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ABSTRACT

, A promising method of automatic word recognition in continuous

speech, recently designated as word spotting, has been demonstrated.

The method uses error residual ratios from LPC (Linear Predictive Cod-

ing) vocoder analysis for waveform comparison and a dynamic programming

procedure for time registration between the incoming speech and a

template of the key word. Using a similarity threshold, the incoming

speech is compared with several templates to account for variability

in spectral shape. This system can work in real time using a real time

vocoder.

The multiple templates are used in such a way that a small number

of templates, three or four, is made to look like several hundred or

more. This is accomplished by dynamically constructing a composite

template from parts of each single template as part of the processing

of the incoming speech. Thus, a particular composite template is

constructed for each word being recognized.

An accuracy of 99 percent with no false alarms was achieved

using 205 key words, five different speakers, and approximately ten

minutes of speech text. Performance in the presence of additive white

gaussian noise of approximately 11 dB signal-to-noise ratio was 66

percent. When the speech was processed to account for the noise, re-

suits improved to 85 percent to 90 percent accuracy. Finally a digit
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in continuous speech. This has recently been designated as word

spotting in continuous speech.

The problem described in this dissertation is word spotting in

continuous speech. Here the objective is to process continuous speech

using a digital computer, and to determine if and when a chosen ref-

erence word ever occurs.

This work has successfully applied easily calculated LPC param-

eters in a simple dynamic programming time warp algorithm developed by

Bridle.23 Multiple templates are then used in a way which is similar

to the nearest neighbor method of pattern recognition. The most

significant effect of the multiple template procedure is to allow a

small number like three or four templates to be used in such a way
that they look like a very large number, like several hundred or
more. This is accomplished by dynamically constructing a composite

template from parts of each of the single templates during the actual

word spotting processing. This process is described in detail in

section 1V. This method may be utilized to recognize words spoken in

isolation or as part of ordinary conversation.

The primary system evaluation was performed using approximately

two-minute passages of well-articulated speech recorded in a quiet

room by five different speakers and using multiple-syllable template

words. The effect on performance of the system when the input speech

was corrupted by additive gaussian white noise was examined. An at-

tempt was made to extract the speech LPC parameters from the noisy

speech using two methods described later. An attempt was also made



to recognize words in the noisy speech by adding similar noise to the

templates. A preliminary evaluation of the system was made using

multiple templates from different speakers. Finally, the performance

of the system was evaluated by having ten different speakers each

speak approximately one hundred digits chosen from a table of random

numbers. For this final evaluation two templates of each digit spoken

separately by speaker A were used for word spotting on speaker A’'s"

digit text. This was repeated for each of the remaining nine speakers.

This was followed by a very brief experiment in which templates from

one speaker were used to recognize digits spoken by another merely to

give an indication of performance. The effect of noise on the digit

recognition performance was not evaluated since the digit work was

done only to suggest possibilities.

The overall accuracy was greater than 99 percent for multiple

syllable words using clean speech with 100 percent accuracy for four

speakers and 95 percent for the fifth. Using the single syllable

word "Ford" from a sixth passage, 100 percent accuracy was achieved.

For the cross-speaker experiments an overall accuracy of 95 percent
was achieved. In all of the above cases, there were zero false
alarms.

With an 11 dB signal-to-noise ratio, no processing to remove

noise effects, and 66 false alarms per hour, the accuracy was 66 per-

cent. This accuracy increased to 90 to 95 percent with processing to

account for the noise. It was also found that the system does degrade

smoothly in the presence of noise as shown in Fig. 8.



Finally, for the digit recognition experiments, an accuracy of

97 percent was achieved using five male and five female speakers.

No attempt was made to fully optimize the system even as it

now is defined. In particular, the threshold, time-warp penalty factor,

sample rate, and the number of poles in the LPC analysis were not

optimized in any real sense. The values used, however, were not chosen
completely arbitrarily. For example, Boll31l indicates that a window !
width of 20 to 30 ms will yield acceptable quality synthetic speech
for a 12-pole LPC vocoder. Since data are stored on the magnetic

disc in blocks of 256 samples, a window width of 25.6 ms was a con-

venient size to use for the initial work. Then, since it worked so
well initially, the 25.6 ms window was used for the remainder of the
work.

M ajor problems with the system which require additional re-

search are the need to readjust the threshold with each speaker and

word and the poor cross-speaker performance (95 percent). Also, since

the system wuses a simple spectral comparison, it will probably have a

higher false alarm rate on words that sound alike and on short words.

This possible problem, however, was not examined in detail and no

attempt was made to include similar sounding words in the various

passages used. But, if one wanted to spot longer words, pairs of

words like full names of individuals or longer phrases of words, the

system should work quite well.

It is recognized that the system developed for this research

is not a final complete system for word spotting, that it does not



meet all the practical requirements for such a system, nor does it
address all the difficulties inherent in solving such a problem. In
fact the developed system is less than optimum in performance in that
it uses only a single feature to measure similarity between the refer-
ence word and the incoming speech. The main objective was to determine
the best performance that could be achieved if we were allowed to tune
the system for best performance for each word and each speaker. Even "

the concept "best performance" is somewhat vague in that there may be

a trade-off between false alarm rate and number of misses of the cor-

rect word. Thus, "best performance” may be a function of the applica-
tion. It is expected that if additional features such as pitch,
voicing, zero crossing rate, etc., are included in the similarity

function, the performance should improve and become more speaker

independent.

A key point that should be made here is that this word spotting

system has much more narrow and restricted objectives and applications

than the more general word and speech recognition work being pursued

elsewhere. No claims are made with respect to its usefulness in the

speech recognition and speech understanding areas. It has been demon-

strated that Bridle's dynamic programming algorithm does work quite

well and that it, along with LPC analysis, does appear to form a

sound basis for further research.

In summary, a system has been demonstrated, using only a single

feature for comparing waveforms, which shows great promise for use in

word spotting applications. Even with a false alarm rate of 66 per



hour, a reduction in listening time of approximately 100 to 1 is

realized if we assume an average speaking rate of two words per

second. For this case, the speech would be processed by the system,

the spotted words along with their location on the tape would be

stored, and then later listened to by an operator who would reject
the false alarms. If the desired key words were present, the operator
would then go back to the original tape and listen to the appropriate

text in real time.



I1.  LITERATURE REVIEW

Introduction

During the last 25 years, there has been considerable interest

and effort directed at determining what features of human speech can

be used to recognize words and connected speech by using some form of

automatic analog or digital signal processing system. Many attempts

have been made to develop phonetic typewriters, automatic telephone

dialers, isolated word recognizers, and speech recognition or under-
standing systems. A given system will typically use one or more
features such as: formants, band-pass filter outputs, signal energy,

pitch, sound spectrum, voicing, zero crossing rate, LPC parameters,

etc.

If the word to be recognized is part of some continuous speech,
then the speech signal is usually segmented into some basic recogniz-
able parts such as phonemes or syllables. These elements are then

classified and semantic and syntactic rules used to make decisions as

to meaning.

One problem which makes these procedures difficult is that the

acoustic or frequency features of a given phoneme or syllable vary with

context, location in the sentence, and stress, even when spoken by the

same speaker.”n Time normalization is also a problem since speakers



speak at different rates, depending on a variety of conditions.

As the existing literature is reviewed, it will be found that

each of these problems is addressed by one or more of the researchers,

but that no really all-encompassing satisfactory solution has been

found. It will also be noted that the most recent work uses extremely

complex and often ad. hoc analysis procedures. Although there has been,

and currently is, a considerable amount of effort being expended, the

general speech recognition problem still has not been solved.

One objective of the following literature review is to describe

those current and previous research and development efforts which

address directly or indirectly problems, techniques, and technology

useful for solving the problem of word spotting in continuous speech.

Another objective is to define the current capability and reported

performance of word-spotting systems or word-recognition systems which

are adaptable to the word-spotting problem.

In the discussion of the various speech and word-recognition

papers which follows, no attempt is made to discuss all research and
development efforts described in the literature. Instead a brief
description of work which illustrates how the research has evolved is
given in chronological order. These sources are given in the list of
references. A more complete list of work reported will be given in

a bibliography following the references.

Previous Work

The first limited vocabulary, automatic word recognizer was



developed at Bell Laboratories and reported in 1952 by Davis, Eiddulph,

and Balashek.* Their device could recognize the ten digits spoken

over the telephone with 97 to 99 percent accuracy. It utilized 100

training utterances for each word and had to be trained for each

speaker using the system. It required at least a 350-ms pause between
each word. For analysis it calculated the first and second formants
and formed a two-dimensional plot of formant 1 versus formant 2. A

pattern-matching network then compared the unknown or input pattern

with the set of ten stored reference patterns. The decision function

then decided which digit yielded the best match to the unknown pattern.

Best match was determined by calculating a correlation coefficient

between the unknown and each reference and choosing that with the

highest coefficient. This system was very speaker-dependent.

In 1956 Wiren and Stubbs2 at Northeastern University produced

a device which may be described as a successive binary classification

scheme. The nature of this technique placed stringent requirements on
each step in the process since overall accuracy was the product of the
accuracy of each block in the series. This system performed a phoneme
classification of spoken English. Step 1 used the output of a filter

in the range of pitch frequency and a threshold to make a voiced versus

unvoiced decision. Step 2 then used the output of a band-pass filter

in the range of the first formant and a threshold to make a voiced

turbulent versus voiced nonturbulent versus unvoiced turbulent deci-

sion. These signals were then successively classified as nonturbulent
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vowel or vowel-like. If they were vowel sounds, then they were decoded

into acute versus grave. Voiced turbulent sounds were decoded into

stops or fricatives, and unvoiced sounds into the remaining stops and

fricatives. Finally, diffuse, compact, and nasal characteristics

were brought to bear to complete the classification.

