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Abstract 

In this paper we present a sensor-based distributed control 
scheme for rrwbile robots. This scheme combines centralized 
and decentralized control strategies. A server-client rrwdel 
is used to implement this scheme where the server is a pro­
cess that caries out the commands to be executed, and each 
client is a process with a certain task. The clients are run­
ning in parallel issuing commands to the server which selects 
the command to be executed based on a predefined priority 
scheme. In this scheme, a collision avoidance client is run­
ning all the time with the highest priority. This improves the 
performance of the other clients since it rerrwves the burden 
of avoiding obstacles and allows each client to concentrate 
on performing its task. The logical sensor approach is used 
to rrwdel the sensory system which provides different levels 
of data representation with tolerance measures and analysis. 
The simulation results of this rrwdel are presented with a brief 
discussion and conclusion on these results. 

1 Introduction 

In any closed-loop control system, sensors are used to pro­
vide the feedback information that represents the current sta­
tus of the system and the environmental uncertainties. The 
main component in such systems is the transformation of sen­
sor outputs to the decision space, then the computation of the 
error signals and the joint-level commands (see Figure 1). 
For example, the sensor readings might be the current tool 
position, the error signal the difference between the desired 
and current position at this moment, and finally, the joint­
level command will be the required actuator torque/force. 

The sensors used in the control scheme shown in Figure 1 
are considered to be passive elements that provide raw data 
to a central controller. The central controller computes the 
next command based on the required task and the sensor read­
ings. The disadvantage of this scheme is that the central con­
troller may become a bottleneck when the number of sensors 
increases which may lead to longer response time. In some 
applications the required response time may vary according 
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to the required task and the environment status. For exam­
ple, in an autonomous mobile robot with the task of reaching 
a destination position while avoiding unknown obstacles, the 
time to reach to the required position may not be important, 
however, the response time for avoiding obstacles is critical 
and requires fast response. Fast response can be achieved by 
allowing sensors to send commands directly to the physical 
system when quick attention is required. 

In this work, several controllers (clients) are working in 
parallel, competing for the server. The server selects the 
command to be executed based on a dynamically configured 
priority scheme. Each of these clients has a certain task, and 
can use the sensor readings to achieve its goal. A special 
client with the task of avoiding obstacles is assigned the high­
est priority. The clients need to know the current state of the 
system and the command history to update their control strat­
egy, therefore, the server has to broadcast the selected com­
mand and the current state of the system. 

The logical sensor approach, which we used to model the 
sensory system in our mobile robot, allows flexible and mod­
ular design of the controllers. It also provides several levels 
of data abstraction and tolerance analysis based on the sensor 
type and the required task. The initial work on this project is 
described in [5]. This approach is used to buildhigh-levelre­
quests which may be used by the application programs. 

2 Related Work 

There has been a tremendous amount of research in the 
area of sensor-based control, including sensor modeling, 
multisensor integration, and distributed control schemes for 
robotic applications in general and mobile robots in partic­
ular. A sensor-based control using a general learning al­
gorithm was suggested by Miller [10]. This approach uses 
a learning controller that learns to reproduce the relation­
ship between the sensor outputs and the system command 
variables. Another technique for sensor-based obstruction 
avoidance for mobile robots was proposed by Ahluwalia and 
Hsu [1]. In their technique, the robot is able to move through 
an unknown environment while avoiding obstacles. Simu­
lations were carried out assuming the robot had eight tactile 
sensors and the world is modeled as a two-dimensional occu­
pancy matrix with O's representing empty cells and 1 's repre­
senting occupied cells. Several research activities for sensor-
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Figure 1: Closed loop c€lntrol system. 

based control for robotic applications can be found in [8]. 
Luo and Kay [9] conducted a survey on multi sensor-based 

mobile robots. In their survey, the presented a number of con­
trol strategies that has been used in this area. 

Brooks proposed a new architecture for controlling mobile 
robots [2, 3]. In this architecture, layers of control system are 
built to let the robot operate at increasing levels of compe­
tence. These layers are built as concurrent modules that com­
municate over low-bandwidth channels. 

