
Sensor-based Distributed Control Scheme
for Mobile Robots

Mohamed Dekhil, Tarek M. Sobh, and Alexei A. Efros*

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

Abstract

In this paper we present a sensor-based distributed control
scheme for rrwbile robots. This scheme combines centralized
and decentralized control strategies. A server-client rrwdel
is used to implement this scheme where the server is a pro­
cess that caries out the commands to be executed, and each
client is a process with a certain task. The clients are run­
ning in parallel issuing commands to the server which selects
the command to be executed based on a predefined priority
scheme. In this scheme, a collision avoidance client is run­
ning all the time with the highest priority. This improves the
performance of the other clients since it rerrwves the burden
of avoiding obstacles and allows each client to concentrate
on performing its task. The logical sensor approach is used
to rrwdel the sensory system which provides different levels
of data representation with tolerance measures and analysis.
The simulation results of this rrwdel are presented with a brief
discussion and conclusion on these results.

1 Introduction

In any closed-loop control system, sensors are used to pro­
vide the feedback information that represents the current sta­
tus of the system and the environmental uncertainties. The
main component in such systems is the transformation of sen­
sor outputs to the decision space, then the computation of the
error signals and the joint-level commands (see Figure 1).
For example, the sensor readings might be the current tool
position, the error signal the difference between the desired
and current position at this moment, and finally, the joint­
level command will be the required actuator torque/force.

The sensors used in the control scheme shown in Figure 1
are considered to be passive elements that provide raw data
to a central controller. The central controller computes the
next command based on the required task and the sensor read­
ings. The disadvantage of this scheme is that the central con­
troller may become a bottleneck when the number of sensors
increases which may lead to longer response time. In some
applications the required response time may vary according

*llis work was supported in part by The Advanced Research Projects
Agency under Army Research Office grant number DAAH04-93-G0420,
and NSF grant CDA 9024721. All opinions, findings, conclusions or rec­
ommendations expressed in this document are those of the author and do not
necessarily reflect the views of the sponsoring agencies.

0-7803-2722-5/95 $4.00 © 1995 IEEE 304

to the required task and the environment status. For exam­
ple, in an autonomous mobile robot with the task of reaching
a destination position while avoiding unknown obstacles, the
time to reach to the required position may not be important,
however, the response time for avoiding obstacles is critical
and requires fast response. Fast response can be achieved by
allowing sensors to send commands directly to the physical
system when quick attention is required.

In this work, several controllers (clients) are working in
parallel, competing for the server. The server selects the
command to be executed based on a dynamically configured
priority scheme. Each of these clients has a certain task, and
can use the sensor readings to achieve its goal. A special
client with the task of avoiding obstacles is assigned the high­
est priority. The clients need to know the current state of the
system and the command history to update their control strat­
egy, therefore, the server has to broadcast the selected com­
mand and the current state of the system.

The logical sensor approach, which we used to model the
sensory system in our mobile robot, allows flexible and mod­
ular design of the controllers. It also provides several levels
of data abstraction and tolerance analysis based on the sensor
type and the required task. The initial work on this project is
described in [5]. This approach is used to buildhigh-levelre­
quests which may be used by the application programs.

2 Related Work

There has been a tremendous amount of research in the
area of sensor-based control, including sensor modeling,
multisensor integration, and distributed control schemes for
robotic applications in general and mobile robots in partic­
ular. A sensor-based control using a general learning al­
gorithm was suggested by Miller [10]. This approach uses
a learning controller that learns to reproduce the relation­
ship between the sensor outputs and the system command
variables. Another technique for sensor-based obstruction
avoidance for mobile robots was proposed by Ahluwalia and
Hsu [1]. In their technique, the robot is able to move through
an unknown environment while avoiding obstacles. Simu­
lations were carried out assuming the robot had eight tactile
sensors and the world is modeled as a two-dimensional occu­
pancy matrix with O's representing empty cells and 1 's repre­
senting occupied cells. Several research activities for sensor-

Task-level Error TransfOImation Joint-level Physical System output
• to joint-level system commands Signal commands commands

Update commands T"",,onn""J" S=", to decision
space

~Jtput Environemnt

information

Figure 1: Closed loop c€lntrol system.

based control for robotic applications can be found in [8].
Luo and Kay [9] conducted a survey on multi sensor-based

mobile robots. In their survey, the presented a number of con­
trol strategies that has been used in this area.