This approach did not address the difficulties created by the

fact that some sounds differ appreciably in their acoustic properties

depending on whether they were spoken in context, in isolation, in

the middle, at the beginning, or at the end of an utterance. The

accuracy of various elements of this system was given as varying from

86 percent to 98 percent. No overall accuracy figure was given.

In 1956 and 1961, Olson and Belar at RCA reported on a pho-

netic typewriter development which recognized 7- or 10-word vocabu-

laries in the earlier version3 and a 100-word vocabulary in the later

version.4 The system calculated a three-dimensional sound spectrum

with dimensions of intensity, time, and frequency. The first version

used two levels for the intensity, while the later version used eight

levels. Both systems used five time intervals and eight band-pass
filters. A reference matrix was stored for each syllable formed by
averaging 100 utterances of the syllable. An input or unknown syl-

lable matrix was then examined for the presence of certain nonzero

elements. If these elements were nonzero, a relay closed and the

syllable was typed. Two problems with this system were that the

syllables had to be enunciated very clearly, and they had to be spoken
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in isolation. The system was speaker-dependent and had to be re-

trained for each speaker. The claimed accuracy was 98 percent.

In 1958 Dudley and Balashek5 6 reported on a follow-up to the

1952 Bell Laboratories digit recognizer. This machine was similar

to the earlier one, but instead of the first two formants, it used

ten band-pass filters and calculated the correlation between the un-

known and the reference based on energy in each frequency band. It

also compared the duration of the phonetic pattern as in the earlier

version. This system frequently achieved 100 percent accuracy for a

single speaker. Again, the speaker had to say the words with about

350 ms isolation, 300-700 ms duration, and speak the same way as

during the 100 training utterances. This system, as before, recog-

nized the ten digits.

In 1959 Forgie and Forgie at Lincoln Laboratories?7 reported on

a system which could recognize ten English vowels spoken in isolated

words. This system derived pitch and first, second, and third formants
from a 35-channel filter bank. To accomplish this, the outputs were
envelope-detected, sampled, and processed on a computer. The filter

bank covered frequencies from 115-10,000 Hz, and the output was sampled

180 times per second. The vowels were identified primarily by the

location and duration of points in a plot of formant 1 versus formant

2. This sytem was tested using eleven male and ten female speakers

and yielded an accuracy of 88 percent. When the duration information

was used, accuracy increased to 98 percent. The isolated words were
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of i;he form |b] - vowel - |t]. A key element introduced in this work

was the use of a digital computer to process the sampled analog data.

In 1960 Denes at University College, London, and Mathews at Bell

Laboratories8 reported on a word recognizer which used a digital com-

puter to perform time-frequency pattern matching. In this system the

speech signal was applied to a 17-channel filter bank covering the range

200 to 4,000 Hz. The channel outputs were sampled sequentially 70 times
per second. Time normalization was performed by linearly stretching all
utterances to a standard length. The system recognized the ten digits

spoken in isolation. Recognition was accomplished by cross-correlating

the unknown processed data with the reference arrays of data and choos-

ing the digit with the maximum correlation. This system was able to get

zero errors with one particular speaker. Using reference patterns made

by averaging over five different speakers, an error rate of 6 percent

was achieved.

In 1967 Reddy, at Stanford University,® reported on a digital

computer system for automatic recognition of connected speech utterances

of one to two seconds length. In this system the speech signal was in-

put directly to computer magnetic disc storage through an analog-to-

digital converter. The 2-s utterances were first divided into sus-

tained and transitional segments, using intensity and zero-crossing

measurements in the decision function. A pitch period was then identi-

fied for each voiced segment using data near the center of the segment

and analysis similar to that of Gold.10 The amplitudes of the first

100 harmonics of the fundamental pitch frequency were then determined
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from a Fourier expansion using data from one pitch period near the

center of the voiced segment. For unvoiced segments, the spectral

energy distribution was determined by performing a Fourier expansion

using a time window near the segment's center. The window was about

the length of an average pitch period for the speaker (approximately

10 ms). Using the results of this data analysis, 21 parameters, related

to amplitude and frequency of formants, noise, pitch, zero crossings,

and intensity, were compiled for each segment. Using these parameters,
the segments were then classified as vowel-like, fricative-like, etc.,
with transition segments being rejected. These segments were then
further classified as standard English phonemes. For a single speaker
speaking 287 phonemes, 81 percent accuracy was reported. Computation
time was 40 times real time. This procedure used many ad hoo procedures,

both in classification and selection of analysis points.

In 1968 Purton at British Telecommunications Research, Ltd.,

England, 11 reported on a digit recognizer based on autocorrelation

analysis followed by pattern matching. In this system, using a digital

computer, the incoming speech was filtered into two signals, high fre-

guency and low frequency bands, using filters with a crossover frequency

of 1000 Hz. Both signals were then infinitely clipped and the resultant

signals fed to two separate autocorrelators. The two autocorrelator

outputs were then coded into a single 36-bit output which was sampled

every 25 ms. Time warping was accomplished by stretching or contract-

ing the autocorrelation of each word to be 30 samples by repeating or

eliminating samples at appropriate intervals. Master or template
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autocorrelation patterns were constructed using approximately five ut-

terances of each word spoken by the same speaker. Recognition was then

accomplished by comparing an unknown 30-sample word with the templates,

using an ad hoo pattern matching and scoring procedure. For the ten

digits, the claimed accuracy was 90 percent. The system was quite

speaker-dependent, yielding 59 percent accuracy in a cross-speaker test.

Shearme and Leach at the Joint Speech Research Unit, Middlesex,

England, reported in 196812 on some experiments in isolated word recog-

nition using a 32-word vocabulary. Their system wused envelope detectors

on the outputs of 20 band-pass filters and sampled the outputs every

10 ms. Word matching was accomplished by defining a distance measure

between the unknown word and the template. Distance was defined as the

sum of the absolute values of the differences between corresponding

ordinates in the 20-dimensional space. The decision function was to
choose the word which yielded the shortest distance. The system allowed
the use of multiple templates. The percent correct recognition in-

creased from approximately 58 percent for one template to approxi-

mately 90 percent when nine templates were used in an experiment which

was mainly a cross-speaker experiment. True time warping was not done.

In 1974 Gillmanl1l* and Weeksl5 at System Development Corporation

reported on a linguistic analysis system used to recognize 160 words.

This system performed an acoustic-phonetic analysis to calculate pitch,

energy, formants, and several other parameters for 10-ms windowed speech

samples. The system performed a linguistic analysis, utilizing a pre-

dictive parser to predict all possible words (from its limited
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vocabulary) that could begin an utterance. It then predicted a list

of words possible syntactically following the best matching first word

and so on through the utterance. If at any step all words in the pre-
dicted list failed to match, then it backtracked to a second-choice
word found earlier. A 30-rule grammer was used in the linguistic
analysis. In a trial run of 20 utterances, the first place word was
correct 89 percent of the time. Most errors were due to coarticuiation

effects between words.

Gillman also reported in 197416 on a system to distinguish

between the three nasal phonemes, |m], |In], and |n]- In this case

the speech was low pass filtered at 9 kHz, sampled at 20 kHz with a

12-bit A/D. Windowed segments of speech 25.6 ms long were used to

calculate 24 LPC coefficients every 10 ms to derive the first and

third formant frequencies. A modified Euclidian distance function was

used for pattern matching between the unknown speech and a table of

nasal formant frequencies. This system required that end point detec-

tion for each nasal phoneme be done in advance of the analysis. The

system was very speaker dependent and achieved an accuracy of 72 per-

cent .

Also, in 1974, Molho at System Development Corporationl7 reported
on an experimental interactive system for automatic recognition of
fricatives and plosives in continuous speech. His system computed
eight linear predictive coefficients in 10 ms intervals. It first

scanned the speech samples over each 10 ms interval to pick peak
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magnitude. The LPC analysis window was then centered at the half peak

magnitude point. Following this analysis a spectrum test was performed

to eliminate both strongly voiced and silent segments prior to classi-

fication. The classifier then assigned articulation labels to each

segment with a score for ranking assigned to each label. It then

located spectral peaks and determined the frequency, amplitude, ampli-

tude rank, and a measure of sharpness for each peak. Using this infor-

mation it then computed 23 binary test functions and employed these in

a matrix classification scheme. Accuracy varied between 57 percent and

88 percent, depending on the type of sound.

In 1975 Schwartz and Makhoul at Bolt Beranek and Newmanl8 re-

ported on an acoustic phonetic recognition program that was part of a

BBN Speech Understanding System. This system computed parameters for
100 frames per second. For each frame an FFT was computed on 20 ms of
the windowed signal. Parameters computed were energy, 14-pole selec-
tive linear prediction2"™ coefficients, formants, and a set of "slow"

and "difference" parameters'which reflect the time-varying behavior of

some of the other parameters. The speech was then segmented with con-

fidence numbers associated with various segmentation options. Classi-

fication or labeling of segments was accomplished by comparing average

values of the parameters to thresholds for several features. Confidence

numbers were then associated with the segment labels. The percentage

of labeling errors for five male speakers speaking fifteen sentences

was reported as 21 percent.
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In 1967 Teacher, Kellett, and Focht at Philco Ford2l reported

on an experimental, limited vocabulary speech recognizer. This system
was tested on the ten digits spoken in isolation. Only three param-
eters were used. The parameters were: single equivalent formant fre-

quency, single equivalent formant (SEF) amplitude, and the state of

voicing. The SEF frequency was obtained by measuring the elapsed time

between the glottal impulse and the next following zero crossing. The

SEF amplitude was defined to be the highest peak during that interval.

