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A b s t r a c t

Vista is a software infrastructure addressing the vexing problem of software tool 
interaction— especially how to get egocentric tools to work well together. Vista nei­
ther assumes nor requires that tools or tool-mediating agents understand a cooper­
ative messaging protocol, only that they share some common means of interprocess 
communication. Most IPC mechanisms are too ad hoc and low-level for use by non- 
(or non-expert) programmers. Vista helps by encapsulating such mechanisms in ab­
stract data types obeying high-level protocols. This software framework cleanly inte­
grates a visual language editor, a compiler, libraries, specification analysis tools, and 
a process control executive into a unified whole.





A B S T R A C T

Vista is a framework and protocol addressing the problem of software tool 
interaction—getting tools to communicate effectively. Vista neither assumes nor 
requires that tools or tool-mediating agents understand a cooperative messaging 
protocol, only that they share some common means of interprocess communication 
by running under the same operating system or window system, for instance, Unix 
and X. Existing IPC mechanisms (such as pipes and sockets (in Unix) and (in X) 
events and selections) are too ad hoc and low-level for enlightened use by non- 
(or non-expert) programmers. Vista tames their complexity by encapsulating such 
mechanisms in abstract data types obeying high-level protocols.

Vista is implemented in the Acme Cell Matrix Environment, a graphical, hi­
erarchical, integrated circuit design system. Direct manipulation helps the Vista 
user “write” an interaction specification in the visual language of cells and wires. 
Vista’s protocol maps cells and their interconnecting wires to computational entities 
whose spatial relationship largely determines the form and manner of their temporal 
interaction. In a dataflow sense, wires are value-carrying objects that in a specified 
sequence enter and leave cells, which in turn are value-manipulating objects. These 
behavioral cells model process objects of granularity as fine as arithmetic operators, 
or as coarse as stand-alone application programs. Wires span a similar spectrum 
from arithmetic operands to inter-application transmission channels.

Four subsystems comprise Vista’s framework. The Codifier is a compiler that 
translates visual specifications into executable code using some C++ class libraries. 
The Analyzer and the Manifester check the code for syntactic correctness and 
semantic meaningfulness. The Executer prepares and executes the code thus pro­
duced and inspected. This framework cleanly integrates editor, compiler, libraries, 
specification analysis tools, and process control executive into a unified whole.
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C H A P T E R  1 

I N T R O D U C T I O N

Versatile interaction specification of tools and agents, or Vista, needs at the 
very outset some definition of terms. The literal meaning of versatile is “turn­
ing easily, changing or fluctuating readily.” Versatile also means many-sided, or 
multifaceted—having several uses or applications. Versatility is generally con­
sidered a desirable attribute. Generally speaking, interaction means mutual or 
reciprocal action or influence. In the current context, it means communication, 
coordination and cooperation between entities of interest, namely, tools and agents. 
Specification means the act or process of specifying, or making specific. It also 
means the product of this process, which is a precise and detailed description of 
something, that something in this case being tool-agent interaction. A tool has 
the usual connotation of an interactive software application program, such as a 
spreadsheet or a circuit simulator. An agent in this context is a program or script 
that on behalf of a human user drives a tool in the performance of a given task.

This introductory chapter will briefly outline the problem addressed and the 
solution supplied by Vista. The following chapter will provide some background and 
motivation. Next follows a discussion of the framework (Chapter 3) and protocol 
(Chapter 4) developed for Vista. Chapter 5 shows some specific sample applications 
of the Vista framework and protocol. Chapter 6 summarizes and concludes this 
report. It is left to the dissertation [67] associated with this report to assess the 
contributions of this research, and to identify and discuss directions for future 
research. Specifically, a discussion of the most significant contribution, that is, 
patterns (plus the algorithm for applying these recurring design patterns) will be 
found only in Chapter 6 (Pattern) and Chapter 7 (Conclusion) of the dissertation.

1 .1  P r o b le m  a n d  S o lu t io n
To see the need for Vista, consider for instance the field of Computer-Aided 

Design (CAD) of Integrated Circuits (ICs). IC CAD is only one of many application 
areas where tool interaction and collaboration is a serious problem. Over the years 
various software tools such as schematic capture editors and logic simulators have 
been invented to facilitate this increasingly complex task; however, the plethora of 
tools available to today’s circuit designer is more bane than boon. To be useful, 
tools must be used, but no one tool is appropriate for every facet of the circuit 
design process, and a compatible and cooperative suite of tools is a pipe dream, or at 
best a very expensive proposition. Often the product of academic research projects, 
available (affordable) tools are mostly incompatible, they do not work well together 
(if they work at all), they rarely “speak the same language.” Unfortunately, in most



cases this egocentricity (do it my way) carries over and infects their commercial 
incarnations as well. Successful tool interaction, or interoperability, to use a term in 
vogue (see [61]), requires careful planning and utilization of a variety of interaction 
idioms.

Vista addresses the very real problem that many interaction paradigms are 
less than conducive to program coordination, cooperation and communication. 
The reason for this deficiency is that existing interprocess communication (1PC) 
mechanisms, such as (in the Unix operating system) files, pipes, streams, sockets, 
signals, and (in the X window system) events and selections, are rather arcane 
and too low-level. Programmers must know exactly how to use these mechanisms 
in order to incorporate them into their programs, which knowledge comes at a 
considerable cost. To access these mechanisms, the program source code must 
be modified to include low-level operating system calls or window system library 
primitives.

Vista lightens the programmer’s burden by encapsulating these low-level inter­
action mechanisms in a high-level framework. This encapsulation results in an 
inter-tool communication facility that does not require a priori that tools adhere 
to a common messaging protocol. Such tools, whose command language and user 
interface are vendor-specific or otherwise unique, are deemed non-cooperative (or 
to further anthropomorphize, as above, egocentric)-—any interaction with them is 
always on their terms.

1 .2  I n t e r f a c e  F o r e ta s te
The versatility and flexibility of Vista stem largely from the fact that the inter­

action specification is in a generalized, visual language. Its generality derives from 
the underlying organizing principles and computational models implementing this 
language, which will be introduced later. The visual aspect is motivated mainly by 
the benefit that entity interrelationships are easier to see.

For example, the Unix shell (command interpreter) language is a textual lan­
guage, as is C++ [97], although these two languages differ enormously in expressive 
power. Consider the very simple visual expression of Figure 1.1, which is about 
as simple an interaction specification of two tools as one can get. The two boxes 
correspond to the two tools, and the labels inside the boxes identify the tools by 
name. The line between the two boxes represents their relationship, which though 
not explicit is quite obvious, at least to the Unix initiate, who will immediately 
recognize it as a composition useful for answering the question “How many files are 
there in the current directory?” The neophyte, however, would have no clue as to 
what it means.

This expression can be rendered quite tersely in shell syntax as shown in Figure
1.2, where there is a one-to-one correspondence between its three tokens (“Is” , “ I” 
and “wc”) and the three “words” in the visual expression (treating a labeled box as 
a single word). In Figure 1.3, the same specification in a C++ rendition abandons 
brevity to be more expressive, and somewhat more indicative of the relationship 
between the two tools.



Figure 1.1. A Simple Visual Expression

Is | wc

Figure 1.2. Unix Shell Interpretation

#include "UnixObject.h" // declares UnixObject class 

m a i n O  {

UnixObject pp("pp"); // defines UnixObject called pp 

UnixObject Is("Is", p p ) ; // defines UnixObject Is, writing pp 

UnixObject wc(pp, "wc"); // defines UnixObject wc, reading pp

>

F igure 1 .3 . Sample C + +  Source Code with Comments



1 .3  I m p le m e n t a t io n  P r e v ie w
Vista’s visual language and graphical programming environment have been care­

fully grafted directly into an existing program, Acme (exhibited in Chapter 3), 
which is well suited for visual programming in that it:

• is object-oriented,
• supports hierarchy, and
• uses direct manipulation.

1.3 .1  O bject Orientation
Object orientation provides numerous important benefits including data ab­

straction and encapsulation. Object encapsulation or modularization, which to 
many software designers is more familiar as the concept of functional or procedural 
encapsulation, facilitates the separation of interface and implementation, and is 
especially advantageous in supporting hierarchy.

1.3 .2  Hierarchy
Hierarchy, a concept well familiar to hardware designers, is good for reducing 

cost by sharing storage, and for reducing complexity by hiding detail. Having 
the interface of an object separate from its implementation facilitates bottom-up 
or top-down (or middle-out) hierarchical design. In other words, the designer may 
create an implementation first (bottom-up) or an interface first (top-down). Ideally, 
the designer should be able to “edit-in-place” both interface and implementation.

1 .3 .3  Direct M anipulation
Direct manipulation1 and object orientation go hand in hand. An object has an 

internal data representation, and an external display representation. The external 
representation, be it iconic or in structured graphics, can be poked and prodded 
by the user, moved about the screen, and otherwise manipulated. These “direct” 
manipulations “indirectly” (transparently to the user) manipulate the internal data 
structure representing the object, changing its state in some appropriate fashion.

Besides the ubiquitous verb-trio, point, click and drag, another phrase frequently 
seen in modern window systems is “drag and drop.” In many cases, this style of 
direct manipulation also encapsulates an inter-tool communication mechanism. For

4

! The term “direct manipulation” was coined in 1983 by Shneiderman[87], a long-time re­
searcher of human factors and user interface design. Shneiderman was simply giving a name to an 
already existing phenomenon, since, as he pointed out then, the concept is as old as video games, 
which have long employed a “joystick” to control and manipulate “objects” such as tanks, guns, 
spaceships and dot gobbling, disembodied mouths. Games are a natural milieu for allowing the 
player to directly manipulate the objects of interest, and also for providing immediate visual or 
aural feedback aimed at maintaining the player’s interest and satisfaction. In fact, several human 
factors researchers ([6, 11, 57]) have argued that, in many cases, “serious” interactive software, 
in which a mouse or trackball usually displaces a joystick, could benefit greatly from imitating 
games in this respect.



instance, a user may select an icon representing a file in some graphical directory /file 
browsing program, “grasp” this icon with the mouse, drag it over the window of 
another program, and drop it “into” that tool. If this destination program is a text 
editor, the drag-and-drop gesture may open the file for editing. Similarly, a shell 
tool may accept the dropped file as an executable program to be loaded and run.

Direct manipulation also goes hand in hand with visual programming; indeed, 
without it visual programming loses much of its potency and appeal. More de­
tailed justification for adopting a visual approach, along with a discussion of the 
disadvantages of so doing, will be given in the next chapter.

1 .4  F o r m a l i t ie s
Any serious attempt to raise the level of a language, be it through visual or other 

means, should take into consideration the formal aspects of languages. In general, 
formal methods in computer science aim to impress some mathematical rigor on a 
cavalier discipline, where the crafting of software is still more an art than a science. 
Formal semantics of a language enables reasoning about, deducing behavior of, and 
making other logical assertions and proofs about expressions or constructs in that 
language.

Purportedly, program verification produces a formal proof that a program imple­
mentation matches its specification. While still a chimera for large-scale systems,2 
the promise of provably correct programs (and “zero-defect software” [31]) is pred­
icated on the premise that submitting to a number of constraints gives in return 
certain assurances. For example, enforcing type compatibility between formal and 
actual function parameters is a constraint that assures the validity of the operations 
invoked on these data types.

Another noteworthy software engineering paradigm employing some kind of 
proof procedure formalism is declarative programming. Declarative programming 
differs from the more common imperative programming by emphasizing the result, 
or goal of the program instead of the detailed step-by-step algorithm or method 
by which that result is obtained. Logic programming a la Prolog is an example of 
declarative programming [96].

Closely related to declarative programming3 is the concept of executable speci­
fications. Executable specifications imply a way to execute, interpret or simulate 
the software constructs being specified, usually before committing to a final imple­
mentation. The immediate results thus obtained facilitate the rapid prototyping, 
refining and testing of specifications.

In theory, tool/agent interaction specification is amenable to these kinds of 
formalizations. In practice, the sheer complexity of these interactions prevents 
formalizing all but their most superficial aspects. Nevertheless, Vista takes some

5

2In Brooks’ eloquent essay on the horrors of the software engineering process [9], he argued 
that the essential, inherent complexity of software entities will beset and impede progress in this 
process for years to come, claiming that there is no “silver bullet” that will magically save the 
computer literati from this monster of their own making.

3Some would say identical to, in principle [69].



baby steps in this direction by means of its Analyzer and Manifester modules, which 
are described in chapters 3 and 4.

1 .5  R e s e a rc h  G o a ls
To conclude this introduction to Vista, here follows a brief restatement of the 

goals of this research:

• Produce a conceptual and an implementational framework, populated with 
special-purpose libraries and protocols, for tool-agent interaction specification 
and execution.

• Provide through this framework, or architecture, a means to more productive 
use of egocentric tools.

• Propagate generalized knowledge about this specification/execution architec­
ture and environment.

Implicit in the title of this work is the claim of versatility. How well Vista achieves 
both vertical (difFerent kinds of tools) and horizontal (different kinds of interaction) 
versatility hinges on how well it facilitates the productive use of various interaction 
mechanisms and paradigms for software tools and agents. It is true that any general- 
purpose programming language is versatile, but to be used productively requires 
time, effort, and acquisition of the expertise that only comes through experience. 
On the other hand, trading off versatility for early productivity is characteristic of 
a more restrictive language or environment, exemplified by spreadsheet programs. 
Vista seeks the ever elusive happy medium.



C H A P T E R  2 

B A C K G R O U N D

The first order of background business is a coarse classification of tools and 
agents, after which follows a general discussion of various existing methods for 
making them interact. Next come surveys of the literature in visual languages and 
environments, and of related work in tool integration. Finally, where Vista fits is 
shown, more on formal methods and models is given, and Acme is introduced.

2 .1  T o o ls  a n d  A g e n ts
Recall that tools and agents differ in one important aspect, namely, the fact that 

tools are designed to be used by human users for general purposes (writing, circuit 
designing, and so forth), while agents are designed to use tools for particular tasks. 
The distinction between purpose and task is useful, but need not always be drawn; 
indeed, it may sometimes be blurred, as in the case of such Unix tools/agents as 
the shell (sh or csh), sed, awk, peri, or even make. These are programmable 
tools, designed to be commissioned (either on-the-fly or via command scripts) to 
accomplish sundry and specific editing, text formatting, systems administration or 
maintenance tasks.

Users employ tools to help them do something that would take much longer and 
would be significantly harder to do by hand. Agents represent users, they stand 
in for users, automatically doing what users would do manually when using a tool 
or set of tools. Another conceptual role for an agent is that of a server servicing 
one or more client tools, purposefully and intelligently mediating between them. 
Agents are not “intelligent” in the Artificial Intelligence (AI) sense, that is, no rule 
or knowledge base, nor inference engine of any kind is involved. All intelligence 
possessed by an agent is assumed to be imparted to it by the human programmer. 
For example, the NewWave operating system from Hewlett-Packard (HP) features a 
user-programmable agent, described by Chew[15] as follows: “The NewWave Agent 
. . .  is like a servant who acts for the user. The user writes a Task Language script 
that is handed to the Agent for execution. These scripts are special objects called 
Agent Tasks.”

It should be acknowledged that artificially intelligent agents are an active area 
of research. For instance, in [23], Ferguson presents a layered architecture for 
controlling interacting agents, wherein an agent is defined as “.. .  an autonomous, 
goal-directed, computational process capable of robust and flexible interaction with 
its environment.” Dealing with sophisticated agents such as these, though interest­
ing, is beyond the scope of this research.



Two main dimensions of tool/agent taxonomy suggest themselves, namely, static 
and dynamic. Static taxonomy considers tools and agents as stand-alone objects, 
describing them as having or not having certain properties or attributes. For 
instance, the cooperative versus non-cooperative classification mentioned in the 
preceding chapter is one dimension of distinction using the property of “cooperative­
ness” as the discriminator. Dynamic taxonomy looks at tools and agents in terms 
of their mutual interaction, naming the various roles they may play. For example, 
tools and agents may be described as initiators, propagators or terminators of a 
certain interaction. A given tool may be cast in one, some, or all of these roles, 
depending on the context in which it is used with other tools.1

Continuing with static taxonomy, tools can also be interactive or non-interactive. 
This distinction is blurred by the fact that all tools have som e measure of “interac­
tiveness.” For instance, while a Unix shell tool accepts interactive commands to run 
other utilities or tools, the act of supplying command-line options (or parameters) to 
such tools, or indicating their input sources and/or output destinations, is in a sense 
interacting with the tools themselves, not just with their execution environment, 
or the shell. Still, there is a vast difference in both degree and kind of interaction 
between tools like, for example, Is and emacs. The former has one purpose in life, 
to list a directory. The latter suffers from (some say enjoys) the “kitchen sink” 
syndrome, also known as creeping featurism , as it eagerly accommodates ever more 
functionality through both evolutionary enhancements and its powerful provisions 
for extensibility (see [94, 95, 27, 30]).

Since most programs of interest consume some input and produce some output, 
preferably performing some useful computation in between, there is some overlap 
between the rather broad categories of producers and consumers. Data is generally 
consumed or produced in either synchronous or asynchronous fashion.

These and other attributes are qualitative rather than quantitative. Nonetheless, 
for many tools quantitative distinctions can be made, in areas such as resource 
utilization, where, for example, identifying how much memory or how many open 
file descriptors a tool requires is possible and often necessary to ensure it will run.

Suites of tools designed to be used together can cooperate and communicate in 
a number of ways. A common if cumbersome approach to tool communication is 
to use an “exchange” data format that each tool can read or write (e.g., the Unix 
Music Tools at Bellcore [45]). Alternatively, databases can be defined such that tool 
interaction is done via database access and update operations (e.g., the Octtools 
system [36]). Where the filesystem serves as the database, the former is actually a 
special case of the latter.

Another approach celebrates the Unix “small is beautiful” tool philosophy that 
encourages composing small, self-contained, special-purpose tools to achieve more 
powerful combined functionality (see [43, 75]). This composition is achieved by 
connecting tools with “pipelines” or lines (links, chains) of pipes. A pipe feeds the 
output of one tool to the input of another tool, which may in turn pipe its output 
to yet another tool, and so on for tool chains of arbitrary length. Another view 
sees a pipeline as a stream of data that is filtered or otherwise transformed by tools

8

1 For brevity, hereafter read tools as tools and/or agents.



inserted at various places in it. Using pipelines is much more efficient than creating 
intermediate files between each tool invocation, such that the output of tool n is 
written to a file that is then read by tool n +  1, and so on.

Even so, there are circumstances in which intermediate files are both appropriate 
and desirable. Revisiting the simple example in Section 1.2 to illustrate, suppose 
the question is “How many of the files in the current directory are mine?” To answer 
this slightly more complicated question a slightly longer pipeline will suffice, as will 
a textual rendition of it in shell syntax, as in Figure 1.2, where the vertical bar 
signifies a pipe connecting the command on its left to the one on its right:

Is -1 I awk ’ $3=="neff"' I wc -1

In English, this expression says “list the files in the current directory, filter those 
whose owner (given in field number 3) is n eff, and count them.” A number of 
digressive observations can be made. Each of the three tools invoked by this shell 
expression has a rather cryptic name, having been supplied by its creator who no 
doubt had an aversion to typing. Each tool is given one command line argument, 
or option. The argument to the pattern-matcher awk is the pattern to be matched. 
Using a shell variable (e.g., user) would make the pattern more general, not tied 
to one user. To each of the other two commands is given the same terse option; 
however, the “-1” does not have the same meaning to Is as it does to wc. To Is it 
means “long” whereas to wc it means “line”— that is, list the files in long (verbose) 
form, and count the number of lines (not words or characters2). Note that omitting 
the “-1” option to wc is okay— it is truly optional. Omitting the option to Is is not 
okay— in this context, the option is mandatory for the desired behavior to occur, 
because only the long file listing supplies the name of the file’s owner.

Back to the need for intermediate files, suppose that in addition to wanting to 
know “How many of the files in the current directory are mine?” the user also wants 
to know “And by the way, what are they?” A branch in the pipeline to replicate 
the output of awk to a file (named “mine”) is an obvious solution, provided by 
the Unix utility appropriately named tee, for T-junction. This is illustrated in 
Figures 2.1 and 2.2 which show the shell expression and a corresponding visual 
expression. In this example, the visual expression is in some measure simpler than 
the textual one, as it exploits the two-dimensional aspect of pictures to obviate the 
tee command.

Now some advantages of visual expressions come into sharper focus. Textual 
shell expressions are limited to linear chains of pipes, or pipes with T-junctions, and 
then only files (not more tools) can be attached to the bottom of the T. Arbitrary 
forking (fan-out) and joining (fan-in) of pipes cannot be expressed, nor can loops 
where a pipe feeds back into a tool upstream from it. A visual language, on the 
other hand, can express arbitrarily complex interconnections, as shown in Figure
2.3. In this figure, the labels in the boxes identify the dynamic role or roles each 
tool plays in this interaction. Thus, ‘I’ stands for initiator, ‘P’ for propagator and

9

2Despite its name, wc (for word count) by default counts characters and lines as well as words. 
The “-1” option must be supplied to have it  count only lines. In this respect its command line 
interface is exactly opposite that of Is, in that more input arguments result in less output.



Figure 2 .1 . Pipes with T-Junction and File

Figure 2.2. A Graphical T-Junction



‘T ’ for terminator. The small triangles denote the direction of information flow, 
and can be viewed as an arrow bead or tail that has been pushed inside the box.

One glaring deficiency of pipes is that they are one-way communication channels. 
One way to effect two-way connections between tools is to use a standard pipe in 
combination with a named pipe. Figure 2.4 shows an example of a tool using another 
tool as a computation engine. Tool A creates a standard pipe to tool B, represented 
by the top unlabeled line. Tool A also creates a connection to tool B represented 
by the bottom line labeled “BpipeA” to indicate that it is a named pipe. Tool 
A then pipes commands to tool B telling it to perform some computation, and to 
write the results to a file. “BpipeA” is the file name A tells B to use. Subsequently, 
even though it is really a pipe, B can write it and A can read it as though it were 
a normal file.

A major advantage of named pipes is that they can be used for communication 
between unrelated processes. Regular pipes require a parent-child or common 
ancestor relationship between the processes they connect.

For heterogeneous networked computing, Remote Procedure Call (RPC) [68] and 
its object-oriented counterpart Remote Method Invocation (RMI) appear to be the 
IPC mechanisms of choice for implementing open Application Programming Inter­
faces (APIs) for distributed tool communication and cooperation. Client/server 
dialogues expressed in terms of primitives from such an API library promise to 
effectively insulate the application programmer from the underlying network com­
munication layers, and thus make remote procedure calls look like local calls. This 
insulation is not perfect, however, because among other things, failure semantics 
are significantly more complex in remote calls than in local calls (see [92]).

2 .2  T h e  L e a n in g  T o w e r  o f  B a b e l
Many highly-interactive tools provide some kind of command language users 

must master before making productive personal use of the tools, let alone creating 
and delegating to agents. Unfortunately, these ad hoc languages are in general not 
well designed, and hence have a clumsy or arbitrary syntax and a steep learning 
curve. Consequently, users mostly try to get by with learning only a few commands. 
The potential of such tools is clearly wasted.

Until recently, a Babel of different tools and tool command languages has been 
the accepted norm, not only in hardware design, but also in software design and 
other application areas. Recent efforts to ameliorate this situation have been 
motivated in large part by market pressure— users are no longer simply accepting 
the norm, but are now demanding that tools from different vendors talk to each 
other. Though not a vendor, but obviously sensitive to users’ needs, the Free 
Software Foundation includes in its future plans the following desideratum:

A single command language that could be suitable for use in a shell, in 
GDB for programming debugging commands, in a program like awk, in a 
calculator like be, and so on. The fact that all these programs are similar 
but different in peculiar details is a great source of confusion. We are 
stuck with maintaining compatibility with Unix in our shell, awk, and
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Figure 2.3. Non-Linear Pipelines

T o o l T o o l

A B

B p i p e A

Figure 2 .4 . A Computation Engine using a Named Pipe



13

be, but nothing prevents us from having alternative programs using our 
new, uniform language. This would make GNU far better for new users.

In the hardware design arena, languages and inter-tool communication issues 
are being addressed through standards (such as EDIF and VHDL), frameworks 
([37, 56]), and vendor cooperation. Several major CAD tool vendors are currently 
participating in a cooperative effort called CFI, the CAD Framework Initiative, 
whose specific charter as stated in [24] is “. . .  to develop industry acceptable guide­
lines for design automation frameworks which will enable the coexistence and 
cooperation of a variety of tools.”

For software design problems, Computer-Aided Software Engineering (CASE) 
is currently the popularly prescribed solution[86, 93, 51, 47]. CASE tools and 
methodologies aim to aid the programmer in every aspect of his or her task, 
which is to make some abstract computation or computational model concrete 
using some kind of programming language. Driven by the premise that making 
the most effective use of the programmer’s mind is preferable to making the most 
effective or efficient use of the computer, higher and higher-level languages are 
continually being devised. While programs written in high-level languages may 
be less efficient in terms of time and space requirements than those written in 
lower-level languages, they are much more easily developed. This is particularly 
germane to the “occasional” programmer, or end-user-as-programmer, who has 
neither the time nor the motivation to become an expert programmer, but who has 
a need to do som e programming in order to accomplish certain tasks. So-called 
fourth-generation languages (4GLs3) propose to fill this need, as do graphical 
programming environments.

2 .3  T h e  W o r t h  o f  P ic t u r e s
In the areas of visual languages and visual programming environments there is 

a flurry of research activity, whence more justification for using a visual language 
for Vista. Chang[14] provides an excellent (albeit a bit dated) survey of research 
in visual languages, as well as a tutorial in their use. He discusses the concept 
of generalized icons (object icons or process icons) as a basis for the design of 
visual languages. In his concluding remarks, Chang designates dynamic icons 
and icon dynamics visual paradigms worthy of exploration. Dynamic icons have 
some time-of-appearance attributes, for example, a blinking traffic light signal that 
changes its appearance over time. Icon dynamics encompasses the time-sequenced 
interpretation of an iconic system, where animation plays a primary role.

34GLs are typically non-procedural (declarative) rather than procedural (imperative) lan­
guages. That is, they tell what is to be done, not how to do it. See [4, 58]. For example, a 
relational database language allows one to say something like “list name and address in employee 
for salary > 20000” instead of having to supply a step by step procedure that opens an employee 
database file, considers each file record in turn, filters those whose salary field exceeds 20000, 
outputs the name and address fields of the filtered records, and finally, closes the file after all 
records have been processed.
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Shu[91] recapitulates nearly a decade of progress in visual programming, dis­
tinguishing between visual environments and visual languages, and also dealing 
with the concept of automatic programming[82, 47]. A representative commercial 
example of a visual environment supporting automatic programming is National 
Instrument’s LabVIEW[100]. Using this Laboratory Virtual Instrument Engineer­
ing Workbench one may visually design software instruments for a broad spectrum 
of applications, including analytical chemistry, process control, and manufacturing 
and production. The actual detailed construction of these virtual instruments is 
performed automatically by Lab VIEW based on the visual design.

Representative of research into the nuts and bolts of visual language construction 
is [18], wherein is described an expert system  that allows a non-expert user to 
generate a domain-specific visual language from sample sentences.

From the University of New Mexico comes a visual programming environment 
called Khoros, described as

. . .  an integrated software development environment for information pro­
cessing and visualization... .  Khoros components include a visual pro­
gramming language, code generators for extending the visual language 
and adding new application packages to the system, an interactive user 
interface editor, interactive image display programs, surface visualization, 
an extensive library of image processing, numerical analysis and signal 
processing routines, and 2D/3D plotting packages. X applications built 
using the Khoros User Interface Libraries have built in journal/playback 
and groupware capabilities.

While quite powerful, Khoros is mainly geared toward image processing and 
scientific visualization applications, and the process icons available in its visual 
programming language, Cantata[104], are for the most part large-grained, repre­
senting whole programs, or stand-alone application packages.

Closer to (IC CAD) home is Gabriel[46], whose specialized application domain 
is the design of programmable digital signal processors (DSPs). Gabriel’s graphical 
interface allows the interconnection of icons representing functional blocks, and its 
block diagram language allows code generation for simulation of high level DSP 
algorithms. Ptolemy[10], the successor to Gabriel, represents a major effort to 
generalize the application domain and provide a flexible framework for simulation 
and rapid prototyping of heterogeneous systems.

Arrays of processors can be designed and simulated with NOVIS[7l], whose cre­
ators characterize it as a visual parallel programming environment. DPOS[2l], also 
a visual language and graphical programming environment geared for developing 
parallel distributed programs, has the added distinction of supporting recursive 
graphical definition of networks of parallel processes.

Not surprisingly, the visual approach is virtually assured in commercial CASE 
tools. A major CASE vendor, IDE (Interactive Development Environment) des­
ignates its product “Software through Pictures” (see [102]), while another vendor, 
Serius, invites aspiring software designers to “Get Serius” about graphical and auto­
matic programming. There are many degrees and levels of automatic programming. 
Several CASE tools implement this concept by generating actual structured code
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or code templates from a graphical description, and then allow (or oblige) the 
tool user (who created the graphical description) to “fill-in-the-blanks” of these 
generated templates.

2 .4  T h e  W o r t h  o f  W o r d s
As a check on the otherwise unbridled enthusiasm with which visual language 

proponents promote their ideas, and vendors hawk their wares, it would be well to 
note the conclusions of Mahling, et al.[55], that the visualization paradigm as im­
plemented in several systems does not necessarily guarantee good human-computer 
communication, and that graphics alone are inadequate transmitters of knowledge 
and understanding. They argue for building such visual environments on top of 
deep representations of the knowledge underlying the relevant problem domain.

Furthermore, reality requires acknowledging other drawbacks of visual languages 
and visual programming. Even though (or perhaps because) humans have high 
bandwidth visual information channels, confusion can easily result from visual 
clutter, or pictorial information overload. One cannot use a simple text editor 
to create or modify visual programs. They are in general hard to formalize. 
For these and other reasons, it appears that text will always be needed in some 
form or other— what is desirable (albeit elusive) is a salubrious mixture of text 
and graphics, such as is attempted by the LIVE[44] language. The authors of 
this Language for Intelligent and Visual Environment aim to show that “visual 
programming languages and textual programming languages are not opponents 
but can complement each other.”

To achieve this complementary relationship, LIVE allows visual data objects to 
be “picked” (selected) either by position  on the display screen using the mouse, 
or else by name, using the keyboard for input. The latter is often preferred by 
experienced users as it is more efficient when many objects crowd the screen and 
more precise when positional picks are ambiguous. Compatibility and coupling 
between visual representations and textual representations give LIVE preciseness 
and generality, qualities often found lacking in visual languages [89].

Other mergers of the visual and the textual include such techniques as “pret- 
typrinting” program source code, which employs visual formats, indentation, spac­
ing, font type and size variations, and so forth to clarify the logical structure and 
meaning of the text, resulting in easier reading comprehensibility. An example of 
an application program that not only prettyprints code, but also acts as a text 
previewer, database browser or menu utility, is Lector [78] from the University 
of Waterloo. Lector takes descriptively marked-up text as input, and provides 
flexible text display and interaction by structuring the text to distinguish between 
its content and its visual display or layout characteristics.

2 .5  R e la te d  W o r k
This section discusses past and current work more directly related to tool inter­

action and integration, necessarily presenting only a cross-section of a megalith of 
models and mechanisms.

IShell [7] is a visual programming environment for Unix. Based on the dataflow 
metaphor, its iconic command language, IScript, allows users to connect icons



representing Unix tools/utilities and visually depict the flow of information between 
these tools.

The FIELD programming environment [80, 81] integrates tools by the mechanism 
of selective broadcasting, whereby a message server reroutes incoming messages to 
specific clients that have registered interest in them. Tools cooperate by exchanging 
messages in one of three modes:

1. point-to-point (one-to-one),
2. multi-cast (one-to-some), or
3. broadcast (one-to-all).

The SunSoft ToolTalk Service[17], a commercial derivative of the FIELD message 
server, adds an object-oriented message passing system to the more procedural mes­
saging modes enumerated above in what is touted as a step toward the future “Dis­
tributed Objects Everywhere” environment.4 Billed as an “open” inter-application 
communication facility, ToolTalk enjoys the distinction of having been chosen as 
the underlying messaging service of the CAD Framework Initiative[26].

Whether procedural or object-oriented, ToolTalk messages come in two flavors, 
notices and requests. Likewise, message recipients are identified as either handlers or 
observers. Handlers handle requests; observers notice notices. A request blocks the 
sending process until a handler responds, while a notice is non-blocking, allowing 
the sending process to continue processing without waiting for a reply.

SPARCWorks from SunPro uses ToolTalk to integrate its suite of software 
development tools, which includes a tool manager, a “make” tool, a debugger, 
a source browser, a file merger and a performance analyzer.

SoftBench from HP integrates its suite of comparable tools via TIP, the Tool In­
tegration Platform, also providing an “Encapsulator” for plugging non-cooperative, 
third-party tools into the system, allowing them to communicate with the existing 
tools without source code modifications[41]. This is very similar to the CFI’s Tool 
Encapsulation File facility, which provides a veneer of common syntactic forms for 
specifying how tools are invoked, the types of command-line arguments it takes 
(boolean switches, strings, filenames, etc.), and other hooks for on-line documen­
tation and iconic representation in a graphical user interface (GUI) framework.

HP is also a strong proponent of the Common Objects Request Broker Archi­
tecture (CORBA) specification defined by the Object Management Group (OMG) 
consortium, which has over 300 member companies. CORBA [20, 73] specifies 
the mechanisms by which objects may transparently make requests and receive 
responses over a network. For instance, one of these mechanisms is DII, the 
Dynamic Invocation Interface, by which clients may dynamically compose and 
invoke object messages and requests.

4Project DOE, as it  is called, envisions the eventual happy marriage of object-oriented 
technology with heterogeneous networked computing environments.



2.5 .1  Interaction as Interface
A class of tools known as “user interface builders” (UIBs) promises “high produc­

tivity programming” solutions to the onerous problem of human-computer interac­
tion, of which tool-agent interaction is but a subset. These tools provide help for the 
tedious and error-prone tasks of designing and programming the user interface for a 
given application. Most work by allowing the user to directly manipulate graphical 
elements representing user interface elements such as menus, buttons, scrollbars 
and dialogue boxes. Placing these elements (sometimes called “widgets”) creates 
a mock-up of the application interface. Code for implementing this interface is 
automatically generated by the tool.

Garnet[65] is a gargantuan UIB for constructing highly interactive user inter­
faces. Garnet provides many interesting modes of interface behavior specification, 
including the highly visual “programming by demonstration” mode, whereby a 
language of button presses and mouse gestures can be translated into executable 
code. Also known as programming by example (PBE) this mechanism has strong 
automatic programming overtones, and is being touted as the next step beyond 
direct manipulation [64]. Other less ambitious but still interesting UIBs include 
the following, which are noteworthy if only because all three are freely available:

Ibuild [99] is a UIB for the Interviews [53] toolkit, which is a library of user inter­
face components layered on top of the X window system [84] and implemented 
in the C++ programming language. An example of a user interface built using 
Ibuild is that of the Explain program. (See Subsection 4.3.1.)

X F  [19] uses wish, the windowing shell based on Tk (pronounced “tee-kay”) which 
is an X toolkit based on Tel (pronounced “tickle”) (see Subsection 2.5.2 below) 
that allows one to write entire applications as Tcl/Tk scripts, without the 
need to resort to C code. XF embeds itself in the script it generates, enabling 
modification of the application’s interface while the application is running.

W A F E  [70] (Widgets (Athena) Front End), also based on Tel but using the Athena 
widget library instead of Tk, decouples the user interface from the application 
by providing mechanisms for allowing the front-end user interface and the 
application program to run as separate processes, communicating via standard 
Unix input/output streams.

2 .5 .2  T el, the Tool C om m and Language
The Tel language deserves special attention. Having adherents who promote it 

with missionary-like zeal, Tcl[72] is both a shell scripting language (with variables, 
lists, loops, procedures, etc.) and an embeddable interpretive command language 
with a Lisp-like flavor.5 More specifically, calls to the Tel library can be embedded 
in applications written in C (or C++) to give them a built-in string-based command 
interpreter. Although it has a somewhat different syntax, like Lisp Tel treats code

5However, Tel is much more lightweight than Lisp—for one thing, C-style strings are Tel’s 
only data type.



and data the same. That is, by manipulating string data representing the body 
of a procedure, new procedures can be constructed and defined on-the-fly in the 
Tel interpreter, making the command language extensible by the application. The 
guiding principle behind Tel is that a single interpretive language should control 
all aspects of all interactive applications, including:

• Function of,
• Interface of, -
• Composition of (pieces of), and
• Communication between applications.

In a best-case scenario, Tel would be the command language used by all appli­
cations. With this ideal level of cooperation, the Babel of idiosyncratic command 
languages would cease. Huge, monolithic tools of necessity providing a superabun­
dance of functionality would become a thing of the past. In their place would 
be lean, efficient, specialized reusable tools that all communicate with each other, 
using the send primitive provided by the Tk library.6 Any tool could send a Tel 
command to any other tool, invoking internal functional and/or external interface 
actions. Moreover, the user interface to these tools could be built interactively 
(using a Tk-based tool like XF) and also changed dynamically as the application is 
running. Such is the power of a single interpretive language.7

One notable example of how Tel has been used successfully to control inter­
active programs programmatically is expect [48]. Designed to overcome certain 
limitations of standard Unix shells,8 expect is a high-level shell language with the 
full power of Tel at its disposal. Scripts written using expect essentially contain 
a multiple-path dialogue between two or more interactive programs. Control flow 
is managed via send/expect sequences, which specify commands to be sent to an 
interactive process, what to expect in reply, and what to do when the reply matches 
one of the expected patterns. Not only is simultaneous control of multiple programs 
possible, but control can also be passed back and forth from expect to the user, 
in effect allowing the user to be treated as an interactive source or sink of I/O.

2 .6  M ix e d  H e r i t a g e
How does Vista relate to all of the above? An example or two may begin 

to motivate the answer. It was stated in Subsection 2.5.1 above that tool-agent 
interaction is a subset of human-computer interaction. Given the propensity of 
humans to tinker with tools, it might be more accurate to say that these two
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6This presupposes that all of these tools are running on top of the X window system.

7Naturally, such power comes with a performance price. Furthermore, application composition 
is necessarily coarse-grained.

8Manifested by such programs as passwd that demand to be invoked interactively and hence 
cannot be controlled by a shell script via I/O  redirection or pipes.



endeavors have a non-empty intersection. In other words, there is overlap but not 
containment. Building a graphical user interface as a friendly front-end may or 
may not be viewed as a natural first step in the evolution of a human-driven tool 
into an agent-driven tool.

For example, the xgrabsc tool allows the capture, or “grabbing” of a screen or 
window in X, and then saving the image to a file or sending it to a printer. Using 
this kind of tool one can take “snapshots” of window contents— textual, graphical 
or both—for later reproduction or processing. As xgrabsc has a ridiculously large 
number of command-line options, an interactive front-end called xgrab was imple­
mented to afford easy selection of the various options, and push-button invocation 
of the xgrabsc program. Figure 2.5 contains a snapshot of the xgrab window 
(made by xgrab, of course) showing its option-setting “buttons” and option-editing 
text-input fields. The corresponding command-line options of xgrabsc as given 
in the Synopsis section of its Unix “man” page are reproduced in Figure 2.6 for 
comparison.

Even an interface like xgrab loses its effectiveness if the need arises to capture 
dozens of windows for further processing. An agent programmed to control xgrabsc 
directly (or even indirectly via xgrab) is definitely called for. Likewise for another 
interactive interaction specification tool called xfilter, whose user interface is shown 
in Figure 2.7. A simple interactive application for filtering data through Unix 
commands such as tr, spell, etc., xfilter uses the X selection mechanism9 and 
maps selectable input and output locations to the standard input and output of a 
Unix filter command. The input/output panel contains option menus for setting 
the data source and output target. The default input is “Primary selection” and 
“Text window” is the default output. Thus, in the figure the selected text (taken 
from a window where the text of this paragraph was being viewed) was passed 
through the filter “tr [A-Z] [a-z]” and then deposited in the scrollable text window. 
The source and target can also be files, making xfilter useful as a data transfer 
facility between X windows and Unix files.

While xgrab and xfilter were not implemented using a UIB, they easily could 
have been. But UIB built or not, they are simply inadequate for unattended 
tool interactions. Unlike Vista, UIBs are mainly geared to specifying interactions 
primarily with human users, neglecting for the most part communication between 
software entities.

In short, while there is a kinship between Vista and UIBs, as well as between 
Vista and the other tools and environments mentioned above, this relationship 
does not imply redundancy. In true eclectic fashion, Vista borrows ideas from 
all of these10 as it strives for free and fluid versatility in the kinds of interaction 
specifications it supports. This will become more clear in the following chapters as 
the Vista framework and protocol are unveiled. For now, the void Vista tries to fill 
is depicted in Figure 2.8.
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9The Inter-Client Communications Conventions Manual (ICCCM) dictates how X I1 applica­
tions must use this and other interaction mechanisms [85].

10Indeed, nothing prevents Vista from directly and advantageously using expect or awk or 
pe ri or make or even emacs, etc. .
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xgrabsc [-d display] [-id windowld] [-o outputFile]

[-s seconds] [-post seconds] [-b percent]

[-and andBits] [-or orBits] [-page widthxheight-hmarg-vmarg] 

[-bell -grab -verbose -bdrs -nobdrs 

-key -stretch -root -click

-reverse -bw -mdither -dither -halftone -nodither 

-ps -cps -simple -xwd -bm -bm2 -bm3 -puzzle 

-bin -comp -eps -1 -limit -preview -prev -colproc]

Figure 2.6. A Synopsis of the xgrabsc Program

Figure 2 .7 . The xfilter Tool in Action



F igure 2 .8 . Vista’s Eclectic Heritage



2 .7  M o r e  F o r m a l i t ie s
A number of computer science luminaries have tackled the Herculean task of 

bringing to this discipline the attribute form al, long exemplified by mathematics, 
to fortify the experimental or the observational, exemplified by physics. No less a 
luminary than Robin Milner, inventor of ML (MetaLanguage), has most recently 
grabbed the limelight. In his Turing Award Lecture, Milner[62] presented his 
contributions of the Calculus of Communicating Systems (CCS) along with the 
7r-calculus, which make interaction the cornerstone of an algebraic calculus.

Other attention-commanding work on formalizing models and specifications is 
set forth in Harel’s Biting the Silver Bullet: Toward a Brighter Future fo r  Sys­
tem Developm ent ([34]). Prompted by a desire to illuminate the brighter side of 
the gloomy picture painted by Brooks’ position paper ([9]), in this article Harel 
responded with his own thoughtful vision of the future. In it, the concepts of 
executable models and visual formalisms [33] rise to the fore. The former were 
introduced briefly as executable specifications in Section 1.4 above. The latter 
attempt to make system modeling a predominantly visual and graphical process by 
finding appropriate visual representations for various conceptual constructs, and 
exploiting properties such as containment, connectedness, and adjacency, all of 
which have formal, mathematical counterparts from set theory and topology. It 
is noteworthy that in the final chapter of [90] (which discusses future prospects 
for visual programming as it moves toward formalism) Harel’s concept of visual 
formalisms (as realized in his statecharts (and commercialized in the statemate 
environment) [32, 35]) was held up as a maturing development in the field.

Extending traditional state transition diagrams to handle the notions of hierar­
chy, concurrency and communication, statecharts provide a way to describe reactive 
behavior that is simultaneously clear (i.e., comprehensible to humans) and formal 
(i.e., amenable to computer manipulation and analysis).

Users of PegaSys[63] can graphically and formally describe the hierarchical struc­
ture of programs, revealing their coarse- or fine-grained data and control entity 
dependencies by means of form al dependency diagrams (FDDs). A number of 
dependencies at one level of the hierarchy can be composed into a single dependency 
considered atomic at a higher level. It is also possible to do the inverse operation 
of top-down decomposition.

As with statecharts and (possibly) FDDs, highly reactive systems (e.g., physical 
hardware) are the ones that benefit the most from the Petri Nets[74] model, which 
has a long and successful history of use for systems modeling and analysis (e.g., 
[79, 3]). This powerful and useful model has a well-developed formal mathematical 
theory, supporting rigorous analysis of systems composed of separate, interacting 
components exhibiting concurrency and therefore needing synchronization.

While it is not within the Vista purview to do general-purpose visual program­
ming or behavioral modeling of complex, reactive systems, the kinds of visual 
formalisms that are appropriate for these are also relevant to Vista—for instance, 
“zooming” capabilities for moving between levels of abstraction. Moreover, the 
event-driven nature of reactive systems makes them analogous to agent-driven tools 
in the sense of needing to react to external and internal stimuli— granted, the former 
at fully or nearly continuous rates, the latter much more sporadically.
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2 .8  A c m e
The Acme Cell Matrix Environment is a graphical, direct manipulation interface 

to the PPL Cell Matrix integrated circuit design methodology[12, 28], with several 
extensions, the major ones being domain integration— the support of hybrid (mixed 
physical and structural) design[40]— and the ability to juxtapose several different 
design contexts, such as analog and digital. Acme is a successor to INSTED[66], and 
as such, seeks to remedy the numerous flaws of its predecessor.11 Acme is written 
in C++ and uses InterViews to implement its GUI. A more detailed description of 
Acme is deferred to the following chapter.

It was chiefly the desire to do mixed-mode, mixed-level simulation of circuits 
designed using Acme, with the idea of controlling the simulation from within 
the Acme environment, that originally motivated the provision of mechanisms 
for interfacing Acme with several disparate simulation environments. In general, 
interaction with a circuit simulator requires:

1. a description of the circuit in a form it understands (a netlist),
2. a description of the stimulus (input vectors or waveforms) to the circuit,
3. a sequence of simulator commands, and
4. a disposition of the results, that is, what to do with the output of the simulator.

Given the code for netlist generation currently residing in Acme, an interface of 
sorts to various simulators already exists. The exchange of information is achieved 
by reading and writing files. Acme can generate the netlist file, but the onus is on 
the designer to write command script files and read simulator output files. Without 
the benefit of back-annotation, where, for example, wire values are shown directly 
on the design schematic, interpreting simulation results is quite burdensome, as 
the designer must mentally or manually make the association between reported 
simulator outputs and the output nodes in his or her design.

Because the granularity of communication links can be much finer, sophisti­
cated design-tool inter-communication a la ToolTalk is clearly superior to the 
old-fashioned file-based approach; however, its use is precluded when trying to 
get non-cooperative tools to communicate. In this case, the need is clear for 
encapsulating or mediating agents that talk a certain way to the non-cooperative 
tools, and possibly another more efficient way to each other.

An interesting opportunity afforded by the dual use of Acme as design tool 
and Vista framework is to both specify and execute the interaction in the same 
environment. Thus, Acme becomes just a tool interacting with other tools, in this 
case, simulators. The agent mediating between them can not only use a special 
cooperative protocol to transfer simulator results and annotations back to Acme, 
but it can also communicate to Acme the current status of the interaction itself. 
This allows for the Vista specification to be animated in some fashion corresponding 
to its execution, by highlighting or otherwise identifying activity hot spots.

11W ith 20-20 hindsight, the wisdom of Brooks[8] is readily acknowledged.



C H A P T E R  3 

F R A M E W O R K

This chapter describes the Acme Cell Matrix Environment, discussing the fea­
tures and benefits that make Acme suitable as a visual programming environment in 
general, and as the implementational framework for Vista in particular. Prefacing 
this discussion is a terse glossary of some Acme terminology, and following it 
is a presentation of the pragmatics of the Acme/Vista visual language, and an 
exposition of the Acme/Vista interface.

3 .1  A c m e  O b je c t  T e r m in o lo g y
cellmatrix — a container for cells, wires and vias. 
cell — an instance of a prototype containing local state, 
prototype — a template for a class of cells (a cell master), 
protolib — a collection (or library) of related prototypes, 
wrapper — a graphical view of a prototype (for customizing cells), 
sticker — like a wrapper, but more lightweight (for customizing wrappers), 
port — a point on the edge of a cell at which a connection may be made, 
wire — a connector of cells by way of ports.

The properties and terminology associated with cells, ports, wires, prototypes 
and protolibs will be expounded as needed to develop the concepts embodied by 
Vista. For the moment, to elaborate on the visual aspects of wrappers and stickers, 
conceptually these are “wrapped” around (or “stuck” on) cells, giving them a 
customized look at various levels of abstraction. Symbolic or name wrappers are 
more abstract than gate or transistor wrappers, the former hide detail, the latter 
flaunt it. While none have been done to date, a documentation wrapper could be 
used to display (and store) a textual description of a cell’s structural or behavioral 
semantics. As they allow for different graphical representations of the same object, 
wrappers not only supply the basic iconic vocabulary for Vista’s visual language, 
but they also give it variety and the ability to express nuances. Wrappers and/or 
stickers (along with modifiers, which are local state objects associated with a cell), 
are also useful for implementing dynamic icons a la Chang (see Section 2.3).



3 .2  T o o ls ,  C o m m a n d s  a n d  F e a tu re s
In the style of several widely-used drawing editors (MacDraw and its many 

clones), Acme has two orthogonal user interaction mechanisms, tools1 and com­
mands. A tool defines a context, or mode for using the mouse. First the mode 
is engaged, and then the mouse can be used to invoke an operation. By contrast, 
a command is a stand-alone operation, taking effect immediately when invoked 
(although it may call for further dialogue). Tools embody the verb-noun interaction 
style, that is, a tool (verb) acts on an object (noun). The orthogonal noun-verb 
style of commands implies first selecting the object(s), and then specifying the 
operation to be applied to the selected object(s). Figure 3.1 shows Acme’s GUI 
with the tool panel on the left side and the command menu bar at the top.

Besides the direct manipulation paradigm embodied in its objects and tools, 
Acme holds a strong commitment to other established principles of good user 
interface design[88]. For example, a keystroke is associated with each tool and 
most commands, providing the shortcut demanded by experienced users. This 
is actually more important for commands than for tools, as the latter enlist the 
mouse for pointing, clicking, dragging, and other operations that have no convenient 
keyboard accelerator.

Another user compassionate2 feature Acme implements is a generalized history 
mechanism, which provides the means for any operation that makes a change to 
the cellmatrix to be undone. For instance, for operations that insert cells, the Undo 
command deletes these cells and restores what was there previously, if anything. 
Likewise, undoing a delete operation will put back what was deleted. Redo is the 
convenient counterpart to Undo.3 These commands work by means of “change 
objects” that maintain just enough information to restore the cellmatrix to its 
previous state. A specialized change object class is defined for each kind of undoable 
operation. Change object instances are stored on a history list of arbitrary (user- 
settable) length limited only by available virtual memory. Chang’s icon dynamics 
(Section 2.3) are realizable by means of history list traversal.

3 .3  P r o t o l ib s  a n d  P r o t o t y p e s
Retrofitting Acme with a visual programming environment was a relatively easy 

task, due in part to the feasibility of making extensive use of the data structures 
and direct manipulation mechanisms already in place. Far harder was the creative 
work of building various special-purpose Vista protolibs, and populating them with 
“abstract” prototypes, which is to say, prototypes having behavioral but no physical 
implementations. Such prototypes possess the usual interface consisting of ports

1 These tools should not be confused with the self-contained too}s that are the primary focus 
of this research.

2That is, more than friendly. See [2],

3More precisely, Undo undoes the last change made to the cellmatrix, doing nothing if all 
stored changes have been undone. Redo redoes the last undone change made to the cellmatrix, 
that is, it  undoes an Undo. Redo does nothing if  it  follows a “ Do” , i.e., any command that does 
something.





and a shape, which, because the prototypes are abstract, can be the smallest unit­
cell shape regardless of the complexity of the behavior they encapsulate. They must 
have som e  shape to be stored in a cellmatrix, but this need not be the shape or 
size presented visually. Indeed, the wrappers defined for these prototypes can be 
of arbitrary size, and can even overlap, although they typically do not.

The abstract behavioral implementations of Vista prototypes may be defined 
textually or graphically, or both, and these implementations may be edited, ex­
tended, interchanged and parameterized, as may the interfaces of these prototypes. 
The idea is to provide a large degree of flexibility to the Vista library designer, 
within the bounds of the Vista conceptual framework, which bounds are necessary 
to ensure the coherence and integrity of Vista specifications.