Brooks proposed a new architecture for controlling mobile
robots [2, 3]. In this architecture, layers of control system are
built to let the robot operate at increasing levels of compe­
tence. These layers are built as concurrent modules that com­
municate over low-bandwidth channels.

The idea of smart sensing was investigated by several re­
searchers. Yakovleff et al. [15] represented a dual purpose in­
terpretation for sensory information; one for collision avoid­
ance (reactive control), and the other for path planning (nav­
igation). The selection between the two interpretation is dy­
namic depending on the positions and velocities of the ob­
jects in the environment. Budenske and Gini [4] addressed
the problem of navigating a robot through an unknown envi­
ronment, and the need for multiple algorithms and multiple
sensing strategies for different situations.

Discrete Event Systems (DES) is used as a platform for
modeling the robot behaviors and tasks, and to represent the
possible events and the actions to be taken for each event.
A framework for modeling robotic behaviors and tasks us­
ing DES formalism was proposed by Kosecka et al. [7]. In
this framework, there are two kinds of scenarios. In the first
one, reactive behaviors directly connects observations (sen­
sor readings) with actions. In the second, observations are
implicitly connected with actions through an observer.

In our proposed control scheme, the sensory system can
be viewed as passive or dumb element which provides raw
data. It can be viewed as an intelligent element which returns
some "analyzed" information. Finally it can be viewed as a
commanding element which sends commands to the physi­
cal system. Each of these views is used in different situations
and for different tasks. A detailed description of the proposed
control scheme is presented in the following section.

3 The Proposed Control Scheme

The robot behavior can be described as a function :F that
maps a set of events E to a set of actions A. This can be ex­
pressed as:

:F:E~A

305

The task of the robot controller is to realize this behavior.
In general we can define the controller as a set of pairs:

{(el,al), (e2,a2), ... , (en, an)}
where ei E E, and ai E A

The events can be defined as the interpretation of the raw
data perceived by the sensors. Let's define the function T
which maps raw data n to events E:

T:n~E
The functions T and :F can be closed form equations,

lookup tables, or inference engine of an expert system. This
d(~pends on the kind of application and the complexity of each
tr~msformation.

3.1 Abstract Sensor Model

We can view the sensory system using three different levels
of abstractions (see Figure 2.)

1. Dumb sensor: which returns raw data without any in­
terpretation. For example, a range sensor might return
a real number representing the distance to an object in
inches, and 2l camera may return an integer matrix rep­
resenting the intensity levels of each pixel in the image.

2. Intelligenlt sensor: which interprets the raw data into
an event using the function T. For example, the sensor
might return something like "will hit an object," or "a
can of Coke is found."

3. Controlling sensor: which can issue commands based
on the recdved events. for example, the sensor may
issue the command "stop" or "turn left" when it finds
an obstacle ahead. In this case, the functions :F and T
should be ilnduded in the abstract model of the sensor.

The dumb sensor can be used as a source for the feedback
information required by the control system. It can be also
used to gather measurements to construct a map for the sur­
rounding environment. The process that uses a dumb sensor
as a source of information needs to know the type of that sen­
sor, the format of lhe data the sensor returns, and the location
of the sensor, to be able to interpret the perceived data. The
inltelligent sensor may be used for monitoring activities. The
process that uses an intelligent sensor. needs to know only

Intelligent Sensor
:_-----------_ __ ._-------_ ... _-----_._---_ _-------------_._---------_ _-_ .. __ :

Behavior

Selection

Actions

Change
direction

Controlling Sensor

Figure 2: Thee levels to view a sensor module.

the event domain and maybe the location of the sensor. On
the other hand, the commanding sensor is considered to be a
"client" process that issues commands to the system.