Features required for each word in the vocabulary of the system were

hard wired on a separate card for each word. A sequence detector was

used to detect the presence of the required features from the unknown

word in six sequential coupled stages in cascade. Feedback was. employed

to make the sequence detection independent of the rapidity with which

the word was spoken and of varying speed within the word. Reported

accuracy was 90 percent correct, 1 percent error, and 9 percent no

response.

In December 1974, Bridle and Brown at the Joint Speech Research

Unit, Middlesex, England, 23 reported on an experimental automatic word-

recognition system which used continuous speech as input. Their system

used a 19-channel vocoder which provided as output a 19-point logarith-

mic, short-term power spectrum with a nonlinear frequency scale. The

vocoder produced its output at the rate of 50 frames per second and also

a voiced-unvoiced decision each frame. A cosine transformation was ap-

plied to this output and the resultants were weighted by some empirically
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derived coefficients. Following this, a modified Ewuclidian distance

between a frame of input speech and a frame of a template word was

formed. This distance was then transformed into a frame similarity

function which varied between zero and one. Finally the resultant

frame similarity number was processed through a time-warping algo-

rithm which used a similarity threshold, a time-warp penalty factor,

and a weighting coefficient as parameters in a novel dynamic program-

ming scheme. Using a single speaker and with word templates extracted

from the continuous speech text, recognition accuracies of 85 percent,

with false alarms at the rate of 6 per hour, were reported.

Itakura at Bell Laboratories reported in 197522 on an isolated

word-recognition system utilizing the minimum prediction residual of

linear predictive coding analysis and a dynamic programming time-warp-

ing algorithm. This system used the minimum prediction residual as a

measure of similarity between a frame of input speech and a frame of a

word template. For preprocessing, first the speech signal was low-pass

filtered and digitized, word end points were detected, and a long time

spectrum normalization was performed. An 8-pole LPC calculation was

performed wusing 30 ms windows with each window overlapping the previ-

ous window by 50 percent. Word matching was performed by choosing that

word which had the minimum "distance" between itself and the unknown

word. Distance was defined as the total log prediction residual of the

input signal which was minimized by optimally registering the template

LPC onto the input autocorrelation coefficients wusing a dynamic
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programming algorithm. Reported recognition accuracy for a single

speaker talking through the telephone system was 97.3 percent.

Analysis required approximately 22 times real time.

In 1976 Rabiner and Sambur at Bell Laboratories28 reported on

some preliminary experiments in recognizing connected digits using a

speaker independent system. Although their system worked on strings

of connected digits, it did require that the number of digits in the ~

string be provided as an input to the system. Their system was com-

prised of two parts. The function of the first part was to segment

the digit string into individual digits. To accomplish this, a voiced-

unvoiced-silence contour was constructed using LPC parameters, zero

crossings, autocorrelation coefficients, and energy. Statistical

information about the contour and the speech energy measurements was

then used to perform the segmentation into single digits. The second

part of the system then used the segmentation information to recognize

the digits. For recognition purposes, four acoustic parameters, giv-

ing a gross measure of the nature of each phoneme, were used to classify

the sounds in terms of six broad speech categories. These speech

categories were then used to classify the digits. Zero-crossing rate

statistics were used to perform a "self-normalization" and thus avoid

using fixed threshold levels in the decision process.

The system required several minutes analysis for a string of

three digits. Recognition accuracy was reported to be 91 percent us-

ing high quality soundproof booth recordings and 87 percent using

recordings made in a noisy computer room.



Conclusion

From reading the above summaries, it is clear that most of the

work reported to date requires complex acoustic and linguistic analysis

and the use of many ad hoo and empirical procedures, rules, and thresh-

olds to yield reasonable success.

One might correctly argue that a fully automatic word recognizer

which can successfully compete with the human brain will not be achiev-
able until we fully and correctly understand how the ear-brain system
processes speech. One can also argue with even greater certainty that
this understanding, if achievable at all, will not be achieved for
several decades. J. R. Pierce32 in 1969 challenged the entire community

of speech recognition workers in an article in which he criticized the

aims, methods, and scope of work in this field. He further maintained

that a meaningful solution to the general recognition problem is beyond

our present capacity.

In spite of the above criticisms, | believe that meaningful

progress can be achieved in finding solutions to more specific and

limited objective word recognition problems such as the word spotting

problem described in this dissertation. The approach to be taken is

the engineering approach referred to by G. Fant33 in his book on speech

sounds and features. The major advantage of the engineering approach

is the elimination of phonetic decisions and the need to segment,

classify, etc. The approach is therefore simple.

A major disadvantage is that speaker-dependent elements may

dominate the similarity measure while the greatest problem, according
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to Fant,33 is to achieve a proper time normalization.

It is believed that a major step toward solving the time
normalization problem has been achieved in the dynamic programming
procedures utilized in the recent work of Itakura22 and Bridle.23
Of all the literature surveyed, only that of Bridle and Brown directly
addresses the problem of word spotting in continuous speech. Some
work that might be easily applied to the word-spotting problem which "
uses a potentially fast and conceptually simple algorithm with a
minimum of ad hoc steps is the recent work reported by Itakura,h22
Boll,24 and Coker.25

In the following section a different method of word spotting
will be described. This method uses a linear prediction residual
ratio for waveform comparison, the dynamic programming algorithm of
Bridle for time normalization, and multiple templates to account for
speaker variability. The templates are used in a frame-by-frame
nearest-neighbor comparison scheme which has the effect of dynamically
creating a composite template from the multiple templates as each frame

of incoming speech is processed. The details of this procedure are

described in Section 1IV.



I11. RESEARCH DESCRIPTION

Approach

From the literature review summary, one can see that there are
already rather extensive efforts underway in the general area of auto-
matic speech recognition, speech understanding, and word recognition.

In these previous and current investigations, various approaches to

the problem of preprocessing to derive an initial set of features have
been used. Features which have been used include outputs of bandpass,
low-pass, and high-pass filters, formant frequencies and amplitudes
pitch, energy, voicing, zero-crossing rate, LPC coefficients, other

LPC parameters, etc. The selection and derivation of secondary features
and the design of classification algorithms has been largely ad hoc and
empirical. Of all the work reviewed, only one researcher has directly
pursued the problem of word spotting in continuous speech as an end in
itself.

Although a solution to the word spotting problem might be derived
from the more general work in speech recognition, that work has more
ambitious objectives and as a consequence utilizes much more elaborate
and complex procedures than are required for the simpler word spotting
problem. In fact, the complexity of this problem probably lies some-
where between the two extremes of isolated word recognition and continu-

ous speech recognition.
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In searching for a solution, it was decided to keep it as simple

as possible and avoid the problems of segmentation, classification,

semantics, syntax, and complicated rules if at all possible. To ac-

complish this, one could design a system using a matched filter based

upon some average representative template of the word to be spotted.

However, even with a representative template, time registration

would still be a problem. If a template matching approach were to be

used, then it would probably be desirable to construct the composite

template dynamically as the incoming speech is processed to account

for the varying speeds of speaking, pitch inflection, variable articula-

tion effects, etc.

Bridle's interim report23 described a system which did use a

template matching approach and performed a nonlinear time registration

of the template to the incoming speech. Bridle's system was simple

and used a threshold to decide when the "distance" between the input

speech and the template was close enough for the word to be present in

the continuous speech. His system also used a very simple dynamic

programming algorithm for nonlinear time warping, operated on continu-

ous speech by analyzing one frame at a time, and did not require very

much computer memory. Furthermore, any "frame similarity function™"

bounded by zero and plus one can be used without modifying his algorithm.

The details of Bridle's algorithm are described in Section 1IV.

For primary parameters, Bridle used the amplitudes of the nine-

teen channels and a voicing indication from a channel vocoder. These

parameters were transformed and scaled with an empirically derived



scale factor and then used to construct a frame similarity function.
This simple procedure worked almost as well as some of the earlier
isolated word recognizers which used filter banks.

It has also been shown22*24 that certain ratios of linear pre-
diction residuals are equivalent to the integrated ratio of the inverse
filter spectra determined by the linear prediction coefficients. In
fact, Itakura has shown22 that one can achieve greater than 97 percent
accuracy in isolated word recognition using the minimum prediction
residual ratio as a measure of speech waveform similarity. Boll has
also shown24 that certain ratios of linear prediction residuals are
bounded by zero and plus one. The specific residual ratios used and '
the details of the procedure are described in Section 1V.

Based on the above, it was decided to utilize a ratio of linear
prediction residuals as a frame similarity function directly in
Bridle’'s dynamic programming algorithm and augment that system with
a novel multiple template analysis scheme.

In summary, the main features of this approach are the following

1. The approach is based on waveform template matching and does

not require waveform segmentation, syntactic information, or
semantic information.

2. The basic waveform features are linear prediction coeffi-

cients and autocorrelation coefficients.

3. The measure of similarity between a template frame and a

frame of incoming speech is the minimum prediction residual.
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4. Multiple templates are used to improve performance and to

allow word spotting using templates and speech from dif-

ferent individuals.

The mathematics and details of this approach are presented in the

next section.

Research Objectives

There were five main objectives of this research.

1. Given a recording of someone talking, i.e., a continuous

speech recording, and a reference example of the same

person speaking a word which occurs in the continuous speech

text, we want to recognize the reference word every time it

occurs in the recording using digital signal processing

techniques.

2. Evaluate the system performance using "Quiet Room" quality

recordings.

3. Corrupt the speech from No. 2 above with additive "white

gaussian noise" and determine at what signal-to-noise ratio

the system begins to degrade in performance.