The following list itemizes in approximate chronological order the principal Vista 
prototype libraries, each of which encapsulates a different interaction mechanism, 
or group of related mechanisms:

• sig —- signals (Unix)
• fsp — files, streams and pipes (Unix)
• xse — X synthetic events (X Windows)
• unx — Unix and X united (see paragraph below)
• cts — Client to Server RPC
• ptp — Peer to Peer RPC

These libraries will be described more fully and several examples of their use 
given in the following two chapters. Note that these Vista libraries can be unified 
by using the protolib referencing feature Acme provides. For example, the unx 
library references fsp and xse, making their combined services available in a single 
protolib context.

Given these libraries of prototypes having parameterizable interfaces and im­
plementations, the pragmatics of Vista’s visual language are as follows. Using 
Acme tools and commands, Acme objects are created and manipulated. Cells are 
interconnected with wires via ports. Cells, ports and wires are all named objects, 
identifiable and accessible by name. Collections of cells and wires may be “wrapped 
up” to create new hierarchical prototypes, whose semantics are defined more or less 
by the composition of their constituents. There is virtually no limit to the number 
of levels of hierarchy allowed, although one to three usually suffice.

Once wrapped, new instances (sometimes called hiercells) of non-leaf-level proto­
types (called cellmatrix prototypes) can be created and inserted into the cellmatrix 
design. If desired, the details of their internal structure can be laid bare at any time 
by the operation known as clear wrapping. Also available is the inverse operation 
of opaque wrapping to once again hide these details. These are read-only operations 
as far as the cellmatrix prototypes are concerned, since only the local wrap state 
(clear or opaque) stored in the hiercell is changed.

Once a network of cells and wires has been created, the user invokes the Acme 
“Vistafy” command, which provides the actual user interface to the four Vista



subsystems, which are briefly introduced now, and described in more depth later 
on in this chapter:

1. Codifier
2. Analyzer
3. Manifester
4. Executer .

Briefly, the Codifier takes the interconnection network of cells and wires and 
from it generates stylized C++ source code whose form resembles a netlist.4 The 
Analyzer and the Manifester verify and explain syntactic correctness and semantic 
meaningfulness (or lack thereof) while the Executer has the task of actually creating 
the executable specification, and spawning it from within the Acme environment.

Correct syntax demands compatibility of cell interconnections, which is checked 
using Acme’s port typing mechanism. A PortType object is associated with each 
port in a prototype’s interface. Port types attach behavioral semantics to ports, 
and thence to the wires that connect them, by identifying the data types of the 
“signals” that will flow through wires into cells by way of their ports. Analogous 
to data types in programming languages, these port types can be statically checked 
for compatibility at “compile time,” (or even before that at “edit time,” that is, as 
the ports are being wired together). Implemented as a specialized NamedObject, 
the PortType has a name attribute maintained as a character string that matches 
the name of a predefined class type in a Vista protolib.

Compatibility is not restricted to (same name) equality, but rather means mem­
bership in a family of compatible types, which are grouped hierarchically in par­
ent/child relationships. Read in from a text file stored in the protolib directory, 
the in-memory (directed acyclic) inheritance graph of port types is created and 
maintained in the Vista protolib. The protolib has methods for determining if 
two or more port types are compatible by querying this inheritance graph. See 
Subsection 4.2.1 for specifics.

To guarantee correct semantics, Vista protolibs have certain rules that must be 
followed. For instance, ports have modes in addition to types. The three modes 
currently defined are input, output and biput, which describe the direction of data 
flow into or out of cells. Thus, one rule to check is that input ports must have 
at m ost one wire attached to them. This restriction may be removed by defining 
a “fan-in” semantics for input ports. Another rule is that all ports must have at 
least one wire attached, which also may be relaxed for ports that represent optional 
parameters. It is the concerted work of the Analyzer and the Manifester to ascertain 
adherence to these rules, and to show the user what is wrong (or right) with a given 
Vista specification.
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4Examples of this code, along with the behavioral models Vista associates with cells and wires 
w ill be presented in the following two chapters.



3 .4  T h e  A c m e  I n te r f a c e  t o  V is t a
Figure 3.2 shows the Vista Framework as currently implemented in symbiotic 

relationship with Acme. The salient features of this implementational framework 
are greatly abbreviated in this entity-relationship diagram, which therefore calls for 
some explanation.

The square box containing the two labeled rectangles represents the heart of 
the Acme/Vista symbiosis. The small solid squares on the edge where arrows 
touch the outer square suggest the contact points (or communication ports) for 
this software framework, representing both the GUI, with its tools and commands, 
and the software interface to the external environment. The lower rectangle is 
subdivided into four smaller rectangles, each with at least one dashed edge shared 
with its neighbor. Not surprisingly, the four single-character labels stand for the 
Codifier, Analyzer, Manifester and Executer, which, as the dashed edges suggest, 
have no hard boundaries between them. In fact, these four Vista modules are 
tightly connected and somewhat interwoven, as will be seen. The four black square 
ports between them and Acme are perhaps misleading, because there are not four 
distinct well-defined interfaces between each module and Acme, but rather, as 
stated above, one interface— the Vistafy command. The fact that each of the 
four modules necessitated some new functionality being added to Acme may justify 
the one-to-one correspondence. At any rate, the idea that users use (or interact 
with) Acme directly and Vista indirectly should be clear. But, as the other arrows 
leading from the rounded box labeled Users suggest, there are other interaction 
paths available to users. Users may write their own classes, or Vista class libraries, 
as long as they adhere to the Vista protocol (see next chapter). Of course, if 
desired, they may also read the code for the various classes comprising the Vista 
core protolibs, as it is purely textual C++ code. Furthermore, those classes must 
be read by, and, if creating new classes, initially written brf Acme/Vista in the 
process of generating the executable specifications, which are the special-purpose 
agents that when executed provide the runtime liaison between Acme and other 
tools.

The relationships labeled generates and executes between agents and the Codifier 
and Executer, respectively, are the critical ones. The Analyzer and Manifester 
play important, but subordinate roles, and, to avoid cluttering the figure their 
relationships (both internal and external) are not shown. The bidirectional talk to 
relationship between agents and tools is colloquial for communication, or interac­
tion. Note especially the direct access to tools and agents available to users. If they 
wish, users may invoke the Vista-generated agents directly, as after all, they are 
executable programs. Likewise, if desired, knowledgeable users can interact with 
tools directly without going through agents. The middle arrow, between users and 
the talk to arrow, is perhaps the most interesting possibility. Eavesdropping on 
a “conversation” between agents and tools is sometimes useful and illuminating.

5This is a bootstrap operation, strictly for user convenience. Vista writes a skeleton class defini­
tion corresponding to a newly-wrapped user-defined prototype, which the user must subsequently 
flesh out.



F igure 3 .2 . The Vista Framework



32

The specific ways this may be accomplished will be examined later, after laying the 
appropriate groundwork.

Included in Appendix B, in addition to the C++ code itself, is an English descrip­
tion of the Vistafy command, enumerating the steps necessary to produce, analyze 
and run an executable Vista specification. Each of the four subsystems controlled 
by this command has its own subsection below, even though, as mentioned above, 
these four modules are very interrelated.

The name of the cellmatrix design containing the user-created Vista schematic is 
used as the base name for several ancillary and intermediate files that are produced 
by the Vista subsystems, as well as the final result, which is the executable agent. 
This executable C++ program has the identical name as its source cellmatrix, that 
is, no file extension is appended to it. In the following discussion, assume test is 
the name of this source cellmatrix schematic.

3 .4 .1  Codifier
The code implementing the Codifier is distributed throughout several Acme 

modules and source files. The reason for this lack of locality is that the Codifier 
is essentially producing a netlist of cells and wires, and the already written netlist 
generation code is likewise distributed, in turn due to the many intricate class 
interdependencies found in Acme.

To accommodate a variety of simulator netlist formats, Acme uses a table-driven 
approach to netlist generation. A table is associated with each separate netlist facet, 
including formats of file headers and trailers, sub-circuit definitions, sub-circuit 
calls, and so forth. For each supported netlist format, a string containing formatting 
directives is stored in each of these tables, which are indexed by an integer repre­
senting the simulator type. Adding support for Vista thus required little more than 
adding a new simulator type6 and inserting the Vista-specific formatting strings in 
the appropriate slots in the tables.

The netlister traces the connectivity of cells and wires by traversing (at each 
level of the hierarchy) the arrays, trees and tables containing these objects, which 
are maintained by the cellmatrix object, writing out the behavioral models, wire 
declarations, sub-circuit definitions and sub-circuit calls to the netlist file, which 
for Vista is a C++ . c file. When hierarchy is involved, Vista by default generates 
structural models, meaning that sub-circuits are defined by what nested structure 
they contain, not by a strictly behavioral model.

For each wire, the cellmatrix looks for all cell ports that are physically coincident 
with the wire, and infers the type of the wire from the types of all ports so found. 
This type inference is germane to the Analyzer, and may be considered part of its 
work, whence the blurring of the line between it and the Codifier.

3 .4 .2  Analyzer
Should the type determination just described reveal that incompatible ports are 

connected, instead of reporting the error immediately, the fact is noted by giving the

6At a few strategic points in the netlisting algorithm, it  was also necessary to add some 
conditional statements, applicable only to the Vista simulator type.



wire a spurious type, namely, a concatenation of the names of all the incompatible 
types, separated by a special marker. When the Analyzer scans the . c file produced 
by the Codifier it looks for this marker, and writes any bogus types it finds there 
to a ,z file for later use by the Manifester.

Another task well suited to a textual pre-scan of the . c file is the discovery of 
ports without wires attached to them. In certain special cases this may be allowed, 
but in general, it signifies a connectivity error. As with incompatible-type detection, 
when the Codifier is navigating the connectivity graph of cells and wires, and is 
ready to write out the sub-circuit calls, one per cell, it must include in each call an 
ordered list of the wires attached to each port on the cell. On finding no such wire, 
the deferred-notification approach it once again takes is to write out the name of 
the port prefixed by another special marker to identify it as an unwired port. These 
go into the . c file, where the Analyzer looks for them, but it puts the corresponding 
cell name into the . z file, rather than the names of the unwired ports on the cell. 
The Manifester takes it from there.

3.4.3 Manifester
The Manifester has the mission of making manifest to the user the errors discov­

ered by the Analyzer during the attempted compilation engaged by the Codifier. 
This approach is preferable to letting the compiler catch such errors as described 
above, which it surely would were they not intercepted by the Manifester. The 
compilation is only begun if the .z file exists and is empty, which means that the 
Analyzer has examined and validated the . c file. If non-empty, there are only two 
kinds of entries in the .z file. Details of these entries, plus a description of how the 
Manifester notifies the user of these errors, are found in the technical report.

Having shown the user the syntax errors of his ways, the work of the Manifester 
is not yet finished. As intimated above, semantic errors can also be detected and 
reported, given a sufficiently sound database of facts and rules, together with an 
inference engine that can deduce whether or not the facts play by the rules.

Generally speaking, facts summarize certain cardinality and connectivity fea­
tures of a given specification, while rules express various cardinality and connec­
tivity constraints. Detailed examples of some facts and rules will be given in the 
following two chapters, but an important point to emphasize here is that, unlike 
for finding wrongly-typed wires and unwired ports, perusing the text of the . c file 
is a clumsy and inefficient means of extracting the facts, and is wholly inadequate 
to the task of establishing the rules. The assumption Vista makes is that the Vista 
protolib designer creates the rules database explicitly, and implicitly arranges for 
the companion facts database to be created during the execution o f  the specification. 
What this implies is that a significant part of the Manifester is embedded in the 
behavior of the cells and wires in a Vista protolib.

The selection of a suitable inference engine was not easy, due to the super­
abundance of freely (as well as commercially) available software packages. The 
package chosen was developed at the University of Wisconsin-Madison. As it 
“COmbines Relations And Logic” in one deductive database/logic programming 
system, coral[77] possesses many nice features that make it an attractive and useful 
ally to the Manifester, including:
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• A declarative language based on Horn-clause rules using Prolog-like syntax.
• Extensions like SQL’s group-by and aggregation operators.
• Support for many evaluation techniques, including bottom-up fixpoint evalu­

ation and top-down backtracking.
• A module mechanism, providing for separate compilation and the use of dif­

ferent evaluation methods within a single program.
• Support for data types including numeric and string constants, functor-terms, 

lists, sets, multisets, arrays and non-ground terms.
• An “explanation” facility that allows users to examine “derivation trees” for 

facts using a graphical menu-driven interface.

Once it has created the facts database, the executing test program itself then 
calls upon system  to make 0UT=test manifest. The actual Vista “makefile” is 
included in the TR, but briefly, what making manifest does is to produce a file 
suitable for submission to coral, whereupon it runs coral in batch mode7 with 
this file as input. The file contains commands instructing coral to consult both 
facts and rules, and to use its explanation feature to show the user the result of 
evaluating these databases, which answers the “Is everything okay?” query.

3.4.4 Executer
If everything is okay, the Executer uses the Unix fork/exec system-call pair to 

create a child process in which to execute a successfully analyzed and compiled 
.c file. As specified by this paradigm, the forked child process begins life as an 
exact clone of its parent process (Acme), but can then customize its own copy 
of the parent environment before it mutates (via exec) into a process running the 
compiled (e.g., test) program. These customizations include putting a new variable 
(VISTALOG) into the environment, whose value the newly executing process will 
read from its environment, upon which it opens for writing a file by this name (which 
would be te s t . a in this example), and at well-defined junctures, logs certain useful 
information to this file. Before the exec call, other data is conveniently passed 
from parent to child by way of the argument list given to exec, such as the “X 
Window Id” of both the main Acme window, and its CellM atrixView  subwindow, 
which serve to identify the proper recipient of synthetic X events, needed by the 
xse protolib (see Section 5.2).

The Executer is considered to have begun its work when the Codifier forks 
a subprocess in which to make the test executable. That is, the compilation 
of a Vista .c file is part of the preparation process of making a specification 
executable. It should be pointed out that a viable alternative to compiled C++ 
may be an interpreted target language, which would obviate the compilation step. 
This alternative is discussed in Chapter 7 of the dissertation.
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3 .5  M a k in g  I t  S o
The important role played by the Unix make tool in the Executer, Manifester 

and Analyzer modules makes it worthy of a few brief observations here, and a lot 
more exposure hereafter (also, see [22, 25] for more on make).

The ostensible purpose of the make tool is to determine automatically which 
pieces of a large program need to be recompiled, and invoke the commands to 
recompile them. Not limited to compilation, however, make can be used to 
describe and perform any task where some files (called targets) must be regenerated 
from other files whenever these other files (called dependencies) are changed. For 
example, the first thing the Vistafy command does is what make would do if told 
that t e s t . c depended on t e s t . cm and how to generate the former from the latter. 
Invocation of the Codifier, however, is best handled directly by Acme rather than 
(very) indirectly by way of a make-issued shell command.

Highly parameterizable (particularly the implementation furnished by the FSF, 
which has file inclusion, conditional execution, and a host of other features), the 
various aspects of make are as:

• a dependency graph builder,
• a target updater, and
• an executable specification (the makefile).

The makefile is really a database that contains a description of the dependency 
relationships among many files, plus the rules (shell commands) for updating the 
target files from the files they depend on. Querying this makefile database, make 
determines which files need updating by consulting the facts “database” consisting 
of file last-modification times. For each “out-of-date” file, it executes the speci­
fication (issues the update commands) stored in the database. The functionality 
afforded by make makes it an excellent tool-mediating agent, for which assertion 
more evidence will be furnished in the next two chapters.

3 .6  S u m m a r y
Vista is implemented in the Acme Cell Matrix Environment, a graphical, hierar­

chical, integrated circuit design system. Direct manipulation helps the Vista user 
“write” an interaction specification in the visual language of cells and wires. Acme 
essentially serves as a graphical editor for creating specifications.

The encapsulation of an Acme cell prototype, with its separation of interface and 
implementation, facilitates bottom-up (implementation first), top-down (interface 
first), or middle-out design of hierarchical, behavioral cells. Cell prototypes reside 
in a protolib, associated with which is a library of C++ classes, one per cell. Wire 
(port) types are also implemented as C++ classes.

Four subsystems comprise Vista’s framework, or infrastructure. The Codifier 
is a compiler that translates visual specifications into executable C++ code using 
the class libraries. The Analyzer and the Manifester check the code for syntactic 
correctness and semantic meaningfulness. The Executer prepares and executes 
the code thus produced and inspected. This framework cleanly integrates editor,
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compiler, libraries, specification analysis tools, and process control executive into a 
unified whole.



C H A P T E R  4  

P R O T O C O L

The word protocol is laden with several meanings, especially in computer sci­
ence where it has a somewhat different connotation than it does in, for instance, 
diplomacy. This chapter explores its meaning in the domain of object-oriented 
programming (OOP) in general, and in Vista in particular.

4 .1  T o  O O P  o r  N o t  t o  O O P
In object-oriented programming, a class is defined to have certain operations 

or methods for dealing with objects of that class. The set of operations thus 
defined is conceptually the communication protocol these objects understand and 
obey. The semantics of these protocols serve to limit inter-object dependencies, 
since in general an object can only access the internal state of another object 
through the “public” methods of its protocol, or interface. This encapsulation 
decouples objects, isolating them from one another, which promotes modularity 
and reusability. Further benefits flow from class inheritance and polymorphism. 
Objects derived from a common base class (thus inheriting a common protocol) 
can be used without knowing to which specific derived class they belong. The C++ 
virtual function mechanism implements a form of dynamic binding (also called late 
or runtime binding) whereby functions redefined by the derived class (subclass) 
are automatically invoked on these objects, as determined at runtime by their 
specific types. Virtual functions redefined in subclasses “shadow” or override their 
corresponding base class functions, and thus enable subclass-specific behavior at the 
same time the common protocol makes possible the uniform  treatment of common 
base class objects. In essence, the details of the class derivation hierarchy are hidden 
by the encapsulation enabled by this runtime type resolution. (See [54], chapter 9.)

For example, recall the Acme change objects mentioned in the previous chapter. 
Each undoable Acme operation has a specialized class defined for it by subclassing 
the base ChangeNode class; for instance, DeleteChange, M oveChange and so forth, 
all inherit the ChangeNode structure and protocol, redefining its virtual methods, 
in particular Undo and Redo, while adding the necessary state peculiar to that 
type of change. The history list contains ChangeNode pointers only, and uniformly 
invokes Undo or Redo on ChangeNode objects, which translates dynamically to 
the appropriate Undo or Redo method associated with the actual M oveChange, 
DeleteChange, or whatever object these pointers really point to.

The basic principles of object-oriented programming briefly outlined above have 
been catching on in the world of programming with ever-increasing momentum. 
Marketing hype notwithstanding, they constitute a major paradigm shift for soft­



ware development. Yet this shift is resisted by a number of programmers who for 

various reasons are hesitant to adopt the “everything is an object” mentality, and 

are reluctant to buy into OOP as a panacea.
Their leeriness is well-founded. For one thing, the jury is still out on whether 

OOP is the tidal wave of the future or merely a passing fad. For another thing, 
everything is not an object, or put more correctly, not everything is an object. 

Actions are things too; otherwise, language would have no use for verbs. While 
it is possible and in many cases desirable to conceptualize and implement actions 

(or other abstractions) as objects, in general the actions or operations attached to 
objects in OOP are not themselves objects (instances of a class), and thus become, 

in a sense, second-class citizens.
Furthermore, the OOP mandate that state and behavior be fused in objects 

flouts the fact that not all behavior is ascribable to one or another distinct, easily 

defined class of objects. That is, some behavior is decidedly mierobject, especially 
when disparate objects are interacting, and as to which object to bind this behavior 

to, the decision is arbitrary. Should the bread be buttered, or the butter breaded? 

More often than not, the behavior is attached to neither of such a pair of objects; 

instead, a third party, a coordinating agent acts on both. This agent, which is akin 

to but finer-grained than the agents defined in Chapter 2, manipulates the state 
of each object through the objects’ defined interfaces, but the manipulation, the 

behavior itself is not part of those interfaces. Bread and butter are passive objects, 

acted on by an active object, a person (presumably with a knife, another passive 

object) in the action called spreading. The real world has yet to see self-spreading 

butter, or self-buttering bread, although the world of software has no quarrel with 

such anomalous, autonomous objects.
Another deficiency in extant OOP languages is their inability to articulate 

constraints on method invocation, such as the conditions under which methods can 

or must be invoked, valid sequences of invocation, and so forth. These constraints 
should be considered part of the protocol, but while they may be documented by the 

programmer via comments placed directly in the code, or elsewhere, the language 

itself offers no means of expressing them. Eiffel [60] actually does a better job than 

C++ in supporting the attachment of preconditions and postconditions to method 

code, the violation of which triggers an elegant exception handling mechanism. 

True, exceptions are now officially part of the C++ language, but many implemen­

tations are poorly (or non-) compliant with the defined standard. At any rate, 

exceptions are only useful for error detection and subsequent recovery—rescuing 

executions gone awry because the protocol, the interobject contract, has been bro­

ken somehow. They do nothing for error prevention—ensuring the integrity of the 

protocol— something the proverbial sufficiently clever compiler could conceivably 

do at compile time, given a sufficiently rich knowledge of valid object relationships, 

interaction constraints and operating assumptions. One possible way Vista may be 
used to model such knowledge is outlined below in Section 4.5.

As was noted earlier, actions may be cast as objects, and one way to do that is 

to define a class whose methods implement a given action or set of actions. These 

methods operate on objects other than the one to which they are bound by the class 

mechanism. How best to partition a large system into objects and actions is by no 

means an exact science, and indeed may be dictated primarily by aesthetics. In any
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case, along with function binding in object protocols goes the notion of delegation, 
which is to say, whether and to what extent an object does the work or hands it off 

to another object, possibly but not necessarily of the same type. This allocation 

of responsibility is really a part of the protocol, or meiaprotocol, now applied not 

only intraobject but also interobject.
A caveat before proceeding: the following refinements to the term delegation are 

not found per se in the OOP literature. Indeed, there is a possibility of confusion 

between its usage in this chapter and how it is used in other object-oriented 

languages, e.g., the classless (prototype-based) Self language[98, 13]. That said, 
with inheritance, the explicit invocation of a base class method from a derived class 

method is termed delegation to a superior, that is, higher (more general or basic) 

in the derivation hierarchy. A full delegation, where all the work is done by the 

base class, is redundant, as base class methods not redefined in the derived class 

are invoked implicitly. Partial delegation makes more sense in that part of the work 

is performed by the base class, while the rest—presumably applicable only to the 
more specific subclass—is done by the subclass method. In addition to inheriting 

structure or protocol from a base class, objects can contain other objects, in which 

case invocation of a contained class method from the container class method may 

be designated as delegation to an inferior. Object methods can also refer to other 
objects passed as arguments, and invoke methods on them as delegation to a peer.
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4.2 Declarations a n d  Definitions
A closer examination of Figure 1.3 may make some of these abstractions more 

concrete. At first glance, the code in the main procedure looks like it does nothing 

but declare three variables, pp, Is and wc—a declarative specification, no more. 

At second glance, noting (per the comments) that these variables are objects of 

type UnixObject, the declarations look more like definitions—definitions that take 

arguments, no less. In fact, this code relies on the automatic object initialization 

provided by the C++ language to do its work, to make this specification executable. 
A special method known as a constructor is associated with each class. As its 

name implies, the constructor is called to construct a valid object of its class in the 

storage allocated for it, whether on the heap or on the stack. The three UnixObject 
instances are all built on the stack; the first by a constructor that takes a single 

argument (a character string), and the second and third by constructors taking 

two arguments. Like any other C++ functions (or operators), constructors can be 

overloaded. That is, the same name can be used for different functions, the only 

requirement is that the functions’ argument lists be different. Each overloaded 

function is then distinguishable from its other namesakes by having a unique “type 

signature” given to it by the C++ compiler. Thus, the third constructor differs from 

the second by passing its arguments in reverse order.

Figure 4.1 presents in skeleton form the class declaration and protocol of UnixOb­
ject, which inherits from a parent class, VistaObject, indicated by the first line:

class UnixObject : public VistaObject



class UnixObject : public VistaObject { 
public:
UnixObject(const char* name) : VistaObject(name) {

CreatePipeO ;
}
UnixObject(const char* name, UnixObject& uo) : VistaObject(name) 

CreateProcess(name);
AttachOutput(uo);
RunProcessO ;

}
UnixObject(UnixObject* uo, const char* name) : VistaObject(name) 
CreateProcess(name);
Attachlnput(uo) ;
RunProcessO ;

>
void AttachOutput(UnixObject& uo) {

// either delegate to uo peer, or ...
}
void Attachlnput(UnixObject& uo) {

I I . . .  just access pipe state in uo
}
void CreatePipe(void) {

// using the Unix '‘pipe'' system call
>
void CreateProcess(const char* name) {

// using the Unix ‘'fork' ’ system call
}
void RunProcess(void) {

// using the Unix ''exec'' system call
>

>;

F igure 4 .1 . UnixObject Class Definition
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The public keyword indicates that all publicly visible (accessible) data and 

function members of the base VistaObject class are also visible to clients (users) 

of the derived UnixObject class. In this hypothetical protocol, the task of the first 

UnixObject constructor is to create, via a low-level system call, a Unix pipe object 

that can join two Unix process objects, whose creation is handled by the second and 

third constructors. In addition, the second “attaches” the writing end of the pipe to 

the newly-created Is process, while the third attaches the reading end of the pipe to 

the wc process. Both pipe and process objects are assumed to be encapsulated in the 

UnixObject class. The details of this encapsulation are suppressed for simplicity, but 
it could be that UnixPipe and UnixProcess class objects are created and delegated 

to, either as superiors (using multiple inheritance) or (more likely) inferiors (data 

members contained within a UnixObject instance). Though not explicitly shown, it 

also could be useful for each UnixObject constructor to delegate to its VistaObject 
superior certain bookkeeping responsibilities, such as registering the name passed 

to it as a key in a global look-up table mapping names to objects.
While it may appear in this sample code that a performance penalty due to 

excessive procedure call overhead is inevitable, with the function inline feature of 

C++ this is not the case. The inclusion of class member function bodies within 

the defining scope of the class is typically sufficient to advise a C++ compiler to 

expand calls to that function inline, with appropriate parameter substitution, in 

effect stripping off the usual procedure-call encapsulation.
As hinted to by the above use of the adjective “hypothetical,” this is not the 

actual protocol Vista uses. There is in fact no UnixObject class, nor is there a 

VistaObject class for that matter. In the course of its evolution, an organizing 

principle has arisen in Vista. This principle posits that there should be not one, 
but two fundamental types of objects, with fundamental differences in the ways 

they are created and used. The two primitive entities in Vista were cursorily intro­

duced in the previous chapter. To reiterate, they are cells and wires, represented 

graphically by boxes and lines, respectively. Relationships between these entities 

are represented by their interconnection, as in any graph or network, but also by 

the connection type, as imposed on wires by cell ports.
The distinction between cells and wires is maintained principally by convention. 

Exceptions are not disallowed (e.g., see Section 4.5), but conventionally, cells have 

no mutable state, they only act on wires, which do have mutable state. In this sense, 

cells are like procedures in most traditional action-oriented languages, whereas wires 

are like the data structures operated on thereby. Thus may Vista be accused 

of taking a giant step backwards by separating rather than combining state and 

behavior. However anomalous this may seem, in Vista both cells and wires are bona 

fide objects, instances of subclasses of the Vista base classes Cell and Wire— an 

interesting case of using OOP to implement pre-OOP abstractions. As it turns 

out, doing so is simply more convenient from a programming standpoint.
Procedures usually take parameters, and in Vista, ports represent formal pa­

rameters, whereas wires map to actual parameters. The port name as used in the 

body of the procedure associated with a cell stands for the mutable wire object this 

body of code will act on when invoked. A wire attached to a cell is automatically 

typed according to the type of the port at which it is attached. The kinds of 

operations allowed in Vista cell procedures are unlimited, as C++ copy constructors



and operator overloading permit parameters and operands used in expressions to 
be of any user-defined class type, not just the primitive built-in types, such as int 
or float. A copy constructor is needed if a class type instance is passed, not by 

reference, but by value, as the compiler must arrange for value semantics to be 

preserved when the procedure is called, by constructing a copy that the procedure 

can access and use without affecting the original argument.
Here follows a fairly detailed analysis of the relationship of cell to behavior. 

Suppose in the case of a single cell with a single wire attached to it the cell is an 

instance of a prototype named “C” having a single input port with “p” and “W ” 
as its name and type, respectively. The wire is named “1” while “c” is the name 

given to the C  cell instance. Then, omitting for the moment the preamble where 

classes C  and W  are defined, the actual C++ code generated by the Codifier is as 

follows:

BEGIN
W v v l ( " l " ) ;

BEGIN.CELLS
C ( " c " , v v l ) ;

END.CELLS
END

The omitted preamble also defines the meaning of the bracketing tokens BEGIN, 
BEGIN_CELLS, END_CELLS and END, which are C++ preprocessor #def ine “macros” 

whose definition will be given shortly. For now, suffice it to say that these macros 

establish the proper context for wire and cell instantiation. The wire is instantiated 

first, as a stack-allocated automatic variable named vv l,1 an instance of class W  
created by calling its constructor with a string (“1”) naming the wire object. The 

cell named “c” is then instantiated, but with a key difference, syntactically and 

semantically, which goes beyond the fact that C°s constructor takes an additional 

argument of type W . In this case, there is no automatic variable, as in the one 

named w c  defined thus:

C vvc ("c " , v v l ) ;

The omission is deliberate, and exploits what in C++ parlance is called a func­
tional cast. Syntactically identical to a function call, it is normally used for type 

coercion; that is, “casting” one type as another (possibly more specialized) type, 

suitable for use in expressions, or passing by value to other functions or procedures.
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^ h e  “vv” is prefixed to the string name “1” by the Codifier, yielding a valid C++ identifier. 

The purpose of the prefix is twofold. First, it prevents conflicts with any reserved C++ keywords, 

which are illegal as identifiers. Second, it countenances wire names consisting entirely of numeric 

characters, which can appear in identifiers anywhere except as the first character. The Codifier 

also filters out of the string name any punctuation or other characters not allowed in identifiers.
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This is a feature not available to procedure calls, which, unlike class constructors, 

cannot return instantiated objects to be used as values. The functional cast results 

in the compiler constructing and returning a temporary object of type (7, whose 

fleeting existence lasts long enough to affect the vvl wire object passed to the 
constructor, but no longer. After the constructor exits, the C  class destructor is 

immediately called. Destructors normally have cleanup responsibilities, such as 
releasing any storage or other resources an object has acquired during its lifetime. 

In this case, there is nothing to do, and the transient object quickly disappears. No 

stack (or heap) variable remains for subsequent use by other cells, which implies 

that if a cell wants to communicate with another cell, it must do so posthumously 

through a wire intermediary.
Hence, in Vista protocols, wires are persistent and cells are transitory. To be 

more precise, wires persist only for the duration of the scope in which they are 

defined, which is usually function scope. The top-level bracketing macros BEGIN 
and END delimit this scope, which is the function called main, the starting point for 

all C++ executables. For now, assume they are defined as follows:

#define BEGIN main() {
#define END }

These are not their real definitions, but will do for this simple example. Later 

on, when the actual Vista protolibs are described, with working examples, the real 

definitions will be given. Assume further that the cell scoping macros are defined 

away, which is perfectly acceptable to the preprocessor and the compiler:

#define BEGIN.CELLS 
#define END.CELLS

Then, after the preprocessor expands these macros (and the vertical “whites­

pace” is manually removed), the code seen by the compiler is simply:

main() {
W vvl("l");
C("c", vvl) ;

>

Adding a preamble necessary for this code to be compilable and (minimally) 
meaningful to Vista shows that would-be wire and cell classes must inherit from 

the predefined W ire and Cell base classes:

class W : public Wire { 
public:
W(const char* name) : Wire("W", name) {}

};
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class C : public Cell {  
public:
C(const char* name, W& wire) : CellO'C", name) {}

h

main() {
W vvl("lu);
C("c", vvl) ;

>

The protocol for both of these base classes requires their constructors to take an 

extra string argument in addition to the name string also delegated to them by their 

subclasses. This extra argument is the name of the subclass type as a character 

string. Its purpose is to provide a rudimentary form of runtime type identification 
(RTTI), the utility of which will be shown below in Subsection 4.3.1.

4.2.1 Type
Now suppose the two cells being connected have ports of different types. As 

has been stated, the Vista type inference mechanism permits them to be different, 

so long as they are compatible. The simple inheritance tree below implies the 

compatibility of types A and B, A and C, and B and C. The wire connecting any 

of these port pairs would have type A, it being the submost common derived class.

i n h e r i t s  from / .(o r  IsA)

That is, since the “IsA” relation holds, since A is both a B and a C by virtue of 

(multiple) inheritance, an A can pass for a B or a C.

The following is a somewhat more complex inheritance graph, in the simple 

textual form Acme sees when reading the file that tells it how to initialize a protolib. 

Briefly, there is a line for each different type, and for each line the first type listed 

is the child, and the rest (zero, one or more) are its parents:

A
B
C
D
E
F

Consider the following six cell instances, one each of types Aa, Bb, Cc, Dd, Ee 

and Ff, each having a single port of type A, B, C, D, E and F respectively, to which
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END.CELLS

END

Connecting the wires, as shown below, makes three wires out of six and changes 

their types.

Also, when already named wires are merged, Acme renames the new wire by 

concatenating the names of the old wires, separating them with an underscore 

character, as shown in the new vistafication below:

BEGIN
F vva f("a f"); 
D vvc_d("c_d"); 
E vvb_e("b_e");

BEGIN.CELLS
AaC'Aal", vva.f)
Bb("Bbl", vvb e)
Cc("Ccl", vvc_d)
Dd("Ddl", vvc_d)
Ee("Eel", vvb_e)
Ff("Ffl", vva_f)

END.CELLS
END

The first wire (named “a_f”) has the longest pedigree. F is an E, E is a B, B 

is an A, hence F is an A by heritage. In terms of the criterion mentioned above
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for the simple case, the submost common derived class (or, in the parlance of 

partially-ordered sets, the greatest lower bound or meet or product) of F and A is F.

4.2.2  O rder
Since C++ is a sequential programming language, there is a strict sequence in 

which cell and wire instantiations must occur. Does it matter in what order wires 
and cells are instantiated? The Vista protocol insists that all wires be instantiated 

before any cells, but what about the ordering among the wires, or among the cells? 

In the six cell-wire pairs vistafication above, the wires are instantiated in the same 

order as their corresponding cells. In the three wire/six cell case, however, the wire 

ordering is scrambled a bit. As might be expected, indeed instantiation order does 
matter, but only for cells, not for wires.

In general, the sequence of wire instantiations is neither predictable nor intuitive, 

as it is based on the traversal order of the wire table maintained by the cellmatrix, 

since that is how wire instantiations are generated by the Codifier. By contrast, the 

cellmatrix imposes a well-defined ordering on cell instantiations, which is that of 

left-to-right, top-to-bottom. This is intuitive, at least for native readers of Western 

languages who have ingrained in them these major/minor (vertical/horizontal) 
directions of the printed text.

A minor change in the six cell-wire pairs design demonstrates the difference it 
makes in the ordering of the vistafication:

Aa Dd
a

Bb Ee
b

Cc F f
c

BEGIN

D vvdO'd") 
C vvc("c") 
A vva("a") 
B vvb("b") 
F vvf("f") 
E vve("e")

BEGIN.CELLS

Aa("a", vva) ; 
Dd("d", vvd);



Bb("b", vvb);
Ee("e", vve);
Cc("c", vvc);
Ff ("f", vvf);

END.CELLS

END -

To recapitulate, wire instantiations are order independent, while cell instanti­

ations are order dependent. This makes sense, since wires do not interact with 

other wires unless and until they are acted upon by cells, whose actions, like most 

data-mutating operations, are non-commutative.

4.3 Practice
With the theoretical foundation properly laid, a presentation of the implemen­

tation details of a “real” Vista protolib can proceed. This shift from theory to 

practice is somewhat slippery, however, as the sig protolib is by no means practical. 

Indeed, as will become obvious, it implements a ridiculously inefficient way to do 

interprocess communication. Still, it does illustrate what is possible if signals are 

assumed to be the only means of communication at one’s disposal.

Exception handling being their primary purpose, Unix signals are generally of 

extremely limited usefulness as a communication mechanism. Some of the problems 

with signals are:

• Signals are received asynchronously by the receiving process.

• The only information conveyed by signals is a single integer from a small set 

representing defined signal types.

• In general, the recipient does not know which process sent the signal.

While used programmatically for many purposes, at the user level signals are 
normally used to interrupt or terminate running processes at will. This is usually 

accomplished via the Unix kill command issued to the shell by the user who invoked 

the process. The Unix kernel also sends signals as a kind of software (as opposed to 

hardware) interrupt, notifying running processes of faulty or exceptional conditions, 

such as invalid memory access requests. The signal system call is used to specify 

a so-called handler for a given type of signal. The handler is a (global) function 

that will be called immediately upon receipt of the specified signal. When this 

handler function returns (assuming the signal was not SIGKILL, which cannot be 

caught or handled) the program continues execution exactly where it left off. Hence, 

signals can only be handled nonhierarchically, completely outside the function call 

hierarchy of the program. There is no way to tell the program to continue not 
where it left off after catching a signal, but at some other point in the call stack. 

Short of setting some global state while in the handler function, there is no way for 

the program to subsequently tell it even caught the signal at all.
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Owing to these limitations, using signals for interprocess communication neces­

sitates a cooperative protocol. That is, both sender and receiver must be prepared 

in advance to deal with an exchange of signals. These preparations include adding 

the appropriate handler functions and the calls to signal to “prime” them. Despite 

the fact that Vista eschews source code modifications for enabling cooperation, 

the vistafication described in this section is useful for demonstrating the kinds of 

modifications that are required, as well as for illustrating basic Vista protocols.

Figure 4.2 shows both the schematic, called test, and the vistafied test.c file 

(preamble and all) of yet another reincarnation of the cell-wire-cell triad, where 

this time the wire represents the Unix kernel and its conduit for signals.

The first line is a comment identifying the name of the file. That plus the first 
two #includes represent the Vista netlist format file header. The other #includes 

represent the format of subcircuit definitions, one for each different type of cell used 

in the design. The actual definitions, of course, are found in the .h header files, 

whose contents are inserted when the C++ preprocessor does its work.
Associated with each Vista design and each Vista protolib is a header file of the 

same name with a .h suffix. The design header is included first, so it can #def ine 
customizations for the protolib header, which in turn is included before any cell 

prototype .h files. Residing in the protolib header file are the fundamental class 

definitions and protocols designed for that protolib. The protolib designer must 
provide this file before anything can be vistafied. Initially, the individual design 

header files do not exist, and are created by the Codifier with the following default 
contents:

// File: test.h

#define BEGIN MAIN.BEGIN

#define BEGIN.CELLS MAIN_BEGIN_CELLS

#define END.CELLS MAIN_END_CELLS

#define END MAIN.END

The enterprising (human) vistafier3 is free to include other definitions in this file, 
by editing it with a text editor. In some protolibs special additions are required by 

the protocol, but in general, the generated default will do.

The MAIN_ prefix serves to substitute one set of bracketing tokens for another 

set, which are defined, not in the s ig .h  file, but in the base vista protolib header 

file s ig .h  #includes before doing anything. Included in Appendix A (along with

3As used here, vistafier means one who vistafies. The appellation applies to any participant in 

the vistafication process, be it human subject or software object.





the other Vista protolib header files), the vista.h file is also where the base Cell 
and Wire classes are defined, along with other useful #def ine macros.4

The sig .h file is presented piecemeal below, interspersed with some explanatory 

comments. The semicolon following a method’s argument list (with (void) mean­

ing no arguments) indicates that the method is here declared, but not defined. In 

fact, the language allows this, and assumes that class function members are defined 

in a separate . c file that includes the .h file. In reality, as they are comparatively 
small (very few lines of code), all Vista methods are defined when declared in the 

header file. In addition, they are ordered so that each method is defined before it 

is used in the body of another method. This ordering allows the compiler to do 

efficient, one-pass inlining of all methods.5

// File: sig.h

#include "vista.h"

class Medium : public Wire { 
private:

int signaler_pid, signalee_pid; 
public:
Medium(const char* name) : Wire("Medium", name) { 

signaler_pid = signalee_pid = 0;
>
~Medium(void);
Medium& operator << (int pid);
Medium& operator >> (int& pid);
>

};

The Medium  type wire is very simple. It has a constructor, a destructor (which 

does nothing), two overloaded operators, and two integer data members, which 

are initialized to zero by the constructor. For a valid interaction, the protocol 

requires the two integers to be assigned the values of the Unix process id of both the 

signaler process and the recipient process, the signalee. Exactly how this happens 

is explained below.
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4Generally disdained by “serious” programmers who consider it bad form to use them for mere 

syntactic “sugaring” purposes, there are nevertheless good reasons for using #def ine macros. See 

[103] for detailed justifications.

5This will not work in general; for example, one pass will not suffice when two methods call 

each other.
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#undef VISTAFIER 
#define VISTAFIER sig

class VISTAFIER : public Vistafier { 
private:

int signaler_pid, signalee_pid; 
var message;

public: -
void Init(int argc, char** argv) {
Vistafier::Init(argc, argv);

}
VISTAFIER(void) : signaler_pid(0), signalee_pid(0) {
}
"VISTAFIER(void); 
static void GotSignalAlarm(void); 
int GetSignalerPid(var id); 
int GetSignaleePid(var id); 
int& SignalerPid(void); 
int& SignaleePid(void); 
void GetMessage(var mods); 
void GetMedium(var mods); 
boolean IsMessageReady(void); 
boolean IsMediumReady(void); 
void Send(int sig);

VISTAFIER& operator << (int bit);
VISTAFIER& operator << (char c) ;
VISTAFIER& operator << (char* s);

int Exit(void) {
if (IsMessageReadyO && IsMediumReady()) { 
self «  message; 11 deliver message 
return 0;

} else { 
return 1;

}
}

} VISTAFIER;

Wherever the VISTAFIER #define preprocessor macro symbol appears it will 
be replaced with the sig identifier. The use of a #def ine for this substitution is 
not strictly necessary, but it does emphasize the essential role of this class as the 
Vistafier. Each Vista protolib defines such a class inheriting directly from the base 
Vistafier class defined in the vista.h file. Each Vistafier subclass has a single 
instance (of the same name, in this case sig) which is created immediately after the
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subclass is defined, by reason of being named between the class closing brace and 

the semicolon. Thus, as it is declared/defined before main, each specialized Vistafier 
class object becomes a global variable accessible to all cell and wire methods.

The global Vistafier class object is the master controller and coordinator of the 

various vistafication tasks. It plays an important role in the three phases that follow 
the Codifier phase, as it guides the Analyzer, the Manifester and the Executer in 

realizing a given tool-agent interaction. In any vistafication, a full interconnection 

of all cells is transparently effected by the Vistafier.
To illustrate, Figure 4.3 shows the sig Vistafier as a “fat” wire interconnecting 

the signaler and the signalee, and the resulting vistafication were it to be treated 

as a normal wire. The girth of this Vistafier wire stems from its assimilation of 

several cell-like actions in support of its service as the key state-carrying object 

and interaction mediator. In the spirit of global power bus hiding in Acme/PPL, 

avoiding unnecessary visual and cognitive clutter is the main motivation for making 

the Vistafier wire implicitly as opposed to explicitly globally accessible.

In addition to signaler_pid and signalee-pid (the same two integer data members 

as in the M edium  wire class), sig maintains a message member of type var. Short for 

variable, var is used throughout Vista as a multipurpose data object that can either 

be staticly typed, or else can assume its type at runtim e, based on the context of its 
use. Subsuming such basic types as int, long, float, double, char* or even string into 

one “super-string” class, the var class, via operator overloading, implements arith­

metic, string and sub-string operations, mixed operations between mixed types, 

and formatted stream output. W ith a VarMap class providing associative arrays of 

vars indexed by vars, this superbly useful C++ library serves Vista very well.

The Init method of sig is listed before the constructor, not only because the 

constructor calls it, but because this method is what really breathes life into a 

staticly-constructed vistafier. Init extracts command-line arguments from the exe­

cution environment as soon as they become available, as seen to by the MAINJ3EGIN 

macro, which is shown expanded below. W ith no member maintained directly by 

sig needing initialization, its Init method merely delegates to the Init method of its 

superior Vistafier class.

The purpose of the other declared sig methods and the three overloaded <<  

operators will be revealed shortly. The GotSignalAlarm member function is special, 

by virtue of being declared static,6 which makes it suitable as a handler function 

passed to signal, as shown in Subsection 4.3.3.

The Exit method shown above in its entirety is the counterpart of the Init 
method. This method is the focal point for the signal-based interaction of this 

Vista protolib. The cells and the M edium  wire only prime the pump, so to speak. 

Before showing the protocol of the Signaler and Signalee cells, and the definitions 

of the M edium  «  insertion operators, the heart of this test vistafication is first 

laid bare, with all VISTAFIER and begin/end bracketing macros fully expanded:

6Static member functions are like global function, but their access is more controlled, and they 

do not pollute the global namespace, as their names are scoped within the class. Hence, outside 

of class methods, C++ static member functions must be referenced using the : : scope resolution 

operator, e.g., s ig: :GotSignalAlarm.
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int main(int argc, char** argv) { 
sig.Init(argc, argv);

Medium vvl("1"); 
do {
Signaler("self", "bmods=0 Message=’ererer‘", vvl); 
Signalee("parent", "bmods=l", vvl);

} while (sig. IsVistafyingO );
return sig.Exit(); .

>

Whatever it is they do, the two cells apparently require more than one lifetime to 

do it, as they are instantiated anew each time around the do/while loop controlled 

by the IsVistafying method. This is a virtual base class method, and may thus 

be overridden in subclasses of Vistafier, although sig has no reason to do so, as 

the default base behavior is adequate (see the technical report). The controlling 

hand of the Vistafier as Analyzer/Manifester/Executer is what distinguishes each 

reincarnation of these two cells, whose time for the limelight has come:

// File: Signaler.h

defCell(Signaler, (NAME, MODS, BIDIR(Medium, m))) 
if (VISTAFIER.IsAnalyzingO) {
BPORT(name, m);
m << VISTAFIER.GetSignalerPid(name);

>
else if (VISTAFIER. IsManif estingO ) { 
m »  VISTAFIER.SignaleePidO;

>
else if (VISTAFIER. IsExecutingO )
VISTAFIER.GetMessage(mods);

// File: Signalee.h

defCell(Signalee, (NAME, MODS, BIDIR(Medium, m))) 
if (VISTAFIER.IsAnalyzingO) {
BPORT(name, m);
m << VISTAFIER.GetSignaleePid(name);

> , 
else if (VISTAFIER. IsManif estingO) { 
m »  VISTAFIER.SignalerPidO ;

>
else if (VISTAFIER. IsExecutingO)
VISTAFIER.GetMedium(mods);

The d e fC e ll macro, together with NAME, MODS and the three port mode macros
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INPUT, OUTPUT and BIPUT (or BIDIR), are convenient shorthand for declaring a 

Cell subclass with a constructor that forwards both name and type to the base 

Cell class constructor. The default skeleton generated by the Codifier when no . h 

file yet exists is the defCell macro call with no body,7 which when expanded for 

Signaler (similarly for Signalee) looks like:

class Signaler : public Cell { 
public:

Signaler(const char* name, var mods, Medium* m)
: Cell("Signaler", name) {

During their first life, that is, while the sig vistafier IsAnalyzing, the Signaler 
and Signalee both have two similar actions to perform on their shared wire, shown 

here with macros expanded for the former:

m.Port('b', name, "m"); 
m << sig.GetSignalerPid(name);

The purpose of the P ort wire method is to record two facts in the test. a log file 

mentioned in Subsection 3.4.4, those facts being that there is a port on the cell and 

a terminal on the wire, “m” naming them both. (Actually, since there is usually 

more than one port with the same name, the name “m” is qualified (prefixed) with 

the instance name of the cell it belongs to.) The reason for distinguishing a port 
from a terminal, the former being cellside, the latter wireside, is to make it easier 

to write connectivity rules for the Manifester, shown below in Subsection 4.3.1.

The sig methods GetSignalerPid and GetSignaleePid are called with the cell 

name as an argument.8 Note that it is no accident that the Signaler and the 

Signalee were named “self” and “parent” respectively, as these names control the 

lookup of the appropriate process id:

int GetSignalerPid(var id) { 
if (id == "self") { 
return getpidQ;

} else { 
return 0;

}
}

7Note that the outclude macro in tes t. c supplies the brace closing the constructor definition, 
as well as the final brace and semicolon closing the class definition.

8In another appearance of the var type, these methods take a var argument, using both the 
automatic type conversion (const char* to var) and the overloaded equality operator (which does 
a string comparison) defined in the var class.



int GetSignaleePid(var id) { 
if (id == "parent") { 

return getppid();
}- else { 

return 0;
>

>

The Unix system calls getpid and getppid, return the id of the currently 

running process and its parent process, respectively. If either cell name does not 

conform, zero is returned, and the sig protocol fails. Note that the “else” branch of 

the GetSignaleePid “if” could return, instead of zero, the id of an arbitrary process 

(not named “parent”) by an operating system query finding the id given the process 

name. .

Now known, the process ids of the Signaler and the Signalee are “pushed” into 

the Medium  wire, via its <<  operator:

Medium# operator << (int pid) { 
if (signaler_pid == 0) { 

signaler_pid = pid;
}- else {

signalee_pid = pid;
>
return self;

>

Stored there only temporarily, they await being “pulled” from the wire when, in 

the second act, the sig vistafier Is Manifesting. The >>  operator does the pulling:

Medium& operator >> (int& pid) { 
if (signalee_pid != 0) { 

pid = signalee_pid; 
signalee_pid = 0;

}- else {
pid = signaler_pid; 
signaler_pid = 0;

>
return self;

>

After two pushes and two pulls on this wire, its signaler^pid and signalee^pid 
members will be zero once more, as they were in the beginning. The two ids 

are put into the corresponding members of the sig object. The purpose of this 

convoluted two-phase data exchange is to ensure the validity of a sig vistafication, 

making it impossible to carry out a signal-based interaction unless the cells are
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hooked up correctly. As shown below in Subsection 4.3.1, the Manifester will catch 

an invalid configuration and explain its invalidity, but since the Manifester stage 

can be bypassed, it is prudent to have a separate, backup validation scheme. Also, 

this scheme is indifferent to cell instantiation order, so if the user were to place the 

cells so that the Signalee were instantiated first, as below, it would still work:

4.3.1 Making Manifest
During the transition from its Manifesting state to its Executing state, the 

Vistafier method M akeM anifest is called, which uses string concatenation and type 

conversion operations defined on var.

var makecmd("make") ;
makecmd += " manifest DUT=";
makecmd += basename;
status = system((char*) makecmd);
if (status > 0) state = DONE;

Since test is the “basename” for this vistafication, the char* string passed to 

system would be:

make manifest 0UT=test

If anything goes wrong, and make returns an error status, the state variable 

stored in the Vistafier class will be assigned the (enumerated-type) value DONE, 
and a value of false will be returned from the IsExecutinq method, preventing any 

further execution of this vistafication. If everything goes right, and make succeeds, 

it will have done the following five steps:

1. massage the output of the Analyzer into a test . F facts file,

2. combine that file with the files sig .P  and s ig .q  which contain, respectively, 

the rules and the query associated with the sig protocol,

3. fuse it all into one test .P module file,

4. create a test . q command file that refers to the test .P module, and



The test. F file contains seven facts, one for the wire and three for each of the 

two cells, showing why cells and wires need to know their type (see Subsection 

4.2.1):

/ *  File: test.F * /
medium("l"). -
signalee("parent").
bport("parent_m","parent").
terminal("parent_m","1") .
signaler("self").
bport("self_m","self").
terminal("self_m","1").

In sig.P are found the following eleven rules, where, following standard Prolog 

notational conventions, the uppercase terms (C, W, CR, etc.) are variables, the 

lowercase terms are predicates, and the :- connective separates the head of a rule 
from its body. The mnemonics C for Cell, W  for Wire, NM for Number of Mediums, 

etc., are pretty much self-evident.