The idea of smart sensing was investigated by several re­
searchers. Yakovleff et al. [15] represented a dual purpose in­
terpretation for sensory information; one for collision avoid­
ance (reactive control), and the other for path planning (nav­
igation). The selection between the two interpretation is dy­
namic depending on the positions and velocities of the ob­
jects in the environment. Budenske and Gini [4] addressed 
the problem of navigating a robot through an unknown envi­
ronment, and the need for multiple algorithms and multiple 
sensing strategies for different situations. 

Discrete Event Systems (DES) is used as a platform for 
modeling the robot behaviors and tasks, and to represent the 
possible events and the actions to be taken for each event. 
A framework for modeling robotic behaviors and tasks us­
ing DES formalism was proposed by Kosecka et al. [7]. In 
this framework, there are two kinds of scenarios. In the first 
one, reactive behaviors directly connects observations (sen­
sor readings) with actions. In the second, observations are 
implicitly connected with actions through an observer. 

In our proposed control scheme, the sensory system can 
be viewed as passive or dumb element which provides raw 
data. It can be viewed as an intelligent element which returns 
some "analyzed" information. Finally it can be viewed as a 
commanding element which sends commands to the physi­
cal system. Each of these views is used in different situations 
and for different tasks. A detailed description of the proposed 
control scheme is presented in the following section. 

3 The Proposed Control Scheme 

The robot behavior can be described as a function :F that 
maps a set of events E to a set of actions A. This can be ex­
pressed as: 

:F:E~A 
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The task of the robot controller is to realize this behavior. 
In general we can define the controller as a set of pairs: 

{(el,al), (e2,a2), ... , (en, an)} 
where ei E E, and ai E A 

The events can be defined as the interpretation of the raw 
data perceived by the sensors. Let's define the function T 
which maps raw data n to events E: 

T:n~E 
The functions T and :F can be closed form equations, 

lookup tables, or inference engine of an expert system. This 
d(~pends on the kind of application and the complexity of each 
tr~msformation. 

3.1 Abstract Sensor Model 

We can view the sensory system using three different levels 
of abstractions (see Figure 2.) 

1. Dumb sensor: which returns raw data without any in­
terpretation. For example, a range sensor might return 
a real number representing the distance to an object in 
inches, and 2l camera may return an integer matrix rep­
resenting the intensity levels of each pixel in the image. 

2. Intelligenlt sensor: which interprets the raw data into 
an event using the function T. For example, the sensor 
might return something like "will hit an object," or "a 
can of Coke is found." 

3. Controlling sensor: which can issue commands based 
on the recdved events. for example, the sensor may 
issue the command "stop" or "turn left" when it finds 
an obstacle ahead. In this case, the functions :F and T 
should be ilnduded in the abstract model of the sensor. 

The dumb sensor can be used as a source for the feedback 
information required by the control system. It can be also 
used to gather measurements to construct a map for the sur­
rounding environment. The process that uses a dumb sensor 
as a source of information needs to know the type of that sen­
sor, the format of lhe data the sensor returns, and the location 
of the sensor, to be able to interpret the perceived data. The 
inltelligent sensor may be used for monitoring activities. The 
process that uses an intelligent sensor. needs to know only 
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Figure 2: Thee levels to view a sensor module. 

the event domain and maybe the location of the sensor. On 
the other hand, the commanding sensor is considered to be a 
"client" process that issues commands to the system. 

3.2 A Distributed Control Architecture 

Several sensors can be grouped together representing a log­
ical sensor [6, 12]. We will assume that each logical sen­
sor is represented as a client process which sends commands 
through a chanel to a multiplexer (the server process) which 
decides the command to be executed first. Besides these log­
ical sensors, we might have other processes (general con­
trollers) that send commands to the server process to carry 
out some global goals. Figure 3 shows a schematic diagram 
for the proposed control scheme. 

Let's call any process that issues commands to the server a 
client process. In this figure, there are three types of clients: 

1. Commanding sensors, that are usually used for reaction 
control and collision avoidance. 

Sensor Space 

InteUegent Sensor 

'l' 
1\.-'E 

Emergency: 

Exit 

2. General Controllers, that carry out a general goal to be 
achieved (e.g., navigating from one position to another.) General Controllers 

3. Emergency exits, which bypass the multiplexer in case 
of emergencies (e.g., emergency stop when hitting an 
obstacle.) 