4. Use three procedures in an attempt to improve performance

using the noisy speech from No. 3 above. The three pro-

cedures are described in section V.

5. Provide a preliminary evaluation of system performance us-

ing multiple templates from multiple speakers other than

the continuous text speaker. This is referred to as cross-

speaker word spotting.



Contribution of this Research

The major contributions

follow s:

1. It applied LPC analysis
problem of word
2. It combined the dynamic

Bridle with the

ratio described by Boll and

3. It utilized a novel procedure
multiple templates into a composite

m each word being searched for

4. Performance of the system wusing
tive white gaussian

ferent but very

parameters from the noisy signal
approached for further research
section V1.)

5. Performance of the system wusing

greatly if noise with the same
templates.
6. The performance of this system
cantly improved over that of
done in real time using a
The system developed here is not a final
promising directions for future research.

of this

spotting in

inverse of

simple

for

the

noise was examined.

work summarized as
waveform matching
continuous
programming time-warp procedure
prediction
Itakura as a similarity measure
dynamically combining
template adapted
continuous
corrupted by addi-

Three very dif-
procedures

extracting

(Suggested

statistics was added

and Brown and
real-time LPC vocoder.

system but does



IV. SYSTEM DESCRIPTION

Introduction

A detailed description of the word spotting procedure and
algorithm will be given, along with pertinent mathematical relations.
Basically this system has the effect of examining the incoming speech
one frame at a time, performing a time registration (which has the
effect of either compressing or stretching the incoming speech) as it
slides the incoming speech past the template. It then makes a test
to determine if the speech signal aligned with the template matches
the word.

This process will be explained in four parts. In the first
part, the construction of the template features will be discussed.
This is followed by a discussion of the processing of the incoming
speech and the calculation of the frame similarity function which
provides a similarity measure between a frame of the template and a
frame of incoming speech. The use of the frame similarity function
in the time-warp algorithm will then be discussed, followed by a
description of how multiple templates are used to improve performance
versatility, and robustness of the system.

Both the templates and the speech text receive the same front-

end processing. That is, all speech is low-pass filtered at 4 kHz



and sampled at 10 kHz using a 14-bit A/D converter. The samples are

then stored on magnetic disc for future processing. This processing

is shown in block diagram form in Fig. 1.

S;')eec? L4 kgz Analog-to-Digital Magnetic
signa ;Vltais Converter Disc
-te 10 kHz Sample Rate Storage
- (Analog) -
Fig. 1. Preprocessing block diagram.
Previous LPC vocoder work performed by Boll and others indicates

that a 12-pole predictor with a 10 kHz sample rate using a Hamming

window with a width of 20 to 30 ms provides synthetic speech of

satisfactory quality. However, these values have not been optimized
with respect to the problem of word recognition. Optimization of =m
these parameters might very well show that fewer poles and a different

window width would yield improved performance and/or shorter analysis

time. The selection of these parameters is a subject which might
warrant further work in the future for the development of a more

efficient working system.

Template Construction

A reference template is first created by having an individual

speak the word in isolation or by extracting the word from some
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continuous text. The end points of the template are then determined

so that the template is an integer number of frames long. This is

done by displaying the template waveform on a screen, visually select-

ing the beginning and ending frame, and then playing back the portion

selected for audio verification. Each frame is 256 sample points or

25.6 ms of speech. -

Analysis proceeds by using data from each frame in sequence.

The samples are first scaled using a Hamming window function. Thir-

teen autocorrelation coefficients, R”, are then calculated and normal-

ized by dividing each one by Rq. This has the effect of applying an

automatic gain control on the speech.

The following description of linear prediction is taken from
Makhoul.25 The all-pole model assumes that a signal sample S(n) is
derivable from a linear combination of past values and some input

u(n) as follows:

p
S(n) = - £ a(k) S(n - k) + Gu(n)
k=1
where G is a gain factor. In the case of speech production, the driv-
ing term, u(n), is unknown. Therefore, the signal, S(n), is only ap-
proximately predicted by the previous p samples. Thus we get an
estimate of S(n) which we call S(n), where
: ?
S(n) = - £ a(k) Ss(n - k)

k=1



30
The error between the true value, S(n), and the predicted value,

S(n), is given by:

e(n) = S(n) - S(n) = S(n) +

Then, rearranging the equation, we get the discrete all-pole linear

prediction model for a short segment of speech, which is:

S(n) = - l:I:. a(k) s(n - k) + e(n) n =20, 1, 2 ... N - 1 (1)
k=l
where -
N = number of samples in the window
a(k) = predictor coefficient
S(n) = nth speech sample
e(n) = nth error term
p = number of poles in the LPC model
Thus we see that the signal, S(n), is predictable using a
linear combination of past outputs and the inputs. Hence the name
linear prediction. This all-pole model formulation is equivalent to
the autoregressive model in statistics.
The linear prediction model is shown in block diagram form in
Fig. 2. The linear prediction residual (LPR) is defined as the sum
of the squares of the error sequence e(n). Thus,

LPR = | e2(n) (2)
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e(n) 1 S (n)
H(z) =
: -k
1+ z a(k) z
k=1
(a)
e(n) + S(n)
VO .
Linear Predictor
D of order p
Y a) s - k)
k=1
(b)
Fig. 2. (a) Discrete all-pole model in frequency domain.
(b) Discrete all-pole model in time domain.

For a given

estimation procedures,

can be calculated which minimize LPR.

sequence of data ~S~,(n)] and using least squares

a set of linear prediction coefficients a”(k)

These coefficients form the

well known least-squares estimator and satisfy the Toeplitz system of

linear equations:
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R . =
R1 R1 = R1I0 a2 R2

R9 a3 R3
(3)
® e # #
& * o
® ® e o
-
LRlO R9 V al2 R12
N

A version of Levinson's method for inverting a Toeplitz

matrix27 is then used to solve for the twelve predictor coefficients,

a~, k =1, 2, ... 12. Finally, since Eq. 3 was derived by minimizing,

we derive the minimum prediction residual2*® (MPR) as:

MPR = | e (n) Rt aT (4)
n
mm
where
a”, = augmented vector of predictor coefficients for a frame of
the template; i.e., an = !
P 1 al a2 * 12
RN, = augmented matrix of autocorrelation coefficients for a
frame of the template; i.e., RN = R~ (i - j)J, i =0, 1,
12, j =0, 1, ... 12.

The prime indicates vector transpose.

This process is repeated for each frame of the template, and

the value of a”R”a” and the values of the elements of the vector R~”

are stored for each frame. The number of frames, I, in the template
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is calculated and this number stored also. These stored values
provide all the information about the reference template that is
required for comparison with the incoming speech. For a more

extensive discussion of LPC analysis, see Makhoul.2®

Incoming Speech Processing

The incoming speech is processed one frame at a time in the -
same way as the template to produce for each data frame a vector ag
of twelve predictor coefficients. Finally the product a”R”a”™ is formed.
Now, since Eq. 3 was arrived at by minimizing the prediction residual,

we have defined a unique set of predictor coefficients, a”, related

to the given data sequence. Any other set of a's, say aS (aS is aug-
mented as in Eq. 4), will yield a larger error residual. Thus we get
ssVs 2 “tV t 5>
where the equality holds only if ag = a”. Thus,
S 1 6
ad > (6)

Based on the above analysis, the ratio a”R”a”a”R.jAj, might be used as
a distance measure to compare two speech waveforms. As the waveforms
match better and better, the ratio becomes smaller and smaller, reach-
ing a value of 1 for a perfect match.

Itakura has already demonstrated22 that the ratio in Eqg. 6 can

be successfully used for comparing two speech waveforms in an isolated
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word recognition experiment.

It is clear in Eqg. 6 that the ratio is positive and from Eq. 5
that the ratio in Eq. 6 is greater than or equal to one. Therefore,
if we define the frame similarity function, S, to be the inverse of
the ratio in Eq. 6, we have a similarity function which satisfies the
condition 0 < S < 1 and thus allows us to use Bridle's time-warp
algorithm, without modification. While both Itakura22 and Coker25 “
use the log of the ratio in Eq. 6, the log was not used in this system

since the ratio could be used directly in Bridle's algorithm.

aTAT&T
s = # 7 (7>
In summary, we have a ratio whose numerator, a”R”a”, is the

minimum prediction residual for a frame from the reference template.
The denominator, a'SRig , is of the same form as the numerator but
involves the predictor coefficients from a frame of input speech and
the autocorrelation coefficients from a frame of the template.

Thus the denominator is always greater than the numerator
except when ag = a” for which the numerator and denominator are equal.
If the two frames are from similar speech, then we expect S to be
close to one, and if they are from dissimilar speech, we expect the

ratio to be closer to zero. Thus, S should be a reasonable measure

of similarity between different segments of speech.



Time-Warp Algorithm

To explain the time-warp algorithm, first let us consider the

notion of a time-registration path as shown in Fig. 3.

Fig. 3. Time registration diagram.

For this discussion let us assume that we have a template word
that is ten frames long, and it is being time-registered to a version
of the word that is thirteen frames long. Figure 3 illustrates a
possible time-registration path. Each frame of the template has a
row of dots, each dot corresponding to a possible match between that
template frame and a frame of input speech. Similarly, each frame of
input speech has a column of dots with each dot corresponding to a

possible match between the input frame and each frame of the template.