1. cell(C) :- signaler(C).

2. cell(C) signalee(C).

3. wire(W) :- medium(W).

4. port(P,C) :- iport(P,C).

5. port(P,C) :- oport(P,C).

6. port(P,C) :- bport(P,C).

7. connected(C,W) :- port(P,C), terminal(P,W).

8. numsignalers(count(<R>)) signaler(R).

9. numsignalees(count(<E>)) :- signalee(E).

10. nummediums(count(<M>)) medium(M).

11. ok(CR,CE,WM,NR,NE,NM) :- connected(CR,WM), connected(CE,WM),
numsignalers(NR), NR = 1, 
numsignalees(NE), NE = 1, 
nummediums(NM), NM = 1.
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5. invoke coral (the logic programming system) with t e s t .q  as input.



The first six rules express “IsA” inheritance relationships, with a general predi­

cate in the head of the rule and a specific predicate in the body of the rule. That 

is. the first rule simply says that C is a cell if C is a signaler. Likewise, the sixth 

rule says that P is a port of C if P is a bport of C.
The seventh rule is for connectivity. Stated in English, it says that C is connected 

to W  if P is a port of C and P is a  terminal of W. Rules eight, nine and ten illustrate 

usage of the built-in coral multiset operators. The grouping operator < ... > is one 

way to create a multiset, the cardinality of which is returned by the count operator. 

Thus, informally, rule ten says that if M is a medium, then include it in the set of 

all mediums, and count the total members of the set.
Rule number eleven puts it all together, using an infix equality ( = ) predicate to 

say that everything is okay if the same wire is connected to two different cells, and 

there is exactly one signaler cell, one signalee cell, and one medium wire.
The five commands and lone query given to coral in the ts s t .q  input file are 

the following:

co n su lt( te s t . P ). 

explain_on.

?ok(CR,CE,WM,NR,NE,NM). 

exp la in _o ff.

she ll("Exp la in  -f dump_directory"). 

q u i t .

The consult command tells coral to read and evaluate the te s t.P  module 

containing the facts and rules just shown. The query is formed by tacking a 

question mark onto the head of rule eleven. Bracketing the query by the ex- 
pla.in.on and explain.off commands results in the creation of a subdirectory called 

dump_directory containing a single file (ok.d) where coral “dumps” a record of 

each rule instantiation that generates a fact. Just before coral quits, the shell 
command (via system) fires up the Explain program, telling it look for all dump 

files in the dump directory. Mentioned in Subsection 3.4.3, Explain is the facility 

that knows how to read the ok.d dump file, and display it in tree form.

Figure 4.4 shows the main window that appears when Explain starts up. In 

the file browser are listed all currently loaded dump files, which in this test case, 

is the lone ok.d file. In general, each different query being explained will have its 

own file and entry in the browser.

Selecting the solitary entry and choosing the “Show Selected Modules” com­

mand in the “Modules” menu will “consult” the dump file, and then bring up the 

derivation window displayed in Figure 4.5, where the user may dynamically “grow” 

or “prune” the derivation tree by clicking the mouse on its leaves, and thus explore 

all derivations produced by the query. This tree provides a visual explanation of 

the iterative process of fact generation by rule instantiation.

The user must first click on a predicate name in the top-left “Predicates” browser, 

whereupon all of the instantiations for (facts with) that predicate will appear in 

the bottom-left “Instantiations” browser. The user then clicks on an instantiation, 

causing it to be rendered in tree form in the main drawing window. The root of the
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tree represents the derived fact, while the children springing from the root represent 

the facts in the body of the rule.
The tree in Figure 4.5 is the one that appears when the single instantiation of 

the “ok” predicate is selected, and two leaves are expanded. The extraneous nodes 

where the predicate names are prefixed with “m_” are due to the “magic” rewriting 

coral does to “materialize” evaluation of the test .P program. Note too that some 

predicate names have suffixes like “_fb” indicating which arguments were free and 
which were bound in the evaluation of a subgoal, such as ?connected(X, "1"). 
The fact connected_fb(parent,"1 ") indicates that connected (parent, "1") was 

computed in response to the query fact m_connected_fb("l"). See [5] and [76].
Closing the Explain windows terminates the program and returns control in 

rapid succession to coral, make and the test vistafier, which then completes the 

transition to its Executing state, triggering the third life of the signaler and the 

signalee. Their respective roles in this final state are to communicate to the vistafier 

the message to be sent, and the readiness of the medium. This they do by passing 

their “mods” (short for modifiers) parameter to the Vistafier methods GetM essage 
and GetM edium .

4.3.2 Parameterization
The mods string, which is coerced into a var type on cell instantiation, cur­

rently ranks next to the instance name as the easiest and most flexible means 

of parameterizing9 a cell. (In Chapter 6, more elaborate mechanisms for cell 

parameterization will be explored.)
In Acme, a modifier is a local state object associated with a cell instance. In a 

language analogy, if a cell is a verb then a modifier is an adverb. Each cell prototype 

can have any number of modifiers associated with it, which the user may define for 

cellmatrix prototypes when creating them via the Wrap command. Then, using the 

M odify Cells command, the user can set different values in these modifier objects 

for different instances of the same prototype.
Acme currently has three types of modifiers— BooleanM odifier, String Modifier 

and GroupModifier, all of which inherit from the base M odifier class. Boolean 

modifiers are used to assert/deassert named predicates (e.g., HasLoad) to tell 

whether or not a given cell instance should have some modification, either physical, 

structural or behavioral (e.g., a load placed on an internal node). String modifiers 

provide a means of attaching named attributes to cell instances in the familiar 

form of a property list of name/value pairs. Group modifiers allow arbitrary 

combinations of boolean and string modifiers to be grouped in named hierarchies.

For each Acme cell with modifiers defined on it, the Codifier builds a stylized 

string of modifier names and values for automatic inclusion as the second parameter 

of Vista cell constructors. All boolean modifier values are assembled bit by bit into
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9Parameterization has long been used to solve the flat namespace pollution problem caused 
when every minor variation of a general theme is named slightly differently. For example, a series of 
prototypes named IBitALU, 2BitALU, 4BitALU and so forth, is both undesirable and unnecessary 
if instead a single prototype, NBitALU, can have a parameter named N, the bit-width. Parameters 
partition the namespace hierarchically, showing the essentials while hiding the accidentals.
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a single integer, which is inserted as the value of the “bmods” name. That is, 

the “bmods” string, an equals sign and this integer are concatenated to form the 

first token in the mods string. String modifiers come next, but as their values may 

contain spaces, delimiting characters (such as the ’ (single-quote)) are needed to 

surround the values following the modifier name and the equals sign.
The “parent” Signalee has a single boolean modifier named CanRespond, which 

when asserted has a value of 1 , and so its mods string is:

"bmods=l"

The “self” Signaler has a string modifier named M essage, and no boolean mod­

ifiers, hence the 0  following the first equals sign in:

"bmods=0 Message=’ererer’"

In this scheme, the “some modifiers defined, none of them boolean” case is 

indistinguishable from the “boolean modifiers defined, but none asserted” case. 

However, the user who creates a prototype with defined modifiers is presumably 

the one who provides the contents of the corresponding .h file, and knows which is 
the case. In the following chapter an example will be shown of a cell with several 

boolean modifiers, for which this scheme provides the benefit of compactness in the 

mods string traded off against the cost of extracting the bit values from it.

4.3.3 Cooperation
The message the Signaler wants to send to the Signalee is the value of the 

M essage string modifier, namely:

ererer

The meaning of this message will be explained shortly. The successful extraction 

and caching of this message by GetM essage will result in true being returned when 

IsM essageReady is called. Similarly, if GetM edium  extracts the boolean value “1 ” 

from the Signalee’s modifiers, then IsM edium Ready returns true when called. Once 

it ascertains that the signalee can respond, a necessary side effect of GetM edium  is 

to set up the handler function for the SIGALRM response that will be sent by the 
signalee process:

signal(SIGALRM, sig::GotSignalAlarm);

Repeating for easier reference the sig::Exit method, only this time with the self 
macro revealed as applying the * indirection operator to the th is  pointer, yielding 

the sig object pointed at, it says that if the message is ready and the medium is 

ready, then deliver the message and return 0 (meaning success to Unix), otherwise 
indicate failure by returning 1 :



int Exit(void) {
if (IsMessageReady() && IsMediumReady()) {

(♦this) << message; // deliver message 
return 0;

} else { 
return 1;

>
> -

The details of the three <<  operators are found in the technical report. Briefly, 

the operator taking a string calls the one taking a character, which in turn calls the 
operator taking an integer argument, which in turn calls the Send method. Thus, 

the message string is delivered character by character, each character in turn being 

delivered bit by bit (eight in all) by passing Send the value of user-defined signals 

SIGUSR1 or SIGUSR2, according as the bit value is 0 or 1. It is in the Send method 

that the rubber meets the road:

void Send(int sig) const { 
kill(signalee_pid, sig); 
if (signaler_pid > 0) { 
pause() ;

>
>

The kill function is the Unix system call counterpart to the kill command. It is 

what actually delivers the argument signal to the signalee process by way of the Unix 

kernel. Since Send could be invoked to send any signal to any process, the test for a 

signaler_pid greater than zero is included, so that a zero value can indicate that the 
recipient process is not prepared to respond, bypassing the Unix pause system call 

that otherwise will put the signaling process to sleep, awaiting acknowledgement 

from the signalee. If coming, this acknowledgement must be in the form of a 

SIGALRM signal, which will be “caught” by the do-nothing GotSignalAlarm handler, 

with no other effect than awaking the sleeping signaler causing pause (and therefore 
Send) to return, and execution to continue.

For this handshake protocol to work, the cooperation required of Acme consists 

of the addition of a mere handful of code, starting with two calls to signal to set 

up handlers for the off/on bit signals:

signal(SIGUSR1, handle_signal_usrl);
signal(SIGUSR2, handle_signal_usr2);

These handlers are two-line global functions that pass 0 or 1 respectively to 

the interact-with-char_recognizer global function, and then call the one-line global 

function acknowledgesignal:



void handle_signal_usrl(void) { 
interact_with_char_recognizer(0); 
acknowledge_signal();

>

void handle_signal_usr2(void) { 
interact_with_char_recognizer(1);
acknowledge_signal(); •

>

void acknowledge_signal(void) {
kill(acme()->GetAckPid(), SIGALRM);

>

The last thing done by the Executer is the caching by Acme of the id of the 

just-forked child process, which for this test vistafication is the signaler process, 

Acme being the signalee. Given that the global function acme returns a pointer 

to the sole instance of a class whose GetAckPid method returns this cached id, 
acknowledge^signal delivers the necessary SIGALRM to wake up the sleeping signaler 

process.

The bulk of the work is done by the interacLwith-char-recognizer function, in 

concert with a staticly-instantiated char_recognizer object. In a simple demonstra­

tion of code reuse through inheritance, the CharRecognizer class is derived from 
the FlaggedObject class, which is a utility class used extensively in Acme. The 

FlaggedObject class provides 32 named (enumerated) boolean flags packed (in most 

architectures) into the 32 bits of an integer member of the class, with methods to 

Set or Reset a given flag, Clear all flags, and return the Bits of the packed integer.

class CharRecognizer : public FlaggedObject {
private:

enum CharRecognizerState
{ BO, Bl, B2, B3, B4, B5, B6, B7 > state;

public:
CharRecognizer(void) {

state = BO; flags.Clear();
}
void DoBit(int bit) {
flag_name_t fnt = flag_name_t(state); 
if (bit == 0) flags.ResetFlag(fnt); else 
if (bit == 1) flags.SetFlag(fnt);

}
boolean GotChar(int b) { 

switch (state) {
case BO: DoBit(b); state = Bl; return false; 
case Bl: DoBit(b); state = B2; return false;
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case B2: DoBit(b) state = B3 return false
case B3: DoBit(b) state = B4 return false
case B4: DoBit(b) state = B5 return false
case B5: DoBit(b) state = B6 return false
case B6: DoBit(b) state = B7 return false
case B7: DoBit(b) state = BO return true;
default: return false;

} -
}
unsigned char GetChar(void) {
return (unsigned char)flags .BitsQ ;

}
} char_recognizer;

void interact_with_char_recognizer(int bit) {
if (char_recognizer.GotChar(bit)) {
unsigned char c = char_recognizer .GetCharO ; 
acme()->HandleKey(c); 
acme()->Flush();

}
>

The GotChar method implements the straightforward transitions of this recog­

nizer through its eight enumerated states, one for each bit of the character being 

recognized. Only after a complete cycle through these eight states does this method 
return true, whereupon GetChar is called to return the character GotChar just built 

bit by bit. The Acme H andleKey method is then given this character, which maps 

it to the associated command that is summarily invoked, after which the Acme 

Flush method ensures that any feedback output generated by the command is 

immediately flushed.

Thus, in the message of this test example, the ‘e’ character maps to the Enlarge 
command, and the ‘r’ character maps to the Reduce command in Acme. So, if the 

message is received correctly by Acme, the result is that the view is first enlarged 

and then reduced back to its original size. This “zoom in then back out” action is 

repeated three times in rapid succession, producing a simple animation effect.

4.3.4 Caution
The first time this protocol was tried, it did not work. The reason stems from 

the asynchronous nature of signal receipt, and the race condition caused by the 

interplay of the Unix signal generator and the Unix scheduler. As the scheduler 

controls which process is currently running, and how long that process can run 

before another process is allowed to run, what the scheduler apparently did was 

to suspend the signaler process right after the kill call in Send, and before it could 
pause. Then Acme, the signalee process, was given a CPU time-slice long enough 

to receive the SIGUSRn signal and reply with SIGALRM, which signal was delivered
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by Unix to the signaler the instant the scheduler started it running again. The 
signaler stopped to handle this SIGALRM and then continued executing where it 

left off, which was right before the call to pause. Then it paused, having already 

consumed the signal that was meant to unpause it, thereby losing its chance to 

continue with the bit by bit signal/reply handshake.
Because of this unpredictable race condition, Acme must wait long enough for 

the signaler process to pause before sending its SIGALRM. By experiment, 100000 

microseconds (one-tenth of a second) was found to be sufficient when the operating 

system was lightly loaded, hence the revision:

int sleeptime = 100000;

void acknowledge_signal(void) { 
usleep(sleeptime); 
kill(acme()->GetAckPid(), SIGALRM);

>

However, this gives no iron-clad guarantee that it would still work under heavily- 
loaded conditions. Increasing the Acme sleeptime heightens the probability that it 

would work, but also slows down the message delivery substantially.
The main lesson learned here is how fraught with peril is any attempt to rig­

orously prove the correctness of interaction protocols involving asynchrony and 

the Unix operating system, whose formal semantics are chimerical at worst, and 

highly complex at best. Vista protolibs supporting synchronous protocols fare much 

better, but still blanch in the face of Dame Formal.

4.4 Pushing a n d  Pulling
Figure 4.2 can be viewed as two cell-wire pairs joined wire to wire, the two wires 

becoming one. As shown in the previous chapter, this unification can only happen 

if the two wires are type-compatible, which makes the merger meaningful. Then 

it makes sense for the two cells to interact by the medium of their common wire. 

One possible and very common protocol is for the first cell to write data to the 

wire that the second cell then reads, whereupon the second cell replies by writing 

data to the wire for the first cell to read. This simple round-trip message exchange, 

or handshake, is viewed as two cells interacting by mutual acting on a shared wire 

object. The handshake protocol dictates the proper sequence of actions.
Many other protocols are possible, but be they unidirectional notification-based, 

or client-server transaction-based, or whatever— the common denominator is always 

the wire, and the process of changing its state through cell-encapsulated actions. 

These state-changing actions can be viewed, in a fundamental sense, as a push or a 

pull on a wire by a cell. While the wire can also be treated as the indirect object; 

that is, a cell pushes something onto (or into) a wire, or pulls something therefrom, 

the concept of a wire being pushed or pulled through its state space by force-like 

cells seems a more parsimonious viewpoint.
The operators <<  and >>  provide a suitable notation for expressing the respec­

tive actions (forces, effects) of pushing and pulling. The labeling of a cell with one
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of these symbols is adequate to depict that the sole function of the cell is to invoke 

a defined <<  or > >  operator on the wire attached to the cell, as follows:

« » -

defCell(Pusher, (NAME, OUTPUT(WireTypeA, a), INPUT(Source, pushee))) 
a << pushee;

defCell(Puller, (NAME, INPUT(WireTypeB, b) , OUTPUT(Sink, pullee))) 
b >> pullee;

As shown, by using additional ports the source or sink for the data pushed to or 

pulled from these wires can be passed as a parameter. Taking a cue from the C++ 

iostream class library, which defines several I/O  manipulators that modify some 

piece of state maintained by the base istream and ostream classes, and assuming 

all wire types are derived from these base classes, the following completely general 

manipulations are possible (given the existence of a pair of cellname-parameterized 

functions returning the desired stream manipulators):

defCell(Pusher, (NAME, OUTPUT(ostream, os))) 
os << get_ostream_manipulator_from_name(name);

defCell(Puller, (NAME, INPUT(istream, is)))
is >> get_istream_manipulator_from_name(name);

Although not used in the wire class of Section 4.3 above, the return value of its 

overloaded <<  operators is the Medium  wire object itself. This idiom is borrowed 

from the iostream library, which overloads the <<  (insertion, or “put to”) and >>  
(extraction, or “get from”) operators, and allows their convenient juxtaposition:

some_type_of_ostream << sourcel << source2 << source3; 
some_type_of_istream >> sinkl >> sink2 >> sink3; 
some_type_of_iostream << sourcel >> sinkl << source2;

The third case shows how these two operators can be intermixed for bidirectional 

streams. It would be helpful were this notational convenience able to carry over to 
the visual Vista language, as in:

« - « « -

» - » »

- « » «
In fact, Vista can express such manipulation chains by means of Acme’s equiva­

lent ports mechanism. Equivalent ports are two or more spatially distinct ports that



have the same name and type, or are directly connected inside the cell. The netlist 

generation code computes equivalent ports, and emits in subcircuit definitions and 

calls only one port/wire parameter for each set of equivalent ports it finds. This 

is necessary, because in most (if not all) languages the inclusion in a procedure 

definition of more than one parameter with the same name is an egregious error.

The possibility of having equivalent ports complicates vistafication interpreta­

tion. On its face, the following looks like two wires and an intervening cell:

A look inside the cell (recall from Section 3.3 the operation of clear wrapping) 
may reveal the following:

The wire inside the cell connects the two opposite ports, hence, when vistafied 

only one wire will be instantiated and passed to the lone cell, whose constructor 

will have been defined to take a single wire parameter. The vistafication is logically 

isomorphic to that of a cell-wire pair. Thus, in designing cells, even simple attention 

to the decision of where to put the ports can pay some positive dividends. For 

example, that the two wires are actually one and the same seems intuitively more 

likely in cell A than in either cell B or cell C:

B

In any case, the appropriate use of text labels for disambiguation is well war­
ranted, e.g.:
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OS - « IS - »

Of course, the ultimate arbiter must be the cells’ textual definitions, including 

clarifying comments:

defCell(IntPusher, (NAME, OUTPUT(ostream, os), INPUT(int, i))) 
os << i; // invokes operator << (int) on os

defCell(FloatPuller, (NAME, INPUT(istream, is), 0UTPUT(float, f))) 
is >> f; // invokes operator >> (float) on is

4.5 Finite State Machines
The Vista solution to the interobject protocol specification problem discussed 

earlier in Section 4.1 is embodied in its fsm (Finite State Machine) protolib, 

wherein cells map not only to actions, but to states as well, with wires representing 

transitions between states. This mapping, derived from Martin[59] and described 

below, further demonstrates the dualistic versatility of Vista entity/relationship 

specifications. In this case, what is flowing through the wires is not data, but 

rather the locus o f  control of the computation.
Implementing a Finite State Machine (FSM) base class with the idea of subclass­

ing it to realize specific FSM behavior is innately problematic. One of the problems 

can be seen by looking at the way an FSM was implemented in the CharRecognizer 
class shown above in Subsection 4.3.3, where the states are delineated by a class- 

private enumerated type, which cannot be extended by inheritance. Outlined in 

[59], Martin’s elegant solution is to decompose an FSM into two components, only 

one of which is subclassed. This method is briefly described below.
FSMs are inherently event-driven. When an event occurs, the FSM undergoes 

a transition to a new state. A behavior or set of behaviors is associated with each 

transition. In Martin’s scheme, all of these behaviors are bundled into a class, called 

the context, which can be derived from to extend the functionality of the FSM.
All of the state-to-state sequencing happens in the other part of the FSM, the 

control component, which is implemented as a single inheritance hierarchy. Each 

different state is defined as a class derived from a common base state class, and 

overrides all the virtual functions defined in this common class. These overriden 

virtual functions, one for each different event, contain very little code, as they 

represent only the “wiring” that connects the context behaviors, controlling their 

execution sequence. This separation of FSM context and control makes new FSMs 

meaningfully derivable from old ones. The context can thus be furnished with new 

functionality, and then, for further flexibility and extensibility, can even be given a 

new control component.



The following five figures present an example of moderate complexity: modeling 

a search task in a word processor. Figure 4.6 shows a Vista fsm design in the 

form of a state transition diagram10 from which the Codifier produces the vistafi­

cation shown in Figure 4.7, which when executed generates the C++ code shown in 

Figure 4.8 and Figure 4.9.
The context class for this word finder FSM is not automatically generated, as 

this is where the real functionality resides. Figure 4.10 sketches this class, omitting 

all but a few details. The following chapter contains a complete and fully-detailed 
example of a more complex recognizer FSM, used to recognize and strip comments 

from C++ source code (see Section 5.4 on page 115).

4.6 Capitulation a n d  Recapitulation
A plethora of articles, books, programs and systems have been written for the 

purposes of promoting, teaching, enabling and facilitating the use of object-oriented 

programming, and, more recently, the related disciplines of object-oriented analysis 
and object-oriented design. For example, [29] presents in tutorial style guidelines 

for using types and inheritance in OOP, such as, D on ’t use subtyping fo r  objects that 
are not the sum o f  their parts. Representative of style guides is [50], while a much 
more ambitious guide is the Fusion[16] methodology, a very recent CASE approach 

addressing the many problems associated with object classification and modeling, 
and behavior partitioning. Vista lays no claim to being one of the premiere “Guides 

for the Perplexed” in these areas. Although tool-agent interactions can be as general 
and fine-grained els one likes, depending on one’s definitions of tool and agent, 

dealing with real, non-cooperative but useful tools is still Vista’s main concern, 

and hence its handicap.

In this chapter, the protocols and pragmatics of Vista have been expounded. As 

has been argued, because objects are more a binding mechanism than a modeling 
mechanism, Vista clings to the fundamental yet slippery dichotomy of object and 

behavior. Targeting C+ + , Vista merges declarations and definitions, using explicit 

delegation to superior, inferior or peer objects to execute specifications. From 

Analyzing to Manifesting to Executing, the omnipresent Vistafier object manages 

the interaction of cells and wires as they follow the dictates of a given protolib’s 
protocol.

All in all, Vista protocols have as yet only attained plausibility. The demonstra- 

bility of the versatility of their applicability is now both imperative and imminent.

10Observe that there is nothing sacrosanct about squares or rectangles for cell shapes— any 

two-dimensional shape is permissible. In  this case, the chosen shapes accentuate the distinction 

between states (circles) and actions (diamonds).



ure 4 .6 . Vista Specification as State Transition Diagram
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BEGIN

Transition vv9 ("9")
Transition vv8 ("8")
Transition vv7 ("7")
Transition vv6 ("6")
Transition vv5( "5")
Transition vv4( "4")
Transition vv3( "3")
Transition vvll ("11
Transition vvlO ("10
Transition vv2( "2")
Transition vv 1 ("1")

BEGIN.CELLS

WordFinderGettingWordState("GettingWord", vv2, vvl, vv3); 
WordFinderDoneState("Done", vv3);
WordFinderAction("GetWord", vv2, vvll); 
WordFinderAction("FindWord", vv4, vvl); 
WordFinderAction("SavePosition", vvll, vv7); 
WordFinderFindingState("Finding", vv4, vv5, vv6); 
WordFinderStartState("Start", vv7); 
WordFinderAction("DisplayWord", vv8, vv5); 
WordFinderAction("RestorePosition", vv3, vv9); 
WordFinderDisplayingState("Displaying", vv8, vvl, vv9); 
WordFinderAction("DisplayNotFound", vvlO, vv6); 
WordFinderDisplayingDoneState("DisplayingDone", vvlO, vv9);

END_CELLS

END

F igure 4 .7 . Netlist for a Finite State Machine Specification



class WordFinderState : public State { 
public:

WordFinderState(const char* name) {
put_state(this, name); // so this can be found by name

>
virtual const char* StateName(void) const { 

return "WordFinderState";
>
virtual void GotWord(WordFinder& c) {

cerr «  c «  "No transition from GotWord" << endl;
>
virtual void Cancel(WordFinderft c) {

cerr << c «  "No transition from Cancel" «  endl;
>
virtual void Found(WordFinderft c) {

cerr «  c «  "No transition from Found" «  endl;
>
virtual void NotFound(WordFinder& c) {

cerr << c «  "No transition from NotFound" << endl;
>
virtual void OK(WordFinder& c) {

cerr << c «  "No transition from OK" «  endl;
>

Figure 4.8. C++ Code Generated for a Control Base Class



class WordFinderStateStart : public WordFinderState { 
public:

virtual void Start(FSMContextft c) {
c.EnterState("GettingWord"); c.SavePositionO ; c.GetWordO;

>
} Start("Start");

class WordFinderStateGettingWord : public WordFinderState { 
public:

virtual void GotWord(WordFinder& c) { 
c.EnterState("Finding"); c.FindWord();

>
virtual void Cancel(WordFinderft c) { 

c.EnterState("Done");
>

} GettingWord("GettingWord");

class WordFinderStateDone : public WordFinderState { 
public:
> Done("Done");

class WordFinderStateFinding : public WordFinderState { 
public:

virtual void Found(WordFinderft c) {
c.EnterState("Displaying"); c.DisplayWord();

>
virtual void NotFound(WordFinder& c) {

c.EnterState("DisplayingDone"); c.DisplayNotFound();
>

} Finding("Finding");

class WordFinderStateDisplaying : public WordFinderState { 
public:

virtual void Continue(WordFinderft c) { 
c.EnterState("Finding"); c.FindWord();

>
virtual void Cancel(WordFinderft c) {

c.EnterState("Done"); c.RestorePositionO;
>

> DisplayingC'Displaying");

class WordFinderStateDisplayingDone : public WordFinderState ■[ 
public:

virtual void OK(WordFinder& c) {
c .EnterState("Done"); c.RestorePositionO;

>
> DisplayingDone("DisplayingDone");

Figure 4 .9 . C + +  Code Generated for Control Derived Classes



class WordFinder : public FSMContext { 
public:
WordFinder(void) {
EnterState("Start");
Start();

}
WordFinderStateft GetState(void) {
return ((WordFinderState&)*itsState);

}
void SavePosition(void) {

I I  ...
}
void GetWord(void) {

I I  . . .
>
void FindWord(void) {

I I  ...
}
void DisplayWord(void) {

I I  . . .
>
void DisplayNotFound(void) {

I I  . . .
}
void RestorePosition(void) {

I I  . . .
>

};

F igure 4 .1 0 . The Context Class for a Word Finder FSM



C H A P T E R  5

A P P L I C A T I O N

In this chapter are presented several specific tool-agent interaction problems to 

which Vista is applicable, organized by protolib (those itemized in Chapter 3) and 

exhibited roughly in increasing order of complexity. The wide variety of examples, 
both real and contrived, is meant to demonstrate the versatility of Vista protolib 

protocols. As in the last chapter, code and commentary are interwoven with the 

aim of elucidating the salient features of these vistafications. For the benefit of the 

curious, the details of the Vista class libraries are found in Appendix A.
To begin, dichotomizing the tools used in the examples in this chapter yields 

two broad categories, namely:

1. Filters, and

2. Engines.

Filters serve to condense data to manageable proportions, since when informa­

tion is voluminous, its compression is highly desirable, if not absolutely essential. 

The Unix sed and grep programs exemplify filters. Engines do computational 

work more involved than simple filtering, but, like filters, are usually invoked 

non-interactively (batch mode) although many allow interactive invocation as well. 

Spreadsheets and simulators are representative of interactive computation engines.
To refine the first category, a tool must have certain characteristics to be consid­

ered a filter, at least one fit to participate in a Unix pipeline. Whimsically adapted 

from [101], Figure 5.1 presents the prerequisites for Unix filters in directive form.

The ninth commandment is broken by many would-be filters, for example, 

ps (process status), whose author apparently thought it necessary to label each 
columnar field in a one-line heading. Displaying the state of Unix processes, ps 

varies the number of fields and hence the level of detail depending on the switches, 

or options supplied to it. Actually, ps violates the first commandment as well, since 

it does not read from standard in. Instead, it queries the Unix kernel to procure its 

process information. Similarly, Is queries the Unix file system, and, via a low-level 

device driver, reads from a disk to obtain its input. However, since these two tools 

(among others) write their output to standard out, they can still participate in a 

pipeline, the only restriction being that they must be at its head, not in the middle 

nor bringing up the rear1.

1 Actually, the Unix shell does not disallow putting Is or ps at the end of a pipeline. Doing so
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I. Thou shalt obtain thy input from standard in.
II. Thou shalt produce thy output on standard out.
III. Thou shalt send any error or diagnostic messages to the standard error output.
IV. Thou shalt not require an input file to be specified on the command line.
V. Thou shalt likewise not require specification of an output file.
VI. Thou shalt make no attempt to interpret thy input data as instructions or commands to 

thyself.
VII. Thou shalt not ask thy user for additional parameters beyond those supplied on the 

command line.
VIII. Thou shalt perform a well-defined transformation on thy input.
IX. Thou shalt not festoon thy output with extraneous headers, footers or other formatting.
X. Thou shalt deliver thy output records one per line, and separate their fields with a space, 

tab, colon or other delimiting character.

Figure 5.1. Ten Commandments for Filters

5.1 Files, Streams a n d  Pipes
Being the main repositories of permanent and temporary data, files figure heavily 

in Unix. The stream paradigm regulating serial access to this data is another 

heavyweight, leveraged to maximum advantage in the C++ iostream idiom. Pipes 

are another mechanism of high utility and renown. Encapsulating these basic Unix 

services in higher-level protocols is the purpose of the fsp protolib.

In yet another dose of deja vu, Figure 1.1, the simple filtering of a directory 
listing into a single number giving the count of lines in the listing, is recruited once 

more. This overworked example will again introduce one of these protocols, that 

being the non-fictitious counterpart to the one presented in Section 4.2.

The vistafication named lswc utilizes a special pipe type wire in conjunction 
with two simple cell types, UnixO and Unixl, thus:

// File: lswc.c

#include "lswc.h" // design 
#include "fsp.h" // protolib
#include "UnixO.h" // (NAME, OUTPUT(pipe, vvout)) 
outclude
#include "Unixl.h" // (NAME, BIDIR(pipe, win)) 
outclude

results in  no error exit, merely the loss o f all upstream  ou tpu t.



pipe v v l( " 1 " );

BEGIN_CELLS

UnixD("Is -1", v v l ) ;

UnixlC'wc -1", v v l) ; .

END.CELLS 

END

Unlike in the visually and topologically similar sig test example of Section 4.3, 

there is no need for multiple cell instantiations in this simple pipeline, hence 
BEGIN_CELLS and END_CELLS do not implement a do while fsp IsVistafying loop, 

but instead expand to nothing:

/ /  F ile : lswc.h 

#define BEGIN MAIN_BEGIN 

#define BEGIN.CELLS 

#define END_CELLS 

#define END MAIN.END

The single-ported Unixl and UnixO cell classes, shown below, are simplicity 

incarnate, doing nothing other than supplying their names (Unix commands) to 

the >>  and <<  operators of pipe, whose class definition appears in its entirety in 
Figure 5.2:

defCe ll(U n ix I, (NAME, INPUT(pipe, in ) ) )  

in  >> name;

defCell(UnixD, (NAME, OUTPUT(pipe, out))) 

out << name;

The fsp Vistafier has no work to do at all, as it is all done by the symmetrical 

pipe wire, which encapsulates two streams, one for input and one for output, as 

shown. The istream and the ostream members each use a special-purpose buffer 

called a procbuf (process buffer), which is a subclass of filebuf which in turn inherits 

from the base streambuf class in the C++ iostream library (the GNU version from 

the FSF). The purpose of procbuf is to provide similar functionality to the Unix

80
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class pipe : public Wire { 
private:

procbuf ipb; 
istream* is; 
procbuf opb; 
ostream* os; 
unsigned char c; 

public:
pipe(const char* name) : Wire("pipe", name), is(nil), os(nil) { 
>
boolean Get(void){

return (is != nil kk is->get(c) kk !is->eof());
>
void Got(void) {

*os «  c;
>
void Flow(void) { 

while (GetO)
Got();

>
void operator «  (const char* command) { 

if (ipb.open(command, ios::in)) { 
is = new istream(ftipb); 
if (os != nil) {

Flow();
>

>
>
void operator »  (const char* command) { 

if (opb.open(command, ios::out)) { 
os = new ostream(&opb); 
if (is != nil) {

Flow();
>

>
>
'pipe(void) { 

delete is; 
delete os;

>
>;

F igure 5 .2 . The pipe Class Definition
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system calls popen and pclose, which open or close a (Unix) pipe for I/O  from or 

to a process.2
Note that both <<  and >>  operators check for a null pointer to the opposite 

stream, only calling Flow if it is non-null. This allows either cell to be instantiated 
first, the flow from the UnixO command to the Unixl command starting only after 

the second cell is instantiated. The G e t /G o t flow is an inefficient character-at-a-time 

read/write, but could easily have been done line-at-a-time.
These two cell classes are not terribly useful, as they only allow for either: input 

or output, not both. Thus, a UnixO cell can only be at the head of a two-command- 

only pipeline, while the Unixl cell can only be at its tail. The double-ported UnixJO 
cel) class, in conjunction with the Std.10 wire class, overcomes these limitations at 

the cost of more complexity. Representative usage of these classes is shown in the 

following pipeline, whose ends are fitted with two additional cells of type UnixIFile 
and UnixOFile:

This file-capped pipeline, which simply puts into a specified output file a count 

of the unique (no duplicate lines) contents of a specified input file, translates into 

the following shell syntax:

sort < $ifile I uniq I wc > $ofile

In this shell expression, the i f i l e  and o f i le  shell variables store the names 

of the files. The cell wrappers for UnixIFile and UnixOFile display these variable 

names, but the cell instance names are the file name values of these two variables. 

These two wrappers have a non-rectangular (and mirrored) shape to distinguish 

them from (each other and) the UnixJO cells, whose instance names are the ac­

tual Unix commands to be invoked, including any arguments, although only the 

command name itself is displayed in their wrappers.
It is interesting to note that the use of these two special cells to specify input and 

output file redirection is not strictly necessary. At the cost of an extra Unix process 

apiece, the same pipeline can be rendered in five UnixIO cells, whose corresponding 

shell rendition, given input and output files named Joo and oof respectively, is:

cat foo | sort I uniq I wc I tac oof

The tac command is a one-line shell script counterpart to the cat command, 

and in fact does cat > $1 which merely invokes cat and does the “> ” Unix output

2A call to popen returns an open FILE* stream pointer (which pclose closes), the writing 

to which or reading from which is the same as writing to the standard input, or reading from 

the standard output of a Unix command. Calling the procbuf:.open method also creates a pipe 

between the calling process and the named command, but allows 0+  iostream-based standard 

I/O  writing and reading.
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redirection to its argument-named file. The standard input of tac is connected to 

the standard input of cat by the shell.
Hiding the redirection and using one extra process (actually two, since the tac 

script runs in a shell process too), plus the additional cat at the head of this pipeline, 

is an expensive way to achieve uniformity. Uniformity and parsimony aside, even 

using the more efficient I/O  file cells provides no real advantage over directly using 

the Unix shell, which does the same kind of pipe creation, file redirection and 
process invocation that Vista does, only better.3 Therefore, since the shell can 

easily interpret these kinds of pipelines without the substantial overhead of an 

intervening visual framework, the question begs, of what value is Vista here? As 

noted in Section 2.1 and shown there in Figure 2.3 and here in Figure 5.3, the value 

added by Vista comes in the form of support for multifurcated pipelines, whose data 

streams can be forked and joined in various useful ways.

Compared to Unixl0 , the significantly higher complexity of doing multiple I/O  

with pipes merits its encapsulation in the U nixM IO  class, which makes use of 

all three Analyzing, Manifesting and Executing lifetimes to do its job, which is 

explained briefly shortly.

In the vistafication of Figure 5.3, the (square) cells are all instances of the 

U nixM IO  class. Building on the above simple pipeline, (but avoiding the need 

that the shell would have for temporary, intermediate files), what this code does is 

tell the user how many duplicate lines appear in the given input file. Forking the 

output from sort into another wc, that count and the uniq count are joined with 

a simple instruction supplied by echo to become the input of dc (desk calculator), 

which computes the difference of the two counts. The output of dc is then fed to 

awk, which formats it and pipes it to alert, which in turn pops up a dialog box 

containing the message read from its standard input, plus a pushbutton with which 
to dismiss the alert window.

Note in this (decapitated and folded) vistafication that the wire instance : :vvin 

is invisibly connected to the input port of the echo cell. Likewise is : : vvout 

connected to the output of alert. As mentioned in Subsection 3.4.2 on page 33, 

unwired ports are codified with the port name prefixed by an identifying marker, 

which by design is the : : C++ scope resolution operator. It is perfectly legal to leave 

unconnected the standard input or standard output of these (and many other) Unix 

commands. Thus, this will not be flagged as a connectivity error by the Analyzer, 

but only because the vistafication is legal C++ code, as the fsp library predefines 

w in  and vvout as global instances of the StdIO  wire class, and knows how to deal 

with them differently than with the explicit locally-allocated instances.

While Analyzing, the UnixM IO  cells simply increment the fanin and fanout 

counts of their attached wires, so that, while Manifesting, the appropriate number 

of Unix pipes can be created. The file descriptors of the reading and writing ends 

of these pipes are stored in separate arrays in the StdIO  wire instances, as are the 

names of any input or output files. It is in the final Executing stage where the 

Unix fork/exec idiom is called upon to create the cell-named processes, attaching

3The fsp class libraries implement essentially what the shell does, only using a compiled C++ 
program rather than parsing and interpreting a textual expression.



BEGIN
StdIO vv6("6"); StdIO vv2("2") ; StdIO vv3("3"); 
StdIO vvl("l") ; StdIO vv4(,,4,,) ; StdIO vv5("5") ; 

BEGIN.CELLS

UnixIFile("howmanydups . in" , vvl) ;
UnixMIO("sort", vvl, vv2) ;
UnixMID("uniq", vv2, vv3);
UnixMID("wc -1", vv3, vv4);
UnixMID("wc -1", vv2, vv4);
UnixMIO("echo _pq(l, ::vvin, vv4) ;
UnixMIO("dc", vv4, vv5);
UnixMIO("awk -f howmanydups.awk", vv5, vv6); 
UnixMIO("alert", vv6, ::vvout);

END_CELLS 
END

Figure 5 .3 . The howmanydups Vistafication
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their standard input and output to the corresponding wires’ writing or reading 

pipe ends, or redirecting them to a file, and closing any unneeded pipe ends. For 

informational (and debugging) purposes, the id and command name/arguments of 

each process are printed out when it is created. Thus, sample execution of the 

above vistafication reveals that it really creates ten rather than eight processes:

10645 dispatch fork 23 -8 -14
10646 sort
10647 uniq
10648 wc -1
10649 wc -1
10650 echo -pq
10651 dispatch join 11 15 17 ■
10652 dc
10653 awk -f howmanydups.awk
10654 alert

Considered a crucial component of the fsp library, the dispatch command is the 

agent that handles the actual forking or joining of pipes between processes. 4 The 

numeric arguments to dispatch represent the input and output file descriptors, 

which are distinguished by the latter being negative. 5 The first dispatch arranges 

for a broadcast redistribution to file descriptors 8  and 14 of all data coming from 

file descriptor 23, which identifies the reading end of the pipe being written to by 

the sort process. The second dispatch writes to file descriptor 7 (input to dc) in 

round-robin fashion the data coming down the pipes identified by descriptors 11,15 

and 17. Figure 5.4 shows how the above multifurcated pipeline would appear were 

it necessary for the user to insert these special dispatch cells manually. Fortunately 

for the user, it is not.

The pipe Unix system call creates the actual interprocess communication chan­
nel, in which are buffered up to a fixed number (e.g., 4096) of bytes inserted by 

the writing process before the writing process is blocked, waiting for the reading 

process to extract the buffered bytes, which it must do in FIFO order. Whenever 

such low-level mechanisms can be used in this way to connect arbitrary processes, 

there is a danger of deadlock. In fact, in the “BUGS” section of the Unix “man” 

page for the pipe system call, it states: Should more than 4 09 6  bytes be necessary in 
any pipe among a loop o f  processes, deadlock will occur. This is in fact a sufficient 

but unnecessary condition for deadlock. Figure 5.5 shows a single-process loop 

configuration that just as surely will deadlock with zero bytes in the pipe buffer.

transparently interposed between cells by the UnixMIO protocol, the dispatch program relies 
on the Unix select system call for doing this synchronous I/O  multiplexing. The Interviews 3.1 
Dispatch library elegantly encapsulates select in a convenient interface that uses a Dispatcher class 
object that notifies IOHandler class objects when input or output is ready on their associated file 
descriptors.

5On the command line they are negative numbers, but their absolute values are used for the 
actual values of the file descriptors needed by dispatch.



Figure 5.4. Explicit Dispatch Cells
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Figure 5.5. Sort Deadlock

Moreover, other cyclically-connected groups of cells will also deadlock if they all 

need to read their standard input before writing anything to their standard output. 

For a two-cell example, sort feeding uniq  feeding back to sort, as in (just the bare 

text this time):

BEGIN
StdIO vv2("2");
StdIO vvl("l");

BEGIN.CELLS
UnixMIO("sort", vvl, vv2) ;
UnixMIO("uniq", vv2, vvl);

END_CELLS
END

The rules for the fsp protolib should disallow such self-connected configurations, 

and so they do. Here are three key rules that incorporate into the validation query:

connected(Ca,Cb) oconnected(Ca,W), iconnected(Cb,W).
connected(Ca,Cb) connected(Ca,Cx), connected(Cx,Cb).
selfconnected(C) connected(C,C).

The first rule says that cell Ca is connected to cell Cb if wire W is connected to 
the output of Ca and the input of Cb. The second rule is recursive, expressed in 

terms of itself, stating that two cells are considered connected if each is connected 
to a common third cell. That is, connectivity is a transitive relation. The third 

rule succinctly describes a cell connected to itself.

Per-process open file descriptors being a limited Unix kernel resource, there must 

also be rules to constrain the fanin or fanout of StdIO wires, although the upper 

limit is high enough (e.g., 64) that most practical applications never even approach 

it. While it matters whether it is an input or an output port a wire is attached to, 

mainly it is wire terminals that matter to the fanin/fanout count determination, 

since fanin and fanout are properties of wires, not ports. A wire that forks has a
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Figure 5.6. Wires That Fork and Join

fanout greater than one, while a wire that joins has a fanin greater than one. The 

UnixM IO  cell protocol can deal with wires that fork but do not join, wires that join 

but do not fork, or wires that neither fork nor join. The fourth case (see Figure 5.6 

for four visual depictions) of a wire that both forks and joins is not handled, and 

therefore must be proscribed. It is quite difficult to come up with pipelines where 

this makes sense, however, so this is not a severe restriction.

More examples of pipeline multifurcation will be forthcoming. Before moving 

on to the next Vista protolib, another interesting protocol instrumented by fsp 

is exemplified by the design shown in Figure 5.7, and again slightly modified in 

Figure 5.10. These two examples demonstrate a variety of versatile features:

• dataflow using both bundled (hierarchical) and unbundled wires,

• cell hierarchy and structural modeling,

• cell metamorphosis from structural to behavioral,

• two-way pipe/stream communication and synchronization,

• compute/output loop implementation,

• command and data files, and

• interaction with wish (see Subsection 2.5.1).





#include "gnuplot.h" // design
#include "fsp.h" // protolib
#include "Pi.h" // (NAME, OUTPUT(abc, vvout))
outclude
#include "Constant.h" // (NAME, OUTPUT(abc, vvout)) 
outclude
#include "Mult3.h" // (NAME, INPUT(abc, vvi3), INPUT(abc, vvi2),

INPUT(abc, vvil), OUTPUT(abc, vvout))
outclude
#include "Assign.h" // (NAME, INPUT(abc, w i n ) ,  OUTPUT(abc, vvout)) 
outclude
#include "Sub2.h" // (NAME, INPUT(abc, vvin2), OUTPUT(abc, vvout),

INPUT(abc, vvinl))
outclude
#include "Div2.h" // (NAME, INPUT(abc, vvin2), OUTPUT(abc, vvout),

INPUT(abc, vvinl))
outclude
#include "ComputeData.h" // (NAME, INPUT(abc, vvnorm),

INPUT(abc, vvtheta),
OUTPUT(xyz, vvout))

outclude
#include "OutputData.h" // (NAME, INPUT(xyz, w i n ) )  
outclude
#include "DataLoop.h" // (NAME, INPUT(abc, vvi),

INPUT(abc, vvd),
INPUT(abc, vvf),
INPUT(abc, vvtheta),
INPUT(abc, vvnorm))

BEGIN_DataLoop
xyz vvl("l");

BEGIN_DataLoop_CELLS
ComputeData("compute", vvnorm, vvtheta, vvl); 
OutputData("putout", vvl);

END_DataLoop_CELLS
END_DataLoop
outclude

// File: gnuplot.c

Figure 5 .8 . The gnuplot Vistafication Preamble



BEGIN

abc vvpi("pi");
abc vvtheta("theta");
abc vvnum_points("num_points");
abc vvl("1");
abc vvnum_turns("num_turns");
abc vvtheta_final("theta_final") ;
abc vv2("2");
abc vvnorm("norm");
abc vvtheta_delta("theta_delta") ;
abc vvtheta_start("theta_start");

BEGIN.CELLS

Pi("pi", vvpi);
Constant("2", vvl);
Constant("5", vvnum_turns);
Constant("100", vvnum_points);
Constant( " 0 ,  vvtheta_start);
Mult3("a", vvnum.turns, vvl, vvpi, vvtheta_final) 
Assign("b", vvtheta_start, vvtheta);
Sub2("c", vvtheta_start, vv2, vvtheta_final); 
Assign("d", vvtheta_final, vvnorm);
Div2("e", vvnum_points, vvtheta_delta, vv2) ; 
DataLoop("f", vvtheta_start, vvtheta_delta,

vvtheta_final, vvtheta, vvnorm);
END.CELLS

END

Figure 5.9. The gnuplot Vistafication Body
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// File: gnuplot.h 

#define BEGIN \
int main(int argc, char** argv) {\
int synch_time = 0;\
if (argc >= 6) synch_time = atoi(argv[5]);\
uipmaster.Init("/usr/local/gnu/bin", "gnuplot" ,\

"pause 0", "paused",\ -
"quit", synch_time);

#define BEGIN_CELLS \
uipmaster.SendCommand("load \"gnuplot.init\"M);

#define END_CELLS \
uipmaster.Pause("alert", "Done");

#define END \
return uipmaster.Exit(); }

The Init method needs four arguments besides the name of the interactive 

program and the directory where its executable binary file resides (arguments two 

and one, respectively). These four are:

1 . a pause command,

2 . an expected reply therefrom,

3. a quit command, and

4. a synchronization time argument.

The pause command is combined with the expected reply, at least for the 

gnuplot program, and it is this reply that is written by the program to its standard 

output (or standard error output) after it pauses for a specified length of time when 

given the pause command. Thus, telling gnuplot to “pause 0 paused” makes it 
return the message “paused” after a wait of zero seconds, that is, immediately.

The gist of the two-way communication and synchronization is as follows. Before 

forking off the child gnuplot process, the Init method (running in the parent 

process) creates two pipes, one for parent-to-child (ptoc) communication, and the 

other for child-to-parent (ctop) communication. The output of the ptoc pipe will 

act as the standard input for gnuplot, and the input of the ctop pipe will act 

as its standard output. The SendCom m and method calls PutC om m and , which 

writes a gnuplot command to the ptoc pipe, and then calls the Synch method. If 

the specified synch-tim e variable is zero, Synch returns immediately, meaning no 

synchronization is attempted. Otherwise, it calls PutCom m and with the pause 

command, and then enters a loop that exits only when the expected reply is 

read from the ctop pipe that will be written by gnuplot, sleeping for synch-tim e  
microseconds between unsuccessful read attempts.



The UnixInteractiveProgramM aster:: Pause method is unrelated to the above 

two-way tool-agent handshake. In the call shown above, it uses the a le rt program 

to send a message to the user instead of g nup lo t. It then waits for the user to 

dismiss the dialog box before returning. Thus, this agent-user interaction provides 

an opportunity for the user to pause the tool-agent interaction indefinitely, in order 

to examine the function plotted by g n u p lo t before it goes away.

The Exit method simply returns zero after calling PutCom m and with the quit 

command, which tells g n u p lo t to close its window and exit.

Before any cells are instantiated, the u ipm aste r sends the “load” command to 

g n u p lo t telling it to read and execute the following setup commands from the 

g n u p lo t . i n i t  file:6

set terminal Xll 
set xrange [-1:1] 
set yrange [-1:1] 
set zrange [0:1] 
set parametric 
clear

The “clear” command erases the current screen or output device as specified by 

the “set term inal” command. In this case, clearing the X l l  window “term inal” 

causes it to be mapped and exposed, and ready to accept drawing requests. The 

“‘set range” commands explicitly set the ranges that will be displayed for the 

three axes, turning off their default automatic scaling to fit the data being plotted. 

The “set parametric” command changes the meaning of “plot” (and “splot” ) from 

normal (single-valued) functions to parametric functions.

The graph being plotted is a 3-dimensional spiral, hence a triplet of parametric 

functions is required. The parameter controlling these three functions (one each for 

x, y  and z) is theta, an angle expressed in radians. The dataflow cells (all but the 

bottommost) compute the initial values for wires controlling the theta parameter, 

while the bottommost cell handles the loop that increments theta and computes 

and outputs the data points that depend on theta.
The dataflow cells operate on wires of type abc, which overloads the =  and + =  

base Wire class operators to take double type instead of int type arguments. These 

cells all do what their class name suggests, the one-line contents of most of them 

being as follows:

A ssign: vvout = *vvin;
D iv2: vvout = *vvinl / *vvin2;
Sub2 : vvout = *vvinl - *vvin2;

MultS: vvout = *vvil * *vvi2 * *vvi3;

6These six commands could just have easily been sent by separate calls to SendCommand in 
the BEGIN-CELLS macro. Using a file as a bundler of commands is convenient, but has a downside 
as well—the user has one more file to keep track of.
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Being hierarchical, the DataLoop cell bears closer scrutiny. Shown clear-wrapped 
in Figure 5.7 and opaque-wrapped in Figure 5.10, it is shown below with its structural 

netlist appended. This structural netlist, as generated by the Codifier, appears in 

Figure 5.8 between the line #include "DataLoop.h" and the following outclude 

line.

// File: DataLoop.h 

#include "abc.h"

#define BEGIN_DataLoop 
#define BEGIN_DataLoop_CELLS \
for (vvtheta = *vvi; *vvtheta < *vvf; vvtheta += *vvd) {  

#define END_DataLoop_CELLS \
}

#define END_DataLoop

defCell(DataLoop, (NAME,
INPUT(abc, vvi),
INPUT(abc, vvd),
INPUT(abc, vvf),
BIDIR(abc, vvtheta),
INPUT(abc, vvnorm)))

BEGIN_DataLoop
xyz vvl("1");

BEGIN_DataLoop_CELLS
ComputeData("compute", vvnorm, vvtheta, vvl); 
OutputData("putout", vvl);

END_DataLoop_CELLS
END_DataLoop

The Codifier brackets the wires and cells contained in a hierarchical cell in the 

same way it brackets the top-level wires and cells, except that it replaces BEGIN 
and END with BEGIH.CellClassName and END-CellClassNam e in both sets of macros. 