3.2 A Distributed Control Architecture

Several sensors can be grouped together representing a log­
ical sensor [6, 12]. We will assume that each logical sen­
sor is represented as a client process which sends commands
through a chanel to a multiplexer (the server process) which
decides the command to be executed first. Besides these log­
ical sensors, we might have other processes (general con­
trollers) that send commands to the server process to carry
out some global goals. Figure 3 shows a schematic diagram
for the proposed control scheme.

Let's call any process that issues commands to the server a
client process. In this figure, there are three types of clients:

1. Commanding sensors, that are usually used for reaction
control and collision avoidance.

Sensor Space

InteUegent Sensor

'l'
1\.-'E

Emergency:

Exit

2. General Controllers, that carry out a general goal to be
achieved (e.g., navigating from one position to another.) General Controllers

3. Emergency exits, which bypass the multiplexer in case
of emergencies (e.g., emergency stop when hitting an
obstacle.)

In most cases, the general controllers require feedback in­
formation to update their control parameters. This informa­
tion is supplied by dumb sensors in form of raw data, or by in­
telligent sensors in form of events. On the other hand, a mon­
itoring process might use only intelligent sensors as a source
of "high-level" events instead of raw data. All clients (ex­
cept for the emergency exists) send the commands to a mul­
tiplexer. The multiplexer selects the command to be executed
based on a priority scheme which depends on the current state
of the system and the type of operation the client is perform­
ing. Once a command is selected, all other commands can be
ignored, since the state of the system will change after exe­
cuting the selected command.

The low-level controller, shown in Figure 3, translates the
high-level commands into low-level instructions which drive

Figure 3: The proposed control scheme.

306

the system's actuators. The low-level controller receives its
commands either form the multiplexer or from an emergency
exit. After the command is executed, the system state is up­
dated, and the sensor space is changed. New sensor readings
are received and the cycle is repeated.

3.3 Communication Protocols

In the proposed control scheme, there are several clients
sending commands asynchronously to the server. Therefore,
we need to define a communication protocol to organize these
commands, and to set a priority scheme for selecting the com­
mand to be executed first. In most cases, the clients need to
know the current state of the system and the command history
to update their control strategy. Therefore, the server has to
broadcast the selected command and the current state of the
system.

Each client may send commands to the server (through
multiplexer) at any time. Each command is associated with
the signature of the sender. This signature includes the name
and type of the sender, and the priority value. In most cases,
the reaction commands (usually from a commanding sensor
to avoid collision) has a higher priority than any other client.
The priority among the client may be specified by the user
and/or by the current state of the system. Emergency exits
should always bypass the multiplexer and send their com­
mands directly to the low-level controller.

The message passing paradigm is used for process com­
munication. This allows processes to be running on differ­
ent platforms without the need for shared memory. In our
implementation, MPI, Message-Passing Interface [14] was
used because of its portability and to workstation clusters and
heterogenous networks of workstations. It also provides an
easy-to-use library functions to carry out the required com­
munication protocols.

4 Experiments and Simulation Re­
sults

A simulator called XSim has been developed to examine the
applicability of the proposed control scheme. This simulator
is based on a mobile robot called "LABMA1E" designed by
Transitions Research Corporation [13]. This simulator dis­
plays the robot on the screen and accepts actual LABMA1E
commands like go, turn, read-sonars, etc. In this environ­
ment, moving from the simulation to the real robot is simply a
matter of compiling the driver program with the LABMA1E
library rather than the simulation library.

The LABMA1E was used for several experiments at the
Department of Computer Science, University of Utah. It also
entered the 1994 AAAI Robot Competition [11]. For that
purpose, the LABMA1E was equipped with 24 sonar sen­
sors, eight infrared sensors, a camera and a speaker. 1 Fig­
ure 4 shows the LABMA1E with its equipment.

1 The LAB MATE preparations, the sensory equipments, and the software
and hardware controllers were done by L. Schenkat and L. Veigel at the De­
partment of Computer Science, University of Utah.