A possible time-registration path is represented by the solid
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line connecting neighboring dots in a horizontal> vertical, or
diagonal direction. In this diagram, then, it is seen that frame 2 of
the template is being compared with both frames 2 and 3 of the input
speech. Frame 6 of the input speech is being compared with frames 5,
6, and 7 of the template, and frame 10 of the template is being
compared with frames 9 through 13 of the input speech. If time—warp-
ing were not done, we would only compare the ten template frames with
ten consecutive input frames. This comparison is represented by the
broken diagonal line in Fig. 3.

The time—warp algorithm uses a dynamic programming approach to
perform a recursive search for a possible time-registration path along
which the two waveforms are similar. This procedure has the effect of
stretching or compressing the input waveform at various points. The
criteria which define an acceptable path ensure that the template and
the incoming speech are similar throughout their lengths. This simi-
larity is adjusted by varying G, Q, and K as described below.

To describe Bridle's time—warp algorithm,23 let us first de-
fine a local similarity function for any point (i, j) in a time-—

registration diagram by:

L(i, J) = (1 -G) S(i —a, j —b) + KGS(i, j)

where
i corresponds to the template
j corresponds to the input speech

(i - a, j - b) corresponds to a possible previous point
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(a, b) = (0, 1) horizontal
(1, 0) vertical
<
or
k(l, 1) diagonal
G is an exponential weighting "time constant" which forces
the local similarity, L(i, j), to depend more on a match
between the input speech and the template in the recent

"past" than in the distant "past".

K is a time distortion penalty factor defined by:

1 if (a, b) = (1, 1); i.e., no time warp

k 0 <K<1, if (a, b) = (2, 0) or (0, 1)

The parameter K is introduced to penalize any time distortion but is
utilized so as to allow poorly matching frames if they occur between
other frames which match well. Since there are no previous points
for the first point on the path, we define LI, j) = S, j).

We then decide that the template word is present in the input
speech if the local similarity function is greater than some threshold,
Q, at every point along the path.

Here it should be noted that L (i, j) is an exponentially
weighted sum of values of L from previous points where the threshold
was exceeded. Thus, the effect of an isolated pair of dissimilar
frames can be overcome by nearby pairs of frames which are similar.
This allows the system to find words whose waveforms are substantially

similar but have some short segments that are dissimilar.



38

The local similarity function, L(i, j), is then used in a
recursive search algorithm which searches for all acceptable time—
registration paths which could match the template to the incoming
speech. To accomplish this, let us define a detection function
A(l, j). If there is no path to the point (i, j) for which L
exceeds the threshold, Q, at every point along the path, then set
A(i, j) = 0. Otherwise set A(i, j) = maximum L (i, j), where L(i, J) —
is maximized over all paths to (i, j) for which L > Q at every point.
For a given input speech frame, j, a value of A(i, j) is computed for
each frame, i, of the template. After an input frame has been compared
to each frame of the template of length | frames, a test is made on
A(l, j). If A(l, j) > 0, then the system indicates that the template
word was present in the incoming speech ending at frame j .

This procedure does not find the best matching path out of all
possible paths but merely determines whether there are any acceptable
paths. As a result it may find that A(l, j) > 0 for several suc-
cessive values of j.

The search algorithm is implemented computationally in the fol-
lowing way.

Let us define a new function

0, ifA=0
Step (A, S, K) = 0, if (1 —G)A + KGS < Q

(1 - G)A + KGS, otherwise

where A, S, and K were defined previously. Then set
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A(i, j) = max {Step [A(i —a, j —b), S(i, j). K(a, b)]}
(a, b)

where (a, b) takes the values (1, 0), (0, 1), and (1, 1); i > 1; and

the corresponding values of K(a, b) are k, k, 1.

A, J) = max {S(1, j), step [A(l, j - 1), S(I, j), K]}

where
0, if S(1, j) <Q
[sa, j), if S(@, j) >0Q
Thus, we see that although A(i, j) is defined in terms of all
possible paths to (i, j), it can also be defined in terms of A(i - 1,

i), AG -1, j - 1), A(i, J — 1), and S(i, j). We then compute three
quantities which correspond to arriving at the point (i, j) from the
left, from below, and from diagonally below (see Fig. 3), and then
choose the maximum of the three values. This value is then stored in
the A array at location A(i, j).

In order to illustrate what happens using the time—warp
algorithm, some data from a real experiment using a threshold of
0.275 is reproduced in Fig. 4. Figure 4a shows the table of values
which propagate through the array. Figure 4b shows the corresponding
time registration path from a template of length ten frames being
matched to a word of length nine frames.

In summary, we note the following:



Input
Frame
Number

10

11

Fig. 4.

1

. 000
. 000
. 343
. 394
. 000
. 000
. 000
. 000
. 000
. 000

. 328

(a) Table of values

. 000

. 000

. 000

. 389

. 000

. 000

. 000

. 000

. 000

. 000

. 000

Value

0. 000 O.

0. 000 O.

0. 000 O.

0. 396 O.

0. 471 O.

0. 304 O.

0. 000 O.

0. 000 O.

0. 000 O.

0. 000 O.

0. 000 O.

Template frame
N WPsEUOoyN 00 WwWOoO

at

4

000

000

000

304

637

661

617

391

379

304

000

5

. 000

. 000

. 000

. 000

. 496

. 521

. 738

. 733

. 620

. 334

. 000

Each Location

6

0. 000

0. 000

0. 000

0. 000

0. 391

0. 452

0. 614

0. 787

0. 767

0. 420

0. 000

Input

()

in A array;

path corresponding to Fig. 4a.

in Array A
7 8
000 0. 000

. 000 0. 000
000 0. 000

. 000 0. 000

. 318 0. 000

. 572 0.321

. 718 0. 371

. 562 0. 388

. 811 0. 370

. 593 0. 406

. 300 0.523

. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000

. 521

(b) time registration

40

10

000
000
000
000
. 000
. 000
. 000
. 000
. 000
. 000

. 376
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1. The input speech is processed one frane at a time.
2. All necessary information about previous frames is
contained in the A array.
3. Each j such that A(l, j) > 0 is identified as the

last frame of the word to be spotted.

Multiple Templates

All of the above discussion assumes the use of only one
template. However, if one could somehow make use of several templates
combined in some appropriate way into a composite template, improved
accuracy and flexibility might be achieved. One might use several .-
templates separately with a decision based on a majority vote. An-
other alternative is a nearest neighbor comparison on a frame—by-—
frame basis. The second approach was chosen for this work. Motiva-
tion for this choice is provided in the following discussion.

In standard pattern recognition experiments, we have at least
three classification cases to deal with. A brief description of each
case follows.

Case 1: We know the a priori probabilities an”™ the
class conditional densities p”x/uk”, where x is the
observed feature and WJ. is the true state of nature.
In this case we can design an optimal classifier us-
ing Bayes' decision theory.

Case 2: We only know the forms of the density functions. In

this case we use the samples to perform maximum
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likelihood or Bayesian estimates of the true param-
eter values.

Case 3: The only information available is a set of samples.

We do not know anything about the forms of the under-
lying densities. In this case we use nonparametric
techniques to estimate the densities. Or we can use
the nonparametric nearest neighbor decision rule to
bypass the probability estimation and go directly to
a decision function. If we have an unlimited number
of samples, it can be shown that the error rate is
never worse than twice the Bayes rate.34 The nearest
neighbor procedure is defined as follows:
Let H = X2 » be a set of labelled
samples and let X' Hn be the sample nearest
to x. Then the nearest neighbor rule for
classifying x is to assign it the label
associated with xr'll'.

In the word spotting problem, we have a Case 3 pattern—recogni-—
tion problem, only instead we have only a few labelled samples from
one class or word, and we are interested in finding whether the ob-
served sample of incoming speech belongs to that class. To accomplish
this we require that the observed speech be closer to the template
word than some threshold using the algorithm described above in the
time—warp algorithm section.

To see how the multiple templates are used, suppose there are
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M templates. The initial processing on each template is done as
before. Then a frame similarity function S~Ci, j) is calculated by

comparing the ith frame of the mth template with the jth input

speech frame. |If i exceeds the number of frames in the mth template,
then Sm(i, i) is set to zero. Now let
S@, 1) =max S (i, j)
............. m=1, 2, ... M e ‘

Then use S in the remainder of the algorithm as before. This approach
has the effect of dynamically creating a composite template each time
it begins to match up with the incoming speech. The effect of this
procedure along with the automatic gain control effect of normalizing
the autocorrelation coefficients and the time warp procedure is to
make two or three templates look like a large sample. For example,
suppose we had three templates each three frames long. Using the
above procedure there are 27 possible ways the incoming speech might
match up. Thus this multiple template procedure should be superior
to the majority vote procedure. A brief preliminary experiment us-
ing three templates confirmed this conclusion.

To illustrate this nearest neighbor procedure, let us assume
we have three templates with corresponding lengths of three, four,
and five frames. The three templates are shown in block form in
Fig. 5 with an x marked in the frame of the template which yielded
the maximum value for Sm(i, j). The equivalent or effective composite

template is shown at the bottom where the template number which was



Template 1

Template 2

Template 3

Composite template

Fig. 5. Composite template construction.

used to create each frame of the composite

is

indicated.
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V. EXPERIMENTAL RESULTS

Introduction

In the following section the experimental results are summarized.
It should be noted that in all cases two parameters were adjusted or
tuned to yield minimum error performance. These were threshold, Q, and
time distortion penalty, RK. In the initial experiments, it was found
empirically that setting the exponential factor, G, to a value of 0.3
yielded the best results in most cases, and so it was set at that value
for this work. 1

For these experiments three different types of text were used.
These types of text will be labeled as PDP-11 (Appendix I1), Ford (Ap-
pendix 111), and Digits, from a table of random numbers. A total of
seven basic experiments were conducted as described below, using a total
of 1651 key words of which 1217 were the digits zero through nine. A
key word is a word to be spotted which is actually present in the text.
For example, in the PDP-11 text, the word "interrupt" occurs 18 times,
"priority" occurs 6 times, "program" occurs 10 times, and "processor"
occurs 7 times. In the experiments we were trying to spot those four
words so there are 41 key words in the PDP-11 passage. |If we use the
PDP-11 passage spoken by two people, then there are 82 key words.