Here is the DataLoop cell definition with the bracketing macros expanded, showing 

clearly how the C++ fo r  statement is used to implement a loop:

defCell(DataLoop, (NAME,
INPUT(abc, vvi), 
INPUT(abc, vvd), 
INPUT(abc, vvf), 
BIDIR(abc, vvtheta), 
INPUT(abc, vvnorm))) 

xyz vvl("1");
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for (vvtheta = *vvi; *vvtheta < *vvf; vvtheta += *vvd) { 
ComputeData("compute", vvnorm, vvtheta, vvl); 
OutputData("putout", vvl);

>

Note that the local wire connecting the ComputeData and OutputData cells is of 

type xyz,  which simply serves to bundle together three double variables, and shows 

that wires can be hierarchical too.7 Here are the definitions of the xyz wire and the 

two cells it connects:

// File: xyz.h

class xyz : public Wire { 
public:

double x, y, z;
xyz(const char* name) : Wire("xyz", name) {
>

h

// File: ComputeData.h

defCell(ComputeData, (NAME,
INPUT(abc, vvnorm), INPUT(abc, vvtheta),
OUTPUT(xyz, vvout))) 

vvout.z = *vvtheta / *vvnorm; 
vvout.x = vvout.z * cos(*vvtheta); 
vvout.y = vvout.z * sin(*vvtheta);

// File: OutputData.h

def Cell (OutputData, (NAME, INPUT(xyz, win))) 
uipmaster.GetOutputFileStream()

<< vvin.x << 1 ’ << vvin.y «  ’ ’ «  vvin.z << endl; 
uipmaster.OutputLineCount()++; // increment count of output lines 
if (uipmaster.OutputLineCount() == 2) { char msg[100]; 
sprintf(msg, "splot \"#/0s\" w lines",

uipmaster .GetOutputFileNameO ) ; 
uipmaster.SendCommand(msg);

} else if (uipmaster.OutputLineCount() > 2) { 
uipmaster.SendCommand("replot");

>

7The flow between the compute and output cells could also have been achieved with three 

unbundled (non-hierarchical) wires, but in this example it makes sense to encapsulate the trio, as 

they represent a single spatial data point.



The “plot” and “splot” commands are the primary commands of the gnuplot 
program. The former plots 2-d functions (mathematical expressions, e.g. sin(x)) 

and data (read from a file), while the latter plots 3-d surfaces and data. In 

the form used above, a file name and a drawing style8 are supplied as “splot” 

arguments. Both the file name and its associated output stream are maintained 

by the uipmaster by delegation to a member object of type TemporaryOutputFile, 
which in turn encapsulates the operations of creating, opening for writing, closing 

and deleting a file. This class also frees its clients from the necessity of choosing a 
name, calling upon the Unix tmpnam function to generate a name that can safely 

be used for a temporary file.9
Since the uipmaster keeps track of how many lines are written to the output 

file, when three or more lines have been written it suffices to send gnuplot the 

“replot” command, which repeats the last “plot” or “splot” command. The “splot” 
command is issued when two ( x , y , z )  triples have been written to the file, which is 

the minimum number of data points required to draw a line. On each subsequent 

instantiation of OutputData the data in the growing file is replotted, and because 

the gnuplot window is not cleared between replots, the visual effect is an animation 
of the growing spiral.

The smoothness of the spiral is determined by how many points are plotted, as 

straight line segments are drawn between successive points, and the total length of 

the spiral is fixed. How fast it rises in the z direction is determined by the number 

of (360°) turns it makes as it rises. These two parameters, called num_points and 

num_turns, have the constant values of 100 and 5 respectively. Figures 5.11 and 

5.12 show the gnuplot window for two different sets of values of num-turns and 
num-points.

The Constant cell class treats the instance name as the value, which is type- 

converted and assigned to its output wire. In Figure 5.10 the middle two Constant 
cells have been replaced by Variable cells, which allow the user to adjust the values 
of these two parameters at runtime, rather than at compile time. Here is the 

definition of Variable:

// File: Variable.h
/

#include "abc.h"

defCell(Variable, (NAME, OUTPUT(abc, vvout))) 
vvout = NUM uipmaster .GetCommand(iiame) ;

In this case, the cell name is a Unix command that is required on exit to write 

a single numeric value to its standard output. The G etCom m and method opens
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8Drawing “w lines” means with lines, as opposed to points, for example.

9Safe in the sense that, although a common “scratch” directory (e.g., /usr/tmp) is used, 
another user calling the same function will get a unique file name that is guaranteed not to clash.
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Figure 5.10 also shows the Mult3  cell clear-wrapped, revealing its contents10 (two 
MultS  cells) before its metamorphosis into a strictly behavioral cell. Its behavior, 
as shown above, exploits the associative property of multiplication to change a pair 
of binary multiplications into one ternary expression.

In this vistafication, the cells in the dataflow initialization section are obviously 
expendable, and could all be replaced by a single cell, whose behavior would be 
something like the following, which for simple arithmetic expressions, is much easier 
to grasp: ,

int num.turns, num_points;
double pi, theta_start, theta_final, theta_delta, theta, norm;

num_turns = 5;
num_points = 500;
pi = acos(-1. ) ;
theta_start =0.;
theta_final = 2 * pi * num_turns;
theta_delta = (theta_final - theta_start) / num_points;
theta = theta_start;
norm = theta_final;

Finally, for some visual/textual language expressions that are certainly deserving 
of a place in the documentation, if not in the actual program implementation, the 
x, y  and z  functions of theta computed by ComputeData  are lucidly rendered in 
mathem atical symbols in the following three equations, in which the role of the 6j  
( theta_final) term as a normalizing factor (directly proportional to the num.turns  
variable) is more readily discerned:

x =

y =

z  —
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5 . 2  X  S y n t h e t i c  E v e n t s
In this section, some familiarity with the X Window System and its protocol is 

assum ed.11 The following paragraph will suffice for introducing the motivation for 
the V ista xse  protolib.

In applications running under X, the event loop is where control normally resides. 
The user is the main supplier of X  events read and responded to in this control

10Note that Vista cell contents are allowed to be outside the cell bounding box.

n The reader is referred to [84, 85, 83] for the low-level details.



loop, which for standard GUIs are predominantly keyboard, mouse button or 
mouse motion events. These events are queued in the X server, which manages 
the hardware interfaces to keyboard, mouse and other input devices. The X 
client (application program) gets these queued events one by one from the server, 
determines the type of each event, and executes a piece of code that is conceptually 
attached to that type of event. This code can do arbitrary computations, or make 
requests of the server to either draw on the display screen, or to access information 
maintained by the server. The server queues up these drawing or informational 
client requests and in turn responds to them one by one. This response can (but 
need not) occur before the client code returns and the event loop regains control. 
When some event-triggered code causes an exit from the event loop, the application 
typically exits too.

Many such applications are useful computation engines in and of themselves, 
but because of this controlling event loop paradigm, do not support batch-mode 
usage. The user who wants programmatic as opposed to manual interaction must 
employ indirect means of feeding events to the control loop. This indirection is 
accommodated by the X library (Xlib), which is the lowest level of programming 
interface to the X protocol, by way of its XSendEvent  primitive, the adroit use 
of which unfortunately requires detailed knowledge of the various X event data 
structures, among other things.

The contrasting high-level protocol for the V ista xse  protolib is relatively simple, 
thanks in part to its incorporation of a library of C++ code already available for 
handling the following two non-trivial tasks:

1. event descriptor parsing, and

2. file and string-based interfacing to XSendEvent .

Event descriptors are character strings describing the disparate types of events 
supported by X. They may be stored directly as strings or one per line in a text file, 
from which they can be read and parsed into the corresponding internal X event 
data structures, suitable for passing to XS en dE v e n t , given an X id of the window 
to which these synthetic events are to be sent. Here are several examples showing 
the form these event descriptors take:

<BtnlDown> 693 360 749 381 
<BtnlUp> 693 360 749 381 
<Btn3Down> 695 360 751 381 
<Btn3Up> 695 360 751 381 
c<key>S 
c<key>D
<Enter> Normal Nonlinear True 27 0 119 1 
<Leave> Normal Ancestor True 0 0 81 0 
<Enter> Normal Nonlinear True 2 4 58 5 
<BtnlDown> 14 9 70 10 
<BtnlUp> 14 9 70 10
<Leave> Normal Nonlinear True 39 36 95 37

102
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<key>v
<Btn3Down> 264 451 320 472 
<Motion> Normal 265 451 321 472 
<Motion> Normal 267 455 323 476 
<Motion> Normal 268 458 324 479 
<Motion> Normal 269 460 325 481 
<Motion> Normal 269 461 325 482
<Btn3Up> 269 461 325 482 ,
<key>3
c<key>M
<key>Escape
s<key>parenright

There is in the xse protolib a single portless cell type, S e n d , whose sole purpose 
is to send a series of keystrokes (forming its instance name) to Acme by way of the 
xse Vistafier:

// File: Send.h

defCell(Send, (NAME)) 
xse << name;

Other cells could be defined, but the basic services of the xse class are better 
encapsulated in more special-purpose Vistafier-like objects, as will be shown. The 
xse Vistafier normally treats a string as a sequence of characters, each of which 
is to be mapped to a key event. The < <  operators that take a char* or const 
char* string argument delegate to the < <  (char)  operator for each character in 
the string, unless a boolean member variable ( t reat s tr ings -as-key-events) is false, 
in which case the string is treated as the descriptor of an arbitrary event, as shown 
above, and the library function parseAndSendEvents  is called instead. The xse 
< <  ( int)  operator toggles this boolean flag, so key events can be mixed with mouse 
or other kinds of events in the same push chain of < <  operators.

Some examples of interaction with xse will be given in the following section. It 
should be noted that the protocol allows for some feedback, that is, the commu­
nication is not just one-way. The > >  operator, for instance, provides an interface 
to the Xlib primitive X  Query Pointer ,  which interrogates the X server to ascertain 
the screen position of the mouse pointer. A call of the form below gets the current 
x and y mouse coordinates from the server and puts them into the supplied integer 
variables:

xse >> x >> y;



5 . 3  U n i x  a n d  X  U n i t e d
The Vista protolib discussed in this section unites the services of both fsp  and 

x se  into one u n x  Vistafier. Several new services axe provided by u n x  and another 
pseudo-Vistafier class, a cm e, which, as its name suggests, is customized for (some) 
Unix and (mostly) X event interaction with Acme.

In addition, several Unix commands have been encapsulated in separate cell 
classes, which still use the UnixMIO class, but which also define modifiers to 
organize the various command options and parameters, rather than use the cell 
instance name to store a command name and arguments. That way there is a 
unjque cell class corresponding to each Unix command, and the same command 
invocations can be used more than once without causing cell instance name clashes.

For example, if the pipeline in Figure 2.1 is modified to use a cell of type UnixTap , 
the resulting schematic and vistafication are shown in Figure 5.14, demonstrating 
among other things the concept of pipeline tapping , for which an alternative is 
pipeline splicing , shown in Figure 5.15.

Choosing just one of these special Unix command classes, here is the definition 
of the Is cell class, to each of whose boolean options corresponds an Acme boolean 
modifier with its own bit weight:

// File: ls.h

defCell(Is, (NAME, MODS, 0UTPUT(StdI0, vvout))) 
if (VISTAFIER. IsAnalyzingO) {
UnixMIO(name, ::vvin, vvout);

)■ else if (VISTAFIER. IsManif estingO) { 
UnixMIO(name, ::vvin, vvout);

> else if (VISTAFIER.IsExecutingO) {

// list all entries
// sort by time of last edit (or last mode change)
// force multi-column output
// if argument is a directory, list only its name 
// force each argument to be interpreted as a directory 
// mark directories with a trailing slash, etc.
// show the group ownership of the file in long listing 
// for each file, print the i-number in the 1st column 
// list in long format, giving mode, owner, etc.
//if argument is a symbolic link, list its referent 
// reverse the order of sort
// recursively list subdirectories encountered 
// give size of each file in Kbytes
// sort by time modified (latest first) instead of name 
// use time of last access instead of last modification 
// force one entry per line output format

var com
it -a"
ii -c"
i i -C"
n -d"
u -f "
i? -F"
i >

-g"
i» -i"
ii -1"
M -L"
H -r"
M -R"
ii -s"
11 -t"
11 -u"
it -1"

>;



// File: howmanyfiles.c

#include "howmanyfiles.h" // design 

#include "unx.h" // protolib

#include "UnixTap.h" // (NAME, BIDIR(StdIO, vvl), BIDIR(StdIO, vvb),

BIDIR(StdIO, vvr), BIDIR(StdIO, vvt))

outelude

#include "ls.h" // (NAME, MODS, 0UTPUT(StdI0, vvout)) 

outelude

#include "grep.h" // (NAME, MODS, INPUT(StdIO, w i n ) ,

0UTPUT(StdI0, vvout))

outelude

#include "wc.h" // (NAME, MODS, INPUT(StdIO, w i n ) ,

0UTPUT(StdI0, vvout))

outclude

BEGIN

StdIO vv2("2");

StdIO vvl("l");

BEGIN.CELLS

UnixTap("editpipe", ::vvl, vv2, ::vvr, ::vvt); 

ls("a", "bmods=513", vvl);

grepC'b", "bmods=256 pattern=’neff’", vvl, vv2); 

wc("c", "bmods=l", vv2, ::vvout);

END_CELLS

END

F igure 5.14. Pipeline Tapping
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unx.SetBooleanOptions(command, mods, boolean_options,
sizeof(boolean_options)/sizeof(const char*)); 

command += unx.Glob(mods);
UnixMIO(command, ::vvin, vvout);

>

The unx:.-SetBooleanOptions method parses the “bm ods=513” mods string, un­
packs its bits and appends the string corresponding to each asserted bit to the 
command string. Thus, the actual command seen by the executing UnixMIO in­
stantiation is “Is -a -1” (giving a long and complete directory listing). Similarly, 
the wc cell with its “b m o d s= l” modifier turns into the wc -1  command.

Recall that the purpose of this pipeline is to answer the question, “How many 
files (in the current directory) are mine?” The operation of tapping (or splicing) 
represents the afterthought, “Oh, and by the way, what are they?” The e d itp ip e  
program is just a shell script that puts what it reads from its standard input into 
a temporary file, and then invokes a text editor (e.g., x e d it )  on that file. When 
the user exits this text editor, after possibly changing the file (pipe) contents, or 
saving it as a permanent file, etc., the script ca ts the file to its standard output so 
that the (maybe modified) contents can continue down the pipeline.

This is an example of how to eavesdrop on a tool interaction, as was mentioned 
in Section 3.4 on page 30. As the user can modify the inter-tool message, it is 
actually more like intercepting than eavesdropping, or wire-tapping, but it is still a 
useful operation. When doing so is an afterthought, it is often easier to tap than to 
splice, as splicing may require pushing cells apart to make room for the intervening 
cell. Regardless, using a UnixTap cell to tap a pipeline is functionally equivalent 
to splicing in a cell, so which operation to use is a matter of preference.

5 .3 .1  B ack  A n n o ta tio n
The acme  class EnterText  method is reproduced below to show how Acme 

operations can be “canned” and “vistam atically” performed via synthetic X events:

void EnterText(const char* text, int x, int y, boolean overwrite){ 
xse << 'O'; // unselects all objects 
xse << 'N'; // name wires (or enter text label) 
xse <<0; // now treat strings as events to parse and send 
xse << unx.ButtonEventString(l, 1, x, y); 
xse << unx.ButtonEventString(l, 0, x, y); 
if (overwrite)
// select whole text so new entering overwrites old 
xse << "c<Key>u"; 

else
// move to end of line so new entering appends to old 
xse << "c<Key>e"; 

xse <<0; // back to strings as keyevents 
xse << text;



xse << 0;
xse << "<Key>Escape"; // to exit text editing mode
xse << unx.ButtonEventString(3, 1, x, y);
xse << unx.ButtonEventString(3, 0, x, y);
xse << "c<Key>e"; // Not Modified
xse << 0;

The x and y parameters specify where in A cm e’s window the text is to be entered. 
Another acme  method shows an encapsulated EnterText  call, where the SelectWarp  
method first selects an Acme object by name, then warps the mouse pointer to a 
position centered over that object, and the xse > >  operator is used to extract the 
coordinates of that position:

void ShowWireValue(const char* wire_name, const char* wire_value,
boolean overwrite) {

SelectWarp(wire_name);
sleep(l); // wait a second for mouse pointer to be warped 
int x, y;
xse >> x >> y; // gets mouse pointer position 
EnterText(wire_value, x, y+10, overwrite);

>

The use of these (and a few other) methods to implement annotation of sim­
ulation results back to Acme, subsequent to interaction with the s im p p l PPL  
simulator, is demonstrated by the following vistafication, which drives this simple 
s im p p l simulation of the “canonical exor” (exclusive-or) PPL circuit:

// File: exor.c

#include "exor.h" // design 
#include "unx.h" // protolib
#include "Set.h" // (NAME, MODS, OUTPUT(WireSpec, vvout)) 
outclude
#include "Get.h" // (NAME, INPUT(WireSpec, win)) 
outclude
#include "simppl.h" // (NAME, MODS, INPUT(WireSpec, vvset),

OUTPUT(WireSpec, vvget))
outclude

BEGIN

WireSpec vvl("l"); 
WireSpec vv2("2");
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F ig u r e  5 .16 . Back-Annotation from s im p p l to Acme

BEGIN.CELLS

Set("A", "bmods=0 bits='0011'", vvl) ;
Set("B", "bmods=0 bits=»0101' " , vvl);
Get("C", vv2) ;
simppl("exor", "bmods=2", vvl, vv2) ;

END.CELLS

END

Figure 5.16 shows the schematic with the back-annotated simulation values that 
appear during the execution of this exor vistafication. Note that the exor PPL  
circuit being simulated does not get vistafied, as it is in a different protolib context 
that is just showing through the u n x  exor context.

5 .3 .2  C o m m e n ts  to  C o d e
Suppose management wants to know the per-programmer comments-to-code ra­

tio for some programming project, perhaps in order to commend programmers who



comment their code adequately, and reprimand those who do not. The Vistafied 
agent commissioned to glean this information must carry out these nine steps:

1. generate the full pathnames of all source code files for the project,

2. identify the author of each file,

3. propagate the file contents to a comment recognizer,

4. forward these contents minus comments to w c,

5. feed the unfiltered code directly to wc,

6. read both outputs from wc,

7. maintain running per-author byte totals of commented code and comment- 
stripped code,

8. compute a final quotient of comments to code, and

9. output author, totals and quotient, suitably formatted for a management-style 
report.

The first step, pathname generation, is done by the so-called globbing operation, 
which takes a pathname pattern containing wildcard characters, and expands it by 
matching the pattern against the files in the specified directories. As the Unix shell 
already has this capability built into it, expediency dictates using the shell to glob 
these complete pathnames. The pattern for Acme is:

"/acme/sources/*/*/*.[ch]

Several simplifying assumptions are made for the second step of file author iden­
tification, so that a simple aw k script can be employed. One of these assumptions 
is that each locally-written Acme source file contains a comment near the top of the 
file of the form:

// Author: Rick Neff

The reason for qualifying locally-written is that included among the Acme sources 
are several files “borrowed” from Interviews. These files have no comment of 
any form indicating authorship, so their author is left unidentified, although a 
comments-to-code ratio is still computed for them. A final assumption is that, in 
the not uncommon case of a single file with multiple authors, the primary author 
is listed first, and is the one who gets credit for all comments and code in the file.

A forked pipeline feeds these file pathnames to aw k for step two, and for 
steps three through five to both w c and a special-purpose Vista-specified C++ 
comment stripper, which is the subject of the next section. The last three steps 
are conveniently bundled into one reasonably simple aw k script, which assumes 
the three data streams have been joined into one, and sorted by author so that 
each author’s counts appear together. Figure 5.17 contains the schematic for the 
following vistafied implementation of these nine steps:



Figure 5.17. A “Looping” Multifurcated Pipeline
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BEGIN

StdIO vvl("l") 

StdIO vv6("6") 

StdIO vv4(,,4") 

BEGIN_CELLS

StdIO vv9("9") 

StdIO vv2("2,,) 

StdIO vv7("7")

StdIO vv8("8"); 

StdIO vv5("5"); 

StdIO vv3("3");

xargs("a", "bmods=0 numargs=’l’ command=’awk -f auth.awk’", vvl, vv2);

awk("b", "bmods^O args=’{print$l,10+NR+l} OFS=:’", vv2, vv3);

ls("c", "bmods=0 g l o b = / s o u r c e s / * / * / * .[ch]’", vvl);

xargs("d", "bmods=0 numargs='l’ command=’wc -c'", vvl, vv4);

awk("e", "bmods=0 args=’{print$l,10*NR+2> 0FS=:’", vv4, vv3);

xargs("f", "bmods=0 numargs=’l’ commajtid= ’ stripper. sh’" , vvl, vv5) ;

awk("g", "bmods=0 args=’{print$l,10+NR+3} 0FS=:’", vv5, vv3);

sort("h", "bmods=0 args=’-t: +1 - n’", vv3, vv6);

cut("i", "bmods=0 delimiter=’:’ fields=’l’", vv6, vv7);

paste("j", "bmods=0 args=’- - vv7, vv8);

sort("k", "bmods=0", vv8, vv9);

awk("l", "bmods=0 args=’-f ct2cd.awk’", vv9, ::vvout);

END_CELLS

END

Note the use of the Unix xargs command as a loop mechanism. The xargs  
program reads arguments from its standard input, and appends them to a specified 
command (with fixed initial arguments), which it then executes one or more times. 
In this case, the supplied numargs  string modifier value translates into the “-n l” 
command-line option, which specifies that only one argument should be read for 
each command invocation.

The aw k cells taking the output from the three xargs cells are there to extract 
the first field from each stream output line, and tack on a sor t  key. Because the 
three streams produce their output at different rates, it is necessary to sort their 
joined stream (and then cu t off the sort key) so that p a s te  can take the linear listing 
of (author, t o ta l b y t e s , s t r ippedbytes )  tuples, where each of the three components is 
on a separate line, and fold it into an output stream with one tuple per line.

A simplification of this vistafication is displayed in Figure 5.18, which demon­
strates the desirability of having the d isp a tch  program do ordered jo in ing , where 
each stream being joined “waits its turn” to write to the common output stream.

An even simpler alternative can be implemented as the shell script shown below. 
The main advantages of this approach are that the code is pure text, and because 
the shell has built-in iteration constructs and file redirection, the need for xargs  
is eliminated, as is the need for the one-line “stripper.sh” shell script ( s t r ip p e r  < 
$1 I wc -c ) . Additionally, as aw k can accept its program text on the command 
line, all the code (both sh and aw k commands) can reside in a single file. The 
disadvantage, of course, is that three temporary files (fl, f2 and f3) are required to 
store the intermediate results.



BEGIN

StdIO vv3("3"); StdIO vvl("l,,); StdIO vv5("5");

StdIO vv4("4"); StdIO v v l C ' T ');

BEGIN_CELLS

xargs("f", "bmods=0 numargs=,l' command=1avk -f auth.awk’", vvl, vv2); 

ls("c", "bmods=0 glob='../sources/*/*/*.[ch]1", vvl); 

xargs("a", "bmods=0 n.umargs=111 command=’wc - c’", vvl, vv3); 

cut("b", "bmods=0 columns=’-8’", vv3, vv2); 

paste("e", ''bmods=0 args=)- - vv2, vv4);

xargs("d", "bmods=0 numargs= ‘ 1‘ command='stripper.s h '", vvl, vv2);

sort("g", ''bmods=0 args=’+2'", vv4, vv5);

awk("h", "bmods=0 args=’-f ct2code.awk’" , vvE, ::vvout);

END_CELLS

Figure 5.18. A “Looping” Multifurcated Pipeline with Ordered Joining



for f in /home/grad/neff/acme/sources/*/*/*.[ch]; do 
awk ’BEGIN { A=0 }

/Author/ {print $3; A=l; exit}
END { if (A==0) print "????" }' $f »  fl 

wc -c < $f >> f2 
stripper < $f I wc -c >> f3 

done

paste fl f2 f3 I sort | awk ‘
BEGIN { printf "Author Code+Cmnts Code Only Cmnt2Cd\n\n" }
{ if ($1==A) {

T += $2; C += $3 
} else {

if (A != "") {
printf "*/.5s,/.12d,/.12d,/.11.2f\n", A, T, C, (T-C)/C

}
A=$l; T=$2; C=$3

}
}
END { printf ",/.5s,/.12d,/.12d,/.ll.2f\n", A, T, C, (T-C)/C }' 

rm fl f2 f3

The reason for the cut cell in Figure 5.18 is that wc outputs the filename in 
addition to its count(s) when invoked with a filename argument, which it does not  
(and cannot) do when reading the file from its standard input, e.g., wc -c < $f as 
in the above shell script, which therefore needs no cut. The output of this script, 
which is identical to the output of the ct2code vistafication, is as follows:

Author Code+Cmnts Code Only Cmnt2Cd

???? 574049 415350 0.38
Brad 550956 412934 0.33
Mike 90805 84702 0.07
Rick 1161921 957061 0.21
Tony 769111 668357 0.15
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#include "stripper.h" // design 

#include "fsm.h" // protolib

#include "StartState.h" // (NAME, OUTPUT(Transition, vvStart)) 

outclude

#include "StripperState.h" // (NAME, INPUT(Transition, win)... 

outclude

#include "StripperAction.h" // (NAME, INPUT(Transition, win)... 

outclude

// File: stripper.c

BEGIN

Transition wl2("12"); Transition w l 4 ( " 1 4 M);

Transition w9("9"); Transition w3("3");

Transition w5("5"); Transition w6("6");

Transition wl("l"); Transition w4("4");

Transition wl3("13"); Transition w l l ( " H " ) ;

Transition wl0("10"); Transition w8("8");

Transition w7("7"); Transition w2("2");

BEGIN_CELLS

StartState("Start", w l ) ;

StripperState("Outside", vvl, vv2, vv3, vv2, vv2); 

StripperState("StartingSlash", vv3, vv4, vv5, vv6, vv4); 

StripperState("SecondSlash", vv5, vv2, vv8, vv9, w l O ) ; 

StripperState("StarAfterSlash", vv6, w l l ,  vvl2, vv7, vvl3); 

StripperState("StartingStar", vv7, vv6, vvl, vvl4, vv6); 

StripperAction("PutChar", vv2, vvl); 

StripperAction("PutSlash", vv4, vv2);

END.CELLS

END

For this schematic diagram, a different wrapper has been created for each cell, 
so that each is shown labeled with its unique instance name. The wires in the 
schematic are also labeled with their names. Note that wires 8-14 are tiny stub 
wires, which are allowed as convenient “shorthand” for specifying se//-transitions. 
That is, for example, the Star  transition from the SecondSlash state must re-enter 
that state, so wire 9 conceptually attaches to wire 5, which is the input to that 
state. W ithout this convenience, the schematic would be cluttered with several 
additional wire connections.

Once again, the rules state that each port must have a wire attached to it, so 
the Analyzer and the Manifester must catch incorrectly connected cells, and alert 
the user to the problem.

For the fsm  protocol there is no need for iterated cell instantiations; however, 
for proper execution, four key string-valued macros must be defined in the stripper 
header file:
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defState(StartState, (NAME, OUTPUT(Transition, Start))) 

LEAVES(Start, name);

// File: StartState.h

// File: StripperState.h

defState(StripperState, (NAME, INPUT(Transition, in),

OUTPUT(Transition, EOL), 

OUTPUT(Transition, Slash), 

OUTPUT(Transition, Star), 

OUTPUT(Transition, Other)))

ENTERS(in, name);

LEAVES(EOL, name);

LEAVES(Slash, name);

LEAVES(Star, name);

LEAVES(Other, name);

// File: StripperAction.h

defAction(StripperAction, (NAME, INPUT(Transition, in),

OUTPUT(Transition, out)))

in.EntersAction(name); 

out.LeavesAction(name);

F ig u re  5 .20 . Definitions of Two State and One Action Cell

// File: stripper.h 

#define BEGIN MAIN_BEGIN 

#define BEGIN_CELLS 

#define END_CELLS 

#define END MAIN_END 

#define ActorName "Stripper"

#define ActorBase "FSMContext"

#define StateBase "State"

#define StateFile "stripperGEN.h"

The simple definitions of the three cell classes are shown in Figure 5.20, and the 
even simpler definitions of the macros defState, defAction, ENTERS and LEAVES, 
along with the definition of the Transi tion wire class are found in Appendix A.



When the stripper vistafication is executed, the following file is generated, which 
is truncated here for brevity:

// File: stripperGEN.h (automatically generated —  DO NOT EDIT)

class StripperState : public State { 

public:

StripperState(const char* name) {

put_state(this, name); •

>
virtual const char* StateName(void) const { 

return "StripperState";

>
virtual void EOL(Stripper& c) {

cerr << c << "No transition from EOL" << endl;

>
virtual void Slash(Stripper& c) {

cerr << c << "No transition from Slash" << endl;

>
virtual void Star(Stripperft c) {

cerr << c << "No transition from Star" << endl;

>
virtual void Other(Stripperft c) {

cerr << c << "No transition from Other" << endl;

>
>;

class StripperStateStart : public StripperState { 

public:

virtual const char* StateName(void) const { 

return "Start";

>
virtual void Start(FSMContextft c) { 

c.EnterState("Outside");

>
> Start("Start");

class StripperStateOutside : public StripperState { 

public:

virtual const char* StateName(void) const { 

return "Outside";

>
virtual void EOL(Stripper& c) {

c.EnterState("Outside"); c . P u t C h a r O ;

>
virtual void Slash(Stripper& c) { 

c .EnterState("StartingSlash");

>
virtual void Star(Stripperft c) {

c.EnterState("Outside"); c . P u t C h a r O ;

>
virtual void Other(Stripperft c) {
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c.EnterState("Outside"); c . P u t C h a r O ;

>
} Outside("Outside");

The stripper FSM .h file is not automatically generated, but thanks to the base 
FSMContex t  class, and the stream abstraction, it is easy to write and easy to read, 
as is its corresponding . c file.

// File: stripperFSM.h '

#include "vista.h" // for boolean 

#include <fsm/fsm.h> // for everything else 

#include "stripper.h" // for StateFile

class StripperState; // forward declaration

// Stripper is the context class of the C++ comment stripper.

// It knows about its environmental input and output streams,

// how to read and write characters, and which critical 

// characters to look for in the input stream.

class Stripper : public FSMContext { 

private: 

char c ; 

istreamft i; 

ostreamft o;

char slash, star, eol; 

public:

Stripper(istreamft i, ostream& o)

: i(i), 0 (0), slash(’/ ’), star(’*’), eol(’\n’) {

EnterState("Start");

Start();

>
"Stripper(void) {

>
void PutChar(void) { 

o << c ;
>
void PutSlash(void) { 

o << slash;

>
boolean GetChar(void) { 

return (i.get(c) != NULL);

>
StripperStateft GetState(void) {

return ((StripperStateft)*itsState);

>
// GotChar cannot be inlined because it calls GetState to 

// invoke StripperState methods which have not yet been defined, 

void GotChar(void);

>;



#include StateFile // defines StripperState and its subclasses

Because the main function is so short, it is included in the stripper FSM .c  file, 
which also implements the Stripper: :GotChar method that controls the GetChar 
event-driven transitions of this recognizer FSM:

// File: stripperFSM.c 

#include "stripperFSM.h"

// GotChar directs transitions based on the type 
// of character read by GetChar. The three comment 
// determining characters are slash, star and eol.

void Stripper::GotChar(void) { 
if (c == slash) {
GetStateO .Slash(*this) ;

} else if (c == star) {
GetStateO .Star(*this) ;

} else if (c == eol) {
GetStateO .E0L(*this) ;

} else {
GetStateO . Other(*this);

}
}

int main(void) {
Stripper stripper(cin, cout); 
while (stripper.GetChar()) { 

stripper.GotChar();
}
return 0;

}
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5 . 5  S o c k e t s  a n d  R P C
Below the level of Unix pipes12 are the interprocess communication abstractions 

known as sockets , which act as endpoints for communication in a specified dom ain , 
for example, the local Unix domain (for processes running on the same Unix host), 
and the ARPA Internet domain (for those running on different but internetworked 
hosts). There are three types of sockets, here briefly described13 with their chief 
characteristics:

• stream  socket— bidirectional byte-stream data, guaranteed to be reliable, se­
quenced and unduplicated, supported by the (TCP) Transmission Control  
Protocol.

•  datagram  socket— bidirectional data packets, not  guaranteed to be transmitted 
reliably, sequenced or unduplicated, supported by the (UDP) User Datagram  
Protocol.

•  raw socket— gives access to primitive network protocols, supported by the (IP) 
Internet Protocol.

To effectively use sockets one must master the following system  calls: a cce p t, 
b in d , c o n n e c t, lis te n , s e le c t  and so ck e t, among others, which govern the estab­
lishment and interplay of socket connections. Alternatively, one may seek, hopefully 
find, and over tim e, learn to use a library of code that adds one or more abstraction 
layers to these low-level functions. The Interviews Dispatch  library is such a suite of 
classes providing these shielding layers. Table 5.1 displays the names of this library’s 
base classes with both one-line and short-paragraph synoptic excerpts from [52], 
Those flagged with a dagger are abstract interface classes, not meant to be directly 
instantiated. The user is responsible for deriving from them suitable subclasses, 
and fleshing out their virtual methods or adding other methods as required by the 
protocol.

For example, an RpcReader  (which itself inherits from IO H andler , which was 
mentioned in Section 5.1) needs a derived class to define the action to be taken 
when the socket connection is closed by the client, by overriding the virtual con- 
nectionClosed  method. More importantly, this derived class must define static 
member functions to unmarshall RPC requests, and initialize a member function 
array with their addresses. Each of these RPC-request-unmarshalling functions 
must be designed to extract any needed arguments from the rpcstream  representing 
the connection, execute the request, and insert into the rpcstream  any return values 
to be sent back to the client.

Part of the Vista commission is removing impediments to tool (library) use. 
High and shielding though their abstraction level may be, these RPC classes still 
present a challenge to their would-be users. Vista, via its c ts  (client to server) and 
p tp  (peer to peer) protolib protocols, exemplified below, takes these class concepts

12Pipes are in fact just a special case of U nix-dom ain sockets, and are typically  im plem ented
w ith the s o c k e tp a ir  system  call, which creates a pair of connected sockets.

13See [101] (Chapter 10) for a good general introduction to sockets.



Name Synopsis
iostTeamb unformatted streams

istreamb, ostreamb, and iostreamb are streams just like istream, ostream, 
and iostream except for two features. First, they automatically insert 
and extract delimiters around datums where necessary so one never has 
to manually separate datums by whitespace. Second, they can insert 
and extract integers as eitheT unformatted (binary) bytes or formatted 
characters so as to eliminate the time needed to convert integers to strings 
and back. Both of these features make these classes easier to use than the 
base stream classes for inter-process communication (IPC).

rpcstream iostreamb specialized to R P C  requests
rpcstream, irpcstream, and orpcstream specialize iostreamb, istreamb, and 
ostTeamb, respectively, to RPC requests. That is, the associated streambuf 
will be an rpcbuf.

rpcbuf streambuf specialized for  sending and receiving R P C  requests
An rpcbuf is a streambuf specialized in two ways: to use an IPC connection 
as a source or sink of characters and to send and receive RPC requests. The 
rpcbuf encloses RPC requests in packets which begin with a length field so 
as to buffer requests until they are complete if using non-blocking I/O .

RpcReaderf read R P C  requests from a client
An RpcReader reads RPC requests from an rpcstream which represents a 
connection to a client. When it reads an RPC request, it uses the Tequest 
number to look up the address of a function in an array and calls that 
function to unmarsball the request’s arguments and execute the request.

RpcWriterf write R P C  requests to a server
An RpcWriter writes RPC requests to a server. Derived classes should 
add member functions that send RPC requests corresponding to the RPC 
service’s protocol.

RpcHdr header for  remote procedure calls
An RpcHdr enables an RPC request to be sent or received. To send an 
RPC request, one would insert an RpcHdr into an rpcstream followed by 
any arguments and then flush the rpcstream if one wanted the request to be 
sent immediately. The rpcstream automatically fills in each RPC request’s 
length field. To receive an RPC request, one would extract an RpcHdr from 
an rpcstream and examine the “requestQ” member to determine which 
additional arguments need to be extracted as well.

RpcServicej support R P C  between a service and its clients
An RpcService creates a port and listens to it for connections from clients. 
When a client opens a connection, the RpcService will create a reader to 
handle RPC requests from the connection.

RpcPeerf support bidirectional R P C  between two services
An RpcPeer tries to open a connection to another RpcPeer. If the other 
RpcPeer is not yet running, the RpcPeer will create its own port and wait 
for the other RpcPeer to open a connection. When either RpcPeer opens 
a connection, each RpcPeer will create both a reader and a writer so each 
RpcPeer can send RPC requests to its opposite over the same connection.

T able 5.1. Interviews Dispatch Library RPC Classes



still higher, and clears the RPC way for the non-expert programmer/user through 
automatic generation of the necessary but tedious-to-write “glue” and “stub” code.

5 .5 .1  C lien t to  S erver
The example of a Client/Server RPC interaction presented here is a moderately 

useful enhancement of the x se  program, the source code for which provided the 
library mentioned above in Section 5.2 for use by the x se  protolib. The name 
chosen for the c ts  vistafication of this interaction is sxe  (pronounced es-ex-ee). In 
the spirit of the fsm  protolib, the execution of the sx e  vistafication, shown below, 
causes the generation of its two split personalities, those being the sx e c lie n t  and 
the sx e se r v e r  executables.

BEGIN

ExitMessage vv4("4");
WindowEventsStream vv2("2");
WindowEventsFile vvl("l");
Medium vv_sxe_(".sxe.");
WindowEventsArray vv3("3");

BEGIN.CELLS

Client("client", vv.sxe.);
SendWindowEventsFile("swef", vv.sxe., vvl);
ParseFileSendEvents("pfse", vvl, vv.sxe.);
Server("server", vv.sxe.);
SendWindowEventsStream("swes", vv.sxe., vv2);
ParseStreamSendEvents("psse", vv2, vv.sxe.);
SendWindowEventsArray("swea", vv.sxe., vv3);
ParseArraySendEvents("pase", vv3, vv.sxe.);
StopRunning("sr", vv.sxe., vv4);
Shutdown("sd" , vv4, vv.sxe.);

END.CELLS

END

Figure 5.21 shows the seemingly symmetrical sxe  schematic, which in fact is 
symmetrical topologically, but not behaviorally, as a look at the definitions of the 
ten cell classes will reveal. W hile at first glance there appear to be more than five 
wires, on clear-wrapping it is evident in Figure 5.22 that the internally-connected 
equivalent ports of both the Client and the Server  cells merge the top wire (labeled 
“.sxe.”) into one wire that fully and explicitly interconnects all ten cells. This wire 
is of type Medium.  The wires labeled 1-4 that tie the eight so-called push/pu ll  pairs  
of cells together are of four different types. By simply attaching more such pairs in
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F ig u re  5 .21 . The sxe  Client/Server Schematic
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.sxe.

Pusher
1

Puller

Pusher
2

Puller

Pusher
3

Puller

Pusher
4

Puller

F ig u re  5 .22 . Fully-Interconnected Push/Pull Pairs

like manner as the bottom pair, the number of different client/server interactions 
can be extended as desired. In fact, the bottom push/pull pair was added to provide 
a graceful means of shutting down the sx eserv er  by having the sx e c lie n t  tell it 
when to stop running. The other three pairs, as their names also suggest, are for 
handling three mutually-exelusive client request styles. Thus, sx e c lie n t  sends a 
window identifier and event descriptors to sx eserv er  in one of these three ways, 
itemized below with an example of their use:

• File: sxeclient 'Workview 4.1.0 060591’ workview-quit.sxe

• Stream.-, echo ~Xzsxe.c I xsekey I sxeclient 'Minibuffer <B acme'

• A r r a y: sxeclient 0x1300002 'Modl<Btn3Down>’ '<key>Return'

The main service provided by sx eserv er  is to parse the event descriptors and 
send their corresponding synthesized X events to the specified window. Note that 
the intended window recipient can be identified by either name or X id. Another 
time-saving service supplied by sx eserv er  is to maintain a mapping of window 
name to window id, a convenience not  provided by the X server.

The class names of the client-side Pusher  cell, the Medium  wire and the server- 
side Puller  cell are of the form S e n d W i n d o w  E v e n t s  ( thing) ,  W in d o w  E v e n t s ( t h i n g )





// File: WindowEventsStream.h

class WindowEventsStream : public Medium { 

public:

char* window_id; char cur_event[80]; 

WindowEventsStream(const char* name)

: MediumO'WindowEventsStream", name), window_id(nil) -C 
cur_event[0] = ’\0’;

>
WindowEventsStream(int n) { 

window_id = new char[n];

>
“WindowEventsStream(void) { 

delete [] window_id;

>
boolean GetNextEvent(istream& is) { 

if (is.goodO) {

is.getline(cur_event, 79); 

return true;

> else { 

return false;

>
>
boolean IsEmpty(void) {

return (cur_event [0] == ’\0’);

>
boolean IsGood(void) {

if (VISTAFIER.IsDoneO && VISTAFIER.argc == 2) { 

window_id = strdup(VISTAFIER.argv[1]); 

return true;

> else { 

return false;

>
>

>;

Figure 5.24. The W in d o w E v e n ts S tr e a m  Class Definition



// File: SendWindowEventsStream.h

#include "WindowEventsStream.h"

#def ine BEGIN_SendWindowEventsStream_CELLS VISTAFIER.EnterPusher(self)

#define END_SendWindowEventsStream_CELLS

defCell(SendWindowEventsStream, (NAME,

BIDIR(ClientMedium, vvClientMedium),

BIDIR(WindowEventsStream, vvWindowEventsStream))) 

if (vvClientMedium.IsGood(fcvvWindowEventsStream)) {

vvClientMedium.GetServerO << vvWindowEventsStream.window_id

<< check;

while (vvWindowEventsStream.GetNextEvent(cin)) {

vvClientMedium.GetServerO << vvWindowEventsStream.cur_event;

>
>

// File: ParseStreamSendEvents.h

#include "WindowEventsStream.h"

#include <xse/event.h>

#define BEGIN_ParseStreamSendEvents_CELLS VISTAFIER.EnterPuller(self);

#def ine END_ParseStreamSendEvents_CELLS

defCell(ParseStreamSendEvents, (NAME,

BIDIR(WindowEventsStream, vvWindowEventsStream), 

BIDIR(ServerMedium, vvServerMedium))) 

if (vvServerMedium.IsReadyO) {

vvServerMedium.GetClientO »  vvWindowEventsStream.window_id; 

for (;;) {

vvServerMedium.GetClientO >> vvWindowEventsStream.cur_event; 

if (vvWindowEventsStream.IsEmptyO) { 

break;

>
parseAndSendEventsFromStrearn(vvWindowEventsStream.window_id,

vvWindowEventsStrecun.cur_event);

>
>

F ig u r e  5 .25 . Two “sxe” Pusher/Puller Cell Definitions
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The SendWindowEventsS tream  cell calls its ClientMedium  wire’s I sG o o d method 
to determine (by examination of the Vistafier’s command-line arguments) if it is 
the one (of four cells) that should be operational. A side effect of this method, 
if it returns true, is to copy the command-line window id into its own window_id 
data member. If the medium “is good” then the window id is pushed to the server 
by invoking the rpcstream  < <  operator, after which the stream is checked to see 
if it is still good (no end-of-file or failure status bits set). If so, then while there 
are event-descriptor data to be read from the standard input stream (c in )  the 
GetNextEvent  method returns true, and one by one, the event descriptors (stored 
temporarily in cur_event) are likewise pushed to the server. In a similar loop, the 
server pulls each datum from the client, parses and sends an event to the window 
(whose id was the first thing the server pulled that the client pushed).

There is more going on behind the scenes in the IsGood  m ethod (see Appendix
A), but it should be evident that the preponderance of functionality resides not 
in the client, but as is usually the case, in the server. The <xse/event .h> file 
#included above declares, among others, the parseAndSendEventsFromStream 
function, and the xse library where these functions are defined is linked (only) into 
the sxeserver executable.

The P a r s e ( t h i n g ) S e n d E v e n t s  cells and their corresponding wires are used to 
implement the static member functions needed for the automatically  defined Reader  
subclass of RpcReader ,  as shown:

// File: sxereader.h (automatically generated —  DO NOT EDIT)

#define CELL3 ParseFileSendEvents 

#define WIRE3 WindowEventsFile

#define CELL2 ParseStreamSendEvents 

#define WIRE2 WindowEventsStream

#define CELL4 ParseArraySendEvents 

#define WIRE4 WindowEventsArray

#define CELL1 Shutdown 

#define WIRE1 ExitMessage

#define NUMFN 4

#define READ(N) \

static void read##N(RpcReader* reader, RpcHdrft hdr,rpcstream& client){\ 

Medium mdm("read"#N,(Reader*)reader, ftclient); \

WIRE##N arg(hdr.ndata()); \

CELL##N("read"#N, arg, mdm); \

>

class Reader : public RpcReader { 

protected:

RpcService* _service;

virtual void connectionClosed(int fd) { 

close(fd); .
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if (Service::no_longer_needed) {

_service->quitRunning() ;

}
delete this;

}
READ(1)

READ(2)

READ(3)

READ(4) .

public:

Reader(int fd, RpcService* service)

: RpcReader(fd, NUMFN + 1, /* binary = */ true),

_service(service) {

client().setf(ios::dont_close);

_function[l] = ftReader::readl;

_function[2] = ftReader::read2;

_function[3] = ftReader::read3;

_function[4] = &Reader::read4;

}
virtual "Reader(void) {

}
>;

void Service::createReader(int fd) { 

new Reader(fd, this);

}

E x p an d in g  th e  m acros for th e  second fu n c tio n  shows m ore c learly  th e  p ro toco l 
followed by each  reader  function , w hich is s im ply  to  in s ta n tia te  th e  two w ires and  
th e  single cell involved in th is  c lien t-req u est-read in g  o p era tio n .

static void read2(RpcReader* reader, RpcHdrft hdr, rpcstreamft client) { 

Medium mdm("read2", (Reader*)reader, ftclient);

WindowEventsStream arg(hdr.ndata());

ParseStreamSendEvents("read2", arg, mdm);

>

N ote th a t  th e  n d a t a ( )  m em b er function  of RpcHdr  is used by th e  special 
in teg e r-tak in g  WindowEventsStream  w ire co n stru c to r. T h u s, th is  w ire can a llocate  
th e  sto rage  needed  to  hold  the  w indow  id , w hich is p u t th e re  by th e  ParseStream-  
SendEvents  cell w hen it pulls th is  d a ta  from  th e  c lien t by invoking th e  rpcstream  
> >  op era to r:

v v S e rv e rM e d iu m .G e tC lie n t()  >> v v W in d o w E v en tsS tream .w in d o w _ id ;

T h is  only h ap p en s  if th e  ServerMedium::IsReady  m eth o d  re tu rn s  tru e , w hich it 
does if th e  sole in s tan ce  of the  Service subclass of RpcService  is ru n n in g , w hich it 
is a fte r th e  orig inal cells in th e  “serverized” v ista fica tion  are  in s ta n tia te d , as can  
be  seen by th e  sx eserv er’s h ead er file, w hich is rep ro d u ced  in  F igu re  5.26, along 
w ith  its  s im ila r b u t s im pler “c lien tized ” c o u n te rp a rt.
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#define BEGIN MAIN.BEGIN
#define BEGIN_CELLS
#define END_CELLS service->Run();
#define END MAIN_END

#define SERVER

// File: sxeclient.h (automatically generated —  DO NOT EDIT)

#define BEGIN MAIN.BEGIN 
#define BEGIN_CELLS 
#define END_CELLS 
#define END MAIN_END

#define CLIENT

Figure 5.26. Automatically Generated Client/Server Headers

Also generated by purely textual transformations of the original sxe.h and 
sxe.c files, in conjunction with the output  of the executing sxe vistafication, 
the corresponding .c files for sxeclient and sxeserver appear in Figures 5.27 
and 5.28. Note that this code is essentially identical to what would result if the 
schematic in Figure 5.21 were cut exactly in half vertically, and each half were 
vistafied separately.

5.5.2 Peer to Peer
The ptp protolib borrows a great deal of protocol from cts, as an interaction 

between peers is similar (but naturally not identical) to a client-server interaction. 
The vistafication described below implements a simple RPC exchange of an integer 
between two processes running the same program.  The code for this program, 
exipeer, is derived from the vistafied exi code in much the same fashion as 
sxeclient and sxeserver were cloned from sxe. In this case a single program 
is called for, as there is no clear separation of functionality, no real distinction 
between who is serving and who is being served— both peers serve each other.

Figure 5.29 shows how much easier a peer to peer connection is made than is 
a client/server one. Furthermore, while not infeasible it is entirely unnecessary to 
“cleave” or “unzip” this vistafication to produce the corresponding exipeer code:

// File: exipeer.h (automatically generated —  DO NOT EDIT)

// File: sxeserver.h (automatically generated —  DO NOT EDIT)

#define BEGIN MAIN.BEGIN



11 File: sxeclient.c (automatically generated —  DO NOT EDIT)

#include "sxeclient.h"
#include "cts.h"

#include "Client.h" 
outclude
#include "SendWindowEventsFile.h" 
outclude
#include "SendWindowEventsStream.h" 
outclude
#include "SendWindowEventsArray.h" 
outclude
#include "StopRunning.h" 
outclude

BEGIN

Medium vvO(".sxe. ;
ExitMessage vv4("4");
WindowEventsStream vv2("2");
WindowEventsFile vvl("l");
WindowEventsArray vv3("3");

BEGIN.CELLS

Client("client", vvO);
SendWindowEventsFile("swef", vvO, vvl); 
SendWindowEventsStreajn("swes" , vvO, vv2) ; 
SendWindowEventsArray("swea", vvO, vv3);
StopRunning("sr", vvO, vv4);

END_CELLS

END

Figure 5.27. Automatically Generated Client Code



// File: sxeserver.c (automatically generated —  DD NDT EDIT)

#include "sxeserver.h"
#include "cts.h"

#include "Server.h"
outclude
#include "ParseFileSendEvents.h"
outclude
#include "ParseStreamSendEvents.h
outclude
#include "ParseArraySendEvents.h"
outclude
#include "Shutdown.h"
outclude

#include "sxereader.h"

BEGIN

Medium vvO(".sxe.");
ExitMessage vv4("4");
WindowEventsStream vv2("2");
WindowEventsFile vvl("l");
WindowEventsArray vv3("3");

BEGIN_CELLS

Server("server", vvO) ;
ParseFileSendEvents("pfse", vvl, vvO); 
ParseStreamSendEvents("psse", vv2, vvO); 
ParseArraySendEvents("pase", vv3, vvO);
Shutdown("sd", vv4, vvO);

END.CELLS

END

F igure 5.28. Automatically Generated Server Code





#define BEGIN.CELLS do {

# d e f in e  END_CELLS } w h i le  (vvO .P e e rS h o u ld R u n O )  ;

# d e f in e  END MAIN.END

# d e f in e  PEER

// File: exipeer.c (automatically generated —  DO NOT EDIT)

#include "exipeer.h" // design 

#include "ptp.h" // protolib 

#include "ExchangeL.h" // (NAME,

BIDIR(Medium, vvMedium), 

BIDIR(Integer, vvlnteger))

outclude

#include "ExchangeR.h" // (NAME,

BIDIR(Integer, vvlnteger), 

BIDIR(Medium, vvMedium))

outclude

#include "exireader.h"

BEGIN

Integer vvl("l"); 

Medium vvO(".exi.");

BEGIN CELLS

ExchangeL("l", vvO, vvl); 

ExchangeR("r", vvl, vvO);

END.CELLS

END

T h e  con tro l s tru c tu re  for th is  p ro g ram  is effected by hav ing  BEGIN_CELLS an d  
END_CELLS im p lem en t a  do while Peer Should Run  loop, w ith in  w hich th e  tw o cells 
a re  a lte rn a te ly  in s ta n tia te d  u n til cond itions allow th e  loop to  ex it, w hich cond itions 
a re  described  below .