307

Figure 4: The LABMA1E robot with its equipments.

4.1 Modeling: the System

The sensors in the old scheme are used only as dumb sen­
sors, while in tht: proposed scheme, sensors are used in three
different levels. They are used as dumb sensors to provide
feedback informatiion for a general navigator. They are also
ust:d as intelligent sensors providing information to a moni­
toring process (e.g., a speaker as an output device.) Finally
they are used as commanding sensors (clients) for collision
avoidance. The lemergency exits are hardware bumpers that
command the robot to stop if it touch any object. There is also
a general controliler for navigation and map construction.

4.2 The PriOlity Scheme

In this system, tbere are several clients for the server. Beside
these clients, there are two emergency exits represented by
two bumpers, one on the front and one on the back. As men­
tioned before, emergency exits do not compete for the server,
rather it sends its commands directly to the low-level con­
troller.

The priority scheme in our application is set by each client
as a number from Ito 10, with 1 as the highest priority. Nor­
mally, 1 is reserved for the collision avoidance client. The
server checks for tbe priority associated with each command,
and executes the command with the highest priority while no­
tifying the "losers" which command was executed. If two
commands with libe same priority arrive at the same time, the
server arbitrarily sdects one of them and ignores the other.

Commands that were not selected are cleared since the
state of the robot bas been changed after executing the com­
mand with the highest priority.

4.3 Simulation Results

Several experiments were performed on the simulator to
check the applicability and validity of the proposed control
scheme, and the results were very encouraging. The follow­
ing is a description of three of these experiments along with

the output of the simulation showing the portion of the com­
mands that were selected and the trajectory of the robot dur­
ing each experiment.

Experiment (1)

This was the first experiment performed to demonstrated
the applicability of this control scheme. In this experiment,
two clients were running simultaneously; the collision avoid­
ance client, and a simple navigator which always commands
the robot to move forward. The collision avoidance has pri­
ority 1, which is the highest priority, and the navigation client
has priority 9. The following shows part of the output printed
during this experiment which shows the commands that has
been executed by the server.

Collision Avoidance: client #1.
Simple Navigation: client #2.
Server Starts as process #0.

* Accepted RESET from 1 *
- Rejected RESET from 1 *
* Accepted GO-FRWD from 2 *
* Accepted GO-FRWD from 2 *
* Accepted GO-FRWD from 2 *
* Accepted GO-FRWD from 2 *
* Accepted GO-FRWD from 2 *
* Accepted TURN-LEFT from 1 *
- Rejected GO-FRWD from 2 -
* Accepted TURN-LEFT from 1 *
- Rejected GO-FRWD from 2 -
* Accepted GO-FRWD from 2 *
* Accepted GO-FRWD from 2 *

Figure 5 shows the trajectory of the robot in the lab envi­
ronment.

Experiment (2)

In the second experiment, we added another goal-directed
client which tries to move the robot to a certain goal location.
This client has priority 5 which is higher than the simple nav­
igator process. This new client sends commands to the server
to update the direction of the robot such that it moves towards
the goal location. In this experiment, the initial and the fi­
nal points were chosen such that there are some obstacles be­
tween them. Figure 6 shows the robot trajectory for this ex­
periment from the initial location to the goal location. Notice
that at several points, the collision avoidance client took over
and moved the robot away from the obstacles, then the new
client updates the direction towards the goal point.

Experiment (3)

In the third experiment, we replaced the goal-directed
client with a door-finding client. This new client tries to find

308

Figure 5: The trajectory of the robot for experiment (1).

Figure 6: The trajectory of the robot from the initial to the
goal point.

Figure 7: The trajectory of the robot while moving through
open doors.

open doors and direct the robot to go through these doors.
Finding doors using sonar sensor is very hard and problem­
atic, and there is a lot of research in this area. For this ex­
periment we used a very crude algorithm and a simple hall­
way structures just to demonstrate the capabilities of the pro­
posed control scheme. Figure 7 shows the robot trajectory
while moving in a hallway environment with two open doors
at different places.

5 Conclusion and Future Work

In this paper, a distributed sensor-based control scheme was
proposed. In this scheme, each sensor can be viewed with
three different levels of abstraction; dumb sensors which pro­
vide raw data, intelligent sensors which provides high level
information in a form of events, and finally, commanding
sensors which can issue commands representing a reaction
behavior for the system. Commands can be issued by dif­
ferent processes called clients. Each client may issue com­
mands at any time, and a multiplexer (the server) selects the
command to be executed. A priority scheme has to be defined
as a bases for selection. Examples for applying this control
scheme to a mobile robot were described along with the simu­
lation results. We believe that this scheme provides for more
flexible and robust control systems, and allows more modu­
lar design for the whole control system. It also provides fast
response for reaction behavior which is an essential require­
ment in real-time systems.

The next step to this work is to implement a distributed
controller for the "real" LABMAlE using the proposed con­
trol scheme. A more detailed decision function for the log­
ical sensors may be defined and the communication proto­
cols among the sonar sensors needs to be explicitly defined.
Higher level functions for increasing the accuracy of the mea­
sured point locations is to be defined.

309

[1] AHLUWALIA, R. S., AND HsU, E. Y. Sensor-based
obstruction avoidance technique for a mobile robot.
Journal of Robotic Systems 1,4 (Winter 1984),pp. 331-
350.

[2] BROOKS, R. A. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automa­
tion RA-2, 1 (March 1986), pp. 14-23.

[3] BROOKS, R. A. A hardware retargetable distributed
layered architecture for mobile robot control. In IEEE
Int. Conf Robotics and Automation (1987), pp. 106-
110.

[4] BUDENSKE, J., AND GINI, M. Why is it difficult for a
robot to pa.ss through a doorway using altrasonic sen­
sors? In IEEE Int. Conf Robotics and Automation
(May 1994), pp. 3124-3129.

[5] DEKHIL, M .. , GOPALAKRISHNAN, G., AND HEN­
DERSON, T.C. Modeling and verification of dis­
tributed conttol scheme for mobile robots. Tech. Rep.
UUCS-95-00"t, University of Utah, April 1995.

[6] HENDERSON, T. C., AND SHILCRAT, E. Logical sen­
sor systems. Journal of Robotic Systems (Mar. 1984),
pp. 169-193.

[7] KOSECKA,. J., AND BOGONI, L. Application of
discrete event systems for modeling and controlling
robotic agent$. In IEEE Int. Conf Robotics and Au­
tomation (May 1994), pp. 2557-2562.

[8] LEE, C. S., G. Sensor-based robots: algorithms and
architecture. Springer-Verlag, 1991.

[9] Luo, R. c., AND KAY, M. G. Multisensorintegration
andfusionfor intelligent machines and systems. Ablex
Publishing Corporation, 1995.

[10] MILLER, W. T. Sensor-based controlofroboticmanip­
ulators using ;a generallearing algorithm. IEEE Journal
of Robotics a,~ Automation (Nov. 1987), pp. 157-165.

[11] SCHENKAT, L., VEIGEL, L., AND HENDERSON, T. C.
Egor: Desigr~, development, implementation - an en­
try in the 19~~4 AAAI robot competition. Tech. Rep.
UUCS-94-034, University of Utah, Dec. 1994.

[12] SHILCRAT, E. D. Logical sensor systems. Master's
thesis, Univelrsity of Utah, August 1984.

[13] TRC TRANSITION RESEARCH CORPORATION. LAB­
MATE user nianual, version 5.2IL-f, 1991.

[14] UNIVERSITY. OF TENNESSEE, KNOXVILLE. MPI: a
message-passing interface standard., May 1994.

[15] YAKOVLEFF,. A., NGUYEN, X. T., BOUZERDOUM,
A., MOINI, A., BOGNER, R. E., AND ESHRAGHIAN,
K. Dual-pUlrp~se interpretation of sensory information.
In IEEE Int. Conf Robotics and Automation (1994).