In word spotting there are two types of errors, false alarms
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and misses. For false alarms the quantity of primary interest is the
false alarm rate per unit time. Accuracy is then defined as the per-

centage of occurrences of the word actually found. That is,

Cl =~ x 100

where

word spotting accuracy

T total number of occurrences of the word

NS = number of times the correct word was spotted
However, the digit recognition experiments have a different objective
than the standard word spotting. In this case false alarms and misses
are equally bad errors and are therefore given the same weight.

Therefore we define accuracy in digit recognition as

_ NS — F

where
C2 = digit recognition accuracy
T = total number of occurrences of the digit being recognized
NS = number of times the correct digit was recognized

F = number of false alarms

In addition to the seven basic experiments, some additional
experiments of word spotting in noisy long distance radio speech with
both telephone and radio channel distortion were performed. Also, a

brief experiment was performed in which a template word was constructed
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from parts of other words spoken by the same speaker. These last ex-
periments were performed merely to get an indication of performance
and will be reported only from that point of view and to suggest
further work.

In the description of experiments presented below, each experi-

ment is given a number and is described separately.

Experiments

Experiment 1

In order to be able to compare results using this word spot-
ting procedure with those reported by Bridle and Brown, it was decided
to use the same text and words in the initial experiments as were used
by Bridle. This is the PDP-11 passage (see Appendix Il1). This passage
takes about two minutes to read. The passage was read by five speakers,
four male and one female. In this experiment the template words were
then spoken in isolation by each speaker in contrast to Bridle’s pro-
cedure where he extracted the templates from the speech.text. By hav-
ing the template words spoken in isolation rather than taken from the
text, coarticulation effects are not present in the templates as they
were in Bridle’s case. Coarticulation effects can occur, for example,
when the vocal tract is changed or modified during the pronunciation
of a word to allow a smooth transition to occur from one word to the
next. Thus coarticulation effects vary with context, speed of talking,
location of the word in a sentence, emphasis, etc.

Since coarticulation effects are subject to so many variables,
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it was decided to have the template words spoken in isolation but
still have them spoken several times with the natural variability of
talking speed.

Thus, the speakers read the text and spoke the words as they

naturally would without coaching, except to say the template words in

isolation.
The words to be spotted were "interrupt", "programl, "processor",
and "priority". Word spotting accuracy was greater than 99 percent

with no false alarms. The combined occurrence of all the key words
was 205 in the five passages. In this experiment three templates
spoken by the same speaker as the.text were used for spotting each

word. Actual results are shown in Table 1.

Experiment 2

This experiment was a cross—speaker word-—spotting experiment
using the PDP-11 text. In this case six templates were used for each
word, three from speaker No. 1, three from speaker No. 2, and the text
was from two other speakers. In this case the same four words as in
Experiment 1 were spotted with an accuracy of 94 percent and no false
alarms. In this case the combined occurrence of the key words was 82.

In order to illustrate the trade—off between accuracy and false
alarm rate, this experiment was also done so as to yield 100 percent
accuracy. In this case there were 11 false alarms, yielding a false
alarm rate of approximately 180 per hour. The results of this experi-

ment are shown in Table 2.



Text
Speaker
No.

Table 1.

Word

Interrupt
Processor
Program

Priority

Interrupt
Processor
Program

Priority

Interrupt
Processor
Program

Priority

Interrupt
Processor
Program

Priority

Interrupt
Processor
Program

Priority

Word spotting results

Threshold
Q
.54
47
47

47

.43
.43
.43

.43

.50
.54
.50

.51

.45
.45
.46

.45

A7
47
47

A7

Time Wave

Penalty Factor

RK

.55

.55

.55

.55

.70

.70

.70

.70

.63

.63

.63

.63

.60

.60

.60

.60

.65

.65

.65

.65

from Experiment 1.

Misses

49

False
Alarms
Per Hour



Table 2a.
Template
Speaker Word
No.
1 and 2 Processor
1 and 2 Processor
1 and 2 Priority
1 and 2 Priority
1 and 2 Program
1 and 2 Program
1 and 2 Interrupt
1 and 2 Interrupt
Table 2b.
Template
Speaker Word
No.
1 and 2 Processor
1 and 2 Processor
1 and 2 Priority
1 and 2 Priority
1 and 2 Program
1 and 2 Program
1 and 2 Interrupt
1 and 2 Interrupt

Text
Speaker
No.

Text
Speaker
No.

Threshold

Q

.46
.50
.53
.45
.48
.46
.55

.50

Threshold

Q

.46
.50
.50

.43

.45
.52

.45

Time Warp
Penalty
Factor

RK

Time Warp
Penalty
Factor

RK

Misses

Misses

Cross—speaker word spotting results from Experi-
ment 2 (adjusted for zero false alarm rate).

50

False
Alarms

Per

Cross—speaker word spotting results from Experi-
ment 2 (adjusted for 100 percent accuracy).

Hour

False
Alarms

Per

Hour
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Experiment 3

In this experiment the PDP-11 text spoken by speaker No. 1 was
used. Here the objective was to evaluate the system performance in
the presence of additive white gaussian noise and to try three dif-
ferent techniques to perform the word spotting using the noisy speech.

The noisy speech was generated as shown in the block diagram,

Fig. 6.

Fig. 6. Noisy speech generator.

The spectrum of 12.8 ms of noise is shown in Fig. 7a, where
the heavy curve is the LPC smoothed spectrum and the light curve is
the FFT spectrum. A similar spectrum for 12.8 ms of speech from the
word "Ford" is shown in Fig. 7b.

The signal-to—noise ratio, SNR, was calculated as follows:

/2 A

SNR = 10 log 1 ggé | (1)

A<



Fig.
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(b) noise spectrum.
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Thus a value for SNR for each block of 256 samples was defined. Then

a measure of average SNR for the whole passage of speech was defined

as:
/256 7
] s
K n=1 n
SNR = 10 log ) Sk (2)
10 £ |7256
k=1 (73 2)
) _ N
n=1 n
| k
where

n sample number within a block of 256 samples

k block number

K

number of blocks in the whole passage

Here it should be noted that this SNR is an average value over the
frequency spectrum of the speech. Actually the SNR varies as a func-
tion of frequency over the frequency spectrum of the speech signal.
In particular, the SNR is higher at the lower frequencies where most
of the speech energy is present.

Since the measure of similarity used for the word spotting is
calculated using a 256-—sample block of data and is also an average
measure over the frequency spectrum of the speech, it was concluded
that this particular definition of SNR was appropriate.

It should also be noted that the main objective in the noisy
speech experiments was to determine whether the system degraded smoothly
or abruptly in the presence of noise, and at what average SNR the per-

formance changed. Three procedures for doing the word spotting in the
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presence of noise were to be tried. It was not the objective to gain
an in—depth understanding of all the pertinent noise issues and to
perform an in—-depth evaluation of each procedure. The in—-depth evalu-
ation and understanding of the noise issues should be the product of
a separate research project.

The objective here was to point some directions and suggest
some things to be done to pursue the noise questions. Performance
degradation in the presence of noise is shown in Fig. 8, where it is
evident that performance degrades smoothly and does not occur until
SNR is less than 24 dB. |In Fig. 8, the accuracy curve is drawn for
a false alarm rate less than or equal to 66 false alarms per hour to

allow for meaningful comparisons.

Autocorrelation Method

In this method we calculate the autocorrelation of the speech
plus noise, Rg+Yy» and the autocorrelation of the noise R" and then

take the difference to get Rg = Rg+y — R™ where

N-1-|i]
Rs+N‘. = ) (sn + Nn>(Sn+|i| + Nn+|i|) (3)
i n=0
N-1-|1i]
ST L Mt @
i n=0

Now, if the speech and the noise signals are uncorrelated, the expected

value of the cross terms in Eq. 4 should be zero. Thus Rg = ~
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Fig. 8. Performance in presence of noise.

might yield a good estimate of R<. One major problem with this ap-
proach is that the TBeplitz matrix generated from RS might not be
positive definite, whereas the matrix inversion procedure requires
the matrix to be positive definite. This could occur because only
256 samples are being used to generate the autocorrelations, and this
may not be sufficiently long to yield zero values for the cross terms

in Eq. 3 above.
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This approach was tried with speech having SNR = 11 dB and
yielded an accuracy of 51 percent compared with 66 percent before
processing (see Table 3). When speech with SNR = 4.6 dB was used,

the similarity measure was greater than 1, indicating clearly that

the calculation of the linear prediction residual was incorrect.

Wiener Filter Method2”

In this procedure, an average spectrum of the noise is calcu-
lated using many blocks of noise with the same statistics as the noise
added to the speech. This spectrum is then used to construct a new
Wiener filter for each block of 256 samples of speech plus noise.

The output of the Wiener filter is an estimate of the true speech

signal. For a block diagram description, see Fig. 9.

Fig. 9. Wiener filter block diagram.

In Fig. 9, h~ = F "'{H(@))} where H(u)) = — "M (w)) /™xx
For this experiment a previously developed Wiener filter computer
program was used to process the noisy speech.

This Wiener filtering approach was tried on the noisy speech
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with SNR = 11 dB and SNR = 4.6 dB. For SNR = 11 dB, an accuracy of
95 percent was achieved compared with 66 percent without Wiener filter-
ing. For SNR =4.6 dB, an accuracy of 68 percent was achieved compared
with 29 percent without the filtering. These results are summarized

in Table 3 for comparison with other methods.