Like th e  s x e r e a d e r .h  file, th e  e x i r e a d e r . h  file defines a  Reader  subclass of 
RpcReader  as well as its  s ta tic  m em b er functions, of w hich th e re  is only one in 
th is  exam p le . Also im p lem en ted  in th is  file, un like in th e  s x e r e a d e r .h  file, are 
th e  d e s tru c to r  an d  th e  tw o createReaderAnd Writer  m e th ods  of th e  Peer  subclass 
of th e  RpcPeer  class. T hese  th re e  Peer  class m eth o d s  canno t be defined in  th e  p t p  
p ro to lib  .h  file, since th ey  reference Reader  m eth o d s  th a t  a re  n o t defined u n til th e  
e x i r e a d e r  .h  file is c rea ted :
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// File: exireader.h (automatically generated —  DO NOT EDIT)

#define CELL1 ExchangeR

#define WIRE1 Integer

#define NUMFN 1

#define READ(N) \

static void read##N(RpcReader* reader, \

RpcHdrft hdr,rpcstream& client){\

Medium mdm("read"#N,(Reader*)reader, ftclient); \

WIRE##N arg(hdr.ndata()); \

CELL##N("read"#N, arg, mdm); \

>

class Reader : public RpcReader {

protected:

Peer* peer;

virtual void connectionClosed(int fd) {

>
READ(1)

public:

Reader(rpcstream* client, Peer* peer)

: RpcReader(client, NUMFN + 1), 

peer(peer) {

client->setf(ios::dont_close);

_function[l] = ftReader::readl;

>

virtual Peer::"Peer(void) { 

delete reader; 

delete writer;

>

virtual boolean Peer::createReaderAndWriter

(const char* rHost, int rPort) { 

writer = new Writer(rHost, rPort); 

if (writer->server()) {

reader = new Reader(&writer->server(), this); 

return true;

} else {

Error(rHost, rPort); 

return false;

>
>

virtual void Peer::createReaderAndWriter(int fd) { 

if (writer) {

Error(fd, 0); 

return;

>
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writer = new Writer(fd); 

if (writer->server()) {

reader = new Reader(&writer->server(), this);

> else {

Error(fd);

>
>

Again for clarity, the sole reader function is shown here expanded: •

static void readl(RpcReader* reader,

RpcHdr& hdr, rpcstreamft client) {

Medium mdm("readl", (Reader*)reader, ftclient);

Integer arg(hdr.ndataQ);

ExchangeR("readl", arg, mdm);

> •

The class definitions of the Integer type Medium, wire, and the complementary 
“left” (local) ExchangeL and “right” (remote) ExchangeR cells are as follows:

class Integer : public Medium { 

public:

int datum; 

boolean got_it;

Integer(const char* name) : Medimn("Integer", name), 

datum(O), got_it(false) {

>
Integer(int) : datum(O), got_it(true) {

>
'lnteger(void) { 

if (got_it) {

cout << datum << endl;

>
>
boolean IsGood(void) {

if (VISTAFIER.IsDone() && VISTAFIER.argc == 2) { 

datum = atoi(VISTAFIER.argv[l]); 

return true; 

y else {
return false;

>
>

defCell(ExchangeL, (NAME,

BIDIR(Medium, vvMedium), 

BIDIR(Integer, vvlnteger))) 

if (vvMedium.IsGood(ftvvInteger)) {

vvMedium.GetStreamO << vvlnteger.datum «  flush; 

vvMedium.Done();

>



defCell(ExchangeR, (NAME,

BIDIR(Integer, vvlnteger),

BIDIR(Medium, vvMedium)))

if (vvMedium.IsReadyO) {

vvMedium.GetStreamO »  vvlnteger.datum; 

vvMedium.Done();

>

As in th e  clien t-server p rotoco l, th e  M e d i u m  s till needs to  b e “good  and ready” 
to  effect an R P C  d ata  exchan ge. B o th  cells have a chance to  pass th e  good ness and  
readiness te sts , and th ey  succeed  in th a t order in b oth  peer p rocesses, regardless 
of w hich  process starts ex ecu tin g  first. Each peer process p lays b o th  roles— local  
(or left) and r e m o t e  (or r igh t). T h e local p eer ’s E x c h a n g e L  ce ll, on passin g  th e  
good ness te s t , pushes its in teger to  its rem ote peer. T hen  it preten ds to  be th e  
rem o te  peer, and w aits to  pull th e  in teger th a t w ill b e  (or already has b een ) pushed  
by its  cou n terpart, w hich  it does w hen  its  E x c h a n g e R  cell passes th e  readiness te st. 
It is an a sy m m etry  in th e  p t p  p rotoco l th a t th e  E x c h a n g e R  cell in sta n tia tio n  w here  
th e  M e d i u m  is ready is n o t  th e  in sta n tia tio n  th a t occurs in th e  m ain  loop. R ather, it 
is th e  in sta n tia tio n  occurring w hen  th e  R e a d e r : : r e a d l  s ta tic  m eth o d  show n above is 
called , as th e  on ly  M e d i u m  w ire th a t is ready to  have its r p c s t r e a m  “c lien t” m em b er  
read from  is th e  one th a t is in sta n tia ted  w ith  an r p c s t r e a m  argum ent. N o te  th at  
th e  I n t e g e r  w ire in sta n tia ted  in R e a d e r : : r e a d l  has a non-cleanup  ty p e  o f task  for its  
d estructor to  do, w hich  it does su rrep titiou sly  before r e a d l  returns; nam ely , w riting  
th e  rem ote ly -received  in teger d atu m  to  th e  standard  ou tp u t.

T h e norm al r p c s t r e a m  push  and pull operators are used  to  send and receive th e  
integer. O nce th e  local peer has pushed  its in teger and pulled  (and printed  ou t)  
th e  in teger pushed  by th e  rem ote peer, h avin g  n oth in g  else  to  do, it invokes th e  
M e d i u m : : D o n e  m e th o d , w hich  asserts tw o sta tic  boo lean  flags in th e  P e e r  o b jec t, 
lo c a l_ d o n e  th e  first t im e  and rem o te_ d o n e th e  second  tim e . T h ese  tw o flags 
co n d itio n a lize  th e  P e e r r . S h o u l d R u n  m eth o d , w hich  in turn controls th e  m ain  loop  
(as seen  above):

b o o le a n  S h o u ld R u n (v o id )  {
i f  ( ! l o c a l_ d o n e  II !r e m o te _ d o n e ) {

D i s p a t c h e r : : i n s t a n c e ( ) . d i s p a t c h ( ) ;
}
r e t u r n  ( ! l o c a l_ d o n e  | |  !r e m o te _ d o n e ) ;

}

T h e D i s p a t c h e r : : d i s p a t c h  m eth od  is th e  sam e one used by th e  d is p a t c h  program  
(see Section  5.1 above) to  en ca p su la te  th e  low -level se lec t  sy stem  call, w hich  in th is  
case is syn ch ron ously  m u ltip lex in g  socket I /O  instead  o f p ip e I /O . To end th is  
cursory ex p o sitio n  o f th e  p t p  p rotoco l, here is a quick peek  at th e  num ber of 
fu n ction -ca ll layers b etw een  se lec t  and th e  E x c h a n g e R  cell in stan tia tion :

1. s e le c t  is ca lled  by

2. D i s p a t c h e r : : d i s p a t c h ,  which (w hen  se l ec t  returns) calls

138



139

3. D i s p a t c h e r :: n o t i f y , which calls

4. R p c R e a d e r :  : i n p u t R e a d y ,  which calls

5. R p c R e a d e r :. -execute, which calls the static member function

6. R e a d e r : : r e a d l ,  which instantiates (calls)

7. In te g e r  and E x c h a n g e R .

In the following section is presented a more sophisticated example of a peer-to- 
peer interaction.

5 . 6  A  T a l e  o f  T w o  S p r e a d s h e e t s
Spreadsheets have attained their immense popularity because of their friendly, 

intuitive interface and their enormous flexibility[49, 39, 1]. State-of-the-art spread­
sheet programs (e.g., Lotus 123) go as far as providing “addin” toolkits that 
allow one to write C language routines to manipulate the spreadsheet, perform 
customized functions, and so forth. There is no direct way, however, to make one 
Unix spreadsheet talk to another one— one using the other as a computation engine.

There is, of course, an indirect way. In the vistafication described in this section, 
two Unix spreadsheet programs, sc and o leo , communicate via an agent that knows 
how to talk to each, and can translate from the command language of one to that 
of the other. The p tp  Reader/W riter RPC protocol is once again employed, and as 
this provides for network communication, the two spreadsheets are run on different 
hosts to exercise this feature. Other highlights of this vistafication include:

1. parameterization by polymorphism, and

2. merging behavior by multiple inheritance.

Specifically crafted to perform this spreadsheet experiment, the sse  protolib 
references fsp  and x se  in addition to the just described p tp  protolib. The sse  
Vistafier class acquires the I O H a n d l e r  protocol by (multiple) inheritance, and uses 
polymorphic delegation to a S p r e a d s h e e t  class object to parameterize by type of 
spreadsheet, as explained further below. The t t s  vistafication, shown in Figures 
5.30 and 5.31, uses the same main control structure (loop while peer should run) as 
did e x i above. The generated t t s r e a d e r .h  is likewise similar to the e x ir e a d e r .h  
file, except that it defines two r e a d e r  functions instead of just one. The purpose 
of these two functions is to pull integer and string data pushed from the peer, 
exchanging the integer datum in much the same fashion as in e x ip e e r  above. Thus, 
there are two RPC cell-wire-cell handshake trios connected by a common M e d i u m ; 
namely, (X r o w  R o w C o l  X c o l )  and (S e n d  —>■ S t r i n g  —>■ R e c v ) .  The code for 
the former trio appears in Figure 5.32, and in Figure 5.33 for the latter.

The cell-quartet of C h o o s e ,  P u t , G e t  and Q u i t , whose behavior is shown in 
Figure 5.34, implements a very simple command interpreter that neutralizes the 
vagaries of each spreadsheet’s command syntax. Table 5.2 gives a sample compar­
ison of command and expression syntax for sc  and o leo , both with each other and
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.tts.

Choose Put Get Quit

F ig u re  5 .30 . The t t s  Spreadsheet Schematic

with the neutral syntax recognized by these cells when they are instantiated in the 
main control loop of the executing t t s p e e r  agent.

The t t s p e e r  agent relies on short shell scripts to invoke the two spreadsheets. 
Each script starts its spreadsheet running in the background, and returns the id 
of the X window in which the spreadsheet is running, so that commands can be 
communicated by having the xse Vistafier send synthetic X events from the agent 
to each spreadsheet. Here is the text of the two executable scripts, named sc and 
o leo  for reasons made known below:

#! /bin/csh -f
set name = 'Spreadsheet Calculator'
toolwait xterm -T "$name" -geometry 80x24+0+0 \

-xrm "*allowSendEvents:true" \
-e “/spreadsheets/sc-6.21/sc 

xwininfo -name "$name" -int | grep xwininfo | cut -d" " -f5

#! /bin/csh -f
set name = 'Oleo version 1.5' 
toolwait ~/spreadsheets/oleo-1.5/oleo
xwininfo -name "$name" -int I grep xwininfo I cut -d" " -f5

A utility program that controls X client startup, to o lw a it  takes the name of an 
X client program as an argument, and executes it. Only after the client program has 
started will to o lw a it  exit. Thus, when started immediately thereafter, x w in in fo , 
another utility that finds and displays information about X windows, will find a



#include "tts.h" // design 

#include "sse.h" // protolib

#include "Xrow.h" // (NAME, BIDIR(Medium, vvMedium),

BIDIR(RowCol, vvRowCol))

outclude

#include "Xcol.h" // (NAME, BIDIR(RowCol, vvRowCol),

BIDIR(Medium, vvMedium))

outclude

#include "Send.h" // (NAME, BIDIR(Medium, vvMedium),

BIDIR(String, vvString))

outclude

#include "Recv.h" // (NAME, BIDIR(String, vvString),

BIDIR(Medium, vvMedium))

outclude

#include "Choose.h" // (NAME) 

outclude

#include "Put.h" // (NAME) 

outclude

#include "Get.h" // (NAME) 

outclude

#include "quit.h" // (NAME) 

outclude

BEGIN

RowCol vvl("l");

String vv2("2");

Medium vv_tts_(".tts.");

BEGINCELLS

Xrow("xrow", vv_tts_, vvl) 

XcolC'xcol", vvl, vv_tts_) 

Send("send", vv_tts_, vv2) 

Recv("recv", vv2, vv_tts_) 

Choose("choose");

Put("put");

GetC'get") ;

Quit("quit") ;

END_CELLS

END

F igure 5.31. The t t s  Spreadsheet Vistafication



// File: RowCol.h

class RowCol : public Medium { 

public:

int datum; 

boolean got_it;
RowCol(const char* name) : Medium("RowCol", name), 

datum(O), got_it(false) {

> . 
RowCol(int) : datum(O), got_it(true) {

>
"RowCol(void) { 

if (got_it) {

VISTAFIER.spreadsheet->SetRow(datum);

>
>
boolean IsGood(void) {

if (VISTAFIER.GotCommandO'xrowcol")) {

datum = VISTAFIER.spreadsheet->name.length(); 

VISTAFIER.spreadsheet->SetCol(datum); 

return true;

} else {

return false;

>
>

>;

// File: Xrow.h 

#include "RowCol.h"

defCell(Xrow, (NAME, BIDIR(Medium, vvMedium),

BIDIR(RowCol, vvRowCol))) 

if (vvMedium.IsGood(&vvRowCol)) ■(

vvMedium.GetStream() «  vvRowCol.datum «  flush;

>

// File: Xcol.h 

#include "RowCol.h"

defCell(Xcol, (NAME, BIDIR(RowCol, vvRowCol),

BIDIR(Medium, vvMedium))) 

if (vvMedium.IsReady()) {

vvMedium.GetStream() »  vvRowCol.datum;

>

F ig u r e  5.32. A Bidirectional RPC Integer Exchange



class String : public Medium { 

public:

char* datum; 

boolean got_it;

String(const char* name) : Medium("String", name), 

datum(nil), got_it(false) {

>
String(int n) : got_it(true) { 

datum = new char[n];

>
'String(void) { 

if (got_it) { 

int c, r;

VISTAFIER.spreadsheet->GetColRow(c, r ) ;

VISTAFIER.spreadsheet->SelectCell(r, c);

VISTAFIER.spreadsheet->PutStringValue(datum);

>
delete [] datum;

>
boolean IsGood(void) {

if (VISTAFIER.GotCommand("send")) { 

int c, r;

VISTAFIER.spreadsheet->GetColRow(c, r ) ;

VISTAFIER.spreadsheet->SetCurrentRegion(c,r ,c+7,r ); 

datum = VISTAFIER.spreadsheet->GetStringValue(); 

return true;

> else {

return false; 1

>
>

>;

defCell(Send, (NAME, BIDIR(Medium, vvMedium),

BIDIR(String, vvString))) 

if (vvMedium.IsGood(&vvString)) {

vvMedium.GetStreamO «  vvString.datum «  flush;

>

defCell(Recv, (NAME, BIDIR(String, vvString),

BIDIR(Medium, vvMedium))) 

if (vvMedium. IsReadyO ) {

vvMedium.GetStreamO >> vvString.datum;

>

Figure 5.33. A Unidirectional RPC String Delivery



defCell(Choose, (NAME))

if (VISTAFIER.GotCommand(name)) { 

char type; cin >> type; 

switch (type) {

case ’ c ’ : { // cell

int col, row; cin >> col >> row; .

VISTAFIER.spreadsheet->SelectCell(col, row); break; }

case ’r ’: { // region

int 1, b, r, t; cin >> 1 >> b >> r >> t;

VISTAFIER.spreadsheet->SetCurrentRegion(l, b, r, t); break; >

>
>

defCell(Put, (NAME))

if (VISTAFIER. GotCommand(name)) { 

char type; cin >> type >> w s ; 

switch (type) {

case ’n ’: { // number 

double d; cin >> d;

VISTAFIER.spreadsheet->PutNumericValue(d); break; } 

case ’s': { // string

char s[80]; cin.getline(s, sizeof(s), '\n’);

VISTAFIER.spreadsheet->PutStringValue(s); break; } 

case ’f ’: { // formula

char f [80] ; cin.getline(f , sizeof(f), ’\n’);

VISTAFIER.spreadsheet->PutNumericFormula(f); break; } 

case ’1 ’: { // literal formula

char f [80]; cin.getline(f , sizeof(f), ’\ n’);

VISTAFIER.spreadsheet->PutStringFormula(f); break; }

>
>

defCell(Get, (NAME))

if (VISTAFIER.GotCommand(name)) { 

char type; cin >> type; 

switch (type) {

case 'n': { // number

cout «  VISTAFIER.spreadsheet->GetNumericValue() << endl; breaJc; } 

case ’s ’: { // string

cout «  VISTAFIER.spreadsheet->GetStringValue() «  endl; break; }

>
>

defCell(quit, (NAME))

if (VISTAFIER.GotCommand(name)) {

VISTAFIER.quit();

Figure 5.34. A Quartet of Cells Interpreting Spreadsheet Commands



W  h a t \ W  hich sc ttspeer oleo

Addressing

Cells b3 c c 2 4“ r4c2

Regions a0:d2 c r 1 3 4 l6 rl:3cl:4

Value Entry

Number = 123 p n 123c 123

String <abc p s abcd "abc"

Formula Entry

Numeric =@sqrt(b3) p f sqrte sqrt(r4c2)
String ER@substr("abc",1,2) p 1 expr^ substr(l,2,"abc")

Miscellany

Write W fn a0:d2 none9 ~[~P a rl:3cl:4 fn'1
Quit q n q' "X~C yes

“Choose Cell at colum n 2, row 4.

bChoose Region between colum n 1, row 3 and colum n 4, row 1. 

cPut Num ber 123 into the currently chosen cell. 
dPut String “abc” into the currently chosen cell.

ePut Form ula n a m e  and append the currently chosen degenera te  region enclosed in parentheses, 

e.g., sqrt(a3). The com m and “c r 1 4 1 4” specifies a degenerate region consisting of a single cell, 

which collapses to the “a3” cell address.

'P u t  Literal Form ula (exp r  is a literal string in the com m and syn tax  o f the targeted spreadsheet). 

9No direct com m and. W riteA n d R ea d R eg io n  is called by the G et  cell to com m unicate string or 

numeric values  com puted by the spreadsheet to the agent.

hThe generated filenam e fn  com es from an instance of the T e m p o ra ry ln p u tF i le  class (defined in 

the fsp  protolib), which object is instantiated by the W riteA n d R ea d R eg io n  m ethod.

'Each program asks for confirm ation differently when told to quit w ithout first saving a m odified  

spreadsheet file.

Table 5.2. Spreadsheet Command Comparison



window with the given name and return, among other things, its id. The grep  and 
cu t pipeline is necessary to filter these “other things” out.

The reason for the x te r m  in the first script is that sc  only runs in a terminal (or 
terminal emulator) program, whereas o leo  knows how to open its own X window in 
which to run. Setting the “allowSendEvents” X resource to be “true” is necessary, 
otherwise x te r m  will silently ignore any synthetic X events sent to it . 14

The directories where are found the actual spreadsheet executables are purposely 
excluded from the list of directories the shell searches to find executable programs. 
The directories where the scripts themselves reside are purposely included in this 
search path. That way there is no conflict between script and spreadsheet, even 
though they have the same name, and the spreadsheet program is always invoked 
indirectly through its corresponding script.

The sse::Init method looks at the first argument given on the t t s p e e r  command 
line, treats it as the name of an executable Unix program and opens an input pipe 
( ipipe) to the program thus named. It reads through this pipe the X window id 
written on exit by this program, and passes the id to the xse::Init method.

The program thus named and executed must be either the sc  or o leo  script, 
because the sse::Init method also looks at this name as a string, and if the string 
is “sc” or “oleo” then it instantiates a new object of class Sc or Oleo and caches 
a pointer to this instance in its spreadsheet member variable, which is of type 
(pointer to) Spreadsheet. Spreadsheet, of course, is the parent class of both Sc  and 
Oleo , whose virtual methods furnish the polymorphic access to each spreadsheet’s 
idiosyncratic user interface.

The last task performed by the sse::Init method is the following, which it does so 
that the Dispatcher:'.dispatch method called in the main control loop can multiplex 
input between the RPC socket conduit and the standard (file descriptor 0) input 
channel:

D isp a tc h e r : : in s t a n c e ( ) . l i n k ( 0 , D isp a tc h e r : :ReadMask, t h i s ) ;

When select returns indicating the availability of data from standard input, the 
D isp a tc h e r :: in s ta n c e ( )  calls the virtual IOHandlerr.inputReady  method rede­
fined in the sse class as follows:

in t  in p u tR ea d y (in t fd )  { 
c in  >> cmd; 
re tu rn  0 ;

>

The cmd  member is of type char, and serves to store the primary command 
character the user types in, against which each interpreter cell compares its name
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14A bit of state is set in the X event data structure by the XSendEvent function, providing 
the way for X clients to distinguish synthetic events from real ones. Allowing synthetic events 
to be sent to arbitrary windows (by anyone who can connect to the X server) poses a significant 
security risk.
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to decide if it should extract further data from standard input and execute its 
command. Returning zero to the dispatcher instructs it to call select  again to check 
the status of the file descriptor before invoking IOHandler::inputReady  again.

Figure 5.35 depicts a sample execution of t t s p e e r  sc in the bottom-left window 
running an x te r m  on host v ls i, and t t s p e e r  o leo  likewise running in the bottom- 
right window on the a cm e host. The circled-number annotations added to the 
captured screen image show the order in which commands were typed to these 
two windows. For this example, the confirmation-on-exit reply has been excised 
from each spreadsheet’s Quit  method, so that exiting t t s p e e r  will not quite quit 
its spreadsheet. Thus may be seen the “save-data” prompt that each program 
displays, as well as the sign-off message indicating that the t t s p e e r  has indeed 
exited. Here follows an explanation of the 22 commands in the order given (the 
“L:” prefix indicates input to t t s p e e r  sc, and “R:” to t t s p e e r  oleo):

1. L: Transmit the integer 2 (the length of “sc”) as the column of the cell of o leo  
where data will be sent. Set 2 to be the column, and receive 4 from peer to be 
the row of the cell whose string value will be sent to peer by subsequent send  
commands. Prepare to receive data from peer in cell at column 4, row 2.

2. R: Transmit the integer 4 (the length of “oleo”) as the column of the cell of 
sc  where data will be sent. Set 4 to be the column, and receive 2 from peer 
to be the row of the cell whose string value will be sent to peer by subsequent 
send  commands. Prepare to receive data from peer in cell at column 2, row 4.

3. R: Choose (and move cursor to) cell at column 4, row 2.

4. R: Put the number 123 into that cell.

5. R: Send as a string the displayed  representation of that cell to sc.

6. L: Choose (and move cursor to) cell at column 1, row 2.

7. L: Choose degenerate region at column 4, row 2 to be the argument to the 
next command.

8. L: Put formula “ston” (string to number) in cell “a l” to convert the string 
received from o leo  into its numeric equivalent.

9. L: Choose (and go to) cell at column 2, row 3.

10. L: Put the string “dollars” there.

11. L: Choose (and go to) cell at column 2, row 4.

12. L: Put the literal formula “ex t(b 2 ,a l)” there15.

15Short for external,  ext specifies an external function to be called to get the ce ll’s value. It 
takes a string argum ent nam ing a U nix com m and, and a numeric argum ent, which is converted  
to a string and appended to the nam e argum ent to form a U nix com m and line. Using p o p e n  
to create a pipe and a process, sc  reads through the pipe the first line o f output produced by 
the process running this U nix com m and, returning it as the string value of this form ula. This 
is a useful (albeit expensive) way to get an approxim ation to the “addin” capability in Lotus 
123. Closer and better still is the capability of o le o  to dynam ically  link in object code while it 
is running. The drawback, o f course, is that it is much m ore difficult to provide object code that
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13. L: Send the string value1 6  in this cell back to o leo .

14. R: Choose (and go to) cell at column 4, row 2.

15. R: Put the number 987.65 there.

16. R: Send it back to sc.

17. L: Send the recomputed “dollars” equivalent back to o leo .

18. L: Choose region bounded by columns 2 and 6  on row 4.

19. L: Get the string displayed there from sc  and write it to standard output. The 
region had to be made wider in the previous step to accommodate this label 
that extends beyond its cell’s normal width.

20. R: Get the number displayed in the current region by o leo  and write it to 
standard output.

21. L: Quit.

22. R: Quit.

It should be noted that these two spreadsheet programs are not really in the 
same league with state-of-the-art spreadsheet applications running under DOS or 
Windows on PCs. They have no GUI, no fancy icons and no menus— commands 
must  be entered from the keyboard. Still, they do have the considerable advantage 
of being free , 1 7  and hence, many programmers continue to contribute to their 
development, to the general benefit of all who wish to use them as an alternative 
to high-priced commercial software.

5 . 7  M o l l i f y i n g  E g o c e n t r i c  T o o l s
Speaking of high-priced commercial software, Viewlogic Systems, Inc., which is 

highly representative of its kind, is a vendor of tools for designing and simulating 
integrated circuits. The p o w erv iew  program provides the current controlling 
interface to all of Viewlogic’s tools, and the strong presumption made by Viewlogic 
is that every user will naturally prefer to use p o w erv iew  to launch and interact 
with these tools. Moreover, p o w erv iew  assumes its environment is structured in 
a certain way, and forces the user to conform to this structure. The egocentric 
p o w e rv iew  view is imposed on users, which imposition is tolerable if Viewlogic’s 
tools are the only ones being used. In the common situation where other tools also 
enter the picture, e.g., Acme, the imposition is more bothersome. The interaction

must be structured in a rigid way, conforming to the scheme oleo requires in order to load new 
functions and/or new keyboard commands.

16The result of running the command dollars 123, which is one hundred twenty-three and 
no/100, a string suitable for printing on a payroll check, for example.

17More precisely, sc is in the public domain and oleo is “copylefted” (distributed under the 
terms of the Free Software Foundation’s GNU General Public License, which essentially is an 
interdiction of any restriction on its redistribution).



agent1 8  presented in this section constitutes a mollification of the egocentric rigidity 
of Viewlogic’s tools.

Partly because of new software releases, and partly due to a desire to make 
it work well, several iterations were required to design the ad sim  agent, whose 
purpose is to enable a p o w erv iew  tyro to successfully accomplish the following 
three objectives:

1. Use the m a d sn e t tool to generate a mixed analog/digital signal netlist.

2. Use the m a d ss im  tool to do a mixed analog/digital signal simulation.

3. Examine the simulated digital and analog waveforms using v ie w tra c e .

The a d sim  agent is a shell script that delegates all the work to the Unix (actually 
GNU) m ak e program. The adsim.mk makefile read by m ak e is where all the 
functionality resides. In this makefile database are 19 targets and pseudo-targets 
that im plicitly specify the steps to be taken to simulate a circuit containing both 
analog and digital components. Automated by m ake are a dozen or more tool- 
interaction tasks that otherwise would have to be performed manually by the user. 
These tasks include (for an Acme circuit design named t e s t  from which the user 
has already generated a t e s t .p p l  file) the following:

• Invoke the PPL tool sp p lice  to produce a t e s t . l  file (Viewlogic’s netlist 
format) from the t e s t .p p l  file.

• Move or copy the t e s t . l  and te s t .c m d  files1 9  into the w ir subdirectory of 
the test project directory, using p o w erv iew  to create this project directory 
(and its various subdirectories) first if it does not already exist.

• Connect to the test project directory.

• Invoke m a d sn e t  to create a t e s t . c i r  h sp ice  netlist file and a t e s t .v s m  
v ie w s im  netlist file.

•  Edit the t e s t  . c i r  file to add the necessary analog stimulus and probe state­
ments, and to change various hardwired voltage and tim e values appropriately.

• Invoke m a d ss im  to simulate the analog t e s t  . c i r  using h sp ic e  and the digital 
t e s t .v s m  using v ie w s im . (The IPC handshaking necessary for h sp ice  and 
v ie w s im  to communicate back and forth is handled by m a d ssim .)

• Start and read into v ie w tr a c e  both the t e s t . wfm v ie w s im  output file and the 
t e s t  .trO  h sp ice  output file, to view the mixed waveforms for this simulation.

To give just a hint of how these manual steps are automated by Vista, here is an 
excerpt from the adsim.mk makefile showing the $(PR0JDIR) target, and the rules 
(commands) needed to create it, followed by a number of explanatory comments:
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18There are actually tw o— d s im  and a d s im . The former is a subset o f the latter.

19If the user has provided a t e s t . s r c  file o f s im p p l com m ands, s p p lic e  translates it into a 
t e s t . cmd file containing the equivalent v ie w s im  com m ands.



PVNAME = ’Powerview Cockpit'
PVDIR = $(shell echo $(WDIR) I cut -d: -fl)
PROJDIR = $(PVDIR)/$(NAME)

$(PROJDIR):
©echo ’Modl<key>x’ > powerview-create-project.xse
Oecho "pdc $(PR0JDIR)" I xsekey >> powerview-create-project.xse
toolwait powerview > /dev/null
xse -window $(PVNAME) -file powerview-create-project.xse
until [ -d $(PROJDIR)/wir ]; do sleep 1; done
xse -window $(PVNAME) 'Modl<Btn3Down>' '<key>Return'

1. Parameterizing the project creation target are three internal make variables 
(PVNAME, PVDIR and PROJDIR), one external command-line-specified variable 
(NAME, whose value is “test” in this case), and one environment variable (WDIR). 
The WDIR variable is used in a shell interaction that extracts the first pathname 
from the value of this variable, which value is a colon-separated list of working  
directories that powerview searches to find projects and libraries. The project 
directory will be a subdirectory named test of this primary working directory.

2. The Modl<key>x key event descriptor translates to the “A lt-X ” keystroke 
chord, whose effect on powerview is to pop up its “Command Line” text entry 
box, which Viewlogic considerately20 provides as an alternative to invoking 
commands solely via menus.

3. “pdc” is the powerview abbreviation for its “project (viewdraw) create” 
command. The abbreviated form is used so as to minimize the number of 
synthetic key events sent to powerview.

4. xsekey reads its standard input, and for every character read writes on its 
standard output an X  key event descriptor (e.g., s<key>x for a shifted ‘X ’ 
character), one per line.

5. toolwait starts powerview in the background, and returns when powerview 
is ready to accept input. The noisy banter powerview normally puts out is 
diverted to the /d e v /n u l l  bit bucket.

6. xse finds the powerview window by name, then parses the X  key events 
described in the just-created powerview-create-project .xse file and sends 
them to the powerview window.

7. The purpose of the u n t i l  shell command is to synchronize the powerview 
and make processes that are running concurrently. The reason they have to 
be running concurrently is that powerview has no batch m ode,21 hence, it
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20Inconsiderately however, Viewlogic is inexplicably inconsistent in making the space bar the 
key to press to get this command entry box in all its other tools.

21 The omission of batch mode capability is another annoying artifact of egocentric interactive 
software.
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must be running in the background so that it can be sent commands in its 
interactive mode by x se , which is running in the foreground.

8. When p o w erv iew  has finished this automatically-requested project creation 
task, because the $ (PROJDIR)/wir subdirectory will then exist, the check- 
sleep-check-again loop will exit, whereupon x se  sends the button click and 
confirming Return key event necessary to quit p ow erv iew .

Figure 5.36 shows the p o w erv iew  window with its command line entry box exposed 
and stuffed with the characters (minus the final Return) sent to it by xse .

Ironically, of all the vistafying agents and interactions described in this chapter, 
the by far most useful ones (ad sim  and d sim ) are also the ones with empty 
schematics, that is, those with no cells and no wires. Hence, no codified C+ + 
vistafications are warranted, as purely textual, executable shell scripts suffice to 
specify the necessary interactions. As these scripts could just as easily be executed 
from the command line of any interactive Unix shell, it is only the desire to maintain 
a consistent graphical user interface that motivates the creation of a special protolib 
for storing these scripts. In the context of this protolib, called e x e , when invoking 
the Vistafy command, only the Run  option need be exercised, as the executable 
script is already there. Since it has the same base name as the empty .cm file, the 
Executer simply invokes this script with the parameters entered by the user in the 
Vistafy command dialog box. To justify its creation, other than just for identifying 
the desired script by its name, the . cm file could profitably be used to score and 
display documentation about the script. It could thereby instruct or remind the





C H A P T E R  6

C O N C L U S I O N

The purpose of this chapter is two-fold; to recapitulate V ista’s contributions, 
and to discuss future prospects for this research.

6 . 1  R e s e a r c h  C o n t r i b u t i o n s
In its stated purpose, versatile tool-agent interaction specification, there are 

three main contributions of Vista, listed in increasing order of significance:

1. A conceptual and implementational framework and protocol for the executable 
specification of tool-agent interaction.

2. A means to more productive use of egocentric tools, through a rich synthesis 
of encapsulated interaction mechanisms.

3. A collection of design patterns containing knowledge about how to use Vista  
to solve new tool interaction problems, and an algorithm for applying them.

To address the quality of versatility, it has been amply demonstrated just how 
widely applicable is the high-level protocol embodied in V ista’s orchestrating quar­
tet of Codifier, Analyzer, Manifester and Executer. Controlled and coordinated 
by special-purpose, behind-the-scenes Vistafiers, cells push and pull wires through 
their state space. Cells implement a variety of high-level protocols that enable 
the specification of many tool-agent interactions using a variety of different mech­
anisms. The extent of the horizontal and vertical versatility thus far attained by 
Vista is plotted in Figure 6.1. The legend for the vistafication data points with 
cross-references to where each is discussed follows:

1. sig, test (Section 4.3, page 48)

2. fsp, lswc (Section 5.1, page 79)

3. fsp, stuqwc (Section 5.1, page 79)

4. fsp, howmanydups (Section 5.1, page 79)

5. fsp, gnuplotvar (Section 5.1, page 79)

6. xse, send (Section 5.2, page 101)

7. unx, howmanyfiles (Section 5.3, page 104)

8. unx, exor (Subsection 5.3.1, page 107)
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acm e 1,14 1-14 8
alert 4,12,13 4,12,13
awk 1,3,4,7,9,10,11,14 4,9
cat 1,10,11,12
cp 12,13

csh 10,11 10,11 10,11
cut 1,3,4,7,9,10,11
dc 4

diff 1,3,4,7,9,10,11
echo 1,10-13 12,13 4

em acs 1,12-14 14 14

g + + 1-11
gdb 14 14

gnuplot 5 5 5
grep 1,3,4,7,9,10,11 7,11
head 12,13

hspice 12
join 10,11

Is 2,7,9 2 2,7
m adsnet 12
m adssim 12

make 1-13
mv 12,13

oleo 11 11 11
paste 9

powerview 12,13
rm 1,3,4,7,9,10-13
sc 11 11 11

sed 10-13 1,3,4,7,9,10,11
sh 14 14

sim ppl 8
sort 3,4 1,3,4,7,9,10,11

spplice 8,12,13
tail 12,13
test 1,3,4,7,9,10-13

tr 1,3,4,7,9,10,11
uniq 1,3,4,7,9,10,11 1,3,4,7,9,10,11

viewsim 12,13 12
viewtrace 12,13

wc 3 2 2,3,4,7
wish 5,14 14

xargs 1,3,4,7,9,10,11 9
xedit 7 7

xse 12,13 8
xsekey 12,13 12,13
xterm 11,12 11 8,11

xw ininfo 8,11
X (server) 6

U nix (kernel) 1 10,11
signals files stream s pipes events sockets

F igure 6.1. Vista Versatility Matrix



9. unx, ct2code (Subsection 5.3.2, page 109)

10. cts, sxe (Subsection 5.5.1, page 123)

11. sse, tts (Section 5.6, page 139)

12. exe, adsim (Section 5.7, page 149)

13. exe, dsim (Section 5.7, page 149)

14. exe, rootdump (Section 6.2, page 158)

Addressing the issue of productivity is harder, owing to the problematic nature 
of productivity metrics. In programming, for example, the “Lines-of-Code” (LOC) 
measure of productivity is infamous . 1 Often blurred in studies of programming 
productivity is the distinction between economic productivity and common  pro­
ductivity. The former refers to goods or services produced per unit of labor or cost. 
The latter simply means completing a task as quickly as possible. It is the latter 
meaning that is germane to the claim that more productive use of egocentric tools 
is made possible by Vista.

Before examining tool-use productivity, it may be helpful to use LOC as a 
measure of value added  (i.e., improvements or enhancements) in the V ista context. 
A variation of the VAR (Value Added Reseller) acronym is the VAR of Value Added 
Reuse2 (of existing software). Thus, it may also be enlightening to report the VA 
and the VAR in the following three phases of V ista’s evolution, which phases were 
not distinct and sequential, but rather blurred and interwoven:

1 . adding code to Acme,

2 . building protolibs, prototypes, wrappers, etc., and

3. finding and testing supporting code (war, coral, etc.).

For example, the code written in the second phase is all VA, while the VAR of 
the var  library consists of a mere 30 LOC added to implement the VarM apIterator  
class. To put it all in perspective, Table 6.1 tabulates the V A /V A R for phases one 
and three.

The small VA of 12, 19 and 6  LOC for the Interviews Dispatch library, coral 
and E x p la in , respectively, consists of some bug fixes, together with the necessary 
additions of # i f d e f  conditional compilation directives and extra # in c lu d e  direc­
tives to enable the g++ (G N U ’s C++) compiler to compile these tools and library. 
The larger 539 LOC VAR of the x se  tool is what makes it into a useful library  as 
well, by adding both the necessary interfaces to the core functions already there,
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^ e e  [42], which discusses the problems of measuring software, and examines the associated 
paradoxes, such as the fact that traditional “Lines-of-Code” (per unit of time) measures penalize 
high-level languages, and frequently move in the wrong direction as productivity increases.

2The Great Promise of OOP, which for pragmatic reasons lies largely unfulfilled, is that of 
code reuse through inheritance. This promise will perhaps be well on its way to fulfillment on the 
day when productivity is measured not in lines of code written, but in lines of code that did not 
have to be written, because it was already there and could be readily reused.



157

and the additional functionality not already there, e.g., hashing, inter-event delay 
specification and event list creation and traversal.

Name Tool Library Original LOC Added LOC VA VAR

acme X 111220 1413 X

IV Dispatch X 3639 12 X

coral X 53588 19 X

Explain X 3373 6 X

var X 2305 30 X

fsm X 431 12 X

xse X X 3624 539 X

Table 6.1. Lines of Code Value Added and Value Added Reuse

Grafting V ista onto Acme has been beneficial in two ways. First, many bugs were 
discovered through exercising Acme more strenuously than usual. Second, A cm e’s 
capabilities were extended and its user interface improved in the process of writing 
and testing Vista. For example, as befits a symbiotic relationship, the development 
of the Vista xse  protolib both lent to and borrowed from A cm e’s incorporation 
of event journaling (recording and playing back X mouse and keyboard events) 
capabilities. Port typing was similarly mutually beneficial, enabling, for instance, 
the “special” typing3 of ports and wires.

The ease with which changes to Acme were made validates the careful atten­
tion given by the Acme development team to data abstractions, object models, 
mechanisms and paradigms.4 As a result, it was possible to implement the Vista  
framework in only 1413 lines of code, or a little over 1% of A cm e’s total code. 
Moreover, the ease with which the Acme-symbiotic part of V ista was implemented 
validates the fundamental Acme philosophy of simultaneously supporting different 
design techniques— physical, structural and behavioral. That is, just as Acme al­
lows both physical design and structural design (schematic capture) to be performed 
simultaneously by the designer, so now Vista allows the simultaneous specification 
of structure and behavior in a versatile range of applications.

Predominantly in phase two, Vista has successfully leveraged the three mainstays 
of object-oriented programming— encapsulation, inheritance and polymorphism.

3Originally, typing ports and wires “special” was meant to facilitate mixed analog/digital 
design. As analog power busses are wider than ordinary signal wires, it is helpful to distinguish 
them by drawing the specially-typed analog wires with a wider brush. This feature is potentially 
useful in providing visual cues for Vista wires as well. For example, a quantitative attribute 
of any communication channel is its bandwidth, or data-carrying capacity. Wires representing 
higher-bandwidth channels could be drawn proportionally wider than lower-bandwidth wires.

4For example, the separation of interface and implementation in a cell prototype mirrors the 
separation of interface and implementation in C++ classes.



By providing a lot of small, simple components, instead of a few large, complex 
object conglomerates, Vista avoids the degradation of performance characteristic 
of lowest common denominator approaches. Vista also avoids straining at a gnat  
and swallowing a camel , or the syndrome where the complexity of the solution is 
all out of proportion to the complexity of the problem. Each component is small 
enough to be easily grasped. None of the cell or wire class definitions exceeds one 
page of code; indeed, the average is around 15 LOC. UnixMIO is the heavyweight 
at 49 LOC, four of which are comments. Exactly one of the sample vistafications 
(sxe) required more than 30 seconds5 of real time to compile and link. The average 
was about 21 seconds, with the fastest one completing in 12 seconds.

Obviously, like anything else, V ista cannot be all things to all people, especially 
those interested in software design in general. Instrumentation and infrastructure 
have been its primary provinces; user experimentation is encouraged and facilitated  
by Vista, while theory and formality are basically ignored. Vista patterns (pre­
sented in the dissertation) are an incipient but admittedly not a definitive solution 
to the problem posed by the subjective subject of the next section.

6 . 2  T h e  R i g h t  C h o i c e
The Right  Choice is the idea that if doing something is both possible and 

desirable, then that something is in some sense “right” and should be done. While 
not, meant in the strong sense of a binding moral obligation, for instance, if finding 
the right tool for the job is possible (debatable) and desirable (indisputable), then 
it behooves one to do it. Vista subscribes wholeheartedly to this credo; in fact, it is 
the sustained, painstaking vigilance Vista has given to this quest that has provided 
the means by which Vista users can make more productive use of their time. When 
a vistafied tool-interaction task that previously required time-consuming manual 
intervention now happens automatically, this is nothing but net benefit for users.

The apotheosis of this thesis can be seen in a subtask performed by a d sim , 
which uses em a cs  in batch mode to automatically edit the simulation input file.6 
In this case, em a cs  really is the right tool for the job, as to do it another way, 
for example, using pipelines with sed , or aw k, etc., is complicated and inefficient. 
Vista, via a d sim , encapsulates the small number of elisp commands needed to 
perform these batch edits, and saves the user the trouble (but does not take away 
the option) of learning them.

Many other tedious editing tasks have been automated by batch-mode invocation 
of em a cs , such as setting the current p o w erv iew  project, a task that to do using

531, to be exact, on au unloaded Sun SPARC 2 workstation.

6Of course, the user must still provide the stimulus and probe statements, but these can be 
put in a separate file that em acs inserts in the input file when making the otheT changes required 
to mollify m adssim  (and hspice). The user need no longer expend time and effort on every 
iteration (and simulation is a task that necessitates more than a few iterations) making sure the 
numerous nuances of the input file are correct and consistent. Considerately, however, adsim  
pauses before giving m adssim  the go ahead and affords the user au opportunity to inspect, and 
if necessary or desirable, to further edit the input file.



p o w e rv iew  requires manual menu picks, with no keyboard shortcuts to speed it 
up. W hile it could be done automatically using synthetic X events, it is so much 
faster to simply edit the text file where p o w e rv iew  stores a project list and an 
index into that list indicating which project is the current one. An older version of 
ad sim  used two temporary files in conjunction with grep , cu t, ech o , dc, ta il and 
m v to do what em a cs  can do faster with five lines of elisp code.

Another example of the right choice of tool is found in the spreadsheet interaction 
of Section 5.6. Here, using C++ to implement the external d o llars program is highly 
preferable to trying to implement the same algorithm directly in a spreadsheet 
program such as sc. W hile possible, it would be extremely cumbersome and slow, 
and thus highly undesirable, especially given the elegant C++ solution (see Appendix
B) that uses recursion, which spreadsheets cannot do.

A prime example of a very useful interaction specification, r o o td u m p  involves 
the following choice of tools, and crucial knowledge of  how to use them: a cm e, 
em a cs , g d b , aw k, sh  and T cl/T k. The goal of this tool interaction was to 
visually debug some Acme code that was causing corruption of some of its “btree” 
data structures. Reproduced in Figure 6.2 are two results of the r o o td u m p  tool 
interaction, showing the ease with which bad trees can be distinguished from good 
ones, given the right tools and the right know-how. The two key steps in ro o td u m p  
were to:

1. Take the Acme DynArray: :Dump  method that prints to standard output a 
textual description of the “dynamic” array of “root” (btree) pointers for the 
current cellmatrix, and modify this method to write its output to a file.

2. Put a gd b  (GNU debugger) breakpoint on the D ynA rray  method called when­
ever the current cellmatrix view is refreshed, and using its command language, 
define the following two operations for gd b  to carry out when the breakpoint 
is reached:

call this->Dump("rootdump", 0) 
shell mkbtree < rootdump I sh

The first of these two commands calls the DynArrayr.Dump  method, telling it 
to put its output in the “rootdump” text file. As gd b  can invoke the Unix shell, 
the second command tells it to run the m k b tr e e  program, redirecting its input 
from the “rootdump” file. A 44-line gaw k  (G N U ’s aw k) script, m k b tr ee  
converts the textual “rootdump” into a list form prepended with the name 
“btree” and followed by an ampersand, which it puts to its standard output. 
Finally, this output is piped to another invocation of the shell, which runs the 
b tree  T cl/T k  script in the background. The b tr e e  script is a modification 
of a public domain directory browser implemented in Tel using Tk and a tree 
“widget” (implemented in C++) for displaying dynamic trees.

Yet another task where know-how is most valuable is that of making a piece 
of code more useful or efficient, by carefully considered modifications, that though

159





161

minor in size may be major in impact. For example, the “ordered joining” modi­
fication to d isp a tch  (mentioned in Subsection 5.3.2) required the addition of just 
22 lines of code, interspersed throughout the d is p a tc h .c  file (see Appendix B).

Still another place where small changes have dramatic repercussions is in the 
Stripper  class described in Section 5.4, and used in the “Comments to Code” 
c t2 c o d e  vistafication in Subsection 5.3.2. Shown in Figure 6.3 is an abridged 
definition of the Stripper  class, including just the two additional member variables, 
the four methods modified to use them (P u tC h a r , PutSlash , GetChar  and the 
constructor), and the sole additional method, the GetCount  accessor. Figure 6.4 
contains the main function modified to use a file argument interface, while retaining 
the original stream input interface.

W hat these minor modifications do is to merge the functionality of w c -c  into 
the C++ comment stripper FSM, so that instead of writing out the non-comment 
characters as it recognizes them, it merely counts them, since the final count is 
what is desired. Thus, instead of “s tr ip p e r  < $ f i l e  I wc - c ” it suffices to say 
“s tr ip p e r  $ f i l e ” to get the number of strictly code characters in the specified file. 
Requiring 27 minutes (64%) less real tim e to generate with the counting stripper 
than with the non-counting stripper, the output of the c t2 c o d e  vistafication is 
here reproduced:

Author Code+Cmnts Code Only Cmnt2Cd

???? 574049 415350 0.38
Brad 550956 412934 0.33
Mike 90805 84702 0.07
Rick 1161921 957061 0.21
Tony 769111 668357 0.15

In reality, the " /a c m e /so u r c e s /* /* /*  . [ch] pathname pattern used by this code 
is not quite adequate, as it overlooks some of Acm e’s source files. For pragmatic 
reasons at a certain point in A cm e’s development, most of its .h files were split 
up, and portions put into two additional files having a different extension but 
the same base name as the .h file. No author-identifying comment was put into 
these files, as their author is the same as the original .h file’s author. Making a 
multifurcated pipelined vistafication that accounts for this additional complexity 
is substantially harder and rapidly reaches the point of diminishing returns. By 
comparison, included in Appendix B are two alternative script implementations 
(using gaw k  (G N U ’s aw k) and Tel) that are almost a toss-up as to which uses the 
right tool to accomplish this more difficult task. As it was trivial to program, both 
scripts produce the following more informative output:



class Stripper : public FSMContext { 

private:

ifstream* ifs; int count; 

public:
Stripper(istreamfe i, ostreamfe o, char* file = nil)

: i(i), 0(0), slash(’/’), star(’*’), eol('\n’) { 
ifs = (file == nil) ? nil : new ifstream(file); 

count = 0; EnterState("Start"); Start();

>
void PutChar(void) {

if (ifs != nil) count++; else o << c;

>
void PutSlash(void) {

if (ifs != nil) count++; else o << slash;

}
boolean GetChar(void) { 

return (ifs != nil) ?

(ifs->get(c) != NULL) : (i.get(c) != NULL)

}
int GetCount(void) { 

return count;

>
>;

F ig u re  6.3. Modified Stripper Class Definition

int main(int argc, char** argv) {

char* file = ((argc == 2) ? argv[l] : nil); 

Stripper stripper(cin, cout, file); 

while (stripper.GetCharO) { 

stripper.GotChar();

}
if (file != nil) {

cout << stripper.GetCount() << endl;

}
return 0;

Figure 6.4. Modified Stripper Main Function
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Total Files Tot a l  Lines Total Bytes '/. Comments */. Code Ratio

????: 82 19215 586995 0.27 0.73 0.38

Brad: 103 19927 626972 0.23 0.77 0.31

M i k e : 23 3717 96344 0.07 0.93 0.08

R i c k : 140 40968 1206197 0.17 0.83 0.21

T o n y : 88 28806 825553 0.13 0.87 0.15

436 112633 3342061

Finally, because the full power and flexibility of the Unix shell is at its disposal, 
as are all the varied tools and vistafied agents that must be made to interact, m ak e  
is the right choice of tool for a great many tasks. In recognition of their signifi­
cant contribution, all the makefiles used directly or indirectly by V ista (including 
adsim.mk and dsim.mk) are showcased in Appendix C. To show how V ista can 
be m ade to aid m ak e , two readily w ritten special-purpose wire and cell classes, 
Dependency and Target, are presented. Their purpose is to generate a makefile 
tem plate from a visual depiction of all target-dependency relationships. These two 
class definitions are shown in Figure 6.5, and, for an example of their utility, the 
“dsim” schematic and the text generated by the execution of its vistafication appear 
in Figure 6.6 and Figure 6.7 respectively.

In sum, still to a significant degree a subjective m atter of intuition and inspira­
tion, still more an art than a science, choosing

• the Right Tools,
• the Right Techniques,
• the Right Abstraction Levels, and
• the Right Behavior Partitioning

is as difficult as it is rewarding. Though impossible to pinpoint precisely, the 
m agnitude of the effort and the munificence of the reward fall somewhere between 
th a t of choosing the Right Word and choosing the Right Mate.

6 . 3  T h e  C o n s t a n c y  o f  C h a n g e
The relentless pressure of change applies to the little  picture of cells m utating 

wires, as well as to the big picture of future prospects for Vista, or indeed, any 
software project. Truly, the pervasiveness of change is older than time, and larger 
than space. Nowhere nowadays is change more evident than in software—its archi­
tectures, environments and methodologies. From every side, changing paradigms, 
protocols and principles continue to bombard programmers and analysts. Keeping 
abreast of the latest developments is like surfing on a tidal wave. Software users 
and information consumers will be insulated from the chaos of change only to the 
extent tha t these programming practitioners succeed in creating the right kind of 
interfaces to the right kind of computing services.

No less a guru than Alan Kay has predicted tha t user interfaces of the 1990s 
will not be tool-based as in the 1980s, but will instead be agent-based. Envi­
sioned is an army of autonomous agents, possessing varying degrees of (artificial)



class D e p e n d e n c y  : public Wire { 

protected:

Va r M a p  p , c ;

bo o l e a n  this_is_connected; 

p u b l i c :

Depend e n c y ( c o n s t  char* name)

: W i r e (" D e p e n d e n c y " , name), this_is _ c o n n e c t e d ( t r u e )  {

>
D e p e n d e n c y  (void) : W i r e Q ,  this_is_ c o n n e c t e d ( f  alse) {

>
var G e t A l l K e y s ( V a r M a p &  vm, var separator) { 

var result; V a r M a p I t e r a t o r  v m i ; 

vmi(fcvm); 

while  (vmi++) {

r esult += separator; 

r esult += vmi.key;

> ' 

r e t u r n  result;

>
char* P arents(void) { re t u r n  (char*) G e t A l l K e y s ( p , " "); } 

char* Children(void) { r e t u r n  (char*) GetAllKeys(c, " "); }

void o p e rator >> (const char* name) { 

if (th is_is_connected) {

p .a p p e n d ( n a m e , ""); // name identifies a parent

>
>
v oid  o p e rator «  (const char* name) { 

if (this_is_connected) {

c .a p p e n d ( n a m e , ""); // name identifies a child

>
>

} vvparents, v v k i d s , vvchildren, vvdependents;

d e f C e l l ( T a r g e t , (NAME, B I D I R ( D e p e n d e n c y , vvchildren),

B I D I R ( D e p e n d e n c y , vvdependents), 

B I D I R ( D e p e n d e n c y , vvkids), 

B I D I R ( D e p e n d e n c y , vvparents))) 

if ( V I S T A F I E R . I s A n a l y z i n g O )  { 

v v c h i l d r e n  >> name; 

vvd e p e n d e n t s  >> name; 

vvkids >> name;

vvparents << name;

> else if ( V I S T A F I E R . I s E x e c u t i n g O )  {

cout «  nam e  << «  v v p a r e n t s . P a r e n t s () «  endl; 

cout «  ’\ t ’ << "©echo Ma k i n g  " «  name «  endl; 

cout «  ’\ t ’ «  "©touch " «  name «  endl «  endl;

>

F igure 6.5. D e p e n d en c y  and Target  Class Definitions
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a l l



all: .setup goal .cleanup 

fiecho Making  all 

fltouch all

.setup: set-project set-project $ ( N AME).ppl $(NAME).src 

Qecho Ma k i n g  .setup 

Q t o u c h  .setup

goal: $ ( P R O J D I R ) / $ ( N A M E ) . w f m  

fiecho Ma k i n g  goal 

Q t o u c h  goal

.c l e a n u p :

Secho Ma k i n g  .cleanup 

fitouch .cleanup

$ ( P ROJDIR)/$(NAME).wfm: $(NAME).l $ ( N A M E ) .cmd viewsim.ini 

©echo Making $ ( P R O J D I R ) / $ ( N A M E ) . w f m  

fitouch $ ( P R 0 J D I R ) / $ ( N A M E ) . w f m

set-project: $ (PROJECT_LST) $(PR0JDIR) s e t - p r o j e c t .el 

©echo Ma k i n g  set-project 

Qt o u c h  set-project

$ ( N A M E ) .1 $ (NAME).cmd viewsim.ini: $(NAME).ppl $(NA M E ) . s r c  $(NAME).dit 

Oecho Ma k i n g  $(NAME).l $(NA M E ) . c m d  v i e wsim.ini 

© t o u c h  $ ( N A M E ) .1 $ (NAME).cmd viewsim.ini

$(PROJECT_LST) $ ( P R O J D I R ) :

©echo Making $(PROJECT_LST) $(PR0JDIR)

© t o u c h  $(PROJECT_LST) $(PR0JDIR)

s e t - p r o j e c t .e l :

©echo Ma k i n g  s e t -project.el 

fitouch set-project.el

$ ( N A M E ) .p p l :

Qecho Ma k i n g  $ (NAME).ppl 

fitouch $ (NAME).ppl

$(NAME).src:

Oecho Mak ing $ (NAME).src 

© t o u c h  $ (NAME).src

$ ( N A M E ) . d i t :

©echo Ma k i n g  $ (NAME).dit 

© touch $ (NAME).dit

F igure 6.7. Generated Makefile Skeleton for “dsim.mk”



intelligence, empowered and commissioned to perform the drudgery—the tedious 
and time-consuming tasks th a t humans now find necessary to do themselves. For 
example, net-mining agents could scan the vast repositories of information available 
in a networked computing environment such as the Internet, filter out the data of 
little  or no interest to their human masters, format and offer to them  the subset 
deemed valuable for inspection at their leisure. Such agents will presumably need to 
communicate with a number of general- and special-purpose tools in order to carry 
out their tasks. A clue to how such tools and agents may interact can be found 
in a report on an international workshop on programming environments, where 
appeared the following abstract entitled Tool Integration Technologies Through 
the 9 0 ’s [38], which, though singling out CASE frameworks, forecasts a widely 
applicable technique:

The problem of integrating separately written tools so th a t they work 
together cooperatively is recognized as a key issue in CASE frameworks.
The existing model for building tools emphasizes separate large compo­
nents, sharing rigid models of the data they m anipulate. In order to 
construct tools which can be more readily mixed and which can meet 
the demand for more well-integrated visual environments, we see trends 
toward a finer grain-size for both data elements and control elements 
and from a procedural control-flow approach toward a compositional, 
object-oriented tool construction.

The rising generation of tools has great opportunities for rallying to this cooper­
ative cause. The current generation of egocentric tools need not be w ritten off quite 
yet, however, insofar as interim  solutions like Vista can facilitate and m eliorate their 
interaction. W ith a m ajor emphasis being placed on the preservation of so-called 
legacy software, which constitutes an enormous investment for many companies, the 
need for aids like Vista, which must be small and flexible enough to adapt quickly 
to changing environments and requirements, will likely continue for the duration of 
the legacy.
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#d e f i n e  M A I N _ E N D _ C E L L S  \

> while ( V I S T A F I E R . I s V i s t a f y i n g ( ));

#d e f i n e  NAM const var 

#d e f i n e  NUM (double)

#d e f i n e  STR (char *)

#d e f i n e  N A M E  const char* name 

#d e f i n e  M ODS var mods

# define BI D I R  BIPUT ,

#d e f i n e  BIPUT OUTPUT

# de fin e OUTPUT(typ, nam) typ &  nam

#d e f i n e  INPUT(typ, nam) typ &  nam

#d e f i n e  B P O R T (c e l l n a m e , portnajne) p o r t n a m e .P o r t (’b ’, cellname, #portname)

#d e f i n e  IPORT ( cellname , portnajne) p o r t n a m e .P o r t ( ’ i ’, cellname, #portname)

#d e f i n e  0 P 0 R T ( c e l l n a m e , portnajne) portnajne.Port(’o ’, cellname, #portname)

of s t r e a m  vistalog; // global for access by Vistafier, Cell and Wire classes
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /
// V i s t a f i e r  is the base class for all "protolib" classes. E ach p r o tolib 

// has a .h file, nea r  the b e g i n n i n g  of whi c h  should appear the following:

/ /
// #undef V I S T A F I E R

// # d efine V I S T A F I E R  <proto l i b _ n a m e >

/ /  
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

class V i s t a f i e r  { 

p r o t e c t e d :

enu m  { ANALYZING, MANIFESTING, EXECUTING, DON E  > state; 

bo o l e a n  show; 

var basename, dirpath; 

int s t a t u s ; 

p u b l i c :

Vistafier(void) : s t a t e ( A N A L Y Z I N G ) , show(true), status(O) {

>
voi d  Init(int argc, char** argv) { 

char* name = a r g v [0]; 

char* l a s t s l a s h  = s t r r c h r ( n a m e , ’/ ’); 

if (lastslash != nil) { 

n ame = l a s t s l a s h  + 1;

>
b a s ename = name; 

if (argc >= 5) {

show = (strcmp(argv[4] , "1") == 0);

>
if (argc >= 6) {

const char* p a t h  = (const char*) a r g v [5]; 

if (chdir(path) == -1) {

cerr << "Cannot chdir to " << pat h  << " ---  no such path." << endl;

e x i t ( l ) ;

>
d i r p a t h  = path;

>
char* log f i l e n a m e  = g e t e n v ( " V I S T A L O G " ); 

if (logfilename != nil kk l o g f i l e n a m e [0] != ’\ 0 ’) { 

v i s t a l o g . o p e n ( l o g f i l e n a m e ) ;

}
v i s t a l o g  << " V i s t a f i e r ( \ " " ; 

if (argv == nil) { 

v i s t a l o g  «  argc;

} else {

for (int i = 1; i < argc; i++) { 

if (i > 1) v i s t a l o g  << ' 

v i s t a l o g  << a r g v [ i ] ;

>
>
v i s t a l o g  «  "\")" «  endl;
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int Status(void) { 

return status;

>
virtual void MakeManifest(void) -C 

if (show) {
var m a k e c m d ("make -r -C ");

m a k e c m d  += dirpath;

m a k e c m d  += " manifest 0 U T = " ;

m a k e c m d  += basename; .

status = s y s t e m ( S T R  m a k e c m d ) ; 

if (status > 0) state = DONE;

>
v irtual void NextState(void) {

if (state == ANALYZING) state = MANIFESTING;

else if (state == MANIFESTING) state = EXECUTING; 

else if (state == EXECUTING) state =  DONE;

>
virtual bool e a n  IsAnalyzing(void) { 

r e t u r n  (state == ANALYZING);

>
virtual boo l e a n  IsManifesting(void) { 

r e t u r n  (state == MANIFESTING);

>
v irtual boo l e a n  IsExecuting(void) { 

retu r n  (state == EXECUTING);

>
virtual b o o l e a n  IsDone(void) -C 

r e t u r n  (state == D O N E ) ;

>
v irtual bool e a n  IsVistafying(void) { 

if ( I s A n a l y z i n g O ) {

vistalog «  "========" «  endl; // indicates end of ana l y z i n g  output

>
if (IsManif e s t i n g O  ) {

M a k e M a n i f e s t ( ) ;

vist a l o g  «  "---------- " «  endl; // indicates end of m a n i f e s t i n g  output

>
N e x t S t a t e O  ;

r e t urn (state —  MAN I F E S T I N G  || state == EXECUTING);

>
virt u a l  int Exit(void) 

r e t u r n  status;

>
v irtual "Vistafier(void) {

>



protected:

var t, n; // type and name of cell 

public:

C e ll(co nst char* type, const char* name) : t(type), n(name) { 

v i s t a l o g  «  type << ’(' << << name << << ')’ «  endl;

>
const char* GetType(void) { 

re t u r n  (const char*) t;

>
const char* G etName(void) { 

re t u r n  (const char*) n;

>
>;

class Wir e  { 

p r o t e c t e d :

var t; // type of wire 

var n; // name of wire 

var v; // value of wire (sort of) 

p u b l i c :

void Init(const char* type, const char* name, int value) { 

t = type; 

n = name; 

v = value;

v i s t a l o g  << type << ’(’ << << name << ’" ’ << ’)' << endl;

>
void Init(const char* type, const char* name, const char* value) { 

t = type; 

n = name; 

v = value;

v i s t a l o g  << type «  ’(’ «  << name << << ’)' << endl;

>
W i r e ( c o n s t  char* type, const char* name) : t(type), n(name), v(name 

v i s t a l o g  << type «  ’(’ «  << name << << ’) ’ << endl;

>
Wire(void) {

>
v i rtual "Wire(void) {

>
const char* GetType(void) { 

re t u r n  (const char*) t;

>
const char* GetName(void) { 

re t u r n  (const char*) n;

>
void P o r t ( c h a r  mode, const char* cellname, const char* portname) { 

v i s t a l o g  «  mode «  "port(\"" «  cellname «  << portname 

«  «  cellname «  "\")" «  endl;

v i s t a l o g  << "terminal(\"" << cellnaime << << portneone 

«  «  G e t N a m e O  «  "\")" «  endl;

>



boolean o p e rator ! (void) { 

return v . i s _ s t r i n g ( );

>
Wir e &  opera t o r  = (int i) { 

v = i;

r eturn s e l f ;

>
Wireft o p e rator += (int i) { 

if ( v . i s _ s t r i n g ( )) { 

v = i;

v . c h a n g e _ t y p e ( " i n t " ) ;

} else { 

v += i;

>
r e t u r n  s e l f ;

> ■
Wireft ope ra t o r  += (const char* s) { 

v += s ; 

r e t u r n  s e l f ;

>
double o p e rator * (void) { 

re t u r n  (double) v;

>
const char* o p e r a t o r  () (void) { 

re t u r n  (const char*) v;

>
charft o p e rator [] (int i) { 

u n s i g n e d  int 1 = v . l e n g t h Q ;  

if (i >= 0) { 

re t u r n  v [i'/,l] ;

} else {

ret u r n  v[l-((-i-l)*/.l)-l] ;

>
>

>;

os t r e a m &  o p e rator << (ostreeunft os, Wireft wire) { 

if (Iwire) { 

os << w i r e ( );

> else {

os << *wire;

>
return os;



class V a r M a p I t e r a t o r  < 

p r i v a t e :

VaxMap* vm;
b o o l e 2iii at_end, did_end; 

p u b l i c : 

var key; 

var va.1;

VarMapItera t o r ( v o i d )  { 

key .format ("*/,s"); 

val.format("'/.s") ;

>
void o p e r a t o r  () (VarMap* varmap) ■( 

vm = vannap; 

v m - > f i r s t ( );

a t _ e n d  = did_ e n d  = v m - > e m p t y ();

>
bool e a n  oper a t o r  ++ (void) { 

if (at_end && did_end) { 

r e turn false;

}■ else if (at_end) { 

did_ e n d  = true;

> else if (vm->at_end()) i 
at_erid = true;

>
key = vm->key(); 

val = v m - > v a l u e ( ) ; 

v m - > n e x t (); 

r e t u r n  !did_end;

>



# i n clude "vista.h"

# i n clude <sign a l . h >  // for s i g n a l Q  and kill()

# i n clude <unis t d . h >  // for pause()

class M e d i u m  : public Wire { 

p r i v a t e :

int signaler_pid, signalee_pid; 

p u b l i c :

Mediura(const char* name) : W i r e ( " M e d i u m " , name) { 

s i g n a l e r _ p i d  = s i g n a l e e _ p i d  = 0;

>
"Medium(void) {

>
Mediumfc o p e r a t o r  << (int pid) { 

if ( s ignaler_pid == 0) { 

s i g n a l e r _ p i d  = pid;

} else {

s i g n a l e e _ p i d  = pid;

>
r e t u r n  self;

>
M e d i u m *  o p e r a t o r  >> (intic pid) { 

if ( s i g n a lee_pid != 0) { 

p i d  = signalee_pid; 

s i g n a l e e _ p i d  = 0;

> else {

pid = s i g n a l e r _ p i d ; 

s i g n a l e r _ p i d  = 0;

>
r e t u r n  s e l f ;

>
>;

#undef V I S T A F I E R  

# d efine  V I S T A F I E R  sig

class V I S T A F I E R  : pu b l i c  V i s t a f i e r  { 

p r i v a t e :

var message;

int signaler_pid, signalee_pid; 

p u b l i c :

v oid Init(int argc, char** argv) {

V i s t a f i e r ::I n i t ( a r g c , argv);

>
V I S T A FIER(void) : s i g n a l e r _ p i d ( 0 ) , signalee_pid( 0)  {

>
'VISTAFIER(void) {

>



static void G o t S i g n a lAlarm(void) {

// dummy f u n c t i o n  use d  only for "unpausing"

// on receipt of S I G A L R M  signal

>
int G e t S i g n a l e r P i d ( v a r  id) { 

if (id == "self") { 

return getpid();

} else { 

re t u r n  0;

>
>
int G e t S i g n a l e e P i d ( v a r  id) { 

if (id == "parent") { 

return g e t p p i d O ;

> else {

// should query kernel via system( "ps  I awk")

/ / t o  f ind pid f r o m  id 

return 0;

>
>
intfc SignalerPid(void) { 

r e t u r n  signaler_pid;

>
int& S i g naleePid(void) { 

return signalee_pid;

>
v oi d  G e t M e s s a g e ( v a r  mods) {

int s = m o d s .s t r c h r (’\ ’’)> e = m o d s .s t r r c h r (’\ ’’); 

m e s s a g e  = mods(s+l, e-s-1);

>
void G e t M e d i u m ( v a r  mods) { 

int s = m o d s .s t r c h r (’= ’); 

var c a n r e s p o n d  = mods(s+l, 1); 

if (canrespond == "1") ■[

signal(SIGALRM, V I S T A F I E R : : G o t S i g n a l A l a r m ) ; // catch a l a r m  signals 

} else {

s i g n a l e r _ p i d  = 0; // => signalee cannot respond

>
>
b o o l e a n  IsMessageReady(void) { 

return ( m e s s a g e . l e n g t h O  > 0);

>
b o o l e a n  I s MediumReady(void) { 

return (signaler_pid > 0);

>
v oid Send(int sig) {

k i l l ( s i g n a l e e _ p i d , sig); // d e l i v e r  sig to signalee process  

if ( signaler_pid > 0) { // then signalee can r espond 

pause(); // wait for acknowl e d g e m e n t  (SIGALRM)

>



V I S T A F I E R &  operator «  (int bit) { 

if (bit == 0) {

Send(SIGUSRl) ;

> else if (bit == 1) {

S e n d ( S I G U S R 2 ) ;

>
r e t u r n  s e l f ;

>
V I S T A F I E R &  o p e rator «  (char c) { 

for (int i = 0; i < 8; i++) {

// select bit i of c

int bit = (int(c) k (1 «  i)) ? 1 : 0; 

self «  bit;

>
r e t u r n  self;

>
V I S T A F I E R &  o p e r a t o r  << (char* s) { 

wh i l e  (*s)

self «  *s++; 

r e t u r n  s e l f ;

>
int Exit(void) {

if ( I s M e s s a g e R e a d y O  && I s M e d i u m R e a d y ()) { 

self «  message; // de l i v e r  me s s a g e  

ret u r n  0;

> else { 

ret u r n  1;

>
>

> VISTAFIER;



# i n clude "vista.h 

# i n clude < i o s t ream.h>

#include < f s t ream.h>

#i n cl ud e < p r o cbuf.h>

#include <s td l ib .h>
#i n cl ud e < u nistd.h>

#include <sys/param.h>
/ / # d efine N O F I L E  256 

/ / # d e f i n e  P I P E _ B U F  4096 

# i n c l u d e  <stdio.h>

#i n c l u d e  < s tring.h>

#include <errno.h>
#i n clude <fcntl.h>

#include <time.h> / /  f o r  us leepO 
#include <sys/wai t.h>

// which among other things does 

/* max open files per process */ 

/* pip e  bu f f e r  size */

# d e f i n e  lowbyte(w) ((w) & 0377) 

#d e f i n e  highbyte(w) lowbyte((w) »  8)

# define MAXSIG 31

void st a t u s p r t ( i n t  pid, int status) { 

static char* sigmsg[] = {

"Hangup",

" I n t e r r u p t " ,

"Quit",

"Illegal instruction",

"Trace trap",

"Abort",

"Emulator trap",

" A r i thmetic exception",

"Kill",

"Bus error",

"Segmen t a t i o n  violation",

"Bad argument to sy s t e m  call",

"Write on a pip e  wit h  no one to rea d  it",

"Alarm c l o c k " ,

"Software t e r m i n a t i o n  signal",

"Urgent condi t i o n  p r esent on socket",

"Stop",

"Stop signal g e n e r a t e d  f r o m  keyboard",

"Continue after stop",

"Child status has changed",

" B a c kground read attem p t e d  f r o m  control terminal", 

"Bac k g r o u n d  write a t t e m p t e d  to control terminal", 

"I/O is p o s s i b l e  on a descriptor",

"Cpu time limit exceeded",

"File size limit exceeded",

"Virtual tim e  alarm".



" P rof iling tim e r  alarm",

"Window c h a n g e d " ,

"Resource l o s t " ,

"Us e r - d e f i n e d  signal 1",

" U s e r - de fi ned signal 2"

>;
int code;

if (status != 0 && pid != 0) 

cerr «  pid «  "

if (lowbyte(status) == 0) {

if ((code = h i g h b y t e ( s t a t u s )) != 0) 

cerr «  "=> " << code << endl;

> else {

if ((code = status & 0177) <= MAXSIG) 

cerr «  s i g m s g [ c o d e ] ; 

else ■

cerr «  "Signal #" «  code; 

if ((status & 0200) == 0200) 

cerr «  "—  core dumped"; 

cerr << endl;

>
>

voi d  w a i t _ f o r _children(void) {

int pid, status;

while ((pid = wait(ftstatus)) != -1) { 

s t a t u s p r t ( p i d , status);

>

voi d  s y s e r r(char* msg, b o o l e a n  fatal=true) { 

f p r i n t f ( s t d e r r , "ERROR: ’/,s ('/,d", msg, errno); 

if(errno > 0 && errno < sys_nerr) {

fprintf (stderr, "; '/,s)\n", sys_errlist [errno] ) ; 

} else {

f p r i n t f ( s t d e r r , ")\n");

>
if (fatal) {

_ e x i t ( l ) ;

>

voi d  fata l ( c h a r *  msg) {

fprintf ( s t d e r r , "ERROR: '/.s\n" , msg); 

_ e x i t ( l ) ;



e nu m  p i p e _ e n d  { INPUT, OUTPUT };

class PipeEnds { 

p r i v a t e : 

int p [2] ; 

p u b l i c :

PipeEnds(void) { 

if (pipe(p)) {

cerr «  " P i p e E n d s ::PipeEnds Failed to open pipe." «  endl; ,

_ e x i t ( l ) ;

>
>
int o p e rator [] (pipe_end which) { 

return p [ i n t ( w h i c h ) ] ;

>
virt ual "PipeEnds(void) {

>
>;

class Pipe { 

p r i v a t e :

PipeEnds ends; 

p u b l i c :

i f s tream ifs; o f s t r e a m  ofs;

P ipe(void) : ends(), i f s ( e n d s [ I N P U T ] ), o f s ( e n d s [ O U T P U T ] ) { 

if (!ifs I I !ofs) {

cerr «  "Pipe::Pipe Failed to attach pipe to a stream." << endl;

_ e x i t ( l ) ;

>
>
int o p e r a t o r  [] (pipe_end which) { 

return ends[which];

>
void Closelnput(void) { 

i f s . c l o s e O  ;

>
void CloseOutput(void) { 

o f s .c l o s e ( );

if ( o f s . f a i l O )  s y s e r r ( " c l o s e " ) ;

>
Pipeft o p e rat or «  (unsigned char c) { 

ofs «  c; 

return *this;

>
v oid SetUpFo rN onB l o c k i n g R e a d ( v o i d )  { 

int fflags;

if ( (fflags = f c n t l ( s e l f [ I N P U T ] , F_GETFL, 0)) == -1) s y s e r r ( " f c n t l " ) ; 

if ( f c n t l ( s e l f [ I N P U T ] , F_SETFL, fflags | 0_NDELAY) == -1) s y s e r r ( " f c n t l " ) ;

>
-pipe(void) {

>
>;
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class P i p e C o m m a n d  : public Pipe { 

p r i v a t e :

char* command; 

int len; 

int child; 

voi d  DoPipe(void) {

FILE* out_stream; I

if ( (out_stream = popen(command, "w")) == nil) {

cerr << "Pi peCom m a n d : : D o P i p e  unable to issue command: " 

<< command << endl;

_ e x i t ( l ) ;

>
// send every t h i n g  f r o m  the input pipe to outst r e a m  

wh i l e  (!ifs.eof()) { 

u n s i g n e d  char b u f ; 

i f s .r e a d ( & b u f , 1); 

if ( i f s . e o f O  || i f s . f a i l O )  

break;

f w r i t e ( ( v o i d * ) & b u f , 1, 1, o u t _ s t r e a m ) ;

>
f f l u s h ( o u t _ s t r e a m ) ; 

p c l o s e ( o u t _ s t r e a m ) ; 

d e l e t e  [] command; 

len = 0;

>
p u b l i c :

voi d  SetCom m a n d ( c h a r *  com) { // not n o r m a l l y  called by use r  

if (len != 0) {

d elete [] command; ,

>
len = strlen(com); 

c o m m a n d  = new char[len]; 

strcpy(command, com);

>
voi d  Dolt(void) { // not n o r m a l l y  called by user 

// split off the processes 

s witch (child = f o r k O )  { 

case -1: {

cerr << "fork failed" << endl;

_ e x i t ( l ) ;

>
case 0: { // child process

// first close the output stream 

C l o s e O u t p u t ();

D o P i p e ();

C l o s e l n p u t ();

_ e x i t ( 0 ) ;

>
>
// only the parent does the follo w i n g  

C l o s e l n p u t ();

>



P i p e C o m m and(char* com = nil) : len(O) { 

if (com != nil) {

S e t C o m m a n d ( c o m ) ;

D o l t ();

>
>
■PipeCommand(void) { 

ofs << flush;

C l o s e O u t p u t Q  ;

wait(fcchild); // wait for child to exit

>
>;

#d e f i n e  IPI P E B U F S I Z E  128

class ipipe : public W ire { 

p r i v a t e :

p r ocb uf pb; 

i s tream p; 

u n s i g n e d  char c; 

char b u f [ I P I P E B U F S I Z E ] ; 

p u b l i c :

ipipe(const char* command)

: W i r e ( " i p i p e " , command), pb(command, ios::in), p(&pb) {

>
ipipefc o p e rator >> (unsigned char& c) { 

p >> c; // delegate 

return self;

>
ipipe& o p e rator >> (char* buf) { 

p >> buf; // deleg a t e  

return self;

>
b o o l e a n  Get(void) {

ret u r n  (p.get(c) && I p . e o f O ) ;

>
u n s i g n e d  char Got(void) { 

return c;

>
b o o l e a n  GetWord(void) {

ret u r n  ((p »  buf) && I p . e o f O ) ;

>
char* GotWord(void) { 

return buf;

>
bo o l e a n  GetLine(void) {

return ( p . g e t l i n e ( b u f , IPIPEBUFSIZE-l) && I p . e o f O ) ;

>
char* GotLine(void) { 

return buf;

>



class opipe : pub l i c  W ire { 

p r i v a t e :

pr ocbuf pb; 

os t r e a m  p; 

p u b l i c :

opipe(const char* command)

: W i r e ( " o p i p e " , command), pb(command, ios::out), p(ftpb) {

>
opipeft o p e rator << (unsigned char c) { 

p << c; // delegate 

return self;

>
opipefc o p e rator «  (const char* s) { 

p << s; // delegate 

re t u r n  s e l f ;

>
>;

class pipe : pu b l i c  W ire { 

p r i v a t e :

p r ocbuf ipb, opb; 

istream* is; ostream* os; 

u n s i g n e d  char c; 

p u b l i c :

pipe( c o n s t  char* name) : Wire("pipe", name), is(nil), os(nil)

>
bo o l e a n  Get(void) {

return (is != nil && is->get(c) && !is->eof());

>
void Got(void) { *os << c;

>
void Flow(void) { while ( G e t O )  Got();

>
pipeft o p e r a t o r  << (const char* command) { 

if ( i p b .o p e n ( c o m m a n d , ios::in)) { 

is = new istream(ftipb); 

if (os != nil) {

F l o w O ;

>
>
re t u r n  self;

>
pipefc o p e r a t o r  »  (const char* command) { 

if (opb.open(command, ios::out)) { 

os = new o s t r e a m ( & o p b ) ; 

if (is != nil) {

F l o w O ;

>
>
return self;

>



'pipe(void) { 

delete is; 

delete os;

>
>;

static const int N O _ FIL ES = 64; // g e t d t a b l e s i z e ( );

class StdIO : public Wire { .

p r i v a t e :

int i, curi, toti, euro, toto;;

b o o l e a n  is_std;

int i f d s [ N O _ F I L E S ] ;

const char* s r e f i l e s [ N O _ F I L E S ] ;

int o f d s [ N O _ F I L E S ] ;

const char* d s t f i l e s [ N O _ F I L E S ] ;

b o o l e a n  a p p e n d s [ N 0 _ F I L E S ] ;

StdIO *me, *my_shadow; 

p u b l i c :

StdI O ( c o n s t  char* name, b o o l e a n  is_standard=false)

: WireC'StdIO", name) , 

i(0), curi(-l), toti(O), curo(-l), toto(O), i s _ s t d ( i s _ s t a n d a r d ) , me(this), 

m y _ shadow(nil) {

for (int n = 0; n < ND_FILES; n++) ■[ 

ifds[n] = 0; 

of ds [n] = 1;

srcfilestn] = dstfiles[n] = nil; 

appends[n] = false;

>
if (is_standard) ■[ 

toti = toto = 1;

>
>
StdIO* Me(void) ■[ 

re t u r n  me;

>
StdIO* M y S h adow(void) ■[

if (my_shadow == nil) m y _ s h a d o w  = new S t d I 0 ( " m y _ s h a d o w " ); 

return my_shadow;

>
int FanlnCount (void) ■[ 

re t u r n  toti;

>
int FanOutCount(void) ■[ 

return toto;

>
void IncrementFanlnCount(void) ■[ 

if (!is_std) toti++;

>
voi d  IncrementFanOutCount(void) ■[ 

if (!is_std) toto++;
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b o o l e a n  Forks(void) { 

return (toto > 1);

>
bo o l e a n  Joins(void) { 

re t u r n  (toti > 1);

>
int* I f d s ( boolean std = false, b o o l e a n  use_m e = false) {

if (use_me II m y _ s h a d o w  == nil) re t u r n  & i f d s [ s t d  ? curi : 0]; 

else r e t u r n  & m y _ s h a d o w - > i f d s [ s t d  ? m y _ s h a d o w - > c u r i  : 0];

>
const char** S r c f i l e s ( b o o l e a n  std = false, b o o l e a n  use_me = false) 

if (use.me II m y _ s h a d o w  == nil) re t u r n  fesrcfiles[std ? curi : 0] 

else ret u r n  & m y _ s h a d o w - > s r c f i l e s [ s t d  ? m y _ s h a d o w - > c u r i  : 0];

>
int* O f d s ( b o o l e a n  std = false) { 

re t u r n  & o f d s [ s t d  ? euro : 0];

>
const char** D s t f i l e s ( b o o l e a n  std = false) { 

r e t u r n  ftdstfiles[std ? euro : 0];

>
bo o lean* A p p e n d s ( b o o l e a n  std = false) { 

re t u r n  & a p p e n d s [ s t d  ? euro : 0] ;

>
void Cre a t e P i p e ( i n t  index) {

if (ifds[index] == 0 && ofds[index] == 1) {

// the n  the pipe has not yet been created for the giv e n  index 

PipeEnds ends; 

ifds[index] = e n d s [ I N P U T ] ; 

ofds[index] = e n d s [ O U T P U T ] ;

>
>
void Nex t I n ( c o n s t  char* srefile = nil) ■[

if (!is_std & &  !Forks () && (i < Fanln C o u n t  ( ) ) ) ■[

C r e a t e P i p e ( i ) ;

srcfiles[i] = srefile;

if ( J o i n s Q )  i++;

>
>
voi d  N e x t O u t ( c o n s t  char* d s tfile = nil, bo o l e a n  ap p e n d  = false) { 

if (!is_std && !J o i n s () & &  (i < F a n O u t C o u n t ())) {

C r e a t e P i p e ( i ) ; 

dstfiles[i] = dstfile; 

appends[i] = append; 

if ( F o r k s O )  i++;

>
>
void N e x tl(void) ■[

if (!is_std) curi++; else curi = 0;

>
void N e x tO(void) {

if (!is_std) curo++; else euro = 0;

>



int Ifd(void) { 

return ifdsCcuri];

>
int Ofd(void) { 

r e t u r n  ofds[euro];

>
const char* S rcf ile(void) { 

return s r c f i l e s [ c u r i ] ;

>
const char* Dstfile ( v o i d )  { 

retu r n  d s t f i l e s [ e u r o ] ;

>
b ool e a n  Append(void) { 

retu r n  a p p e n d s [ e u r o ] ;

>
"StdlO(void) {

dele t e  my_shadosi;

>
v v i n ( " s t d i n " , true), v v o u t ( " s t d o u t " , true),

vvl('‘left", true), v v b ( " b o t t o m " , true), vvr
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class UnixCoramand { 

p r i v a t e :

b o o l e a n  wait_for_me; 

int pid; 

int a r g c ;

char* a r g v [ M A X A R G S ] ; 

public: .

void P a r s e(const char* args) {

for (int i = 0; i < MAXARGS; i++) argv[i] = nil; 

char *args_ = s t r d u p ( a r g s ) ;

char *first = s t r t o k ( a r g s _ , " \t\n"), *next = nil; 

argv[argc] = s t r d u p ( f i r s t ) ;

while ((next = strtok(nil, " \t\n")) != nil && ++argc < MAXARGS) { 

argv[argc] = s t r d u p ( n e x t ) ;

>
f r e e ( a r g s _ ) ;

>
v oi d Red i r e c t I ( i n t  srcfd, const char* srcfile, bo o l e a n  std) { 

if (srcfd == 0 ScSc !wait_for_me) { 

srcfile = "/dev/null";

srcfd = -1; // so the next if will be true and /dev/null will be opened 

std = true;

>
if (srcfd != 0) { 

if (std) {

if (close(O) == -1) s y s e r r ( " c l o s e " ) ;

> else if (srcfile != nil) {

if ((srcfd = dup2(0, srcfd)) == -1) s y s e r r ( " d u p 2 " ) ; 

else c l o s e ( s r c f d ) ;

>
if (srcfile == nil) ■[ 

if (std) {

if (dup(srcfd) != 0) f a t a l ( " d u p " ) ;

>
} else if ((srcfd = open(srcfile, D_RDDNLY, 0)) == -1) {

cerr << "Cannot open " << srcfile << " for reading" << endl; 

cerr << "Using /dev/null instead" «  endl; 

if ( o p e n ( " / d e v / n u l l " , 0_RD0NLY, 0) == -1)

_exit(l); // highly un li kel y

>
>

#define MAXARGS 500



void Red i r e c t O ( i n t  dstfd, const char* dstfile, bo o l e a n  append, b o o l e a n  std) 

if (dstfd != 1) { 

if (std) {

if (close(l) == -1) s y s e r r ( " c l o s e " ) ;

} else if (dstfile != nil) {

if ((dstfd = dup2(l, dstfd)) == -1) s y s e r r ( " d u p 2 " ) ; 

else c l o s e ( d s t f d ) ;

>
if (dstfile == nil) { .

if (std) {

if (dup(dstfd) != 1) f a t a l ( " d u p " );

>
} else {

int flags = 0 _ W R 0 N L Y  I 0 _ C R E A T ;

flags |= (append ? O.APPEND : 0_TRUNC);

if ((dstfd = o p e n ( d s t f i l e , flags, 0666)) == -1) {

cerr << "Cannot c r e ate/open " << d s tfile << " for writing" << endl; 

cerr << "Using /dev/null instead" << endl; 

if ( o p e n ( " / d e v / n u l l " , flags, 0666) == -1)

_exit(l); // extre m e l y  u n l i k e l y

>
>

>
>
b o o l e a n  f d _ i n _ f d s ( i n t  fd, int* fds, int n) { 

for (int i = 0; i < n; i++) { 

if (fd == fds [i]) { 

re t u r n  t r u e ;

>
>
re t u r n  false:



U n i x C o m m a n d ( c o n s t  char* args,

int nsrc, int* s r c f d s , const char** srcfiles,

int n d s t , int* d s t f d s , const char** dstfiles, b o o lean* appends, 

b o o l e a n  wait_for_me)

: w a i t _ f o r _ m e ( w a i t _ f o r _ m e ) , p i d ( O ) , argc(O) {

P a r s e ( a r g s ) ; 

switch (pid = fork()) { 

case -1: {

cerr «  "Cannot create n e w  p r ocess " «  argv[0] «  endl; .

_ e x i t (1);

>
case 0: {

// child process

int i; b o o l e a n  std = (nsrc == 1 && ndst == 1); 

for (i=0; i < nsrc; i++) {

R e d i r e c t I ( s r c f d s [ i ] , srcfiles[i], std);

>
for (i=0; i < ndst; i++) {

R e d i r e c t O ( d s t f d s [ i ] , dstfilesCi], appends[i], std);

>
for (int fd = 3; fd < NO.FILES; fd++) {

if ((nsrc > 1 && (fd_in_fds(fd, srcfds, nsrc) II fd == dstfds[0])) II 

(ndst > 1 && (fd_in_fds(fd, dstfds, ndst) II fd == s r c f d s [0]))) { 

continue; // do not close 

} else if (close(fd) != -1) { 

continue; // closed

>
>
e x e c v p ( a r g v [0], a r g v ) ;
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d e f a u l t : {

// parent process 

if (nsrc == 1 && ndst == 1) { 

if (srcfds[0] > 0) {

if (close(srcfds [0]) == -1) 

s yserr( " c l o s e  s r c " ) ;

>
if (dstfds[0] > 1) {

if (close(dstfds [0]) == -1) 

s yserr( " c l o s e  dst");

>
y else {

// there  is an asymm e t r y  h e r e --- the parent d i s p a t c h  join process

// *must* close the dstfd, but the parent d i s p a t c h  fork process 

// mus t  *not* close the srcfd 

if (nsrc > 1) {

for (int i = 0; i < nsrc; i++) { 

if (close(srcfds [i]) == -1) 

s y s e r r ("close src");

>
if (dstfds[0] > 1) {

if ( c l o s e ( d s t f d s [0]) == -1) 

s y s e r r ("close dst");

>
>
if (ndst > 1) {

for (int i = 0; i < ndst; i++) { 

if (close(dstfds [i]) == -1) 

sy s e r r C'close dst");

>
>

>
>

>

UnixC o m m a n d ( v o i d )  { 

clog «  pid;

for (int i = 0; i <= argc; i++) { 

if (i <= 8) clog «  " " «  argv[i]; 

if (i == 8) clog «  " .. 

f r e e ( a r g v  [i]);

>
clog «  endl; 

if (wait_for_me) { 

w a i t _ f o r _ c h i l d r e n ( ) ;

>



#undef VIST A F I E R  

#define V I S T A F I E R  fsp

class V I S T A F I E R  : p u blic V i s t a f i e r  •{ 

private:

var message; 

p u b l i c :

void l nit(int argc, char** argv, bool e a n  bas 

if (base_init) V i s t a f i e r ::I n i t ( a r g c , argv)

>
VISTAF I E R ( v o i d )  {

>
VIS T A F I E R &  operator «  (const char* s) ■{ 

m e s s a g e  += s; 

retu r n  self;

>
-VISTAFIER(void) { 

w a i t _ f o r _ c h i l d r e n ( ) ; 

if ( m e s s a g e .l e n g t h ( ) > 0) { 

opipe pC'alert"); 

p << message;

>
>

> VISTAFIER;



class U n i x I n t e r a c t i v e P r o g r a m  { 

p r i v a t e :

char n m [ 3 2 ] ;

char p t [32];

char p c [32];

char er [32];

char q c [32]; 

p u b l i c :

UnixInte r a c t i v e P r o g r a m ( v o i d )  {

nm[0] = p t [0] = pc[0] = er[0] = q c [0] = ’\ 0 ’;

>
void Init(const char* exec_dir, const char* name, const char* paus 

const char* e x p e c t e d _ r e p l y , const char* quit_command) { 

strcpy(nm, name);

sprintf(pt, "'/.s/'/.s", exec_dir, name); 

sprintf(pc, "'/,s \ "‘/,s\"", pause_cmd, e x p e c t e d _ r e p l y ); 

strcpy(er, e x p e c t e d _ r e p l y ); 

strcpy(qc, q u i t _ c o m m a n d ) ;

>
char* G e tName(void) { 

r eturn nm;

>
char* G etPath(void) {

return p t ; .

>
char* GetPause C o m m a n d ( v o i d )  { 

return pc;

>
char* GetExpe c t e d R e p l y ( v o i d )  { 

re t u r n  er;

>
char* GetQuitC o m m a n d ( v o i d )  { 

r e t u r n  qc;

>



193

class T e m p o r a r y l n p u t F i l e  { 

p r i v a t e :

char f i l e n a m e [ L _ t m p n a m ] ; 

i f s tream ifs; 

p u b l i c :

T emporaryl n p u t F i l e ( v o i d )  { 

t m p n a m ( f i l e n a m e ) ;

>
' TemporarylnputFile(void) { 

u n i i n k ( f i l e n a m e ) ;

>
char* GetName(void) { 

re t u r n  filename;

>
ifstreamfe G e t S t ream(void) { 

int tries = 0, m a x tries = 10;

while ( ! if s . i s _ o p e n ( ) && t r i e s + +  < maxtries) {. 
ifs . o p e n ( f i l e n a m e ) ; 

s l e e p ( l ) ;

>
ret u r n  ifs;

>
>;

class T e m p o r a r y O u t p u t F i l e  {. 
p r i v a t e :

char filename [L_tmpnam] ; 

o f s t r e a m  ofs; 

p u b l i c :

T e m p o r a r y O u tputFile(void) { 

t m p n a m ( f i l e n a m e ) ;

>
"TemporaryOutputFile(void) { 

u n l i n k ( f i l e n a m e ) ;

>
char* GetName(void) {. 

ret u r n  filename;

>
ofstreamfe GetStream(void) { 

int tries = 0, m a x tries = 10;

while ( ! o f s . is_open() && t r i e s+ +  < maxtr ies)  {  
o f s . open(f i lename); 
s l e e p ( l ) ;

>

>
>;

return ofs;



// Default interval (microseconds) to check for p r o g r a m  comma nd  complet 

#define D E F A U L T _ I N T E R V A L  500000

class U n i x I n t e r a c t i v e P r o g r a m M a s t e r  { 

p r i v a t e :

Pipe ptoc, ctop;

char r b u f [256];

Un i x I n t e r a c t i v e P r o g r a m  prog;

int o u t p u t _ l i n e _ c o u n t , time, synch_time;

T e m p o r a r y O u t p u t F i l e  output_file; 

public:

UnixInter a c t i v e P r o g r a m M a s t e r ( v o i d )  : o u t p u t _ l i n e _ c o u n t (0), 

t i m e ( D E F A U L T _ I N T E R V A L ) , synch_time(0) {

>
intft O u t p u tLineCount(void) { 

re t u r n  o u t p u t _ l i n e _ c o u n t ;

>
UnixInteractiveProgramft Program(void) { 

re t u r n  prog;

>
ofstreamft GetOutputF i l e S t r e a m ( v o i d )  { 

ret u r n  o u t p u t _ f i l e .G e t S t r e a m ( );

>
char* GetOut p u t F i l e N a m e ( v o i d )  { 

ret u r n  o u t p u t _ f i l e . G e t N a m e ( );

>
voi d  Set T i m e r ( i n t  t) {

if (t < 0) time = DEFAULT_INTERVAL ; else time = t;

>
voi d  SetSynchTime(void) {

S e t T i m e r ( s y n c h _ t i m e ) ;

>
void PutCo m m a n d ( c h a r *  cmd) { 

ptoc.ofs «  cmd «  endl;

>
voi d  Synch(void) {

// m a i n t a i n  sy n c h r o n i z a t i o n  by usi n g  the pause_crad to for c e  prog 

// to write out a p a r t i c u l a r  m e s s a g e  that Synch waits to see b efore 

// retur n i n g

if (time == 0) return; // no s y n c h ronization 

P u t C o m m a n d ( p r o g .G e t P a u s e C o m m a n d ( )); 

do {

ctop.ifs >> rbuf;

if ( c t o p . i f s . e o f () II c t o p .i f s , f a i l ( )) { 

c t o p .i f s .c l e a r ( ); 

u s l e e p ( t i m e ) ;

)■ else {

if ( s t r s t r ( r b u f , p r o g . G e t E x p e c t e d R e p l y ( ))) 

b r e a k :



void S e n d C o m m and(char* cmd) {

P u t C o m m a n d ( c m d ) ;

SynchO ;
>
// for k  a process ru n n i n g  p rog (must be called first)

void Init(const char* exec_dir, const char* name, const char* pause_cmd, 

const char* e x p e c t e d _ r e p l y , const char* q u i t _ c o m m a n d , 

int synch_time) {

p r o g .Init(exec_dir, name, pause_cmd, e x p e c t e d _ r e p l y , q u i t _ c o m m a n d ) ; . 

t h i s - > s y n c h _ t i m e  = synch_time;

// set up for p a r e n t - t o - c h i l d  (ptoc) and child-to-parent (ctop)

// com m u n i c a t i o n  (two-way in order to kee p  in synchronization) 

sw i t c h  (fork()) { 

case -1: {

s y s e r r ( " f o r k " ) ;

>
case 0: { // child process

// the output of the ptoc p ipe will act as the stdin for prog,

// similarly, the input of the ctop pipe will act as its stdout 

// (or stderr if pro g  writes output to stderr) 

if (close(O) == -1) 

s y s e r r ( " c l o s e " ) ; 

if (dup(ptoc[INPUT]) != 0) 

s y s e r r ( " d u p " ) ; 

if (close(2) == -1) 

s y s e r r ( " c l o s e " ) ; 

if ( d u p ( c t o p [ 0 U T P U T ] ) != 2) 

s y s e r r ( " d u p " ) ;

if ( c l o s e ( p t o c [ I N P U T ] ) == -1 || c l o s e ( p t o c [ O U T P U T ] ) == -1 II 

c l o s e ( c t o p [ I N P U T ] ) == -1 II c l o s e ( c t o p [ O U T P U T ] ) == -1) 

s y s e r r ( " c l o s e " ) ; 

e x e c l p ( p r o g .G e t P a t h ( ), p r o g . G e t N a m e O , nil); 

s y s e r r ( " e x e c l p " ) ;

>
>
// parent p r ocess closes u n n eeded pipes 

p t o c . C l o s e l n p u t Q  ; 

c t o p . C l o s e O u t p u t Q  ; 

c t o p .S e t U p F o r N o n B l o c k i n g R e a d ( );

S y n c h O  ;

>
v oid P a u s e(const char* dia l o g  = nil, const char* me s s a g e  = nil) { 

if (dialog == nil) {

p r i n t f ( " P a u s i n g  ... Hit <RETURN> to continue."); 

while(getchar() != ’\ n ’);

} else if (message != nil) { 

char s y s c m d [128];

s p r i n t f ( s y s c m d , "echo \"'/,s\" | ’/.s", message, dialog); 

s y s t e m ( s y s c m d ) ;

>
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// File: xse.h

# i n clude "vista.h"

# i n clude < xse/event.h>

# undef V I S T A F I E R  

# d efine V I S T A F I E R  xse

class V I S T A F I E R  : public V i s t a f i e r  { 

p r i v a t e :

Wi n d o w  wid; // wi n d o w  id (main recipient of X events)

Win d o w  subwid; // sub wi n d o w  id (alternate recipient) 

const char* display; 

b o o l e a n  t r e a t _ strings _a s_key_e ven ts ; 

p u b l i c :

V I S T AFIER(void) : w i d ( O ) , s u b w i d ( O ) , d i s p l a y ( n i l ) ,

treat_strings_a s _ k e y _ e v e n t s ( t r u e )  {

>
void Init(int argc, char** argv, bo o l e a n  base_init=true) { 

if (base_init) V i s t a f i e r ::I n i t ( a r g c , argv); 

if (argc >= 4) { 

di s p l a y  = argv[l]; 

w id = (Window) a t o l ( a r g v [2]); 

s ubwid = (Window) a t o l ( a r g v [ 3 ] );

>
>
int GetWid(void) { 

r e t u r n  (int) wid;

>
int GetSubWid(void) { 

r e t u r n  (int) subwid;

>
V I S T A F I E R &  operator «  (int i) ■[

t r e a t _ s t r i n g s _ a s _ k e y _ e v e n t s  = ! t r e a t _ s t r i n g s _ a s _ k e y _ e v e n t s ; 

return self;

>
V I S T A F I E R &  opera t o r  «  (char c) { 

s e n d K e y E v e n t ( d i s p l a y , wid, c ) ; 

re t u r n  s e l f ;

>
v oid Sen dEven t S t r i n g ( c h a r *  s) {

if (treat_strings_as_key_events) { 

while (*s)

self «  *s++;

} else {

p a r s e AndSendE vents(display,  wid, s ) ;

>
>
V I S T A F I E R &  opera t o r  «  (char* str) {

S e n d E v e n t S t r i n g ( s t r ) ; 

return self;

>



V I S T A F I E R &  o p e rator << (const char* str) { 

S e n d E v e n t S t r i n g ( ( c h a r * ) s t r ) ; 

ret u r n  self;

>
V I S T A F I E R &  operator >> (intft x_or_y) { 

static int i=0, x, y; 

if (i'/,2 == 0) {

q u e r y P o i n t e r ( d i s p l a y , subwid, &x, &y); 

x_or_y = x;

} else {

x_or_y = y;

>
i++;

r e t u r n  self;

>
v oid P a r s e E v e n t F i l e ( c o n s t  char* name) { 

p a r s e F i l e ( d i s p l a y , wid, ( c h a r * ) n a m e ) ;

>
bo o l e a n  S e n d N e x tEvent(void) { 

re t u r n  ( s e n d N e x t E v e n t ());

>
"VISTAFIER(void) {

>
> VISTAFIER;



# i n clude <time . h >  // for usleep 

#i n cl ude < s t r s t r e a m . h >  // for ostr s t r e a m

# i n clude "fsp.h"

# i n clude "xse.h"

#undef V I S T A F I E R  

# de fi ne V I S T A F I E R  unx

class V I S T A F I E R  : pu b l i c  V i s t a f i e r  { 

char e v s t r [ 2 5 6 ] ; 

p u b l i c :

V ISTAFIER(void) {

>
v oid Init(int argc, char** argv, b o olean base_init=true) { 

fsp.Init(argc, argv, /* base_init = */ false); 

x s e .I n i t ( a r g c , argv, /* base_init = */ false); 

if (base_init) V i s t a f i e r ::I n i t ( a r g c , argv);

>
b o o l e a n  I s B i t S e t ( u n s i g n e d  long m, int i) { 

u n s i g n e d  int val = (1 «  i); 

return ((m & val) == val);

>
b o o l e a n  I s B i tSet(var mods, int i) {

int bools = m o d s .s t r c h r (’= ’) + l , boole = m o d s .s t r c h r (’ ’); 

u n s i g n e d  long m  = (unsigned long)dou b l e ( m o d s ( b o o l s , b o o l e - b o o l s + l  

return (IsBitSet(m, i));

>
void S e t B o o l e a n O p t i o n s (var& command, var& mods,

const char* b o o l e a n _ o p t i o n s  [], int len) { 

int bools = m o d s .s t r c h r (’= ' )+l, boole = m o d s .s t r c h r (' ’); 

u n s i g n e d  long m  = (unsigned long)dou b l e ( m o d s ( b o o l s , b o o l e - b o o l s + l  

for (int i = 0; i < len; i++) {

if (IsBitSet(m, i)) command += b o o l e a n _ o p t i o n s [ i ] ;

>
>
var F ind(char* string, var &  mods) { 

var result; 

char* r = mods; 

char* p = strstr(r, string); 

if (p != nil) { 

r esult = p;

>
ret u r n  result;

>



var Ext ractStri n g V a l u e ( c h a r *  string, vart mods) { 

var stva = Find(string, mods); 

int s = s t v a . s t r c h r (’= ’); 

char d e l i m  = s t v a [ s + l ] ; 

stva = s t v a ( s + 2 ) ; 

int e = s t v a . s t r c h r ( d e l i m ) ; 

var va = stva(0,e); 

re t u r n  va;

> -
var G l o b ( v a r &  mods) {

var glob = E x t r a c t S t r i n g V a l u e ( " g l o b " , mods); 

var c("sh -c 'echo "); 

c += glob; c += 

ipipe p (c ); c = ""; 

while ( p .G e t W o r d ( )) { 

c += " "; 

c += p .G o t W o r d ( );

>
re t u r n  c;

>
const char* But t o n E v e n t S t r i n g ( i n t  b, int d, int x, int y) { 

ret u r n  s p r i n t f ( e v s t r , "<Btn'/,d'/,s> '/,d */,d 0 0 Oxffff True '/.d",

b, ( (d == 1) ? "Down" : "Up"), x, y, x s e .G e t S u b W i d ( ));

>
const char* M o t i o n E v e n t S t r i n g ( i n t  n, int x, int y) {

ret u r n  sprintf ( e v s t r , "<Motion> '/.s */,d */,d 0 0 Oxffff True '/,d",

((n == 1) ? "Normal" : "Hint"), x, y, x s e .G e t S u b W i d ( ));

>
v oid P a r s e E v e n t F i l e ( c o n s t  char* name) { 

x s e .P a r s e E v e n t F i l e ( n a m e ) ;

>
b o o l e a n  S e ndNextEvent(void) { 

r e t u r n  x s e .S e n d N e x t E v e n t ();

>
-VISTAFIER(void) {

>
> VISTAFIER;



class acme { 

p u b l i c :

acme(void) {

>
void E n t e r T e x t ( c o n s t  char* text, int x, int y, bo o l e a n  overwrite) { 

xse «  ’O ’; // unselects all objects 

xse «  ’N ’; // name wires

xse «  0; // n o w  treat strings as events to parse and send 

xse «  u n x .B u t t o n E v e n t S t r i n g ( 1, 1, x, y ) ; 

xse «  u n x . ButtonEventString(l, 0, x, y ) ; 

if (overwrite)

xse << "c<Key>u"; // select whole text so new e n t ering o v erwrites o 

else

xse «  "c<Key>e"; // mov e  to end of line so n e w  e n t e r i n g  appends to 

xse «  0; // b ack to strings as keyevents 

xse «  text; 

xse «  0;

xse «  " < K e y > E s c a p e " ; // to exit text editing mode 

xse «  u n x .B u t t o n E v e n t S t r i n g ( 3 , 1, x, y ) ; 

xse «  u n x .B u t t o n E v e n t S t r i n g ( 3 , 0, x, y ) ; 

xse << "c<Key>e"; // Not M o d i fi ed  

xse «  0;

>
void E n t e r L i n e (int xl, int yl, int x2, int y2, b o o l e a n  warp_to_end) { 

xse << ’p ’; // Port tool 

if (warp_to_end) {

o s t r s t r e a m  ev; ev «  ’(’ «  x2 «  ’ ’ << y2 «  ’) ’; 

xse «  e v . s t r O ;  // warps po i n t e r  to x2 y2

>
xse «  0;

xse «  u n x . B uttonEventString(l, 1, xl, yl): 

xse «  u n x .B u t t o n E v e n t S t r i n g ( 1, 0, xl, yl) 

xse «  u n x . B u t t o n E v e n t S t r i n g ( 1, 1, xl, yl) 

xse «  u n x .B u t t o n E v e n t S t r i n g ( 1, 0, xl, yl) 

xse «  u n x . M otionEventString(l, x2, y 2); 

xse «  u n x .B u t t o n E v e n t S t r i n g ( 3 , 1, x2, y 2); 

xse «  u n x . B u t t o n EventStrin g( 3, 0, x2, y 2 ) ; 

xse «  0;

>
void Selec t O b j e c t ( c o n s t  char* name, int n u m  = 1, 

b o o l e a n  c l ear_wrap = false) { 

for (int i = 0; i < num; i++) { 

if (!clear_wrap II i == 0) {

xse «  ’O ’; // unselects all objects 

xse «  ’(’ «  name << ’)’; // selects object by name

int delay = 100000,

if (clear_wrap) xse «  ’k ’ 

u s l e e p ( d e l a y ) ; 

if (clear_wrap) xse << ’k ’

if (clear_wrap) xse «  ’\ 0 0 5’; // *E (Not Modified)



void SwitchCon t e x t ( c o n s t  char* name) {

xse «  ’x ’; // Switch Context command key b i n d i n g  

xse «  name;

xse «  0 << "<K ey>Return" << 0;

>
bo o l e a n  P a r s e W i r e N a m e A n d V a l u e ( c h a r *  w i r e n a m e _ e q u a l s _ v a l u e ,

char* wirename, char* wirevalue) {

char w n v [40];

strncpy(wnv, w i r e n a m e _ e q u a l s _ v a l u e , 40);

char* equals = strchr(wnv, ’= ’); if (equals != nil) *equals = ’ 

re t u r n  (sscanf(wnv, "'/,s */,s", wirename, wirevalue) == 2);

>
v oid S e l e c t Warp(const char* object_name) {

S e l e c t O b j e c t ( o b j e c t _ n a m e ) ;

xse << "(Warp Pointer)"; // moves mouse po i n t e r  over object

>
v oi d  Sho w W i r e V a l u e ( c o n s t  char* wire_name, const char* wire_value, 

b o o l e a n  overwrite) {

S e l e c t W a r p ( w i r e _ n a m e ) ;

sleep(l); // wait a second for mou s e  p o i n t e r  to be warped 

int x, y;

xse »  x »  y; // gets mou s e  p o i n t e r  p o s ition 

E n t e r T e x t ( w i r e _ v a l u e , x, y+10, overwrite);

>
voi d  Sho w W i r e V a l u e s ( c h a r *  values, b o o l e a n  overwrite) { 

char wn[20] , w v [20];

char *first = s t r t o k ( v a l u e s , " "), *next = nil; 

if ( P a r s e W i r e N a m e A n d V a l u e ( f i r s t , wn, wv)) {

ShowWireValue(wn, wv, overwrite);

>
while ((next = strtok(nil, " ")) != nil) { 

if ( P a r s e W i r e N a m e A n d V a l u e ( n e x t , wn, wv)) {

ShowWireValue(wn, wv, overwrite);

>
>

>
v oid E n t e r T e x t U n d e r C e l l ( c o n s t  char* name, const char* text) { 

S h o w W i r e V a l u e ( n a m e , text, true);
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# i n clude "vista.h"

#include <errno.h> / /  f o r  pe r ro rO

#undef V I S T A F I E R  

#define V I S T A F I E R  fsm

class V I S T A F I E R  : public V i s t a f i e r  { 

p r i v a t e :

const char* sp;

Va r M a p I t e r a t o r  vmi; 

p u b l i c :

Va r M a p  s y m b o l s ;

Va r M a p  s t a t e _ e n t e r i n g s ;

Va r M a p  s t a t e _ l e a v i n g s ;

Va r M a p  a c t i o n _ e n t e r i n g s ;

Va r M a p  a c t i o n _ l e a v i n g s ;

Va r M a p  transitions;

Va r M a p  s t a t e s _ g e n e r a t e d ;

void Init(int argc, char** argv) {

V i s t a f i e r ::I n i t ( a r g c , argv);

>
V I S T A FIER(void) : sp(" ") {

>
void C l o s e S t a t eLeavings(void) {

// mak e  sure each state leaving enters itself if it does not 

// a lre ady enter a n other state or action 

v m i ( & s t a t e _ l e a v i n g s ) ; 

while (vmi++) { 

var key = vmi.key; 

var val = v m i .v a l ;

if (! state_ e n t e r i n g s  .element (key) ScSc 
!a c t i o n _ e n t e r i n g s .e l e m e n t ( k e y ) ) { 

state_enterings[key] = val(0, v a l .s t r c h r ( ’.’));

>
>

>

// File: fsm.h
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void TraceTr a n s i t i o n s ( v o i d )  {

v m i ( & s t a t e _ l e a v i n g s ) ; // for all state leavings 

w hi l e  (vmi++) {

v ar fro m  = vmi.val; // e.g. "Start" 

var to;

if (state_enterings.element(vmi.key)) {

to = s t a t e _ e n t e r i n g s [ v m i .k e y ] ; // e.g. "Statei" 

t r a n s i t i o n s .append(from, to);

> else {

to = a c t i o n _ e n t e r i n g s [ v m i . k e y ] ; 

var act = to, actions = act;

V a r M a p I t e r a t o r  ali; 

b o o l e a n  done = false; 

w hi l e  (!done) {

// find whi c h  t r a n s i t i o n  leaves act 

a l i ( & a c t i o n _ l e a v i n g s ) ; 

while (ali++) {

if (ali.val == act)

break; // ali.k ey is the one

>
if ( s t a t e _ e n t e r i n g s .e l e m e n t ( a l i . k e y ) ) { 

to = s t a t e _ e n t e r i n g s [ a l i . k e y ] ; 

t r a n s i t i o n s .append(from, to + "/" + actions); 

d one = true; // r e a c h e d  a state

> else {

to = a c t i o n _ e n t e r i n g s [ a l i . k e y ] ; 

act = to; actions + =  + act;

>
>

>
>

>
void PutStateNameMethod(ofstreamft ofs, var sname) { 

s n a m e . f o r m a t (”\"'/,s\"");

ofs «  " virtual const char* StateName(void) const {" «  endl; 

ofs «  " return " << snaime «  ";" «  endl; 

ofs «  " >" «  endl;

>
void ParseAndPutActions(ofstreamft ofs, varft does) { 

var act; act .format ("'/,s"); int sep; 

do {

act = does;

sep = d o e s .s t r c h r (’.’); 

if (sep > 0) {

act = does(0,sep); 

does = does(sep+i);

>
if ( a c t .l e n g t h ( ) > 0) {

ofs «  " c." «  act «  "();" «  endl;

>
> w h i l e  (sep > 0);



void OpenClassDefinition(ofstreamfe ofs, const varfe sn, const varfe curstate) { 

ofs << "class " << sn << curstate; 

ofs << " : public " «  sn << " {" << endl; 

ofs << "public:" << endl;

>
voi d  CloseClassDefinition(ofstreamfe ofs, const varfe curstate) {

// assumes curstate.f ormat("'/,s") ;

ofs << "} " << curstate << M (\IIM << curstate << "\");" << endl «  endl;

> . 

v oi d  GenerateStat e M a p ( v o i d )  {

var fn(StateFile) 

var ab(ActorBase) 

v a r  an(ActorName) 

v a r  sb(StateBase)

f n . fo rm a t ( " ’/,s") 
a b . f  ormat ( " */,s ") 
a n . format ( "’/,s " ) 
sb. f  ormat (" ’/.s")

v a r  sn(an + sb) ; s n . f o r m a t ( "‘/,s") 

v a r  s t a r t ( " S t a r t " ) ;

o f s t r e a m  ofs(fn); 

if (!ofs) { 

cerr << fn;

p error(" cannot be opened for w r i t i n g . \ n " ) ;

>
ofs << "// File: " << fn << " (automatically gener a t e d  —  DO NOT EDIT)"; 

ofs << endl << endl;

ofs << "class " << sn << " : public "; 

ofs «  sb «  " {" «  endl; 

ofs << "public:" << endl;

// c o n structor

ofs << " " << sn << "(const char* name) {" << endl; 

ofs << " p u t _ s t a t e ( t h i s , n a m e ) ;" << endl; 

ofs << " J" << endl;

P u t S t a t e N a m e M e t h o d ( o f s , sn);

vmi(fesymbols); 

wh i l e  (vmi++) {

if (vmi.val == "Transition") {

ofs «  " v irtual voi d  " << v mi.key << "("; 

ofs «  an << "& c) {" << endl;

ofs «  " cerr << c << \"No t r a n s i t i o n  f rom " << vmi.key; 

ofs «  "\" «  endl;" «  endl «  " >" «  endl;

>
>
ofs «  ">;" «  endl «  endl;
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var curstate; curstate.format("'/,s"); 

var curtrans ; c u r t r a n s . format ("'/is"); 

b o o l e a n  is_firs t _ s t a t e  = true; 

vmi(fttransitions); 

whi l e  (vmi++) {

int dot = v m i . k e y .s t r c h r (’.’);

b o o l e a n  is_new_state = (curstate != vmi.key(0, dot)); 

if (is_new_state) {

if (is_first_state) i s _ first_st at e = false; 

else C l o s e C l a s s D e f i n i t i o n ( o f s , curstate); 

cu rstate = vmi.key(0, dot);

O p e n C l a s s D e f i n i t i o n ( o f s , sn, curstate);

P u t S t a t e N a m e M e t h o d ( o f s  , c u r s t a t e ) ;

// k eep tra c k  of states g e n e rated 

s t a t e s _ g e n e r a t e d .a p p e n d ( c u r s t a t e , " y e s " ) ;

>
curtrans = v m i . k e y ( d o t + 1 ) ;

var g o e s t o ( v m i .v a l ) ; goesto . f o r m a t ( " \ " ,/,s\"") ; 

int sep = g o e s t o .s t r c h r ( ’/ ’); 

bo o l e a n  has_ a c t i o n s  = (sep > 0); 

var does; does .format("\",/,s\""); 

if (has_actions) {

does = g o e s t o ( s e p + 1 ) ; 

g o e s t o  = g o e s t o ( 0 ,s e p ) ;

>
ofs «  " virtual void " «  curtrans << "(";

ofs «  ((curtrans == start) ? ab : an) «  "& c) {" «  endl;

ofs «  " c . E n t e r S t a t e ( " ;

ofs << go e s t o  «  ");" «  endl;

if (has_actions) {

P a r s e A n d P u t A c t i o n s ( o f s , does);

>
ofs «  " >" «  endl;

>
C l o s e C l a s s D e f i n i t i o n ( o f s , c u r s t a t e ) ;

// g e n e r a t e  any states that have not yet b een gener a t e d  

// (these are final states wit h  no transitions) 

vmi(ftsymbols); 

whi l e  (vmi++) {

if (vmi.val == "State" && !s t a t e s _ g e n e r a t e d .e l e m e n t ( v m i . k e y )) { 

O p e n C l a s s D e f i n i t i o n ( o f s , sn, vmi.key);

C l o s e C l a s s D e f i n i t i o n ( o f s , v m i . k e y ) ;

>
>

>
int Exit(void) {

C l o s e S t a t e L e a v i n g s Q  ;

T r a c e T r a n s i t i o n s ();

G e n e r a t e S t a t e M a p ( ); 

re t u r n  S t a t u s ();

>
> VISTAFIER;



class State : public Cell { 

p u b l i c :

S t a te(const char* name) : C e l l ( " S t a t e " , name) {

VISTAFIER. symbols. append(name , G e t T y p e O ) ;

>
>;

class Ac t i o n  : public Cell { 

p u b l i c :

A c t i o n(const char* name) : C e l l ( " A c t i o n " , name) {

V I S T A F I E R . s y m b o l s .a p p e n d ( n a m e , G e t T y p e O );

>
>;

class T r a n s i t i o n  : public Wire { 

p u b l i c :

T r a n s i t i o n ( c o n s t  char* name) : W i r e ( " T r a n s i t i o n " , name) {

>
void Ente r s A c t i o n ( c o n s t  char* name) const {

V I S T A F I E R . a c t i o n _ e n t e r i n g s .a p p e n d ( s e l f (), n a m e ) ;

>
void L e a v e s A c t i o n ( c o n s t  char* name) {

V I S T A F I E R . a c t i o n _ l e a v i n g s .a p p e n d ( s e l f (), n a m e ) ;

>
void Enter s S t a t e ( c o n s t  char* name) const {

V I S T A F I E R . s t a t e _ e n t e r i n g s .a p p e n d ( s e l f (), n a m e ) ;

>
void L e a v e s S t a t e ( c o n s t  char* name) {

V I S T A F I E R . s t a t e _ l e a v i n g s .a p p e n d ( s e l f (), n a m e ) ;

>
void L e a v e s S t a t e ( c o n s t  char* name, const char* type) { 

var nt(name); nt += nt += type;

V I S T A F I E R . s t a t e _ l e a v i n g s .a p p e n d ( s e l f (), nt); 

if (!V I S T A F I E R . s y m b o l s .e l e m e n t ( t y p e ) ) {

VISTAFIER. symbols [type] = G e t T y p e O ;

>
>

>;

# d efine defState(n, args) \ 

class n : public State {\ 

p u b l i c :\

n args : State(name) {

# define defAction(n, args) \ 

class n : public Ac t i o n  {\ 

p u b l i c :\

n args : Action(name) {

#define E N T E R S ( t r a n s , state) t r a n s .E ntersState(state)

#define L E A V E S ( e v e n t , state) e v e n t . L e a v e s S t a t e ( s t a t e , #event)



#i n c l u d e  <Di s p a t c h / r p c h d r . h >

# i n c l u d e  <D i s p a t c h / r p c s t r e a m . h >

# ifdef SERVER

# i n c l u d e  < D i s p a t c h / r p c r e a d e r .h>

# i n c l u d e  < D i s p a t c h / r p c s e r v i c e . h >

# i n c l u d e  <uni s t d . h >  // for close()

#endif

# ifdef CLIENT

# i n c l u d e  <D i s p a t c h / r p c w r i t e r . h >

#endif

# i n c l u d e  <stdl i b . h >

#if (defined(CLIENT) & &  !defined(SERVER) 

# i n c l u d e  <strstr e a m . h >

#endif

# i n c l u d e  "vista.h"

# i n c l u d e  "unx.h"

# undef V I S T A F I E R  

# d e f i n e  V I S T A F I E R  cts

class V I S T A F I E R  : public V i s t a f i e r  { 

p r o t e c t e d :

int n e x t _ r e q u e s t _ n u m b e r ; 

b o o l e a n  is_client, is_server; 

o f s t r e a m  ofs; 

p u b l i c : 

int argc; 

char** argv; 

char* Basena me(void) { 

char* nam e  = a r g v [ 0 ] ; 

char* lasts l a s h  = s t r r c h r ( n a m e , ’/ ’); 

if (lastslash != nil) { 

n ame = lasts l a s h  + 1;

>
ret u r n  name;

>



void Init(int argc, char** argv) ■[ 

V i s t a f i e r ::I n i t ( a r g c , argv); 

this- > a r g c  = argc; this- > a r g v  = argv; 

n e x t _ r e q u e s t _ n u m b e r  = 0;

#if def ined(CLIENT) 

is_client = true; 

state = DONE;

#elif defined(SERVER) 

i s_server = true; 

state = DONE;

#else

u n x .I n i t ( a r g c , argv, /* base_init = * 

is_client = is_server = false; 

char* ofn = g e t e n v ( " C T S L 0 G " ) ; 

if (ofn != nil && ofn[0] != ’\0') { 

o f s .o p e n ( o f n ) ;

> else ■[ 

o s t r s t r e a m  tmp;

tmp << BasenameO << " .1";  
ofn = tmp. s t r ( );  
ofs . open(ofn) ; 
d e le t e  [] ofn;

>
#endif

>
V I S T A FIER(void) {

>
"VISTAFIER(void) {

>
int NextRequestN u m b e r ( v o i d )  ■[ 

r eturn + + n e x t _ r e q u e s t _ n u m b e r ;

>
b o o l e a n  IsClient(void) ■[ 

r e t u r n  is_client;

>
bo o l e a n  IsServer(void) ■[ 

r e t u r n  is_server;

>
voi d  E n t e r C e l l A n d W i r e ( C e l l &  cell, Wireft 

ofs «  "Cell "

<< cell.GetType() << ’ ’

<< cell.GetName() << ’ ’

<< w i r e . G e t N a m e O  << endl;

>
#if !d e f i n e d (C L I E N T ) &fc !defined(SERVER)

V I S T A F I E R &  opera t o r  «  (Cellft cell) { 

const char* name = c e l l .G e t N a m e (); 

a c m e .S e l e c t W a r p ( n a m e ) ; 

r e t u r n  self;



void E n t e r M e d i u m ( W i r e &  wire) { 

if ( I s A n a l y z i n g ()) {

ofs «  "Wire " «  w i r e .G e t T y p e () «  ’ ' «  wire. G e t N a m e O  

ofs << wire << endl;

>
>
void EnterPusher(Cellft cell) { 

if ( I s A n a l y z i n g O ) { 

ofs << "Cell Pu s h e r  "

<< c e l l .G e t T y p e ( ) «  ‘ ’ «  c e l l . G e t N a m e O  «  ’ ’;

>
>
void E n t e r P u s h e r ( W i r e &  wl, Wireft w2) { 

if ( I s A n a l y z i n g O )  {

ofs << w l . G e t N a m e O  << ’ ’ «  w 2 . G e t N a m e O  «  endl;

>
>
void EnterPuller(Cellft cell) { 

if ( I s A n a l y z i n g O )  { 

ofs «  "Cell Pu l l e r  "

«  c e l l . G e t T y p e O  < < ’ ’<< cell . G e t N a m e O  << ’ ’;

>
>
void EnterPuller(Wireft wl, Wireft w2) { 

if ( I s A n a l y z i n g O )  {

// wl is the ‘‘p u l l e e’’

ofs << w l . G e t N a m e O  << ’ ’ << w 2 . G e t N a m e O  «  ’ ’

<< w l . G e t T y p e O  << ’ ’ << wl << endl;

>
>

int Exit(void) {

char* bname  = B a s e n a m e (); 

o s t r s t r e a m  tmp;

t m p  «  "make -r V=1 0UT=" << bname; 

t m p  «  ’ ’ << bname << "client"; 

tmp «  ’ ’ << bname «  "server"; 

tmp << e n d s ;

char* m a k e c m d  = t m p . s t r O ;  

int status = s y s t e m ( m a k e c m d ) ; 

de l e t e  [] makecmd; 

r e t u r n  status;

>
#endif

> VISTAFIER;



class Reader; 

class Writer; 

class Service;

ostreamft check(o s t r e a m i  os) •{ 

if ( !os.good()) -C

cerr << "ostream eof or failure." «  endl;

>
r e t u r n  o s ; 

ttifdef CLIENT

class Wr i t e r  : public R p c W r i t e r  { 

p u b l i c :

W r i t e r ( c o n s t  char* path, b o o l e a n  binary = true)

: RpcWr iter(path, /* fatal = */ true, binary) {

>
“Writer(void) {

>
v oid I n i t i a t eRequest(int r e q u e st_number) •{ 

s e r v e r Q  << RpcHdr(this, r e q u e s t _ n u m b e r ) ;

>
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class C l i e n t M e d i u m  : public Wire { 

p r o t e c t e d :

Writer* writer; 

r pcstream* client; 

int r e q u e s t _ n u m b e r ; 

p u b l i c :

Clien t M e d i u m ( c o n s t  char* type, const char* name)

: Wire(type, name), writer(nil), client(nil) { 

r e q u e s t . n u m b e r  = V I S T A F I E R . N e x t R e q u e s t N u m b e r ();

>
Clien t M e d i u m ( c o n s t  char* name)

: W i r e ( " C l i e n t M e d i u m " , name), writer(nil), client(nil) {

>
C l i e ntMedium(void) : W i r e("ClientMediu m",  "no_name"), 

writer(nil), client(nil) {

>
v oid C r e a t eW ri ter(void) {

w r i t e r  = new W r i t e r ( G e t N a m e O )  ;

>
int GetRequestNu m b e r ( v o i d )  { re t u r n  r e q u e s t _ n u m b e r ;

>
W r iter * G e t W r iter(void) { 

r e t u r n  writer;

>
r p c s t r e a m &  G e t C lient(void)  { 

r e t u r n  *client;

>
rpcstreamft G e t S erver(void) { 

r e t u r n  w r i t e r - > s e r v e r ();

>
virt ua l b o o l e a n  IsG ood(void) { re t u r n  false;

>
b o o l e a n  IsG o o d ( C l i e n t M e d i u m *  cm) {

if ( c m - > I s G o o d ( )) { // calls the virtual me t h o d

G e t W r i t e r () - > I n i t i a t e R e q u e s t ( c m - > G e t R e q u e s t N u m b e r ( ) ); 

re t u r n  true;

} else

re t u r n  false;

>
virtua l "ClientMedium(void) { 

d e l e t e  writer; wr i t e r  = nil;

>
>;

class M e d i u m  : public C l i e n t M e d i u m  { 

p u b l i c :

M edi u m ( c o n s t  char* type, const char* name) : C l i e n t M e d i u m ( t y p e , name) O  

M edi u m ( c o n s t  char* name) : ClientMedium(name) O  

M edium(void) : C l i e n t M e d i u m ( ) O  

>; ■

#endif



# i f d e f  SERVER

class Service : public Rpc S e r v i c e  { 

public:

Ser v i c e ( c o n s t  char* path) : RpcSer v i c e ( p a t h )  {

>
v irt u a l  'Service(void) -(

>
v oid Run(void) {

char* nam e = VISTAFIER. B a s e n a m e Q ; .

cout «  name << " is open f o r  service at " «  _ path «  endl; 

t h i s - > r u n ( ) ;

>
b o o l e a n  IsRunning(void) { 

return .running;

>
s tat i c  b o o lean no_longer_needed; 

p r o t e c t e d :

v irt u a l  void c r e a t e R e a d e r ( int f d ) ;

}■ ^ s e r v i c e  = n i l ;

b o o l e a n  S e r v i c e ::n o _ l o n ger_needed = false;



class S e r v e r M e d i u m  : public Wire { 

p r o t e c t e d :

Read er * reader;

r pcstream* client; 

p u b l i c :

Serve r M e d i u m ( c o n s t  char* type, const char* name)

: Wire(type, name), reader(nil), client(nil) {

>
Serv e r M e d i u m ( c o n s t  char* name)

: W i r e ( " S e r v e r M e d i u m " , name), reader(nil), client(nil) {

>
Serv e r M e d i u m ( c o n s t  char* name, R e ader* reader, r pcstream* client)

: W i r e (" S e r v e r M e d i u m " , name), 

r e a d e r ( r e a d e r ) , client(client) {

>
S e r v e rMedium(void) : Wire("ServerMedium", "no_name"), 

reader(nil), client(nil) {

>
v oi d C r e a t e Service(void) {

serv ice = new S e r v i c e ( G e t N a m e ( )) ;

>
b o o l e a n  IsReady(void) {

r e t u r n  (service != nil && s e r v i c e - > I s R u n n i n g ( ));

>
Re ader* G e t R e ader(void) { 

re t u r n  reader;

>
rpcstreamft G e t C l ient(void) { 

re t u r n  *client;

>
voi d  ServiceNoLonge r N e e d e d ( v o i d )  {

S e r v i c e : :no_longer_needed = true;

>
v i rtual 'ServerMedium(void) {

if ( S e r v i c e : :no_longer_needed) { 

delete service; service = nil;

>
>

>;

class M e d i u m  : public S e r v e r M e d i u m  { 

p u b l i c :

M e d i u m ( c o n s t  char* name, Rea der* reader, r p cstream* client)

: S e r v e r M e d i u m ( n a m e , reader, client) {

>
M e d i u m ( c o n s t  char* type, const char* name) : S e r v e r M e d i u m ( t y p e , name

M e d i u m ( c o n s t  char* name) : S e r v e r M e d i u m ( " M e d i u m " , name) O

Medium(void) : S e r v e r M e d i u m ( ) O

>;
#endif ■



#if !defined(CLIENT) && (defined(SERVER)

class C l i e n t M e d i u m  : virtual public Wire { 

p u b l i c :

void CreateWriter(void) {

>
bo o l e a n  I s G o o d ( C l i e n t M e d i u m * ) { 

r e t u r n  false;

>
r p c s t r e a m &  G e t S e r v e r (void) { 

re t u r n  *(new r p c s t r e a m ) ;

>
>;

class S e r v e r M e d i u m  : virtual public Wire { 

p u b l i c :

void C reateSer vice(void) {

>
b o o l e a n  IsReady(void) { 

re t u r n  false;

>
rpcstreamft GetClient(void) { 

re t u r n  *(new rpcstream);

>
void ServiceNoLonge r N e e d e d ( v o i d )  {

>
>;

class M e d i u m  : public ClientMedium, publi c S e r v e r M e d i u m  { 

protected:

int r e q u e s t _ n u m b e r ; 

p u b l i c :

M e d i u m ( c o n s t  char* type, const char* name) { 

r e q u e s t _ n u m b e r  = V I S T A F I E R . N e x t R e q u e s t N u m b e r (); 

Init(type, name, r e q u e s t _ n u m b e r );

V I S T A F I E R . E n t e r M e d i u m ( s e l f ) ;

>
M e d i u m ( c o n s t  char* name) { 

r e q u e s t _ n u m b e r  = 0;

I n i t (" M e d i u m " , "0", name);

V I S T A F I E R . E n t e r M e d i u m ( s e l f ) ;

>
Medium(void) {

>
>;

#endif



#ifdef PEER

#include < D i s p a t c h / d i s p a t c h e r .h> 

#i n clude < D i s p a t c h / r p c h d r .h> 

#include <Dispatc h / r p c p e e r , h >  

#i n clude < D i s p a t c h / r p c r e a d e r . h >  

# i n c l u d e  < D i s p a t c h / r p c w r i t e r .h> 

# i n clude <uni s t d . h >  // for c l o s e O  

#endif

#i n c l u d e  < D i s p a t c h / r p c s t r e a m . h >  

# i n clude <std l i b . h >

# i n clude <s t r s t r e a m . h >

# i n clude "vista.h"

#undef V I S T A F I E R  

# d efine V I S T A F I E R  ptp

class V I S T A F I E R  : public V i s t a f i e r  { 

p r o t e c t e d :

int n e x t _ r e q u e s t _ n u m b e r ; 

o f s t r e a m  ofs; 

p u b l i c : 

int a r g c ; 

char** argv; 

char* B a s e name (void) { 

char* name = argv [0] ; 

char* lastslas h = s t r r c h r ( n a m e , 

if (lastslash != nil) { 

name = l a s t s l a s h  + 1;

>
r e t u r n  name;

>
void Init(int argc, char** argv) { 

V i s t a f i e r ::I n i t ( a r g c , argv); 

t h i s - > a r g c  = argc; this - > a r g v  = 

n e x t _ r e q u e s t _ n u m b e r  = 0;

#ifdef PEER

state = DONE;

#else

char* ofn = g e t e n v ( " C T S L 0 G " ) ;

if (ofn != nil && ofn[0] 

o f s .o p e n ( o f n ) ;

3- else {

o s t r s t r e a m  tmp;

tmp << B a s e n a m e () << ",

ofn = t m p .s t r ();

o f s .o p e n ( o f n ) ;

delete [] ofn;

’\0'

>
#endif



>
V I S T A FI ER (void) {

>
'VISTAFIER(void) {

>
int N e x t R e q u estNumber(void) { 

r e t u r n  + + n e x t _ r e q u e s t _ n u m b e r ;

>
#ifndef PEER

voi d  EnterMedium(WireJt wire) { 

if (I s A n a l y z i n g ( )) {

ofs «  "Wire " «  w i r e . G e t T y p e O  «  ’ ’ «  w i r e . G e t N a m e O  

ofs «  wir e  «  endl;

>
>
int Exit(void) {

char* bn a m e  = B a s e n a m e O ;  

o s t r s t r e a m  tmp;

tmp «  "make -r V=1 0UT=" «  bname; 

tmp «  ’ ’ «  bna m e  << "peer"; 

tmp << ends;

char* m a k e c m d  = t m p . s t r O ;  

int status = s y s t e m ( m a k e c m d ) ; 

delete [] makecmd; 

re t u r n  status;

>
#endif

> VISTAFIER;

class Reader; class Writer;

ostreamfe c h e c k ( o s t r e a m &  os) { 

if (!os.good()) {

cerr «  "ostream eof or failure." «  endl;

>
re t u r n  os;

>

#ifdef PEER

class Wri t e r  : public R p c W r i t e r  { 

p u b l i c :

W r i t e r ( c o n s t  char* host, int port, bo o l e a n  binary = true)

: R p c W r i t e r ( h o s t , port, /* fatal = */ false, binary) {

>
Write r ( i n t  fd, b o o l e a n  bi n a r y  = true)

: RpcWriter(fd, /* fatal = */ false, binary) {

>
void InitiateR e q u e s t ( i n t  r e q u e s t _ n u m b e r ) { 

s e r v e r () << RpcHdr(this, r e q u e s t _ n u m b e r );

>



class P eer : public R p c P e e r  { 

protected:

Writ er* writer; R e ader* reader; 

p u b l i c :

static b o o l e a n  local_done, r e m o t e _ d o n e ;

// If the pee r  is running, o pen a conne c t i o n  to it. If not, create a 

// socket so that the peer cam open a conne c t i o n  to us.

P ee r(c onst char* path)

: R p c P e e r ( p a t h ) , writer(nil), reader(nil) { 

i n i t ( p a t h ) ;

>
virtual " P e e r ( v o i d ) ; 

b o o l e a n  IsRunning(void) { 

r e t u r n  .running;

>
voi d  Run(void) {

if ( ! I s R u n n i n g O  ) { 

r u n ( ) ;

>
>
voi d  Stop(void) { 

if ( I s R u n n i n g O )  { 

q u i t R u n n i n g O  ;

>
>
b o o l e a n  S h o u l dRun(void) {

if (!local_done II !remote_done) {

Dispatcher: : i n s t a n c e O  . d i s p a t c h O  ;

>
r e t u r n  (!local_done II !r e m o t e _ d o n e ) ;

>
W r iter* G e t W r ite r(void) { 

r e t u r n  writer;

>
R e ader* G e t R e ade r(void) { 

re t u r n  reader;

>
p r o t e c t e d :

// Open a c o n n e c t i o n  to the p e e r’s socket.

virtual b o o l e a n  createR e a d e r A n d W r i t e r ( c o n s t  char* rHost, int rPort); 

// The pee r  just op e n e d  a c o nnection to our socket, 

v i rtual v oid cre ateRead e r A n d W r i t e r ( i n t  f d ) ; 

v o i d  Error(int fd, int) {

cerr << "Peer: c a n’t tal k  to mor e  tha n  one peer." «  endl; 

close(fd) ;

l o cal_done = remo t e _ d o n e  = true;

>
voi d  Erro r ( c o n s t  char* host, int port) {

cerr << "Peer: error op e n i n g  conne c t i o n  to p eer at "; 

cerr «  host «  ’.’ «  port «  endl; 

d elete writer; w r i t e r  = nil;



l ocal_ done = r e m o t e _ d o n e  = true;

>
v oid Error(int fd) {

cerr «  "Peer: error a c c e p t i n g  c onnection f rom pee r  on " «  

de l e t e  writer; wr i t e r  = nil; 

l ocal _ d o n e  = r e m o t e _ d o n e  = true;

>
>;

b o ole an P e e r ::local _ d o n e  = false; 

b o ole an P e e r : : r e m o t e _ d o n e  = false;

class M e d i u m  : pub lic Wire { 

p r o t e c t e d :

Peer* peer;

R e a d e r *  reader;

W rit er* writer; 

r p c s t r e a m *  client; 

int r e q u e s t _ n u m b e r ; 

p u b l i c :

M e d i u m ( c o n s t  char* type, const char* name)

: Wire(type, name),

peer(nil) , r e a d e r ( n i l ) , w r i t e r ( n i l ) , client(nil) { 

r e q u e s t _ n u m b e r  = V I S T A F I E R . N e x t R e q u e s t N u m b e r ();

>
M e d i u m ( c o n s t  char* name)

: W i r e ("Medium" , name),

p e e r ( n i l ) , reader(nil), w r i t e r ( n i l ) , client(nil) {

>
M e d i u m ( c o n s t  char* name, R e a d e r *  reader, r pcs tr eam * client)

: W i r e (" M e d i u m " , name),

peer(nil), r e a d e r ( r e a d e r ) , w r i t e r ( n i l ) , client(client) {

>
M e d i u m( vo id) : W i r e ( " M e d i u m " , "no.name"),

peer(nil), reader(nil), writer(nil), client(nil) {

>
Peer* G etP eer(void) { 

r e t u r n  peer;

>
R e a d e r *  G e t R e ader(void) { 

r e t u r n  reader;

>
W riter* G e t W r it er (void) { 

r eturn writer;

>



rpcstreamft G e t S t ream(void) { 

if (client != nil) { 

r eturn *client;

>
return w r i t e r - > s e r v e r ( );

>
int GetRequestNu m b e r ( v o i d )  { 

return r e q u e s t _ n u m b e r ;

>
virtu al b o o l e a n  IsGood(void) { 

return false;

>
b o o l e a n  I s G ood(Medi um* m) {

if ( m - > I s G o o d ( )) { // calls the virtual me t h o d  

if (peer == nil) {

p ee r  = new P e e r ( G e t N a m e O )  ;

>
if ((writer = p e e r - > G e t W r i t e r ()) != nil) {

w r i t e r - > I n i t i a t e R e q u e s t ( m - > G e t R e q u e s t N u m b e r ( )); 

r eturn true;

>
>
r e t u r n  false;

>
bo o l e a n  IsReady(void) { 

r e t u r n  (client != nil);

>
b o o l e a n  P e e r S h o uldRun(void) {

return (peer != nil && p e e r - > S h o u l d R u n ( ));

>
void Done(void) {

if (client == nil) {

P e e r : : l o c a l _ d o n e  = true;

} else {

P e e r ::r e m ote _done = true;

>
>
virtual "Medium(void) { 

de l e t e  peer;



class M e d i u m  : public Wire { 

p r o t e c t e d :

int r e q u e s t _ n u m b e r ; 

p u b l i c :

Med i u m ( c o n s t  char* type, const char* name) {

r e q u e s t _ n u m b e r  = V I S T A F I E R . N e x t R e q u e s t N u m b e r (); 

Init(type, name, r e q u e s t _ n u m b e r ) ;

V I S T A F I E R . E n t e r M e d i u m ( s e l f );

>
M e d i u m(const char* name) { 

r e q u e s t _ n u m b e r  = 0;

I n i t (" M e d i u m " , "0", name);

>
M e d i u m(void) {

>
v i rtual b o o l e a n  IsGood(void) { 

return false;

>
b o o l e a n  IsGood(Medium*) { 

re t u r n  false;

>
b o o l e a n  IsReady(void) { 

re t u r n  false;

>
b o o l e a n  P e e r S h o uldRun(void) { 

re t u r n  false;

>
r p c s t r e a m &  G e t S tream(void) { 

return *(new rpcstream);

>
void Done(void) {

>

#endif



// File: sse.h

#i n cl ud e "unx.h"

# i n clude "ptp.h"

class spreadsheet { 

p r o t e c t e d :

int col, row; // current cell p o s ition

int 1, b, r, t; // current region (left, bottom, right, top) 

char b u f [80]; // for sprintf f o r m a t t i n g  of commands 

char c u r r e g i o n [16]; // current region in string f orm 

p u b l i c : 

var n a m e ;

sprea d s h e e t ( c o n s t  char* name) : n a m e ( n a m e ) , col(l), row(l) { 

l = b  = r = t =  1;

> ■
virt ua l void SelectC e l l ( i n t  col, int row) {

>
v i rtua l void P u t N u m e r icValue(double) {

>
virtual void PutStri n g V a l u e ( c h a r * )  {

>
v irtual v oid P u t N u m e r i c Fo rm ula(c har *)  {

>
virtual void P u t S t r i n gFormula(char*) {

>
virtual void Quit(void) {

>
v i rtua l void WriteAndRea d R e g i o n ( v o i d )  {

>
virtual void S e t C u r r entRegion(void) {

>
void SetC u r r e n t R e g i o n ( i n t  1ft, int b o t , int r g t , int top) {

1 = 1ft; b = bot; r = rgt; t = top;

S e t C u r r e n t R e g i o n Q ; // the virtual me t h o d

>
d o u b l e  GetNume r i c V a l u e ( v o i d )  {

W r i t e A n d R e a d R e g i o n ( ); 

r e t u r n  atof(buf);

>
char* G e t S t r i n gValue(void) {

W r i t e A n d R e a d R e g i o n ( ); 

re t u r n  strdup(buf);

>
int GetCol(void) { 

re t u r n  col;

>
int GetRow(void) { 

re t u r n  row;

>
void G e t C o l R o w ( i n t &  C, int& R) { C = col; R  = row;

>



int S e tCo l(int C) {

int prev = col; col = C; re t u r n  prev;

>
int S e tRow(int R) {

int prev = row; row = R; return prev;

>
voi d  Set C o l R o w ( i n t  C, int R) { 

col = C; row = R;

>
>;

class Sc : public s p r eadsheet { 

p u b l i c :

Sc(void) : SpreadSheet("sc") O  

v o i d  S e t C u r rentRegion(void) { 

if (1 == r ftft b == t) {

sprintf (curregion, "'/.c'/.d", r - l +’a ’, b — 1);

} else {

sprintf (curregion, "'/.c'/.di'/.c'/.d", l - l +’a ’, t-1, r- l + ' a

>
>
v o i d  Se l e c t C e l l ( i n t  x, int y) {

sprintf (buf, "g’/.c'/.dVn", x - l +’a ’, y-1); 

xse << b u f ;

>
voi d  P u t N u m e r i c V a l u e ( d o u b l e  d) { 

sprintf (buf, "x=‘/.g\n", d ) ; 

xse << buf;

>
vo i d  P u t S t r i n g V a l u e ( c h a r *  s) { 

sprintf (buf, "x<,/,s\n", s ) ; 

xse «  b u f ;

>
vo i d  P u t N u m e r i c F o r m u l a ( c h a r *  f) {

sprintf (buf, "x=ffl'/,s(,/,s)\n", f, curregion); 

xse << buf;

>
void P u t S t r i n g F o r m u l a ( c h a r *  f) { 

sprintf (buf, "xERQ’/,s\n" , f); 

xse << buf;

>
void WriteAndRea d R e g i o n ( v o i d )  {

Te m p o r a r y l n p u t F i l e  t i f ;

sprintf (buf, "W'/,s\" '/,s\n" , tif . G e t N a m e O  , curregion); 

xse << b u f ;

t i f . G e t S t r e a r a O . g e t l i n e ( b u f , sizeof(buf), ’\ n ’);

>
vo i d  Quit(void) {

xse << ' q’ << ’n ’; // Do you want a chance to save the

>



class Oleo : public spreadsheet { 

p u b l i c :

Oleo(void) : spreadsheet("oleo") {> 

void SetCurrentRegion(void) { 

if (1 == r && b == t) {

sprintf (curregion, "r'/.dc'/.d", t, 1);

> else {

sprintf (curregion, "r'/.di’/.dc'/.d^/id", t, b, 1, r ) ;

>
>
void DeleteCellContents(void) { 

xse «  0 << "<key>Delete" «  0;

>
void SendCommand(void) {

xse «  0 << "<key>Return" << 0;

>
void SelectCell(int x, int y) {

sprintf (buf, "’/.cjr'/.dc'/.d", ’\0 3 0’ /*~X*/, y, x); 

xse << buf;

SendCommand();

>
void PutNumericValue(double d) {

DeleteCellContents(); 

sprintf (buf, "*/.g" , d ) ; 

xse «  buf;

SendCommand();

>
void PutStringValue(char* s) {

DeleteCellContents();

xse «  0 «  "s<key>quotedbl" << 0 «  s << 0 «  "s<key>quotedbl" 

SendCommand();

>
void PutNumericFormula(char* f) {

sprintf (buf, "'/,s ('/,s) " , f, curregion);

DeleteCellContents(); 

xse «  buf;

SendCommand();

>
void PutStringFormula(char* f) {

D e l e t e C e l l C o n t e n t s O ; 

xse «  f ;

SendCommand();

>
void WriteAndReadRegion(void) {

TemporarylnputFile tif;

sprintf (buf, "’/.c'/.ca'/.s", ’\0 3 3’ / * E S C * / , ’\0 2 0’ / * ' ? * / ,  curregion 

xse «  b u f ;

SendCommand();

xse «  tif . G e t NameO ;

SendCommand();

t i f .G e t S t r e a m O .getline(buf, sizeof(buf), ’\ n’);



void Quit(void) {

xse «  0 << "c<key>x" «  "c<key>c" «  0;

// Spreadsheet modified. Quit without saving? (yes or no) 

xse «  "yes";

SendCommand();

>
>;

#undef VISTAFIER 

#define VISTAFIER sse

class VISTAFIER : public Vistafier 

#ifdef PEER 

, public IOHandler {

#else

■C
#endif 

pr i v a t e : 

char c m d ; 

p u b l i c :

spreadsheet* spreadsheet;

VISTAFIER(void) : spreadsheet(nil), c m d (’x ’) {

>
void Init(int argc, char** argv) {

Vistafier::Init(argc, argv);

p t p .Init(argc, argv, /* base_init = */ false); 

if (argc == 2 k k  ptp. I s D o n e O ) { 

var ssname = a r gv[l]; 

ipipe p(ssname); 

if (p.GetWord()) { 

var xid(p.GotWord()); 

char** av = new c h ar*[4]; 

av [0] = argv [0] ; 

av [1] = " : 0.0" ; 

a v [2] = STR xid; 

a v [3] = "0";

unx.Init(4, av, /* base_init = */ false); 

delete [] av;

if (ssname == "oleo") spreadsheet = new Oleo; 

else if (ssname == "sc") spreadsheet = new Sc;

#ifdef PEER

Dispatcher::instanceO.link(0, Dispatcher::ReadMask, this);

#endif

} else {

state = DONE;

>
> else {

unx.Init(argc, argv, /* base_init = */ false);

>



int Exit(void) { 

return p t p . E x i t O ;

>
void Quit(void) {

spreadsheet->Quit();

cout << spreadsheet->name << " is quitting." «  endl; 

state = DONE;

#ifdef PEER

P e e r ::local_done = P e e r ::remote_done = true;

#endif

>
int inputReady(int fd) { 

cin >> cmd;

return 0; // call select before getting more input

>
boolean GotCommand(const char* name) {

if (cmd == name[0]) { cmd = ’\ 0’; return true; > else return fals

>
"VISTAFIER(void) { 

delete spreadsheet;

>
> VISTAFIER;



A P P E N D I X  B

S U P P O R T I N G  C O D E

id E d i t o r ::Vistafy(void) { 

const char* name = GetCellMatrixName(); 

if (name == nil II !OfferToSave()) return; 

const char* oldp = vistadialog->Text();

char* parameters = vistadialog->Edit(oldp == nil ? "." : nil); 

if (parameters == nil) return; 

boolean vista_button_states[4];

vistadialog->GetButtonStates(vista_button_states); 

boolean code_it = vista_button_states[0], 

make_it = vista_button_states[1], 

show_it = vista_button_states[2], 

run_it = vista_button_states[3]; 

char* ewb = acme->ErrorWarnBuf();

char* cmfilname = get_cellmatrix_filename(name, true); 

char* fullname = GetProtoLib()->GetFileName(name); 

const char* plibname = GetProtoLib()->GetName(); 

const char* plibfullpath = GetProtoLib()->GetFullPath(); 

char* cmtxfullpath = GetProtoLib()->GetFileName(cmfilname); 

char* dotcfullpath = get_filename_with_suffix(fullname, ".c"); 

time_t dotcfiletime = get_mod_time(dotcfullpath); 

time_t cmtxfiletime = get_mod_time(cmtxfullpath); 

if (cmtxfiletime > dotcfiletime && code_it) {

WriteSIMFile(VISTA); // update dote file 

cellmatrix->WriteDependencies(".d");

>
boolean out_of_date = false, ok_to_make = false, ok_to_run = false; 

char m a k e c m d [255], runcmd[255];

sprintf(makecmd, "make -q -r -C */,s 0UT='/,s V=0", plibfullpath, name) 

// see if executable is up-to-date (-q => query) and if not, make i 

if (make_it) {

int status = system(makecmd); 

ok_to_make = out_of_date = (status != 0);

>
if (ok_to_make) {

sprintf(makecmd, "make -r -C '/,s 0UT='/,s V=,/,d", plibfullpath, name, 

int pid = f o r k ( ); 

if (pid == -1) {

sprintf (ewb, "Cannot fork to make '/.s", name);

Complain(ewb);

> else if (pid == 0) { // child process



set_child_process_group(); 

errno = 0;

int status = system(makecmd); 

if (status != 0) {

sprintf(ewb, "Making \"'/,s\" failed with status */.d, errno */,d", 

name, status, errno); 

acme->ErrorWarnMessage(ewb);

>
_exit(status);

} else {

// parent process

sprintf (ewb, "Making V"/.s\" in \"'/.s\"", name, plibname); 

if (acme->AbortProcess(pid, ewb)) {

// killing the make process group does *not* always remove 

// a partially written executable, so do it here, ignoring 

// the error if the executable file does not exist 

unlink(fullname);

>
>

>
if (show_it) {

// manifest problems discovered by analyzer during make, namely

// 1. incompatibly-typed ports connected

// 2. ports with no default parameters not connected

boolean incompatibly_typed_ports_connected = false;

boolean some_cells_need_connections = false;

CellList cells_needing_connections;

// cells_needing_connections non-empty => these cells have ports with 

// no defined default parameters, so they need to have wires attached 

char* dotzfullpath = get_filename_with_suffix(fullname, M .z"); 

ifstream dotz(dotzfullpath); char b u f [40]; 

while (dotz) { 

dotz >> b u f ;

char* ampersand = strchr(buf, ’& ’); 

if (ampersand != nil) {

incompatibly_typed_ports_connected = true;

} else {

Cell* cell = cellmatrix->FindCell(buf, /*only_if_denominated=*/fal 

if (cell != nil) {

cells_needing_connections.Append(new_(CellNode(cell)));

>
>

>
if (incompatibly_typed_ports_connected) {

Complain("There are incompatibly-typed ports connected."); 

F i n d T y p e d W i r e s Q  ;

>
some_cells_need_connections = (cells_needing_connections.SizeQ > 0); 

if (some_cells_need_connections) {

cellmatrix->Select(&cells_needing_connections,

/* visibly = */ true, /* extend = */ false); 

if (cells_needing_connections.S i z e Q  == 1) {



Complain("The selected cell has one or more connections missing.");

} else -[

Complain("The selected cells have one or more connections missing.");

}
}
if (incompatibly_typed_ports_connected II some_cells_need_connections) -[ 

run_it = false;

}
} . 

if (run_it) {

sprintf (makecmd, "make -q -r -C '/,s 0UT=‘/,s V=0", plibfullpath, name);

int status = system(makecmd);

ok_to_run = (!out_of_date I I (status == 0));

}
if (ok_to_run) {

// up-to-date, so fork/exec it

signal(SIGHUP, S I G _IGN); signal(SIGINT, SIG.IGN); signal(SIGqUIT, S I G .IGN); 

int pid = f o rk(); 

if (pid == -1) {

sprintf(ewb, "Cannot fork to exec ’/.s", name);

Complain(ewb);

} else if (pid == 0) { // child process 

set_child_process_group(); 

char* disp = acme->GetDisplayName();

boolean use_system = ((strchr(parameters, ’< ’) != nil) II

(strchr(parameters, ’> ’) != nil) II 

(strchr(parameters, ’I’) != nil));

if (use_system) {

sprintf(runcmd, '"/.s '/.s ’/,d '/.d '/.d ’/.s", fullname, disp,

acme->GetWindowId(), cellmatrixview->GetWindowId(), 

show_it, parameters); 

int status = system(runcmd); _exit(status);

} else -[

// use execl

const char* vl = "VISTALOG"; const char* sx = ".a";

char* vie = new_(char[strlen(vl)+strlen(name)+strlen(sx)+2] ); // yes, 2 

strcpy(vle,vl); strcat(vle,"="); strcat(vle.name); strcat(vle,sx); 

p utenv(vle);

char awid[16]; sprintf (awid, "'/,d", acme->GetWindowId());

char cwid[16]; sprintf (cwid, , cellmatrixview->GetWindowId());

char show[16] ; sprintf (show, '"/.d" , show_it);

execl(fullname, name, disp, awid, cwid, show, parameters, (char*)nil); 

syserr("execl");

}
} else -[

// parent process needs to know the pid of the child that was just 

// forked off in order to acknowledge receipt of signals from it 

acme->SetAckPid(pid); 

acme->SetSleepTime(dump_depth * 10000);



The following is an English description of the Vistafy command, enumerating the steps neces­
sary to produce, analyze and run an executable Vista specification. Each of the four subsystems 
ha5 its own subsequent subsection, even though, as mentioned above, these four modules are 
very interrelated. Refer to Figure B.2, which shows the dialogue box presented to the user upon 
invocation of the Vistafy command. This is the second of three dialogue boxes the user sees, (the 
third is found in Figure B.3,) but it only pops up if the  current cellmatrix design has a  name, 
and either no changes need to be saved to a disk file, or else the user refuses the ofTer to  save a 
modified design before proceeding. In the case of an unsaved modified design, the dialogue box 
shown in Figure B.l will appear. .

The cellmatrix name is used as the base name for several ancillary and intermediate files tha t  
are produced by the Vista subsystems, as well as the final result, which is the executable agent. 
This executable C++ program has the identical name as its source cellmatrix, th a t  is, no file 
extension is appended to it. The parameters entered in the string-editor box are passed on to 
this executable program. By convention, the first parameter is the pa thnam e of the directory the 
program will connect to before it begins its business. This pa thnam e is initially, meaning 
the current working directory of the environment in which Acme was invoked. The parameters 
entered are saved, and in subsequent Vistafy invocations (in the same Acme session) are restored 
from their saved state, for continuity and convenience. The user can abort  the Vistafy command 
either by blanking out all param eter  entries, or by clicking on the “pushbutton” labeled Cancel. 
Otherwise, pressing the Return  key or pushing the O K  bu tton  tells Vista to proceed.