In most cases, the general controllers require feedback in­
formation to update their control parameters. This informa­
tion is supplied by dumb sensors in form of raw data, or by in­
telligent sensors in form of events. On the other hand, a mon­
itoring process might use only intelligent sensors as a source 
of "high-level" events instead of raw data. All clients (ex­
cept for the emergency exists) send the commands to a mul­
tiplexer. The multiplexer selects the command to be executed 
based on a priority scheme which depends on the current state 
of the system and the type of operation the client is perform­
ing. Once a command is selected, all other commands can be 
ignored, since the state of the system will change after exe­
cuting the selected command. 

The low-level controller, shown in Figure 3, translates the 
high-level commands into low-level instructions which drive 

Figure 3: The proposed control scheme. 
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the system's actuators. The low-level controller receives its 
commands either form the multiplexer or from an emergency 
exit. After the command is executed, the system state is up­
dated, and the sensor space is changed. New sensor readings 
are received and the cycle is repeated. 

3.3 Communication Protocols 

In the proposed control scheme, there are several clients 
sending commands asynchronously to the server. Therefore, 
we need to define a communication protocol to organize these 
commands, and to set a priority scheme for selecting the com­
mand to be executed first. In most cases, the clients need to 
know the current state of the system and the command history 
to update their control strategy. Therefore, the server has to 
broadcast the selected command and the current state of the 
system. 

Each client may send commands to the server (through 
multiplexer) at any time. Each command is associated with 
the signature of the sender. This signature includes the name 
and type of the sender, and the priority value. In most cases, 
the reaction commands (usually from a commanding sensor 
to avoid collision) has a higher priority than any other client. 
The priority among the client may be specified by the user 
and/or by the current state of the system. Emergency exits 
should always bypass the multiplexer and send their com­
mands directly to the low-level controller. 

The message passing paradigm is used for process com­
munication. This allows processes to be running on differ­
ent platforms without the need for shared memory. In our 
implementation, MPI, Message-Passing Interface [14] was 
used because of its portability and to workstation clusters and 
heterogenous networks of workstations. It also provides an 
easy-to-use library functions to carry out the required com­
munication protocols. 

4 Experiments and Simulation Re­
sults 

A simulator called XSim has been developed to examine the 
applicability of the proposed control scheme. This simulator 
is based on a mobile robot called "LABMA1E" designed by 
Transitions Research Corporation [13]. This simulator dis­
plays the robot on the screen and accepts actual LABMA1E 
commands like go, turn, read-sonars, etc. In this environ­
ment, moving from the simulation to the real robot is simply a 
matter of compiling the driver program with the LABMA1E 
library rather than the simulation library. 

The LABMA1E was used for several experiments at the 
Department of Computer Science, University of Utah. It also 
entered the 1994 AAAI Robot Competition [11]. For that 
purpose, the LABMA1E was equipped with 24 sonar sen­
sors, eight infrared sensors, a camera and a speaker. 1 Fig­
ure 4 shows the LABMA1E with its equipment. 

1 The LAB MATE preparations, the sensory equipments, and the software 
and hardware controllers were done by L. Schenkat and L. Veigel at the De­
partment of Computer Science, University of Utah. 
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Figure 4: The LABMA1E robot with its equipments. 

4.1 Modeling: the System 

The sensors in the old scheme are used only as dumb sen­
sors, while in tht: proposed scheme, sensors are used in three 
different levels. They are used as dumb sensors to provide 
feedback informatiion for a general navigator. They are also 
ust:d as intelligent sensors providing information to a moni­
toring process (e.g., a speaker as an output device.) Finally 
they are used as commanding sensors (clients) for collision 
avoidance. The lemergency exits are hardware bumpers that 
command the robot to stop if it touch any object. There is also 
a general controliler for navigation and map construction. 

4.2 The PriOlity Scheme 

In this system, tbere are several clients for the server. Beside 
these clients, there are two emergency exits represented by 
two bumpers, one on the front and one on the back. As men­
tioned before, emergency exits do not compete for the server, 
rather it sends its commands directly to the low-level con­
troller. 

The priority scheme in our application is set by each client 
as a number from Ito 10, with 1 as the highest priority. Nor­
mally, 1 is reserved for the collision avoidance client. The 
server checks for tbe priority associated with each command, 
and executes the command with the highest priority while no­
tifying the "losers" which command was executed. If two 
commands with libe same priority arrive at the same time, the 
server arbitrarily sdects one of them and ignores the other. 