Table 3. Noisy speech word spotting results. (The
false alarm rate for all cases is 66/hour.)

No Processing Subtract Design Noisy
SNR to Remove Autocorrelation Wiener
. . - Template
Noise Effects of Noise Filter
11 66 51 95 90
4.6 29 * 68 68
These results were not meaningful. -

Since $xx (w) = fllrxxj\ and $nn 0 = fllrnnj one might ask why
the Wiener filter approach works so much better than the simpler and
faster autocorrelation approach. On the surface, the two procedures
appear to do about the same thing except one is in the time domain
and the other is in the frequency domain.

In the autocorrelation experiments, nothing was done to force
the autocorrelation matrix to be positive definite. In the Wiener
filter algorithm, H(w) was never allowed to become negative. Instead,

as H(w) approached zero, its amplitude was changed using a smooth

tailoring curve so that it approached zero but could not become



negative.

Noisy Template Method

In this method, noise with the same statistics as that in the
noisy speech was added to the template. Motivation for this procedure
is provided in the following discussion.

If the noise spectrum were perfectly flat, as would be the. _ -
case with white gaussian noise, then the speech spectrum in the '
passage and templates should just be biased upward by a constant
factor at all frequencies. In this system, what we are really doing
is comparing the short time spectrum of the incoming speech with that
of a template. Suppose that these two spectra look alike in the
absence of noise. If we just add the same flat spectrum noise to
both the template and incoming speech, then we would expect the two
spectral envelopes to still look alike, only biased upward in amplitude.
However, there is no such thing as real white gaussian noise, and the
noise spectrum of our real noise is not flat over even relatively
short frequency spans as can be seen in Fig. 7. Even so, the noise
spectrum is flat enough that we do expect improvement if noise is
added to the word templates.

For the passage with SNR = 11 dB, the accuracy was 90 percent
compared to 66 percent without additional processing. For the passage
with SNR = 4.6 dB, the accuracy was 68 percent compared to 29 percent

without additional processing. These noise results are summarized in

Table 3 for comparison purposes.



Experiment 4

Words used up to this point have been multiple syllable words.
One might question how well the system would work on very short one
syllable words. To address this question and at least get an indica-
tion of performance with short words, a passage of text containing the
word "Ford" was constructed from a news magazine (see Appendix I111).
The word "Ford" occurred twelve times and the passage took approxi-
mately one minute to read. As before, the template words were read
in isolation. Two templates were used.

Performance accuracy was 100 percent with no false alarms.
When the threshold was lowered until false alarms occurred, the first
false alarms occurred on sounds like "org" in "organization" and "for
D" as in "for Donald" as one might expect. .

A very limited experiment was performed with a short segment
of this passage (approximately 10 s) to get an indication of perfor-
mance degradation in the presence of noise for short words. These
preliminary results indicate that performance begins to degrade at a
signal-to—noise ratio which is 6 to 10 dB higher than in Experiment 3

above.

Experiment 5

To test the cross-speaker performance on short words, the Ford
text was used with templates provided by different individuals. This
experiment was performed using six templates from six different in-

dividuals, then five, then four, then three, then two, where the two
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were a subset of the three, the three a subset of the four, etc.
The resultant accuracy was 100 percent with no false alarms in

all cases, as shown in Table 4. Here it should be noted that as

Table 4. Cross—speaker word spotting with Ford text.

Number of Accuracy
Templates Q RK Percent
6 .55 .55 100
5 .55 .55 100
4 .50 .55 100
3 .45 .55 100
2 44 .55 100

number of templates was increased, the threshold also had to be in-

creased.

Experiment 6

Finally, in order to make some comparisons with previous work
in recognizing digits, a digit—-recognition experiment was performed.
In this experiment, ten speakers — five males and five females —
each spoke approximately one hundred digits chosen from a table of
random numbers. The digits used were zero through nine. Speaker
No. 2 spoke two sets of digits. One set was deliberately spoken in
isolation and the second was spoken with random speeds, emphasis, and

groupings of numbers. The remaining speakers read the digits from the
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table as they would normally read such a list over the telephone. The

results of this experiment are presented in Table 5. -

Table 5. Digit recognition results.

speaker VUL alarme Misses ol
1 100 0 0 100
2 98 0 4 96
2 119 0 2 98
3 96 1 0 99
4 100 0 0 100
5 100 0 2 98
6 100 1 1 08
7 100 6 14 80
8 100 0 0 100
9 100 0 2 98

10 106 2 2 96

As can be seen, the accuracy varied from 80 percent to 100 per-
cent on an individual basis, with an overall accuracy of 97 percent.
However, only speaker No.7 departs significantly from 100 percent,
with the next lowest accuracy being 96 percent.

The factor which appeared to affect accuracy the most was
articulation, that is, how clearly and distinctly each digit was

articulated. For example, if the "t" sound in "eight" was not present,
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then the "eight" digit was confused with "three", etc. Speaker No. 7

yielded the poorest results but also had the greatest apparent vari-

"won

ability in speaking. For example, sometimes she rolled the "r" in
"three" and sometimes she did not. The word "eight" sometimes had
the "t" sound and sometimes did not.

In general, it was found that when the digits were spoken
clearly and distinctly, the system performed near 100 percent ac-— ~

curacy.

Experiment 7

This experiment was a very brief attempt to do cross—speaker
digit recognition to give an indication of performance. In this case
two templates from speaker No. 4 were used on the digits from speaker
No. 1. The resulting accuracy was 82 percent, with the errors
divided almost equally between false alarms and misses. Speakers
No. 1 and 4 were chosen because they spoke the digits most alike.
Again, the failures tended to occur when words were not articulated
clearly.

In addition to the experiments described above, some additional
tests of the system were performed which give some indication of the
robustness of the system. In one experiment a recording was made on
an inexpensive cassette recorder of some noisy speech of rather poor
quality from a telephone talk show broadcast from a distant AM radio
station. This recording included the distortion and noise introduced

by the telephone, the radio, and night—time ionospheric effects.
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The radio speech was then processed to remove convolutional distortion
using a blind deconvolution procedure developed by Stoekham.38 Using
multiple templates constructed from the incoming speech, an accuracy
of 100 percent was achieved on two separate passages with two dif-
ferent speakers saying the words in each passage. The words used in
these two cases were "dream" and "grand".

Finally, inasmuch as one might not be able to get a template
word from a given speaker with unique speech characteristics, an
experiment was performed in which a template was constructed using
parts of other words spoken by the same speaker. In this case, the
speech was also poor quality radio speech from another distant late
night talk show. The word to be constructed was "restaurant". .The
experiment was done rather crudely just to get an indication of
results. The word "restaurant" was constructed using the "r" sound
from "respect"”, the "est" sound from "best", and the "ant" sound from
"want".

Using only one template so constructed, an accuracy of 80 per-
cent was achieved. Since this effort was not part of the main objec-

tive of the research, it was not pursued any further.



VI.  CONCLUSION

A word spotting system has been demonstrated that works re-
markably well using only a single measure of similarity between the
incoming speech and the template word. It uses a simple procedure
to dynamically construct a composite template from a set of multiple
templates. The "best" performance of the system, using only this
single measure of similarity, has been demonstrated by adjusting two
parameters to tune the system for each word and speaker.

The results clearly indicate that it is reasonable and feasible
to use LPC parameters in word spotting. The time—warp algorithm of
Bridle was very effective and efficient and allowed correct word
spotting when the word and template differed in length by as much as
a factor of two.

Once the system was implemented and working, the majority of
nonprocessing time was taken up in isolating the templates. In an
operational system, one would certainly want to have a reliable fully
automatic endpoint detector to isolate the templates.

The results using noisy speech were very encouraging. In
particular, the success achieved using the poor quality distorted
radio recordings indicates that this approach has great promise for

future use in that environment.
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Although this system as it now exists would probably not be
acceptable for operational use in either word spotting or digit
recognition, it does point the direction for further research to
develop such a system.

The main disadvantage of the system as it now exists is the
need to readjust the threshold and time-distortion penalty factor
for each word and speaker.

Some of the main advantages of this approach are the simplicity
and speed of the analysis and that one could use a real-time LPC vo-
coder in generating the similarity measure. Another advantage is that
additional features could easily be added to the similarity measure in
hopes of improving the cross—speaker performance and decreasing the
strong dependence of performance on the similarity threshold. The
system also performs well when the speech is contaminated by additive

white gaussian noise.

Areas for Future Research

There are many areas of additional research needed to improve
the performance and robustness of this system. Some of these are
listed below:

1. Add features such as voicing, pitch contour, etc., to the
similarity measure to reduce the need to readjust the
threshold, improve noisy speech performance, and improve
cross—speaker performance.

2. Experiment with possible techniques to calculate the



threshold for each word and/or speaker. For example, one
might use some of the short time speech statistics.28
Experiment with additional front—end processing such as
preemphasis to boost the high frequency portion of the
spectrum.

Conduct research to improve performance by changing the
window shape and/or length, varying the sampling rate,
varying the number of poles in the LPC analysis, adding
zeros in the LPC analysis, etc.

Address the noise and distortion problem using other Kkinds
of noise and distortion and other procedures such as adaptive
noise canceling.3™® In addition, conduct more detailed and
definitive research into the applicability and use of de-
convolution procedures such as the blind deconvolution pro-
cedure of Stoekham.38

Conduct research to normalize the frequency domain to
improve the cross—speaker performance. For example, one
might normalize the vocal tract area or length and thus be
able to use the same templates for both male and female
speakers. Wakita35-37 has reported encouraging results
using vocal tract length normalization. His hypothesis
was that speech sounds produced by arbitrarily selected
speakers which are perceptually categorized into an identical
phoneme result from similar vocal tract shapes of different

lengths. His preliminary experiments yielded much more



compact distributions of the first three formants than are
achieved without the normalizations. The possibility of
some equivalent normalization in the time domain, possibly

using reflection coefficients, should be examined.
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APPENDIX |

WORD-SPOTTING PROGRAM — FORTRAN CODE

DIMENSION IDIM(80).SIM(10),W1(256)

DIMENSION AR (80,0/1),5(9216),IDATA(9216)
DIMENSION SP(256),WS(256),R(14),A(12),B(14)
DIMENSION RR(14,80,10), RN(80,10)
COMMON  /VM/AL

COMMON/IEOF/IEOF1

COMMON /TS/ G,Q,RK,IDEV1

INTEGER STATUS,ENDBLK,DO

LOGICAL FLAG

DATA
DO =
CALL
CALL
CALL
CALL
CALL
TYPE

NW,NW2, IDEV1, INIBLK,M/128,256,5,1000,12/
0

DING(1)

CLKSTP

FREQST(10000.)

CLKGO

DING(I)

12,IDEV1

FORMAT(" IDEV1 = ', 12, %)

CALL
TYPE

INNUM(IDEVI)
425,M

FORMAT(" M= ',12," %)

CALL
TYPE

INNUM(M)
426,ITESTM

FORMAT(* ITESTM= ',12,' %)

CALL
DO 3

INNUM(ITESTM) :
1=1,ITESTM

IDIM(1)=0

NPTS
F =
DO 2

= 256

(3.1415926/(NPTS — 1))*2.

K=1,NPTS

WI(K)=.54—.46*COS( (K—1)*F)

READ AND WINDOW SAMPLES OF SPEECH

DO 99 KL=1,ITESTM

CALL
NBLK
CALL

OPEN(DO, NBLKS, ENDBLK,INIBLK,IDEV1)
= INIBLK
DSKIO(IDEV1,NBLK,2,NW,SP,STATUS)

IF(STATUS) 51,52,53

TYPE

202



202 FORMATC HARDWARE")

GO TO 203
53 TYPE 204
204 FORMAT( ' PARAMETER')
205 CONTINUE
CALL SLEEP(10)
GO TO 10
52 CONTINUE
NBLK =NBLK+1
IF(NBLK.GT.ENDBLK)GO TO 99 =
CALL EXPNDO(NW2, SP)
203 DO 20 K=1,NPTS
20 WS(K) = SP(K)*WI(K)
C CALCULATE AUTOCORRELATION COEFFICIENTS
CALL CORR(WS,NPTS,R,M+I)
RNORM = 1./R (1)
R(I) = L.
DO 32 K=2,M+1
32 R(K) = R(K)*RNORM
C SOLVE FOR PREDICTOR COEFFICIENTS
CALL SOLVE(R,A,M)
50 IDIM(KL) = IDIM(KL) + 1

IF(KL.EQ. ITESTM)CALL MMX(IDIM,80,IMIN, IMAX)
RN(IDIM(KL),KL) = AL
DO 60 K = 1,M+1
60 RR(K,IDIM(KL),KL) = R(K)
GO TO 10
99 CONTINUE -
GO TO 500
100 CONTINUE
700 CALL OPEN(DO,NBLKS, ENDBLK,INIBLK,IDEV1)
KT = 1
DO 1100 L=1,80
AR(L,0)=0.
1100  AR(L,1)=0.
NBLK = INIBLK

701 CALL DSKIO(IDEV1,NBLK,2,NW,SP, STATUS)
IF(STATUS) 702,707,704
702 TYPE 703
703 FORMATC HARDWARE’)
GO TO 708
704 TYPE 705
705 FORMAT( ' PARAMETER")
706 CONTINUE
CALL SLEEP(10)
GO TO 701
707 CONTINUE

NBLK =NBLK+1
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IF(NBLK.GT.ENDBLK)GO TO 500
CALL EXPNDO(NW2, SP)

708 DO 709 K=1,NPTS
709 WS(K) = SP(K)*WI(K)
C CALCULATE AUTOCORRELATION COEFFICIENTS
CALL CORR(WS,NPTS,R,M+1)
RNORM = 1./R (1)
R(I) = 1.
DO 710 K=2,M+1
710 R(K) = R(K)*RNORM
C SOLVE FOR PREDICTOR COEFFICIENTS
CALL SOLVE(R,A,M)
C CALCULATE FRAME SIMILARITY——SIM——

CALL BAUTO(A,B,M)
DO 111 KM=1,ITESTM

SUM = B(1)
DO 110 | = 1,M

110 SUM = SUM + B(I+1)*RR(1+1,1,KM)
SIM(KM) = RN(1,KM)/SUM

111 CONTINUE

CALL MMX(SIM,10,SMIN,SMAX)
IF(SMAX.LT.Q.AND.KT.EQ.1)GO TO 701
KT = KT + 1
IF(SMAX.GE.Q) GO TO 1000 ‘
X = 0.
GO TO 1010

1000 X = SMAX

1010 CALL STEP(AR(1,0),X,RK,ST)
AR(1,1) = AMAXL(X,ST)
DO 120 K = 2,IMAX
IF(AR(K.0).EQ.0..AND.AR(K—1,0).EQ.0..AND.AR(K—1,1).EQ.0.)

GO TO 600
DO 135 KN=1,ITESTM
SUM =B(1)
DO 125 | = 1,M
125 SUM = SUM + B(1+1)*RR(1+1,K,KN)
SIM(KN) = RN(K,KN)/SUM
135 CONTINUE

CALL MMX(SIM,10,SMIN,SMAX)
CALL STEP(AR(K-1,1),SMAX,RK,Al)
CALL STEP(AR(K-1,0),SMAX,I.,A2)
CALL STEP(AR(K,0)SMAX,RK,A3)
AR(K,1) = AMAX1(A1l,A2,A3)

GO TO 120
600 AR(K,1)=0.
120 CONTINUE

DO 130 I = 1,80
130 AR(1,0) =AR(l,1)

IFR = NBLK-1
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500

510

400

HIT = FLOAT(IFR)

DO 7 1=1,ITESTM

WIN=FLOAT(I)
IF(AR(IDIM(1),1).NE.0.)GO TO 6
GO TO 7
IF(LABS(IFR—IT).LT.20)GO TO 7
TYPE 400,WIN,HIT,AR(IDIM(1),1)
IT = IFR

NB = IFR—36

CALL DSKIO(IDEV1,NB,2,4608,S, STATUS)
CALL EXPNDO0(9216,S)

CALL FIXAR(IDATA,S,9126)

CALL DMPBUF(IDATA,9216,FLAG)
IF(FLAG) GO TO 513

CONTINUE

GO TO 701

CALL DING(3)

IT =0

TYPE 510,D0

FORMAT(" DO = 1,12,1 %)
CALL INNUM(DO)

IF(DO.NE.O) GO TO 700
FORMAT(8F12.2)

END
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APPENDIX 11

PDP-11 PASSAGE READ BY SUBJECTS

A stack is a first—in last-out list. In a PDP-11 a stack is
used automatically by program interrupts, subroutine calls, and trap
instructions. When the processor is interrupted, the central proces-
sor status word and the program counter are saved (or "pushed") in
the stack area, while the processor services the interrupting device.

A return from interrupt instruction restores the interrupted program
without software intervention. Interrupts are then automatically
nested for fastest interrupt response and no program overhead.

The PDP-11 has an extremely flexible interrupt priority struc-
ture. The central processor recognizes interrupts on four separate
lines. Many devices may be attached on each line with the device
closest to the central processor given priority over the other devices
on the same line. The hardware interrupt priority lines are inter-
leaved by programmable central processor priority levels, thus allow-
ing the running program to select the priority of allowable interrupts.
Additional speed and power are added to the interrupt structure through
the use of the PDP-11 fully vectored interrupt scheme.

When acknowledging an interrupt, the processor saves its program

control and status word on the system push—down stack. Then, it
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establishes a new status and program counter from a set of interrupt
locations unique to each device. Thus, no device polling is required.
The program running in response to an interrupt may itself be inter-
rupted by a device with a higher priority; these nested interrupts
are allowed to any level. Subroutine call instructions also use the
stack for storage of the return address. Hence, reentrant subroutines
may be easily written. Reentrant subroutines make it possible to do

real—time programming without using large amounts of core memory.



APPENDIX 111 '

FORD PASSAGE

President Ford's advisers are urging him to revamp his strategy
— travel less, project a more positive image, and beef up his cam-
paign organization. Friends contend that Mr. Ford's trips have
boosted Republican morale and filled the party's coffers, but they
haven't improved Ford's poll ratings.

Raising money for Ford is turning out to be tougher than the
White House expected. Strategists say that President Ford's unyield-
ing stand so far on hot issues has turned off contributors.

Ford campaign chief, Howard Callaway, is catching flak. In-
siders look for Donald Rumsfeld, top White House aide, to make more
key political decisions. President Ford's team expects Ronald Reagan
to go all out in early primaries, hoping to make Mr. Ford look weak.

For candidate Jerry Ford, money has suddenly become more of a
problem than expected only a short time ago. Campaign cash hasn't
rolled in and the Ford Committee may have to turn to federal matching
funds. Even so, Mr. Ford will definitely enter six of the early State
primaries next year.

President Ford, although not to the extent of his immediate
predecessors, is showing annoyance at "inaccurate" reporting of White

House activities.
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