University of

Pennsylvania� Philadelphia� ����

��

�Mis��� Prateek Mishra
 Towards a theory of types
 In Symp� on Logic Programming�

pages ���"���� Atlantic City� ����
 IEEE

�MO��� Alan Mycroft and Richard A
 O�Keefe
 A polymorphic type system for Prolog

Arti�cial Intelligence� ������ August ����

�Myc��� Alan Mycroft
 Polymorphic type schemes and recursive denitions
 In M
 Paul

and B
 Robinet� editors� International Symposium on Programming� pages ���"

���
 Springer	Verlag LNCS ���� ����

�NM��� Gopalan Nadathur and Dale A
 Miller
 An overview of 	Prolog
 In Robert A

Kowalski and Kenneth A
 Bowen� editors� Logic Programming Proceedings of the

Fifth International Conference and Symposium
 IEEE Computer Society� MIT

Press� August ����

�Ogi��� Takeshi Ogi
 Using types to interface functional and logic programming
 MS

thesis� University of Utah� May ����

�Pfe��� Frank Pfenning
 Types in Logic Programming
 Tutorial Notes� Symposium on

Logic Programming� Jerusalem� June ����

�Red��� Uday Reddy
 Notions of polymorphism for predicate logic programs
 In Robert

Kowalski and Kenneth Bowen� editors� Proc� �th Int� Conf� and Symp� on Logic

Programming� Seattle� ����
 MIT Press

�Wad��� Phil Wadler
 Theorems for free� In David MacQueen� editor� Proc� Symposium

on Functional Languages and Computer Architecture� London� September ��	��

����
 Springer	Verlag

��

