
T R A C IS : T ransfo rm atio ns on Ada fo r C ircu it S yn th e s is

A Report on the m ethodology fo r a S ilicon Com piler1

Sanjay V. Rajopadhye

P. A. Subrahmanyam

Department of Computer Science
University of Utah

Salt Lake City

UTEC-83-076

I Introduction

This report describes in detail, the ongoing design and implementation of a

transformation system, for compiling specifications of integrated circuits into silicon. There

are many levels in this process, and the area that we focus on produces target

specifications of asynchronous and synchronous control units and the associated data

paths. This target is compatible with the ASSASSIN system [1] which generates layouts

from specifications of control units. The input to our system is an Ada program (restricted

to a single Procedure Body) which specifies a certain computation. The Procedure Body is

itself assumed to contain no package or task declarations or inatantiations and no Entry

call statements. The result of the transformations performed by the system is a program

consisting of the original specifications, with the target description appended to it.

Currently the system is in an experimental stage, and many of the intermediate decisions

are specified interactively by the user. In spite of these limitations we feel that it is a

valuable tool that we can use to study the exact mechanisms of the transformations as

well as to understand how various syntactic and/or semantic analyses (e.g. data flow

analysis) of the input can affect them. .

1This research was sponsored by Defense Advanced Research Projects Agency, US Department of Defense
under contract MDA903-81-C-0414

1

The rest of this report is organized as follows. In the following section we describe some

of the motivation and background for the work. Section III describes the implementation of

the system, which is further elaborated by means of a walkthrough of a detailed example

(a part of the internet protocol circuit) in Section IV. Lastly, in Section V we describe some

of our limitations, both in terms of equipment and computing resources that have so far

acted as hurdles to our implementation efforts, and also indicate directions for future

research. .

II M otivation and Background

The overall transformation strategy underlying this effort of mapping high level

specifications into silicon can be partitioned into three major phases:

1. Programs in a stylized subset of Ada are transformed into (the description of) a
hardware configuration comprised of one or more interacting state machines.
This description is in an appropriate hardware description language.

2. The description of a hardware configuration as obtained above is transformed
into a symbolic, 2-dimensional circuit representation using Path Programmable
Logic (PPLs) [6, 5]. The ASSASSIN system developed by Carter performs this
task for control unit specification.

3. The PPL description of the circuit is then automatically translated into files
detailing the fabrication masks required for processing the chip. Both Caltech
Intermediate Form (CIF), CALMA, and ComputerVision (CV) format can be
produced for such masks. These low level tools have been available for quite
some time, and are now in a comparatively stable state.

As mentioned earlier, our effort concentrates on the first phase of the above

transformation process. The declarative part of an Ada program may be viewed as defining

an "environment" in which the program statement sequences define a (set of interacting)

state machine(s). Our system transforms programs in an Ada subset to <state machine,

environment^ pairs described in a hardware description language. We have chosen to use

(a stylized version of) Ada itself as a hardware description language. Obviously, this

implies that not every Ada program can serve as a hardware description of a chip. But

since the transformation system is designed to generate only specific Ada constructs in

the target, the latter can be guarranteed to conform to the required Ada style.

TRACIS is built up in an Interlisp environment, using a language development tool,

2

POPART [9] (A Producer Of Parsers And Related Tools). POPART provides the user the

ability to generate and manipulate parse trees for specified grammars. The primary

function of POPART is as a parser generator (a la MINI or YACC). Its input is hence the

BNF specification of a language, and using the production rules it generates a recursive

descent parser, with limited backtracking capability (limited only to options on the RHS of a

single production rule). In addition, it also produces a set of grammar dependent tools for

the language. These tools include a structure editor, a pattern-matcher, and a rudimentary

transformation system (actually built up on top of the editor). The primary data structure

that all these tools operate on is the parse tree representation. Also, since TRACIS is

written in Interlisp, the whole programming environment of the latter (viz history lists,

programmer's assistant, dwimify, etc.) are available to the user.

The POPART transformation system provides commands such as Find Nonterminal,

Insert After, Replace, ReplaceAII etc. In each of these, the commands are applied to the

current expression, which is a subtree of the whole parse tree. Thus the editor commands

(which are used to change the current expression) and the transformation commands,

provide the basis for the transformations performed by TRACIS.

There are basically two levels of users of the POPART system. The system builder
defines a grammar using POPART and with the associated tools builds a system on top of

it, exactly as we are doing. The end user will have access to this system, and also to the

POPART editor and transformation commands, as well as to commands defined by the

overall system. However s/he will not be able to modify the grammar, and alter the other

tools that have been defined.

Ill S y s te m Im plem entation : An O verv iew

TRACIS is similar to the code generation phase of a conventional compiler in the sense

that it makes a pass over the parse tree and generates target code (which is in this case

Ada itself, and is appended to the source rather than being a totally separate entity). A

point of contrast however, is that in TRACIS the input is an unadorned parse tree. There is

no symbol table information available. Hence, the first pass in TRACIS is perforce a

combination of an information gathering and usage analysis pass. Strictly speaking, this

phase is not performed in a single pass over the source; rather, for every declaration in the

declarative part of the subprogram, usage analysis is performed as needed. The focus of

attention of the system therefore changes during this phase. The block diagram of the

system is given in Fig III—0 and Fig 111-1 indicates the functional modules invoked in the

top level of system execution. In the latter POPART commands are in boldface, and

comments (introduced for this document) are in parantheses.

I
I

. I

I I
I I Environment I env

I I I I I Generation I

. Decl I I I I
/ Part I A I I I

/ I I U N | ------- |

/ I I S A I I I
Subprogram Body/ Src-to-Src I A L I I I Interconnection

Ada input \ Transforms I G Y I I I Generation

\ I I E S I I
\ I I I I I
\ Stmt I S I I

Part I

I I I I I Control Unit I con
I
I

I Generation I

I

env: Generic package instantiations for environment elements
in t: CONNECT statements in the target body
con: ControlUnit package defining the state machine

Figure 111-1: Block Diagram of TRACIS

TRACIS assumes that the input program is a single Procedure Body. This does restrict

the scope of the system, in that we do not handle packages and tasks, and the associated

interface issues, but we felt that these extensions can be worked upon once we have the

skeleton of the system automated. For procedures that involve more than one Subprogram

Body, this is not a very serious restriction, and can be easily bypassed by surrounding the

desired input by a Procedure Body. The system then generates the target description for

the environment of the target state machine by a step-by-step traversal through the

Declarative Part of the Subprogram Body. For every Object Declaration it encounters,

TRACIS decides on an implementation in the target machine, based on certain system

4

Top; (Focus attention on the entire parse tree)
In SubprogramBody; (Go in to Subprogram Body, followed by ...)
In DeclarativePart; (... Declarative Part, and then onto ...)
In Declarativeltem; (... Declarative Item)
ApplyToCurrent SelDeclType;

(SelDeclType analyzes the Declaration and
generates an implementation record for it)

while Next do ApplyToCurrent SelDeclType
(Do it for all Declarations)

GenAdditionals; (Generate implementation records for any
additional elements as needed)

First; (Go back to the first declaration and ...)
GenerateEnv; (... make a pass over all declarations,

select Object Declarations and create ...)
while Next do GenerateEnv

(... a list of elements in the environment)
ProduceTarget; (Go to the top and insert a new Subprogram

Body contaning generic package package
instantiations for each of these elements
and also interconnections)

Top;
In SubprogramBody;
In SequenceOfStatements;
In Statement;
ApplyToCurrent SelectStatementType;

(Perform code generation for it)
while Next do SelectStatementType

(and the rest of the statement part) .

Figure 111-2: Top Level overview of TRACIS using POPART commands

defaults. Other Declarations are either Type Declarations or Subprogram Declarations1.

Type Declarations cause the creation of a default implementation for objects that are

declared to be of that type. Subprogram declarations cause the system to be invoked

recursively on that particular subprogram. As an example the following is a part of

TRACIS's execution transcript, and indicates how the object declaration for the identifier

TOSTable is handled. Boldfaced font indicates user input. The numbers on the left are

interlisp history-list numbers, and explanatory comments are in brackets

^Limitations of storage space on ih# TOPS20 Interlisp have forced us to use a subset of Ada. We feel that the
features that we have deleted viz G«n«><c«. Renamings, Representation Specifications and some similar esoteric
features, do not adversely affect icofu of our research. The exact grammar that we use is available in
Appendix II

5

69_Pretty... [Pretty-print the current expression]
TOSTable : array (0..1023)of octet;...
70_ApplyToCurrent SelDeclType...
Should this array be represented as a RAM or a set of Registers RAM
Please Evaluate the value of the array range 1024

After this first pass, the system (ideally) performs a usage analysis on the input, and

determines information required for the final implementation. This includes introduction of

additional data elements, deletion of certain data elements, and/or changes in certain data

elements in the target machine environment. Any of these changes may also involve some

changes in the statement part of the subprogram body; e.g. if usage analysis yields the

possibility of saving a loop counter by merging two loops, the source code must actually

represent this merge, in addition to the removal of the additional loop counter. We call this

analysis usage analysis rather than flow analysis, because it is a superset of the more

conventional flow analysis. For example usage analysis could detect that the only

arithmetic operations performed on a particular variable are multiplications and divisions by

powers of two. This would result in an optimization that caused its implementation to be

just a register without any arithmetic capability. Currently, this analysis is being performed

through user interaction. This is an important part of the system, and we feel that by

setting up an environment where the results of usage analysis can be utilized to change

the source provides us with a skeletal system, where we can later experiment with specific

usage analysis schemes and strategies.

Another important class of results of usage analysis is the actual data flow in the

program. This can be mapped fairly directly into the physical interconnections between the

various data objects in the target machine environment. This is also implemented as an

interactive query of the user for the various connections among the elements in the

environment.

TRACIS now focuses on the Sequence Of Statements part of the Subprogram Body. It

makes a pass over these statements, generating code for the state machine that

constitutes the control unit of the target. This is done in a manner similar to the code

generation phase in conventional compilers. The system builds up a list of states and

associated transitions, and also the input and output signals of the control unit. The

scheme we use is described in detail in [7] and is similar to that proposed by Drenan [2].

At this point a large part of the information is in data structures similar to those found in

conventional symbol tables. The state machine details are also in a separate data

structure and the source code is unaffected (except for some source-to-source

transformations during the usage analysis phase, as indicated earlier).

Now the system focuses on the whole input (i.e. a Subprogram Body) and, using the

POPART editor commands creates another Subprogram Body (called Target) and appends it

to the first. It then enters this and generates the Ada code for the entire target. This

consists mainly of three parts — the data elements in the environment part correspond to

instantiations of generic packages from a predetermined library of standardly available

target primitives, their interconnections are specified in the Sequence of Statements part

as function calls on a dummy function CONNECT and the control unit is another package

declaration. This package, called ControlUnit contains first a declaration of all the input and

output signals that the Control Unit receives/sends. This is followed by individual task

specifications for each state in the machine. The Entry Declarations in each of these task

specifications define the names of the transitions from the state. Later in the ControlUnit

package TRACIS generates the task bodies for each of these tasks, where it specifies the

source, destination, input conditions, output conditions, and nature (i.e. fork, join or

regular) of each of the transitions declared earlier. In the Sequence Of Statements part of

the Target Subprogram the system generates statements which specify the

interconnections among the data elements in the environment implemented as calls on the

function CONNECT with the port names of various environment elements as arguments.

This mechanism, although it is not equivalent to specifying a connection if Ada semantics

are used, has been found to be an acceptable target, since it is compatible with the

ASSASSIN system.

A. Implementation Status

The target, currently generated by the system includes just the declarations that comprise

the environment part, and the CONNECT statements in the procedure body. The

implementation for generating the package for the control unit is currently under way. The

target that is presented in Appendix I has been hand generated and is being used to guide

the design of the state machine generation phase. •

7

IV A D etailed Exam ple : An early version of the R IP Chip

We now present an example that provides a clearer idea of our transformation

methodology. The example is drawn from our familiarity with the RIP chip experiment [4],

Given below is a small procedure, equivalent to a part of the module that handles

outbound datagrams in the Internet Protocol. In this procedure certain parameter values

required by the module that fragments the datagrams are initialized.

procedure ReadlnitParameters (NoOfTOS : octet)is

type octet is

. range 0..255; ParamsReg : array (1..8)of octet;

TOSTable : array (0..1023)of octet;

TOSTablelndex : integer := 0;

procedure MemoryOutReq (ByteOfAddress : ByteOfAddressType

; DoRead : boolean; Data : out OctetType)

begin

for index in 1..8
loop MemoryOutReq (DoRead => false,Data => ParamsReg (index))

end loop

9

for index in 1..ParamsReg (8)

loop

for index2 in 1..ParamsReg (7)
loop MemoryOutReq (ByteOfAddress => DontCare, DoRead => false,

Data => TOSTable (TOSTablelndex))

5
TOSTablelndex := T0STableIndex+1;

end loop

J '
end loop

!
end ReadlnitParameters;

The (hand generated) target corresponding to the above input specification is available in

Appendix I.

V L im itations and Further W ork

The target for the immediate future is to complete the implementation of the state

machine generation phase. The strategy for this part has been developed, and many of the

algorithms are similar to code-generation algorithms used in conventional compilers. More

ambitious goals are to extend the system to handle a larger part of the Ada language and

8

incorporate the flow/usage analysis function into the system. Another possible avenue of

research is to explore the possibility of using different (i.e. non Ada) languages, and if

necessary develop the required languages, based more on an understanding of the exact

needs.

The format in which the production rules of the grammar are specified to POPART is

such that there is exactly one rule per nonterminal. Theoretically this does not lead to any

loss in power, and is an inconvenience at best since the right hand side of a production

may contain any number of alternatives. Because of this restriction, any given grammar

usually has to be massaged so that a correct parser can be produced. One of the results

of the massaging is that an excessive number of dummy nonterminals are introduced in

the grammar. Since the POPART editor also utilizes the same grammar, the actual editing

becomes slightly cumbersome, as do the editing functions of TRACIS.

Because of the above problem, one of the principal hurdles faced in the implementation

of TRACIS is an address space limitation on the Dec-20. The data structures used by

POPART are so space-consuming that for any reasonable size program the underlying

Interlisp system runs out of storage. One of the primary objectives during the initial

design of TRACIS has been to make the target that it generates compatible with the

ASSASSIN system. Since the input language to ASSASSIN is not Ada we decided to add

syntactic sugaring to it to couch it in terms of Ada syntax. However, since the current

version of TRACIS operates on a single grammar (a recent development in POPART now

permits the handling of multiple grammars, at the expense of even more storage) these

syntactic constructs must be retained in the grammar. The grammar used is thus perforce

much larger than that needed for the source specification. An area of future work is to

explore the possibility of paring it down to a manageable size.

In addition to the storage limitations there are certain deficiencies with the whole

POPART environment. Although the parse tree is a useful representation of the input (and

is indespensable for certain manipulations such as pretty printing, etc.) we now believe

that an Abstract Syntax Tree (AST) is more appropriate. Although the POPART reference

manual states that the parse tree can be compacted and can be thought of as an AST,

many of the transformation and editor functions operate strictly on the parse tree, and the

advantage gained by the compaction is minimal. As has been already mentioned, POPART

9

also has no provision for symbol tables. The reason for this is that a particular symbol

table (and associated symbol table managing scheme) implies a specific set of scoping

rules, which makes the system language dependent. However, a provision for associating

external (i.e. non-POPART) data structures with specific nodes in the parse tree (or the

AST) would be a valuable asset. Such an arrangement would also leave the issues of

scoping and variable bindings independent of the grammar. The parser generator part of

such a system (i.e. one based on AST's and providing hooks for external data structures)

is currently being developed by Tinker [8].

A means of specifying performance constraints is also required, and an exploration and

development of a theoretical foundation for these aspects is also needed. Some of the

theoretical areas, (eg CCS [3]) are being explored currently and could yield valuable results.

10

Appendix I Target fo r the R IP exam ple

procedure Target (MeraAck, Req, MstClr, Clock : in boolean;

MemReq, MemDoRead, Ack : out boolean;

MemOctet : in integer range 0..225) is

package ParamRegO is new Register(Size = > 8

package ParamRegl is new Register(Size = > 8

package ParamReg2 is new Register(Size = > 8

package ParamReg3 is new Register(Size = > 8

package ParamRegU is new Register(Size 8

package ParamReg5 is new Register(Size = > 8

package ParamReg6 is new Register(Size r > 8

package ParamReg7 is new Register(Size = > 8

package EntryCtr is new IncClrRegister(Size => 8);

package ByteCtr is new IncClrRegister(Size => 8);

package Counter3 is new IncClrRegister(Size => 3);

package TOSAddrReg is new IncClrRegister(Size => 8);

package TOSRAM is new RAM(DataSize => 8, AddrSize => 16);

package LoadControls is new Decoder(InSize => 3);

package EdoneComp is new EqComp;

package BdoneComp is new EqComp;

package SevenCheck is new ConstEqComp;

package ControlUnit is

MstClr :insignal = unknown;
MemAck :insignal = unknown;

Req :insignal = unknown;

Four :insignal - unknown;

Seven :insignal = unknown;
EntryDone :insignal = unknown;

TOSDone :insignal = unknown;

MemReq :latched = ff;
MemDoRead :latched = ff;

Ack :latched = ff;

TOSRdWr :latched = ff;

ClrTOSAddrReg :gated = ff;

IncTOSAddrReg :gated = unknown;

TOSRAMSel :gated = ff;
LdDecode :gated - ff;

11

ClrCtr3 :gated :=

IncCtr3 :gated :=
ClrEntryCtr :gated :=
IncEntryCtr :gated :=
ClrByteCtr :gated :=

IncByteCtr :gated :=

ff;

task StateSTRT is

entry MoveSOI;

end StateSTRT;

task StateSCH is

entry MoveS02;

entry MoveSTRT;

end StateSOI;

task StateS02 is

entry MoveS03;
entry MoveS04;
entry MoveSTRT;

end StateS02;

task StateS03 is
entry MoveSOI;
entry MoveSTRT;

end StateS03;

task StateS04 is

entry MoveS05;
entry MoveSTRT;

end StateS04;

task StateS05 is
entry MoveS06;

entry MoveSTRT;

end StateS05;

task StateS06 is

entry MoveS07;
entry MoveSTRT;

end StateS06;

task StateS07 is
entry MoveS08;

entry MoveS05;

12

entry MoveSTRT;
end StateS07;

task StateS08 is

entry MoveS09;
entry MoveSTRT;

end StateS08;

task StateS09 is
entry MoveSIO;

entry MoveSTRT;

end StateS09;

task StateS10 is

entry MoveS11;

entry MoveSTRT;

end StateSIO;

task StateSH is

entry MoveS12;

entry MoveS09;
entry MoveSTRT;

end StateSH;

task StateS12 is

entry MoveS09;
entry MoveSTRT;

end StateS12;

end ControlUnit;

package body Controlunit is

task body StateSTRT is
begin

accept MoveS01() do

move(on(clk and Req), to(StateS01));
end MoveSOI;

hold(ClrCtr3);
end StateSTRT;

task body StateSOI is

begin

select

accept MoveS02() do

move(on(clk and Me«Ack), to(StateS02));

13

end MoveS02;
or
accept MoveSTRTO do

move(on(clk and M stC lr), to (StateSTRT)) ;
end MoveSTRT;

end se le c t ;
set(MemReq);
set(MemDoRead);
h o ld (In cC tr3);

end StateSO1;

task body StateS02 is
begin '

se lect
accept MoveS03() do

move(on(clk and not(Req) and not(Four) and not(MemAck)) ,
to (S ta teS03));

end MoveS03;
or
accept MoveS04() do

move(on(clk and not(Req) and Four and not(MemAck)) ,
to (S tateS04)) ;

end MoveS04;
or
accept MoveSTRTO do

move(on(clk and M stC lr), to (StateSTRT)) ;
end MoveSTRT;

end se le c t ;
reset(MemReq);
se t(A ck);

end StateS02;

task body StateS03 i s
begin

se le c t
accept MoveS01() do

raove(on(clk and Req), to(StateS01)) ;
end MoveSO1;
or
accept MoveSTRT() do

move(on(clk and M stC lr), to(StateSTRT)) ;
end MoveSTRT;

end se le c t ;
end StateS03;

task body StateS04 i s

14

begin . ■ _ .
se le c t '

accept MoveS05() do
m ove(on(clk), to (S tateS05)) ;

end MoveS05;
or
accept MoveSTRT() do

- move(on(clk and MstClr), to(StateSTRT)) ;
end MoveSTRT;

end se le c t ;
h o ld (C lrC tr3);

end StateS04;

task body StateS05 is
begin

se le ct
accept MoveS06() do

move(on(clk and MemAck), to (StateS06)) ;
end MoveS06;
or
accept MoveSTRT() do

move(on(clk and M stC lr), to (StateSTRT)) ;
end MoveSTRT;

end se le c t ;
set(MemReq);

end StateS05;

task body StateS06 is
begin

se le c t
accept MoveS07() do '

move(on(clk), to (S tateS07)) ;
end MoveS07;
or
accept MoveSTRT() do

raove(on(clk and M stC lr), to (StateSTRT)) ;
end MoveSTRT;

end se le c t ; .
hold(LdDecode);
re se t(MemReq) ;

end StateS06;

task body StateS07 is
begin

se le c t
accept MoveS08() do

15

move(on(clk and not(MemAck) and Seven), to(StateS08));
end MoveS08;
or

accept MoveS05() do

move(on(clk and not(MemAck) and not(Seven)), to(StateS05));

end MoveS05;
or

accept MoveSTRTO do
move(on(clk and M stC lr), to(StateSTRT)) ;

end MoveSTRT;
. end select; .

hold(IncCtr3);
end StateS07;

task body StateS08 is

begin -

select

accept MoveS09() do

move(on(clk), to(StateS09));

end MoveS09; J
or

accept MoveSTRTO do
move(on(clk and M stC lr), to(StateSTRT)) ;

end MoveSTRT;
end select; .

hold(ClrEntryCtr);

hold(ClrByteCtr);

hold(ClrTOSAddrReg);
end StateS08;

task body StateS09 is
begin

select

accept MoveS10() do

move(on(elk and MeraAck), to(StateS10));
end MoveSIO;

or

accept MoveSTRTO do

' move(on(clk and MstClr), to(StateSTRT));
end MoveSTRT;

end select; .

set(MemReq); •

end StateS09;

task body StateS10 is

begin

16

select _

accept MoveS11() do
raove(on(clk), to(StateS11));

end MoveS11;

' or ' . . . ' ■ : -

accept MoveSTRT() do
move(on(clk and MstClr), to(StateSTRT));

end MoveSTRT; .

end select;

hold(TOSRAMSel);

hold(not(TOSRdWr));

end StateS10; '

task body StateSH is

begin

select

accept MoveS12() do

move(on(clk and not(MemAck) and EntryDone), to(StateS12));
end MoveS12;

or .

accept MoveS09() do

move(on(clk and not(MemAck) and not(EntryDone)), to(StateS09));

end MoveS09;
or

accept MoveSTRT() do

move(on(elk and MstClr), to(StateSTRT));

end MoveSTRT;

end select;

hold(IncByteCtr);

hold(IncTOSAddrReg);

end StateSI1;

task body StateS12 is

begin

select

accept MoveS09() do

move(on(elk and not(TOSDone)), to(StateS09));

end MoveS09;
or

accept MoveSTRT() do

move(on(elk and (TOSDone or MstClr)), to(StateSTRT));
end MoveSTRT;

end select; .

hold(ClrByteCtr); \

hold(IncEntryCtr);

end StateSI2;

17

end ControlUnit;

begin

Connect(ParamReg6, EdoneComp.In1);
Connect(EntryCtr, EdoneComp.In2);
Connect(EdoneComp.EqOut, ControlUnit.EntryDone);

Connect(ParamReg7, BdoneComp.In1);
Connect(ByteCtr, BdoneComp.In2);
Connect(BdoneComp.EqOut, ControlUnit.TOSDone);

Connect(Counter3, SevenCheck.VarInp);
Connect(7, SevenCheck.ConstInp);
Connect(SevenCheck.EqOut, ControlUnit.Seven);

Connect(Req, ControlUnit.Req);
Connect(MemAck, ControlUnit.MemAck);
Connect(MstClr, ControlUnit.MstClr);
Connect(Clock, ControlUnit.clk);

Connect(ControlUnit.MemReq, MemReq);
Connect(ControlUnit.MemDoRead, MemDoRead);
Connect(ControlUnit.Ack, Ack);
Connect(ControlUnit.TOSRdWr, TOSRAM.RdWrt);
Connect(ControlUnit.TOSRAMSe1, TOSRAM.Select);
Connect(ControlUnit.ClrTODAddrReg, TOSAddrReg.Clr);
Connect(ControlUnit.IncTODAddrReg, TOSAddrReg.Inc);

Connect(ControlUnit.ClrCtr3, Counter3.Clr);
Connect(ControlUnit.IncCtr3, Counter3.Inc);
Connect(ControlUnit.ClrEntryCtr, EntryCtr.Clr);
Connect(ControlUnit.IncEntryCtr, EntryCtr.Inc);
Connect(ControlUnit.ClrByteCtr, ByteCtr.Clr);
Connect(ControlUnit.IncByteCtr, ByteCtr.Inc);
Connect(ControlUnit.LdDecode, LoadControls.Enable);

Connect(Counter3, LoadControls.Inp);
Connect(LoadControls.OutO, ParamRegO.Load);
Connect(LoadControls.Out1, ParamRegl.Load);
Connect(LoadControls.0ut2, ParamReg2.Load);

Connect(LoadControls.0ut3, ParamReg3.Load);
Connect(LoadControls.Ou 14, ParamReg4.Load);
Connect(LoadControls.0ut5, ParamReg5.Load);
Connect(LoadControls.0ut6, ParaaReg6.Load);

Connect(LoadControls.0ut7, Para*Reg7.Load);

18

Connect(MemOctet, ParamRegO, ParamRegl, ParamReg2, ParamReg3, ParamReg4,
ParamReg5, ParamReg6, ParamReg7, TOSRAM.Data);

Connect(TOSAddrReg, TOSRAM.Addr);

end Target;

Appendix II G ram m ar fo r the S ys te m

NameBody := IndexedCoraponentBody I SelectedComponentBody I
FunctionCallBody I I ;

IndexedComponentBody : = ' (Expression

SelectedComponentBody := AldentifierAllOperator ;

AldentifierAllOperator := Identifier I AllConstant I OperatorSymbol I I

AllConstant := 'all ;

ALogicalRelation := IAndRelation I
IOrRelation ;

IAndRelation := 'and Relation ~ 'and ;
IOrRelation := 'or Relation ~ 'or ;

AlnfixOperation := ARelationalOperator I ARangeOperator I
ASubtypeOperator II;

ARelationalOperator := RelationalOperator SimpleExpression ~ -
RelationalOperator# ;

ARangeOperator := { NotConstant } 'in Range ;
ASubtypeOperator := { NotConstant } 'in Subtypelndication ;
NotConstant := 'not ;

NestedExpression := '(Expression ') ;

RelationalOperator := ' = I '/= I '< I '<= I ’> I '>= ;
AddingOperator := '+ I '-I '& ;
UnaryOperator := '+ I I 'not ;
MultiplyingOperator := '* I '/ I 'mod I 'rem ;
ExponentiatingOperator :='**; ,

InValue := 'in Name ;

Outvalue := 'out Name ;

ConstantConstant := 'constant ;

TypeDeclaration := 'type Identifier 'is TypeDefinition ;

TypeDefinition := EnumeratlonTypeDefinition I IntegerTypeDefinition I
ArrayTypeDeflnition I RecordTypeDefinition I I ;

20

Constraint := RangeConstraint I
IndexConstraint II;

RangeConstraint := 'range Range ;

EnumerationTypeDefinition := '(EnumerationLiteral ~ ') ;

IntegerTypeDefinition := RangeConstraint;

ArrayTypeDefinition := 'array (Index ~ ', I IndexConstraint)
'of Subtypelndication ;

IndexConstraint := '(DiscreteRange ~ ', ') ;

RecordTypeDefinition := 'record ComponentList RecordEnd ;

RecordEnd := 'end 'record ;

NullConstant := 'null ;

CorapoundStateraent := IfStatement I
CaseStatement I
LoopStatement I

' Block I .
AcceptStateraent I
SelectStatement II;

Label := ' « Identifier ' » ;

NullStatement := 1 null '; ;

IfStatement := 'if Condition 'then SequenceOfStatements
{ IElselfStatement + } { 'else SequenceOfStatements# }

Finishlf ;

IElselfStatement := 'elsif Condition 'then SequenceOfStatements ;

• Finishlf := 'end 'if '; ;

CaseStatement := 'case Expression '.is { IChoicesOfStatements + }
CaseEnd •; ;

CaseEnd := 'end 'case ;

OthersConstant := 'others;

21

IChoicesOfStatements := 'when Choice * 'I '=> SequenceOfStatements;

BasicLoop := 'loop SequenceOfStatements LoopEnd ;

LoopEnd := 'end 'loop;

IterationClause := 'for LoopParameter 'in { ReverseConstant }
DiscreteRange I

'while Condition;

ReverseConstant := 'reverse; -

ExitStatement := 'exit { Name } { 'when Condition } '; ;

ReturnStatement := 'return { Expression } '; ;

GotoStatement := 'goto Name'; ;

SubprogramDeclaration := 'procedure Identifier { FormalPart } I
'function Designator { FormalPart } 'return Subtypelndication ;

FormalPart := '(ParameterDeclaration A '; ') ;

Mode := OutConstant I InOutConstant I Inconstant II;
Inconstant := { 'in } ;
OutConstant := 'out ;
InOutConstant := 'in 'out ;

SubprogramBody := SubprogramDeclaration
'is DeclarativePart
'begin SequenceOfStatements
'end { Designator } ;

FunctionCallBody := ActualParameterPart I '(1) ;
ActualParameterPart := '(ParameterAssociation ~ ', ') ;

PackageDeclaration := PackageSpecification '; I
GenericPackagelnstantiation II;

PackageSpecification := 'package Identifier 'is { Declarativeltem + }
'end { Identifier }; .

GenericPackagelnstantiation := 'package Identifier 'is 'new Name
{ ' (ParameterAssociation A ', ') } 1; ;

22

PackageBody := 'package 'body Identifier 'is DeclarativePart
{ 'begin SequenceOfStatements }
'end { Identifier } ;

TaskDeclaration := 'task { TypeConstant } Identifier
{ TaskPart } '; ;

TaskPart : = 'is { EntryDeclaration + }
'end { Identifier } ; .

TypeConstant := 'type;

TaskBody := 'task 'body Identifier 'is { DeclarativePart }
'begin SequenceOfStatements

, 'end { Identifier# } '; ;

EntryDeclaration := 'entry Identifier { '(DiscreteRange ') }
{ FormalPart } '; ;

AcceptStatement := 'accept Name { FormalPart }
{ 'do SequenceOfStatements

'end { Identifier } } ; .

DelayStatement := 'delay SimpleExpression '; ;

SelectStatement := SelectiveWait I ConditionalEntryCall I
TimedEntryCall II;

SelectiveWait := 'select IWhenSelect ~ 'or { 'else SequenceOfStatements }
SelectEnd '; ;

SelectEnd := 'end 'select ;

IWhenSelect := { 'when Condition '=> } SelectAlternative;

SelectAlternative := TerminateConstant I (AcceptStatement I
DelayStatement)

{ SequenceOfStatements } ;
TerminateConstant := 'terminate '; ;

ConditionalEntryCall := 'select EntryCall { SequenceOfStatements }
'else SequenceOfStatements#

SelectEnd '; ;

TimedEntryCall := 'select EntryCall { SequenceOfStatements }

23

'or DelayStatement { SequenceOfStatements# }
SelectEnd '; ;

AbortStateraent := 'abort Name ~ ;

Expression := Relation { ALogicalRelation } II;

Relation := SimpleExpression { AlnfixOperation } II;

SimpleExpression := IUnaryTerm { OAddingOperatorTerm } II;
IUnaryTerm := { UnaryOperator } Term II;
OAddingOperatorTerm := IAddingOperatorTerm + ;
IAddingOperatorTerm := AddingOperator Term;

Term := Factor { OMultiplyingOperatorFactor } II;
OMultiplyingOperatorFactor := IMultiplyingOperatorFactor + ;
IMultiplyingOperatorFactor := MultiplyingOperator Factor;

Factor := Primary { OExponentialPrimary } I I ;
OExponentialPrimary := '** Primary;

Primary := NestedExpression I InValue I Outvalue I Name I Literal II;

Range := SimpleExpression SimpleExpression# ;

Declarative!!tem := ObjectDeclaration I TypeDeclaration I
SubprogramDeclaration I PackageDeclaration I TaskDeclaration ;

' ■ ■ . \ ■

ObjectDeclaration := IdentifierList ': { ConstantConstant }
ASubtypeOrArrayType { 1:= Expression } '; ;

ASubtypeOrArrayType := Subtypelndication I ArrayTypeDefinition I I ;

NumberDeclaration := IdentifierList ': ConstantConstant ':=
LiteralExpression '; ;

IdentifierList := Identifier A ', ;

Index := TypeMark 'range '<> ;

ComponentDeclaration := IdentifierList ■: ASubtypeOrArrayType
{ ':= Expression } '; ;

ProgramComponent := SubprogramBody I PackageBody I TaskBody I
PackageDeclaration I TaskDeclaration I I ;

*

SequenceOfStatements := Statement + ;
Statement := { Label } ASimpleOrCompound I I;

ASimpleOrCompound := SimpleStatement I CompoundStatement I I ;

SimpleStatement := NullStatement I
AssignmentStatement I
ExitStatement I
ReturnStatement I
GotoStatement I
ProcedureCall I
EntryCall I
DelayStatement I
AbortStatement I I ;

AssignmentStatement := Name ':= Expression ;

Condition := BooleanExpression II;

LoopStatement := { Loopldentifier ': } { IterationClause } BasicLoop
{ Loopldentifier# } '; ;

LoopParameter := Identifier;

Block := { Blockldentifier }
{ 'declare DeclarativePart }
'begin SequenceOfStatements

'end { Blockldentifier# } '; ;

Designator := Identifier I OperatorSymbol I I ;

ParameterDeclaration := IdentifierList ': { Mode } Subtypelndication
{ ':= Expression } ;

EntryCall := Name { ActualParameterPart } '; ;

Name := (Identifier I OperatorSymbol) { NameBody + };

24

Literal := NumericLiteral I EnumerationLiteral
I CharacterString I NullConstant I I ;

EnumerationLiteral := Identifier I CharacterLiteral I I ;

DiscreteRange := Range I TypeMark { RangeConstraint } ;

w
* 25

Choice := OthersConstant I DiscreteRange I SimpleExpression I I;

OperatorSymbol := CharaeterString ;

ProcedureCall := Name { ActualParameterPart } ;

ParameterAssociation := { FormalParameter '=> } ActualParameter;

FormalParameter := Identifier I I ;

ActualParameter := Expression I I ;

Subtypelndication := TypeMark { Constraint } ;

TypeMark := Name ;

StaticSimpleExpression := SimpleExpression ||;
LiteralExpression := Expression II;
BooleanExpression := Expression II;
ComponentSubtypelndication := Subtypelndication ||;
Loopldentifier := Identifier II;
Blockldentifier := Identifier ||;

CharacterLiteral := LEXEME |> CharLitFilter;

CharaeterString := LEXEME |> CharStringFilter;

NumericLiteral
RealLit
IntegerLit

NegativeExponent
PositiveExponent
Exponent

= RealLit I IntegerLit I I;
= Real { 'E Exponent };
= Integer { 'E PositiveExponent };

= Integer ;

= { '+ } Integer I I ;
= PositiveExponent I NegativeExponent I I ;

Real := Integer Integer#;
Integer := LEXEME |> IntegerFilter ;

Identifier := LEXEME |> IDFilter;

ComponentList := NullConstant 1; I { ComponentDeclaration + } ;

DeclarativePart := { DeclarativeItem + }
{ ProgramComponent + } ;

Compilation := { SubprogramBody

h
V
%

27

R e fe re n ce s

]

1. T. M. Carter. ASSASSIN: An Assembly, Specification and Analysis System for Speed-
Independent Control-Unit Design in Integrated Circuits Using PPL Master Th„ Department
of Computer Science, University of Utah,June 1982.

2. Drenan, L.A. On Transforming Ada to Silicon. Master Th., University of Utah,
Department of Computer Science,August 1982.

3. Milner, Robin. A Calculus of Communicating Systems. Springer-Verlag, Berlin,
Heidelberg, 1980.

4. Organick, E.l. et al. Transformation of Ada Programs into Silicon. Fourth SemiAnnual
Technical Report. UTEC-83-075, University of Utah, November, 1983.

5. Patil, S. S. and Welch, T. "A Programmable Logic Approach for VLSI". IEEE Trans, on
Computers C-28 (Sept 1979), 594-601.

6. K. F. Smith; T. M. Carter; and C. E. Hunt. "Structured Logic Design of Integrated Circuits
Using the Stored Logic Array". IEEE Transactions on Electron Devices ED-29, 4 (April
1982), 765-776.

7. Subrahmanyam, P.A. and Rajopadhye, S. Automated Design of VLSI Architectures: Some
Preliminary Explorations. UTEC # 82-067, University of Utah, October (Revised), 1982.

8. Tinker, Pete. AGGAST - A Generator Generator for Abstract Syntax Trees. Class
Report.

9. Wile, Dave. POPART: A Producer of Parsers and Related Tools, System Builder's Manual.
Unpublished, USC/ISI.