Commands that were not selected are cleared since the 
state of the robot bas been changed after executing the com­
mand with the highest priority. 

4.3 Simulation Results 

Several experiments were performed on the simulator to 
check the applicability and validity of the proposed control 
scheme, and the results were very encouraging. The follow­
ing is a description of three of these experiments along with 



the output of the simulation showing the portion of the com­
mands that were selected and the trajectory of the robot dur­
ing each experiment. 

Experiment (1) 

This was the first experiment performed to demonstrated 
the applicability of this control scheme. In this experiment, 
two clients were running simultaneously; the collision avoid­
ance client, and a simple navigator which always commands 
the robot to move forward. The collision avoidance has pri­
ority 1, which is the highest priority, and the navigation client 
has priority 9. The following shows part of the output printed 
during this experiment which shows the commands that has 
been executed by the server. 

Collision Avoidance: client #1. 
Simple Navigation: client #2. 
Server Starts as process #0. 

* Accepted RESET from 1 * 
- Rejected RESET from 1 * 
* Accepted GO-FRWD from 2 * 
* Accepted GO-FRWD from 2 * 
* Accepted GO-FRWD from 2 * 
* Accepted GO-FRWD from 2 * 
* Accepted GO-FRWD from 2 * 
* Accepted TURN-LEFT from 1 * 
- Rejected GO-FRWD from 2 -
* Accepted TURN-LEFT from 1 * 
- Rejected GO-FRWD from 2 -
* Accepted GO-FRWD from 2 * 
* Accepted GO-FRWD from 2 * 

Figure 5 shows the trajectory of the robot in the lab envi­
ronment. 

Experiment (2) 

In the second experiment, we added another goal-directed 
client which tries to move the robot to a certain goal location. 
This client has priority 5 which is higher than the simple nav­
igator process. This new client sends commands to the server 
to update the direction of the robot such that it moves towards 
the goal location. In this experiment, the initial and the fi­
nal points were chosen such that there are some obstacles be­
tween them. Figure 6 shows the robot trajectory for this ex­
periment from the initial location to the goal location. Notice 
that at several points, the collision avoidance client took over 
and moved the robot away from the obstacles, then the new 
client updates the direction towards the goal point. 

Experiment (3) 

In the third experiment, we replaced the goal-directed 
client with a door-finding client. This new client tries to find 
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Figure 5: The trajectory of the robot for experiment (1). 

Figure 6: The trajectory of the robot from the initial to the 
goal point. 



Figure 7: The trajectory of the robot while moving through 
open doors. 

open doors and direct the robot to go through these doors. 
Finding doors using sonar sensor is very hard and problem­
atic, and there is a lot of research in this area. For this ex­
periment we used a very crude algorithm and a simple hall­
way structures just to demonstrate the capabilities of the pro­
posed control scheme. Figure 7 shows the robot trajectory 
while moving in a hallway environment with two open doors 
at different places. 

5 Conclusion and Future Work 

In this paper, a distributed sensor-based control scheme was 
proposed. In this scheme, each sensor can be viewed with 
three different levels of abstraction; dumb sensors which pro­
vide raw data, intelligent sensors which provides high level 
information in a form of events, and finally, commanding 
sensors which can issue commands representing a reaction 
behavior for the system. Commands can be issued by dif­
ferent processes called clients. Each client may issue com­
mands at any time, and a multiplexer (the server) selects the 
command to be executed. A priority scheme has to be defined 
as a bases for selection. Examples for applying this control 
scheme to a mobile robot were described along with the simu­
lation results. We believe that this scheme provides for more 
flexible and robust control systems, and allows more modu­
lar design for the whole control system. It also provides fast 
response for reaction behavior which is an essential require­
ment in real-time systems. 

The next step to this work is to implement a distributed 
controller for the "real" LABMAlE using the proposed con­
trol scheme. A more detailed decision function for the log­
ical sensors may be defined and the communication proto­
cols among the sonar sensors needs to be explicitly defined. 
Higher level functions for increasing the accuracy of the mea­
sured point locations is to be defined. 
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