The four vertically-aligned bu ttons are “checkboxes” tha t  are originally checked, by default. 
Clicking on a checkbox toggles its s ta te  from checked to unchecked and back again. The checked 
sta te  is indicated visually by the ‘"X” in the box, the unchecked sta te  by a blank box. The 
ramifications of these four button states are related below. Four boolean variables, code.i t , make.it ,  
show.il  and run.it  are defined, taking their initial values (true or false) from the states of the 
buttons labeled Code, Make, Show  and Run, respectively. In the following outline of the remaining 
steps, assume tha t  t e s t  names the user-created cellmatrix design, and t r i a l  names the (user- 
defined) working protolib, which must reference the base vtsta  protolib, and which contains the 
t e s t  design:

1. Look for a file named t e s t . c  in the t r i a l  protolib directory. If it does not exist, or is out 
of date with respect to the t e s t . cm cellmatrix file; then, if code.it  is also true, generate the 
t e s t . c file by invoking the Codifier (see Subsection 3.4.1), and, in addition, create a t e s t  .d 
file containing the file dependencies for t e s t . c  tha t  m a k e  will consult in step 2.

2. If m ake.it  is true, issue a Unix shell command (via the sys tem  call) to make -q  0UT=test. 
The -q  option tells m a k e  to “query” only, th a t  is. to determine by examining the last- 
modified times of each file the target test depends on if the test executable is up to date  
or not, b u t  if not, not to try to make it.

3. If not up to date, make the t e s t  executable, again by calling make OUT=test (minus the 
query flag,) only this time, use the Unix fork  call to create a subprocess in which to do it.

4. While the child process is running make OUT=test, the Acme parent process pops up the 
final dialogue box. Figure B.3 shows its appearance for this test example. This dialogue box 
goes away by itself when the child process exits, unless the user pushes the Abort  button, 
which both dismisses the dialogue box and terminates the child process prematurely.

5. If the make process terminates normally, and if show.it  is true, there will be a file named 
t e s t . z  in the t r i a l  directory. This is the ou tpu t  file created by the Analyzer, which is 
invoked by the make. See Subsection 3.4.2.

6. If show.it  is true, and the t e s t  .z  file exists (and is non-empty,) the Manifester will examine 
this file and report to the user any problems therein recorded. See Subsection 3.4.3 and the 
paragraphs below.
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7. If run_it is true, using system  once more “shell ou t” a make query, and if the return  s ta tus is 
zero (meaning up to date,) set another boolean variable ok-to.run  to be true, otherwise set 
it false. If the Analyzer detected syntax errors, the executable will not have been created 
(or updated), and therefore cannot be run.

8. If ok-to-run  is true, using the Unix fork/exec  system-call pair, create a child process to 
execute the test specification. See Subsection 3.4.4 for details. In the parent process, save 
for subsequent reference by Acme the process id  of the child process th a t  was ju s t  forked 
off. The need for this is explained in Subsection 4.3.3.

Recall th a t  in Chapter 3, Subsection 3.4.3, what the Manifester does was described. The 
details were om itted  there, but given here.

If non-empty, there are only two kinds of entries in the .z  file produced by the Analyzer. An 
entry will either contain an ampersand character (&) or else it will not. Its presence indicates 
incompatibly-typed ports were connected, the am persand being the special marker used to sep­
arate the port type names, as indicated in Subsection 3.4.2. Its absence thus implies th a t  this 
entry names a cell missing one or more needed connections. Hence, an ambiguity is possible 
should the cell nam e contain an ampersand; however, Acme does not complain about such cell 
names, because cell names can be any string of characters, as there are no corresponding C++ 
identifiers, as is the case for wire names.

During its processing scan of the .z  file, the Manifester conditionally sets a boolean variable, 
incompatiblyjyped-ports-connected, and appends each cell (found by nam e lookup in the cellma- 
trix) to a list of cells needing connections. After the scan, if incompatiblydyped-ports-connected  
is true, a notification box will pop up as shown in Figure B.4. After the user dismisses this 
notification by pushing the O K  button, the Manifester invokes the FindTypedW ires  command 
automatically. This Acme command, which the user could  invoke manually before trying the 
Vistafy command, queries the top-level cellmatrix only and performs the same type inferencing 
th a t  was done by the Analyzer during the netlist generation, as mentioned in Subsection 3.4.1. 
It then pops up a string-editor/string-chooser dialogue box, as shown in Figure B.5, allowing the 
user to  choose, and Acme to then select and highlight the badly-typed wires.

If the list mentioned in the preceding paragraph  is non-empty, then each cell in the list is 
selected and highlighted, and the notification box shown in Figure B.6 appears. The user must 
then inspect each selected cell, and supply the missing connections. If either there are cells 
thus selected, or the boolean variable incompatiblyAyped-ports.connected  is true, then the boolean 
ruri-it is set false, forestalling the final Executer steps 7 and 8 outlined above.
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#include <Dispatch/dispatcher,h> 

#include <Dispatch/iohandler.h> 

#include <fcntl.h>

#include <fstream.h>

#include <stdlib.h>

// File: dispatch.c

extern int e r r n o ;

static const int MYBUFSIZE = 128;

Dispatcher* dp;

boolean broadcast_redistribute(char*, int);

# ifdef ORDERED, 

int reader_order(void), reader.turn(void);

# endif 

class MylOHandler : public IOHandler {

p r i v a t e : 

int fd; 

fstream f s ;

Dispatcher::DispatcherMask dpmask; 

char buf[MYBUFSIZE]; 

int bufsize;

# ifdef ORDERED, 

int order;

# endif 

p u b l i c :

boolean IsReader(void) {

return (dpmask == Dispatcher::ReadMask);

>
boolean IsWriter(void) {

return (dpmask == Dispatcher::WriteMask);

>
boolean IsLinked(void) {

return (this == dp->handler(fd, dpmask));

>
# ifdef ORDERED, 

void ReLink(void) {

dp->link(fd, dpmask, this);

>
# endif 

void SetBlocking(boolean on) {

// turn blocking on or off

int fflags = fcntl(fd, F . G ETFL, 0);

int blockflags = fflags & "O.NDELAY; // make sure O.NDELAY is off 

int nonblockflags = fflags I O.NDELAY; // make sure O.NDELAY is on 

fcntl(fd, F.SETFL, on ? blockflags : nonblockflags);

>
MyIOHandler(int fd, boolean is.reader)

: f d ( f d ) , fs(fd), bufsize(MYBUFSIZE),

dpmask(is.reader ? Dispatcher::ReadMask : Dispatcher::WriteMask) { 

if (is.reader) {

SetBlocking(false);

JOINING

JOINING

JOINING
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# ifdef ORDERED.JOINING 

order = reader_order();

# endif 

>
buf [0] = EOF;

>
"MyIOHandler(void) {

>
virtual int inputReady(int fd) { .

int retval = 0; // call select before getting more input 

errno = 0; // may be EWOULDBLOCK after while loop below 

int num_lines_got = 0;

# ifdef 0RDERED_JOINING 

if (order != reader_turn()) {

return -1; // must wait turn

>
# endif 

while (fs.getline(buf, bufsize)) {

if ( !broadcast_redistribute(buf, ++num_lines_got)) { 

break;

>
>
if (I f s . e o f O )  {

retval = 1; // d i d n’t get all input it could, d o n’t call select yet 

} else if ( f s . e o f O )  { 

fs . clear();

if (num_lines_got == 0 tete errno == 0) {

// eof and errno == EWOULDBLOCK means a *temporarily* empty pipe 

// eof and errno == 0 means *permanently* empty, as its writer has died 

retval = -1; // error or does not want to read anything more

>
} else if (f s . f a i l O )  { 

retval = -1;

}■ else {

retval = -1; // unknown stream state

>
return retval;

>
virtual int outputReady(int fd) { 

int retval = -1; 

if (buf [0] ! = EOF) { 

is «  buf «  endl; 

buf [0] = EOF; 

retval = -1;

>
return retval;

>
void Write(char* buf) { 

is «  buf << endl;

>;
>
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MylOHandler** handlers; 

int nreaders, nwriters, nhandlers;

#
int reader_order_, reader_turn_;

ifdef ORDERED.

endif

int reader_order(void) { return reader_order_++; >

int reader_turn(void) { return (reader_turn_ '/, nreaders); }

void relink_readers(void) {

for (int i = 0; i < nhandlers; i++) {

if (handlers[i]->IsReader() k k  (handlers[i]->IsLinked()) { 

handlers [i]->ReLink();

>
>

>
#
boolean broadcast_redistribute(char* buf, int nlines) { 

for (int i = 0; i < nhandlers; i++) { 

if (handlers[i]->IsWriter()) { 

handlers[i]->Write(buf);

>
>
if (nreaders > 1 k k  nlines == 1) {

#
reader_turn_++; 

relink_readers();

#
return false; // multiple readers only get one line at a time 

} else {

return true;

>
>

ifdef ORDERED.

endif

boolean any_readers_alive(void) {

for (int i = 0; i < nhandlers; i++) {

if (handlers[i]->IsReader() k k  handlers[i]->IsLinked()) { 

return true;

>
>
return false;

int main(int argc, char** argv) { 

dp = ^Dispatcher::instance(); 

nhandlers = argc-2; nreaders = nwriters = 0;

# ifdef ORDERED. 

reader_order_ = reader_turn_ = 0;

# endif 

handlers = new MylOHandler*[nhandlers];

for (int i = 0; i < nhandlers; i++) { 

int arg = atoi(argv[i+2]);

JOINING

JOINING

JOINING



boolean reader = (arg >= 0); 

int fd = (reader) ? arg : -arg;

dp->link(fd, (reader) ? Dispatcher:tReadMask : Dispatcher::WriteMask, 

handlers[i] = new MyIDHandler(fd, reader)); 

if (reader) nreaders++; else nwriters++;

>
while (any_readers_alive()) {

// block indefinitely until an I/O condition occurs 

dp->dispatch();

>
for (i = 0; i < nhandlers; i++) { 

delete handlers [i];

>
delete [] handlers; 

delete dp; 

return 0;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

// File: xsekey.c

#include <stdio.h> 

extern char* c h a r T o S t r Q ;

int main () { 

char c;

while((c=getchar() ) !=E0F) 

puts(charToStr(c)); 

return 0;



#include <iostream.h> 

#include <stdlib.h> 

#include <string.h> 

#include <math.h>

// File: dollars.c

const char* EnglishOnes[] = {

"one”, "two", "three", "four", "five", "six", "seven", "eight", "nine

>;

const char* EnglishTens[] = {

"", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", 

"eighty", "ninety"

>;

const char* EnglishTeens[] = {

"ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", 

"sixteen", "seventeen", "eighteen", "nineteen"

const char* EnglishPeriods □ = {

" ", " thousand", " million", " billion", " trillion", " quadrillion" 

" sextillion", " septillion", " octillion", " nonillion", " decillion

>;

void english_small_cardinal(char* buf, int n) { 

int hundreds = n/100; 

int rem = n '/, 100; 

if (hundreds > 0 )  {

strcat(buf, EnglishOnes[hundreds-l]); 

strcat(buf, " hundred"); 

if (rem > 0) {

strcat(buf, " ");

}
}
if (rem > 0) {

int tens = rem/10; 

int ones = n '/, 10; 

if (tens > 1) {

strcat(buf, EnglishTens [tens-1]); 

if (ones > 0) { 

strcat(buf, "-"); 

strcat(buf, EnglishOnes[ones-1]);

>
} else if (tens == 1) {

strcat(buf, EnglishTeens [ones]);

} else if (ones > 0) {

strcat(buf, EnglishOnes [ones-1]);

>



void english_cardinal(char* buf, int n, int period) { 

int beyond = int(n/1000); 

int here = n '/, 1000; 

if (period > 10) {

strcat(buf, "Number too large to print in English 

char t m p [10];

strcat(buf, sprintf (tmp, "'/,dM , n)); 

r e t u r n ;

>
if (beyond != 0) {

english_cardinal(buf, beyond, period+1);

>
if (here != 0) { 

if (beyond != 0) { 

strcat(buf, " ");

>
english_small_cardinal(buf, h e r e ) ; 

strcat(buf, EnglishPeriods [period]);

>

char* dollars(double d) {

char r e s u l t [1024]; result [0] = ’\ 0’; 

long c = irint((d - long(d)) * 100); 

long n = long(d);

char t m p [10], t m p l [10], c e nts[12];

sprintf(tmpl, (c == 0 ? "no" : sprintf(tmp, '"/,2d",

sprintf (cents , "and */,s/100", tmpl);

if (n < 0) {

strcat(result, "negative "); 

english_cardinal(result, -n, 0);

} else if (n == 0) {

strcat(result, "zero ");

} else {

english_cardinal(result, n, 0);

>
strcat(result, cents); 

return strdup(result);

>

int main(int argc, char** argv) { 

if (argc != 2) {

cerr << "Usage: " << argv[0] << " <dollar_amount> 

e x i t (1);

>
double d = atof(argv[1]); 

char* s = dollars(d); 

cout << s «  endl; 

delete [] s; 

return 0;



#
# File: cmnt2code

#
# Purpose: compute a comments-to-code ratio for a c m e’s authors

#
set stripper = /home/grad/neff/acme/vista/libs/fsm/stripper

set awkfile = /tmp/cmnt2code.awk

cat << EOF > $awkfile

function get_author(fn, authors) {

auth = "????"; tmp = "awk ’/Author/{print \$3} ’ " fn; 

fn_sans_suffix = substr(fn, 1, index(fn, ".")); 

if (tmp I getline auth > 0) { 

close(tmp);

authors[fn_sans_suffix] = auth;

} else {

if (fn_sans_suffix in authors) auth = authors[fn_sans_suffix]

>
return auth;

>
function get_stripped_wc(fn) { 

wc = 0; tmp = "$stripper " fn; 

if (tmp I getline wc > 0) close(tmp); 

return wc;

>
\$3 !' /total/ && \$3 \~ /firgen/ {

auth = get_author(\$3, authors); wc = get_stripped_wc(\$3); 

if (auth in totfiles) { 

totfiles[auth] ++; 

totiines[auth] += \$1; 

totbytes[auth] += \$2; 

tot_code[auth] += wc;

} else {

totfiles[auth] = 1; 

totlines[auth] = \$1; 

totbytes[auth] = \$2; 

tot_code[auth] = wc;

>
>
END {

printf "Xn'/.s'/.sXnXn", " Total Files Total Lines Total Byt

" */, Comments */, Code Ratio";

gtotfiles = gtotlines = gtotbytes = 0; 

for (auth in totfiles) {

gtotfiles += totfiles[auth]; 

gtotlines += totlines[auth]; 

gtotbytes += totbytes[auth]; 

codebytes = tot_code[auth]; 

cmntbytes = totbytes[auth] - codebytes;

cmnt2code = cmntbytes / (codebytes == 0 ? 1 : codebytes); 

prct_cmnt = cmnt2code / (1 + cmnt2code); 

prct_code = 1 / (1 + cmnt2code);



print! '"/.4s: ‘/.7d Kl2d */.12d */.12.2f y,12.2f 7.12. 2f \n" , \

auth, totlilee[auth], totlines[auth], totbytes[auth],\ 

prct_cmnt, prct_code, cmnt2code;

>
printf "\n‘/.13d */12d '/12d\n"( gtotfiles, gtotlines, gtotbytes;

>
EOF

wc -1c /home/grad/neff/acme/sources/*/*/*.{c,h,inlines,orgc}\ 

I sort +2 I gawk -f $awkfile; rm $awkfile
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#!/usr/vlsi/tcl/bin/tcl -f

#
# File: tclc2c

#
# Purpose: compute a comments-to-code ratio for a c m e’s authors

#

proc get_author {file} {

set auth [exec awk /Author/ $file] 

if {$auth != ""} { return [lindex $auth 2] } 

set file [format M,/,s.h" [file rootname $file]] 

if [file exists $file] {

set auth [exec awk /Author/ $file]

}
if {$auth != { return [lindex $auth 2] } 

return "????"

proc skip_file {file} { 

return {[string first "firgen" $file] > 0}

}

set acmefiles [glob /home/grad/neff/acme/sources/*/*/*.{c,h,orgc,inlines}] 

set stripper /home/grad/neff/acme/vista/libs/fsm/stripper

foreach file $acmefiles {

if [skip_file $file] continue 

set linebytecount [exec wc -lc < $file] 

set linecount [lindex $linebytecount 0] 

set bytecount [lindex $linebytecount 1] 

set codecount [exec $stripper $file] 

set auth [get_author $file] 

if [info exists totfiles($auth)] { 

incr totfiles($auth) 

incr totlines($auth) $linecount 

incr totbytes($auth) $bytecount 

incr tot_code($auth) $codecount 

} else {

set totfiles($auth) 1 

set totlines($auth) $linecount 

set totbytes($auth) $bytecount 

set tot_code($auth) $codecount

}

puts stdout [format "\n'/,s'/,s\n"\

" Total Files Total Lines Total Bytes"\ 

" '/, Comments '/, Code Ratio"]

set gtotfiles 0 

set gtotlines 0 

set gtotbytes 0



foreach auth [array names totfiles] { 

incr gtotfiles $totfiles($auth) 

incr gtotlines $totlines($auth) 

incr gtotbytes $totbytes($auth) 

set codebytes $tot_code($auth)

set cmntbytes [expr $totbytes($auth)-$codebytes]

set cmnt2code [expr $cmntbytes/($codebytes==0?l.:$codebytes.)]

set prct_cmnt [expr $cmnt2code/(l.+$cmnt2code)]

set prct_code [expr 1 ./(l.+$cmnt2code)] ,

puts stdout [format "'/,4s: */.7d '/.12d */.12d '/,12.2f '/,12.2f '/.12.2f"\

$auth $totfiles($auth) $totlines($auth) $totbytes($auth)\ 

$prct_cmnt $prct_code $cmnt2code]

>

puts stdout [format "\n'/,13d ‘/,12d */,12d" $gtotfiles $gtotlines $gtotbytes]
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A P P E N D I X  C  

M A K E F I L E S

# File: Makef i l e .common

#
# Common (shared) makefile for vista (VISTA = .)

#
CC = g++ 

if eq ($V,i)

DV = -DVERBOSE 

endif

DEBUGFLAGS = -g
EXTRAFLAGS = -finline -finline-functions -Winline -pipe 

STDINCLUDES = -I$(VISTA) -I/usr/vlsi/local/lib/g++-include 

INCLUDES = -I. $(STDINCLUDES)

CCFLAGS = $ (DEBUGFLAGS) $(EXTRAFLAGS) $(INCLUDES) $(DV)

LIBPATHS = -L. -L$(VISTA) -L$(VISTA)/var -L/usr/openwin/lib

LIBNAHES = -lvista -lvar -1X11 -lm

LINKFLAGS = $(LIBPATHS) $(LIBNAMES)

ifdef HAS_CELLS

HAS_CELLS_OR_WIRES = i

endif

ifdef HAS.WIRES 

HAS_CELLS_OR_WIRES = i 

endif

PROTOLIB = $(shell basename $(shell pwd))

.SUFFIXES: .o .c 

. c . o :
fi$(CC) -c $< $ (CCFLAGS)

$ ( 0 U T ) : 

ifeq ($V,1)

Secho Making \"$(0UT)\" in \"$(PR0T0LIB)\" ...

Qrm -f $(0UT).z; $(MAKE) analysis

Stest -s $(OUT).z II $(CC) -o $(0UT) $(0UT).c $(CCFLAGS) $ (LINKFLAGS) 

Qtest -x $(0UT) k k  echo done making.

else



e$(CC) -o $(OUT) $(OU T ) .c $(CCFLAGS) $(LINKFLAGS)

$(OUTADDL)

analysis: $(OUT).z

# analyzer checks for incompatible types and missing default parameters

fiecho done analyzing.

$(0UT).z:

fiawk ’$$1 ' /_&_/ {print $ $ 1 }’ $(0UT).c I sort I uniq > $(0UT).z 

©grep :: $(0UT).c | cut -d, -f2- I sed -e ’s/,//g’ -e ’s/);//g’ l\ 

tr ’ ’ ’\0 1 2’ I sort I uniq I grep :: I sed ’s/:://g’ > $(0UT).n 

fi$(CC) -E $(CCFLAGS) $(0UT).c I awk ’/“> v v / , / ; $ $ /’ > $(0UT).l 

©xargs -nl -iz awk ’$$0 “ /z/{print "z" }’ $(0UT).l < $(0UT).n >$(0UT).y 

fidiff $ ( 0 U T ) .n $(0UT).y I awk ’$$1 == "<" { print $$2> ’ |\ 

xargs -nl -iz grep ::z $(0UT).c I cut -d\" -f2 I sort I uniq >>$(0UT).z 

firm -f $(0UT).n $(0UT).l $(0UT).y

manifest: $(0UT).q

# manifester calls coral (and Explain) to ascertain if $(0UT) is okay

Ccoral -q < $(0UT).q > $(0UT).r

figrep -s "Number of Answers = 1" $(0UT).r

fiecho done manifesting.

$(0UT).q: $(0UT).P $(PR0T0LIB).q

Cecho "/+ File: $© */" > $© 

fiecho "consult($(0UT).P)." »  $fi 

fiecho "explain_on." >> $fi 

©cat $(PR0T0LIB).q »  $fi 

fiecho "explain_off." >> $fi

fiecho "shell(V'Explain -f dump_directory > /dev/null 2>&1\")." >> $fi 

fiecho "quit." >> $fi

$(O UT).P : $(0UT).F $(PR0T0LIB).P

©echo "/* File: $fi +/" > $© 

fiecho "module $(0UT)." >> $fi 

fiecho "" »  $fi

ficat $(0UT).F $(PROTOLIB).P »  $fi

fiecho "" »  $fi

Cecho "end_module." >> $©

$ ( 0 U T ) .F : $(0UT).a $(VISTA)/factify.el

fiemacs -batch -q $(shell /bin/pwd)/$fi -1 $(VISTA)/factify.el \

-f save-buffer -kill >/dev/null

# $(0UT).a gets created by $(0UT) when it is executed.

endif
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$ ( VISTA) / f a c t i f y . e l :
fflgrep M a k efile.common | cut -d: -f2- > $ffl

#:(setq make-backup-files nil)

# : (setq fname (file-name-nondirectory (buffer-file-name)))

#:(let ((file (concat (substring fname 0 (or (string-match "\\.F" fname) 0))

#: ".a"))) ,

#: (if (file-readable-p file)

#: (insert-file-contents file)))

#:(goto-char (point-min))

# : ( if (search-forward "Vistafier")

#: (progn (beginning-of-line) (kill-line)

#: (insert (concat "/* File: " fname " */"))))

# : (while (not (looking-at "========"))

#: (progn (downcase-word 1) (end-of-line) (insert " (forward-char 1)))

# : (delete-region (point) (point-max))

d o t h :: 

ifdef CELL

fflecho Making $(CELL).h

fflecho "// File: "$(CELL)".h" > $(CELL).h 

fflecho "" »  $(CELL).h 

ifdef HAS_WIRES

fflecho "#define BEGIN_"$(CELL) »  $(CELL).h

endif

ifdef HAS.CELLS

fflecho "#define BEGIN_"$(CELL)"_CELLS" »  $(CELL).h 

fflecho "#define END_"$(CELL)".CELLS" »  $(CELL).h

endif

ifdef HAS_WIRES

fflecho "#define END_"$(CELL) »  $(CELL).h

endif

ifdef HAS_CELLS_OR_WIRES

fiecho "" »  $(CELL).h

endif

fiecho -n "defCell("$(CELL)"," »  $(CELL).h

figrep $(CELL).h $(0UT).c | awk -F/ '{ printf "’/.s", $ $ 3 >’ »  $(CELL).h 

fiecho ")" »  $(CELL).h

else

ifdef WIRE

Secho Making $(WIRE).h

fflecho "// File: "$(WIRE)".h" > $(WIRE).h 

fflecho "" »  $ (WIRE).h

fflecho "#ifndef "$(WIRE)"_h" »  $(WIRE).h



fiecho "#define "$(WIRE)”_h" »  $(WIRE).h 

fiecho "" »  $(WIRE).h

fiecho "class "$(WIRE)" : public Wire {" »  $(WIRE).h 

©echo "public:" »  $(WIRE).h

Qecho " "$(WIRE)"(const char* name) : Wire(\""$(WIRE)"\",

»  $(WIRE).h

Qecho " >" »  $(WIRE).h

Qecho " * "$(WIRE)"(void) {" »  $(WIRE).h

Qecho " >" »  $(WIRE).h

fiecho ">;" »  $(WIRE).h

fiecho "" »  $(WIRE).h

fiecho "#endif" »  $(WIRE).h

else

Qecho Making $(0UT).h

Qecho "// File: "$(0UT)".h" > $(0UT).h

Qecho "" »  $(0UT).h

Qecho "#define BEGIN MAIN.BEGIN" »  $(0UT).h 

Qecho "" »  $(OU T ).h

Qecho "#define BEGIN_CELLS MAIN_BEGIN_CELLS" »  $(0UT).h 

Qecho "" »  $(0UT).h

Qecho "#define END.CELLS MAIN_END_CELLS" »  $(0UT).h 

Qecho "" »  $(0UT).h

Qecho "#define END MAIN_END" »  $(0UT).h

endif

endif

e a c h :

Qfor each in $(foreach f, $(wildcard *.c), $(basename $f)) 

do echo $$each; $(MAKE) 0UT=$$each; done

c lea n : :

rm -f $(0UT) core



##############################################
# Makefile: sig vista 

##############################################

VISTA = ../vista

include $(VISTA)/Makefile.common 

include $(OUT).d 

##############################################
# Makefile: fsp vista 

##############################################

VISTA = ../vista

include $(VISTA)/Makefile.common 

include $(OUT).d 

##############################################
# Makefile: xse vista 

##############################################

VISTA = ../vista

include $ (VISTA)/Makefile.common

LIBPATHS := $(LIBPATHS) -L$(VISTA)/xse 

LIBNAMES := -lxse $(LIBNAMES)

include $(OUT).d

xsekey: xsekey.c

®cc -0 -o xsekey xsekey.c $(LIBPATHS) $(LIBNAMES) 

##############################################
# Makefile: unx fsp xse vista 

##############################################

VISTA = ../vista

include $(VISTA)/Makefile.common 

IVINCLUD = -I/usr/vlsi/interviews/include

INCLUDES = -I. -I../fsp -I../xse $(IVINCLUD) $(STDINCLUDES)



IVLIBPTH = /usr/vlsi/interviaws/lib/SUM. debug 

LIBPATHS := $(LIBPATHS) -L$(VISTA)/xse -L$(IVLIBPTH) 

LIBNAMES : = -lxse -1IV $ ( H B N A H E S )

include $(OUT).d



VISTA = . ./vista 

OUTADDL = $(0UT) && $(MAKE) FSM 

include $ (VISTA)/Makefile. common 

INCLUDES := $(INCLUDES) -I$(VISTA)/fsm

LIBPATHS := $(LIBPATHS) -L$(VISTA)/fsm 

LIBNAMES := $(LIBNAMES) -lfsm

FSM: $ (OUT)F S M .c $(0UT)FSM.h

$(CC) -o $ (OUT) $ (OUT)FSM.c $(CCFLAGS) $(LINKFLAGS)

##############################################

# Makefile: fsm vista

##############################################

include $(0UT).d



VISTA = ../vista

include $ (VISTA)/Makefile.common

AUTOGEN = (automatically generated — DO NOT EDIT)

DV = -Dcplusplus_2_l

IVINCLUD = -I/usr/vlsi/interviews/include

INCLUDES = -I. -I../unx -I../fsp -I../xse $(IVINCLUD) $(STDINCLUDES) 

IVLIBPTH = /usr/vlsi/interviews/lib/SUN4.debug 

LIBPATHS := $(LIBPATHS) -L$(VISTA)/xse -L$(IVLIBPTH)

LIBNAMES := -lxse -1IV $(LIBNAMES)

include $(OUT).d

$ ( O U T ) .1: $(OUT)

$(0UT)

$ ( O U T ) .2: $ (OUT).1

grep "Wire Medium" < $< I cut -d" " -f4 > $fi

$ ( O U T ) .3: $ (OUT).1

awk '$$1 == "Wire" k k  $$2 != "Medium"’ < $< > $fi

$ ( O U T ) .4: $ (OUT).3

cut -d" " -f4 < $ < > $ ©

$ ( O U T ) .5: $ ( O U T ) .1

grep Pusher < $< | cut -d" " -f3 > $®

$ ( O U T ) .6: $ ( OUT).1

grep Puller < $< | cut -d" " -f3 > $Q

$ ( O U T ) .7: $ ( 0 U T ) .1

awk ’$$l=="Cell" k k  $$2=="Puller"\

•Cprintf "\n#define CELL*/.d '/.s\n#define WIRE'/.d '/.s\n",\

$$8, $$3, $$8, $$7; numfn++}\

END {printf "\n#define NUMFN '/,d\n\n", numfn>\

’ < $< > $®

$(0UT)client.h: $(OUT).h 

sed \

-e ’s/.h/client.h $(AUT0GEN)/’\

##############################################

# Makefile: cts (client to server) vista

##############################################



-e ’s/ MAIN_BEGIN_CELLS//’\

-e -s/ MAIN_END_CELLS//’\

< $< >
/usr/5bin/echo "\n#define CLIENT" >> $®

$(0UT)server.h: $(OUT).h 

sed \

-e ’s/.h/server.h $(AUT0GEN)/’\

-e ’s/ MAIN_BEGIN_CELLS//’\

-e ’s/ MAIN_END_CELLS/ service->Run() ;/*\

< $< > $C
/usr/5bin/echo "\n#define SERVER" >> $C 

$ (OUT)client.c : $(OUT)client.h

$(0UT)client.c: $(0UT).5 $(0UT).3 $(0UT).2 $(0UT).l

/usr/5bin/echo "// File: $(0UT)client.c $(AUTOGEN)\n" > $fi 

echo "#include \"$(OUT)client.h\"" »  $«

/usr/5bin/echo "#include \"$(PRQTQLIB).h\"\n" »  $® 

/usr/5bin/echo "#include V'Client.h\"\noutclude" >> $0 

xargs -nl -ip /usr/5bin/echo "#include \"p.h\"\noutclude" \

< $ ( 0 U T ) .5 »  $®

/usr/5bin/echo "\nBEGIN\n" >> $®

xargs -nl -ip echo " Medium vv0(\"p\");" < $(0UT).2 >> $® 

awk >\

{printf " '/.s vv,/,s(\,"/.s\") ;\n", $$2, $$3, $$3> \

’ $(0 U T ) .3 »  $®

/usr/5bin/echo "\nBEGIN_CELLS\n" »  $® 

awk ’\

/Client/\

{printf " ,/,s(V7.s\", vv'/.d); \ n " , $$2, $$3, $$4> \

/Pusher/\

{printf " y.s(\",/.s\", vv'/,d, vv’/.d) ;\n", $$3, $$4, $$5, $$6> \ 

’ $( 0 U T ) .1 »  $0

/usr/5bin/echo "\nEND_CELLS\n\nEND" »  $®

$(0UT)server.c : $(0UT)server.h $ (OUT)reader.h

$(0UT)server.c: $(0UT).6 $(0UT).3 $(0UT).2 $(0UT).l

/usr/5bin/echo "// File: $(0UT)server.c $(AUT0GEN)\n" > $® 

echo "#include \"$(0UT)server.h\"" >> $C 

/usr/5bin/echo "#include \"$(PR0T0LIB),h\"\n" >> $® 

/usr/5bin/echo "#include \"Server.h\"\noutclude" >> $® 

xargs -nl -ip /usr/5bin/echo "#include \"p.h\"\noutclude" \

< $ ( 0 U T ) .6 »  $®

/usr/5bin/echo "\n#include \"$(0UT)reader.h\"" >> $fi



/usr/5bin/echo "\nBEGIN\n" >> $0

xargs -nl -ip echo " Medium vvO(\"p\");" < $(0UT).2 »  $® 

awk ’\

{printf " '/.s vv,/ , s ( \ ,7 ,s \" ); \n " ) $$2, $$3, $$3> \

' $ ( 0 U T ) .3 »  $0

/usr/5bin/echo "\nBEGIN_CELLS\n" »  $« 

awk ’\

/Server/\

{printf " '/.sCVHsV, w ‘/.d);\n", $$2, $$3, $$4> \

’ $( 0 U T ) .1 »  $0 

awk >\

/Puller/\

{printf " '/,s(V7,s\", vv'/.d, vv‘/.d);\n", $$3, $$4, $$5, $$6> \ 

’ $ (OUT).1 »  $0

/usr/5bin/echo "\nEND_CELLS\n\nEND" »  $C

$ (OUT)reader.h: $(0UT).7 $(0UT).4 Makefile 

echo "// File: $® $(AUT0GEN)" > $0 

cat $ ( 0 U T ) .7 »  $0

grep "~#1" Makefile I cut -dl -f2- >> $®

xargs -nl -in echo " READ("n")" < $(0UT).4 »  $®

grep "*#2" Makefile I cut -d2 -f2- »  $©

xargs -nl -iz echo " _function["z"] = ftReader::read"z";" \

< $ ( 0 U T ) .4 »  $C

grep "*#3" Makefile I cut -d3 -f2- >> $®

$ (OUT)client: $(OUT)client.c $(PR0T0LIB).h

$(CC) -o $® $ (OUT)client.c gmalloc.o $(CCFLAGS) $ (LINKFLAGS)

$(OUT)server: $(OUT)server.c $(PR0T0LIB).h

$(CC) -o $® $(OUT)server.c gmalloc.o $(CCFLAGS) $ (LINKFLAGS)

#l#define READ(N) \

#1 static void read##N(RpcReader* reader, \

#1 RpcHdrft h d r ,rpcstreamft client){\

#1 Medium mdm("read"#N,(Reader*)reader, ftclient); \

#1 WIRE##N a r g ( h d r . n d a t a O ) ; \

#1 CELL##N("read"#N, arg, m d m ) ; \

#1 >
#1
#lclass Reader : public RpcReader {

#lprotected:

#1 RpcService* _service;

#1 virtual void connectionClosed(int fd) {

#1 close(fd);

#1 if (Service::no_longer_needed) {



#1 _service->quitRunning();

#1 >
#1 delete this;

#1 >
#2public:

#2 Reader(int fd, RpcService* service)

#2 : RpcReader(fd, NUHFN + i, /* binary 

#2 _service(service) {

#2 client().setf(ios::dont_close);

#3 >

#3 virtual 'Reader(void) {

#3 >

#3>;

#3

#3void Ser v i c e ::createReader(int fd) {

#3 new Reader(fd, this);

#3}
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VISTA = ../vista

include $(VISTA)/Makefile.common

AUTOGEN = (automatically generated — DO NOT EDIT)

DV = -Dcplusplus_2_l

IVINCLUD = -I/usr/vlsi/interviews/include

INCLUDES = -I. -I../unx -I../fsp -I../xse $(IVINCLUD) $(STDINCLUDES)

IVLIBPTH = /usr/vlsi/interviews/lib/SUN4.debug 

LIBPATHS := $(LIBPATHS) -L$(VISTA)/xse -L$(IVLIBPTH)

LIBNAMES := -lxse -1IV $(LIBNAMES)

include $(OUT).d

$ ( O U T ) .1:

$(OUT)

$ (OUT).2: $ ( O U T ) .c

awk ’$$1 == "Medium" { print $ $ 2 >’ < $< I cut -d"(" -fl > $0

$ (OUT).3: $ ( O U T ) .1

awk ’$$1 == "Wire"’ < $< | sort +1 > $fi

$ ( 0 U T ) .4: $ (OUT).3

cut -d" " -f4 < $< > $0

$ ( 0 U T ) .5: $(0UT).c $(0UT).3

awk ’$$4 == "(NAME," && $$5 != "BIDIR(Medium," \

{ print substr($$2,2,length($$2)-4), substr($$S,7,length($$5)-7) > ’ \

< $ ( 0 U T ) .c | sort +1 | join -j 2 -o 1.1 1.2 2.4 -t" " - $(0UT).3 > $fi

$(OUT) . 6: $ (OUT).5

awk ’{printf "\n#define CELL*/.d /.s\n#define WIRE/.d ’/.s\n",\

$$3, $$1, $$3, $$2; numfn++}\

END {printf "\n#define NUMFN /,d\n\n", numfn>\

’ < $< > $®

$(0UT)peer.h: $(0UT).h 

sed \

-e ’s/$(0UT).h/$(0UT)peer.h $(AUTOGEN)/’\

-e ’s/MAIN_BEGIN_CELLS/do { /’\

-e ’s/MAIN_END_CELLS/]- while (vvO.PeerShouldRunO) ;/’\

##############################################

# Makefile: ptp (peer to peer) vista

##############################################
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< $ < > $ ©
/usr/5bin/echo "\n#define PEER" >> $0

$(0UT)reader.h: $(0UT).6 $(0UT).4 Makefile 

echo "// File: $C $ (AUTOGEN)" > $0 

cat $ ( 0 U T ) .6 »  $fi

grep "*#1" < Makefile I cut -dl -f2- »  $« 

xargs -nl -in echo " READ("n")" < $(0UT).4 >> $0 

grep ""#2" Makefile I cut -d2 -f2- »  $©

xargs -nl -iz echo " _function["z"] = ftReader::r e a d " z " ;" \

< $ ( 0 U T ) .4 »  $«

grep "“#3" < Makefile I cut -d3 -f2- >> $0

$(0UT)peer.c : $(0UT)peer.h $(OUT)reader.h $(PR0T0LIB).h

$ (OUT)peer.c : $(0UT).2 $(0UT).c 

sed \

-e ’s/$(OUT).c/$(OUT)peer.c $(AUTOGEN)/’\

-e ’s/$(OUT).h/$(OUT)peer.h / ’\

-e ’s/$(shell cat $ ( O U T ) .2)/vv0/g’\

< $ (OUT).c |\

awk ’$$1 == "BEGIN" {printf "#include \"$(OUT)reader .h\"\n\n*/.s\n" ,$$1>\ 

$$1 != "BEGIN" { p rint}’ > $©

$(OUT)peer: $(OUT)peer.c

$(CC) -o $fi $(OUT)peer.c gmalloc.o $(CCFLAGS) $(LINKFLAGS)

#l#define READ(N) \

#1 static void read##N(RpcReader* reader, \

#1 RpcHdrft hdr.rpcstreamfc client){\

#1 Medium mdm("read"#N,(Reader*)reader, ftclient); \

#1 WIRE##N a r g ( h d r . n d a t a O ) ; \

#1 CELL##N("read"#N, arg, mdm); \

#1 >
#1
#lclass Reader : public RpcReader {

#lprotected:

#1 Peer* peer;

#1 virtual void connectionClosed(int fd) {

#l#ifdef CLOSESTOP 

#1 close(fd);

#1 peer->Stop();

#l#endif 

#1 >
#2public:

#2 Reader(rpcstream* client, Peer* peer)



#2 : RpcReader(client, NUMFN + 1),

#2 peer(peer) {

#2 client->setf(ios::dont_close);

#3 >

#3>;

#3

#3virtual P e e r ::"Peer(void) {

#3 delete reader;

#3 delete writer;

#3}

#3

#3virtual boolean P e e r ::createReaderAndWriter 

#3 (const char* rHost, int rPort) {

#3 writer = new Writer(rHost, rPort);

#3 if (writer->server()) {

#3 reader = new Reader(&writer->server(), this); 

#3 return true;

#3 } else {

#3 Error(rHost, rPort);

#3 return false;

#3 >

#3}

#3

#3virtual void P e e r ::createReaderAndWriter(int fd) { 

#3 if (writer) {

#3 Error(fd, 0);

#3 return;

#3 >

#3 writer = new Writer(fd);

#3 if (writer->server()) {

#3 reader = new Reader(&writer->server(), this); 

#3 }■ else {

#3 Error(fd);

#3 >



# File: sim.mk

#
# Makefile to run simppl (and spplice, if necessary)

#
ACME_WINDOW_ID = $(shell xwininfo -name acme I awk ’/xwininfo/{print $ $ 5 >’)

NAME = exor 

SIM = simppl

OPT = -c ,

CMD = $(SIM) $(NAME)

GEO = -geometry 80x40+0+0 

1=0
# interactive 1=1 

C=0

# copy output C=1

.SUFFIXES: .ppx.ppl.cm

'/, .ppx : '/..ppl

fispplice $* > /dev/null

'/.. ppl : ’/.. cm

fiecho Making $fi from $<

fixse -window $(ACME_WIND0W_ID) ’s<Key>l’ ’<Key>Return’

$(NA M E ) : $(NAME).ppx $(NAME).src 

ifeq ($1,0)

fi$(SIM) $(0PT) $(NAME) < $(NAME).src

else

fitoolwait xterm $(GE0) -xrm "*allowSendEvents:true" -e $(CMD) 

fiecho "" | alert button="Click here to begin simulation" 

ifeq ($C,1)

fixse -window $(SIM) ’<Key>c’ ’<Key > o’ ’<Key > p’ ’<Key>Return’

endif

Oxse -window $(SIM) ’<Key>s' ’<Key > o’ ’<Key>Return’

fiecho "When ready to exit $(SIM)" I alert button="click here"

fixse -window $(SIM) ’<Key > e’ ’<Key>Return’

endif

®rm $ (NAME).src

$(NAME).src:

fiecho "options -echo" > $ (NAME).src 

fifor i in $(INPUTS); do\ 

if echo $$i | grep -s ’ 

then echo "set" $$i;\ 

else echo $$i; echo "show" $ (WATCH);\ 

fi; done >> $(NAME).src
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# File: adsim.mk

#
# Makefile to do mixed analog/digital design simulation using viewlogic

# (madsnet and madssim) and hspice

#
# NAME comes from the adsim script that invokes make with this Makefile

# (e.g., NAME=adtest)

# _
PVNAME = ’Powerview Cockpit’

PVDIR = $(shell echo $(WDIR) I cut -d: -fl)

PROJDIR = $ (PVDIR)/ $ (NAME)

PROJECT.LIST = $(PVDIR)/vf/project.1st

SPPLICE = spplice -V -f

MADSNET = madsnet

MADSSIM = madssim

MADSSIMGEO = -geometry 80x66+0+0

SPICELINK.SWITCHES = $ (HOME)/spicelink_switches.ini

# hscale args: label width_in_pixels from to tickinterval initialvalue 

TICKSIZEP = $(shell hscale "TICKSIZE (seconds, power of)" 500 -IS -1 1 -10) 

TICKSIZET = $(shell echo $(TICKSIZEP) I tee ticksize.tmp I sed ’s/-/3kl0 12 / ’) 

TICKSIZE = $(shell echo "$(TICKSIZET)-*p" I dc)

SSMIN = $(shell awk ’{print 1+$$1}’ ticksize.tmp)

STEPSIZEP = $(shell hscale "STEPSIZE (seconds, power of)" 500 $(SSMIN) 0 1 -7) 

STEPSIZET = $(shell echo $(STEPSIZEP) I sed ’s/-/2kl0 12 / ’)

STEPSIZE = $(shell echo "$(STEPSIZET)-‘p" I dc)

all: .setup goal .cleanup

.setup: $(NAME).ppl $(NAME).src $(SPICELINK_SWITCHES) set-project

goal: $(PR0JDIR)/$(NAME).wfm

cd $(PR0JDIR); viewtrace $(NAME).wfm

$ (NAME).ppl:

Qecho "After writing $(NAME).ppl" I alert button="click here"

$(NAME).src:

fiecho "After writing $(NAME).src" ] alert button="click here"

$(SPICELINK_SWITCHES):

Qecho -mnfxv > $(SPICELINK_SWITCHES)

$(NAME).cir: $(NAME).l $(NAME).cmd viewsim.ini 

cp -p $ ( NAME).1 $ (PROJDIR)/wir

# add digital watch list to $(NAME).cmd 

echo -n "watch " > $(NAME).tmp
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grep "~wave" $(NAME).cmd | cut -d" " -f3- >> $(NAME).tmp 

sed ’/*wave/r $(NAME).tmp’ < $(NAME).cmd l\

sed ’s/QUIT/ECHO Reached end of $(NAME).cmd file: enter q to q u i t . /’\

> $(NAME)-cmd.tmp; mv $(NAME)-cmd.tmp $ ( N AME).cmd 

cp -p $(NAME).cmd viewsim.ini $(PR0JDIR) 

cd $(PR0JDIR); $(MADSNET) $(NAME) > /dev/null 2>ftl 

mv $(PROJDIR)/$(NAME).cir .

$ (PROJDIR)/ $ (NAME).wfm: $(PROJDIR)/$(NAME).cir 

cd $(PR0JDIR); \

xterm -T $(MADSSIM) $(MADSSIMGEO) -e \

$ (MADSSIM) $(NAME) -$(NAME).cmd -nographics

set-project: $(PROJECT_LIST) $(PR0JDIR) set-project.el

# set current project by changing the index number on the

# first line of the file $(PROJECT_LIST) to be

# the position of the current project in the O-based

# one-project-per-line list that follows in the file.

#
Qcheck-current-project $(PROJECT_LIST) $(PR0JDIR)/ I I \

emacs -batch $(PROJECT_LIST) -1 $(shell /bin/pwd)/set-project.el \

-f save-buffer -kill >/dev/null

$(PROJDIR)/$(NAME).cir: $(NAME).cir $ ( N AME).inc fix.cir.el

# fix .cir file by running emacs in batch mode

emacs -batch $(NAME).cir -1 fix.cir.el -f save-buffer -kill >/dev/null 

Qecho "Edit $ (NAME).cir now, if you need to or want to." I \ 

alert button="Click here when ready to proceed." 

cp -p $(NAME).cir $Q

$(NAME).inc: $ ( NAME).analog-voltages $ ( N AME).total-time $(NAME).ini 

echo "* "$ffl > $Q

cat $ (NAME).analog-voltages >> $ffl 

cat $ ( N AME).total-time >> $® 

cat $(NAME).ini >> $®

$(NAME).l $(NAME).cmd viewsim.ini : $(NAME).ppl 

if [ -r $ (NAME).sed ]; then \

sed -f $ ( N AME).sed < $(NAME).ppl > $(NAME).ppl.tmp;\ 

mv $(NAME).ppl.tmp $(NAME).ppl; \ 

fi

$(SPPLICE) $(NAME) > $ ( NAME).spplice 2>&1 

sed ’s/\.00//g’ < viewsim.ini > viewsim.ini.tmp 

mv viewsim.ini.tmp viewsim.ini

$(NAME).dit:



Oecho -n T

echo TICKSIZE $(TICKSIZE)ps I \

sed -e ’s/\.00//g’ -e ’s/000ps/ns/g’ > $0

Oecho -n T

echo STEPSIZE $(STEPSIZE)ps I \

sed -e ’s/\.00//g’ -e ’s/OOOps/ns/g’ >> $fi

$(NAME).total-time: $(NAME).cmd viewsim.ini 

Oecho -n ".PARAM TICKSIZE = " > $0 

grep TICKSIZE viewsim.ini I cut -d" " -f2 >> $8 

flecho -n ".PARAM TOTALTIME = " »  $fl 

awk ’/SIM/{print $ $ 2 }’ $ (NAME).cmd | \ 

sed -e ’s/.000ns//’ -e ’s / .000us/000/’ I \

awk ’BEGIN {total = 0} {total += $$1} END {print total " n s " }’ \ 

»  $<Q

$ ( NAME).analog-voltages:

# avoltages is a Tcl/Tk script that prompts for Vmin and Vmax

# (and calculates Vmid = (Vmin+Vmax)/2.0)

# avoltages > $fi

fiecho ".PARAM VMIN = 0.00V VMID = 2.50V VMAX = 5.00V" > $«

$ (PROJECT_LIST) $ (PROJDIR):

Oecho ’Modi<key>x’ > powerview-create-project.xse

# pdc is the command abbreviation for "project (viewdraw) create 

Oecho "pdc $(PR0JDIR)" I xsekey >> powerview-create-project.xse 

toolwait powerview > /dev/null

xse -window $(PVNAME) -file powerview-create-project.xse

until [ -d $ (PR0JDIR)/wir ]; do sleep i; done

xse -window $ (PVNAME) ’Modl<Btn3Down> ’ ’<key>Return’

set-project.e l :

Oecho "(setq make-backup-files nil)" > $fi 

Oecho "(goto-char (point-min))" >> $0

Oecho "(if (search-forward \"$(PR0JDIR)/\" nil t)" >> $0 

Oecho " (let ((line-number (count-lines (point-min) (point))))" 

Oecho " (goto-char (point-min))" >> $0 

Oecho " (kill-line)" »  $fi

Oecho " (insert (format \"'/,d\" (- line-number 2)))))" >> $fi

f i x .c i r .e l :

fiecho "(setq make-backup-files nil)" > $6 

fiecho "(goto-char (point-min))" >> $fi 

Oecho "(forward-line 3)" >> $fi 

Oecho "(open-line 2)" >> $0

Oecho "(setq fname (file-name-nondirectory (buffer-file-name)))"



Qecho "(let ((file (concat" >> $Q

Qecho " (substring fname 0" >> $Q

Qecho " (or (string-match \".cir\" fname) 0))" >> $Q

Qecho " \ " .inc\")))" »  $Q

Qecho " (if (file-readable-p file)" >> $Q

Qecho " (insert-file-contents file)))" >> $Q

Qecho "" »  $®

Qecho "(goto-char (point-min))" >> $Q 

Qecho "(if (search-forward \" NP6 \" nil t)" »  $Q 

Qecho " (progn (forward-word 2) (kill-line)" >> $Q 

Qecho " (insert V  VMIN\")))" »  $Q

Qecho "" »  $Q

Qecho "(goto-char (point-min))" >> $Q 

Qecho "(if (search-forward \" NP7 \" nil t)" >> $Q 

Qecho " (progn (forward-word 2) (kill-line)" >> $Q 

Qecho " (insert \" VMID\")))" »  $Q

Qecho "" »  $Q

Qecho "(goto-char (point-min))" »  $Q 

Qecho "(if (search-forward \" NP8 \" nil t)" »  $Q 

Qecho " (progn (forward-word 2) (kill-line)" >> $Q 
Qecho " (insert \" V M A X V’)))" »  $Q

Qecho "" »  $Q

Qecho "(goto-char (point-min))" »  $Q

Qecho "(if (search-forward V'.TRAN \" nil t)" »  $Q

Qecho " (let ((file (concat" >> $Q

Qecho " (substring fname 0" >> $Q

Qecho " (or (string-match \".cir\" fname) 0))" >> $Q

Qecho " \".total-time\")))" »  $Q

Qecho " (if (file-readable-p file)" >> $Q

Qecho " (progn (kill-line)" »  $Q

Qecho " (insert-file-contents file)" >> $Q

Qecho " (zap-to-char 1 ?=)" >> $Q

Qecho " (delete-char 2)" >> $Q

Qecho " (end-of-line)" >> $Q

Qecho " (zap-to-char 1 ?=)" >> $Q

Qecho " (delete-char 1)))))" »  $Q

Qecho "" »  $Q

Qecho "(goto-char (point-min))" >> $Q

Qecho "(if (search-forward \".MODEL D2A\" nil t)" >> $®

Qecho " (if (search-forward \"TIMESTEP=0.1NS\" nil t)" »  $Q 

Qecho " (progn (zap-to-char -1 ?=) (insert \"TICKSIZE\"))))" » $ Q

Qecho "" »  $Q

Qecho "(goto-char (point-min))" >> $Q

Qecho "(if (search-forward V V L D 2 A  VLD2A 0 DC \" nil t)" »  $Q 

Qecho " (progn (kill-line) (insert V'VMINV')))" »  $Q 

Qecho "" »  $Q



Gecho " (goto-char (point-min))" »  $G

Cecho "(if (search-forward V V H D 2 A  VHD2A 0 DC \" nil t)" »  $C

Cecho " (progn (kill-line) (insert \"VMAX\")))" »  $C

Cecho "" »  $®

Cecho "(goto-char (point-min))" >> $C

Cecho "(if (search-forward \ " .MODEL A2D\" nil t)" »  $C

Cecho " (if (search-forward \"TIMESTEP=0.1NS\" nil t)" »  $fi

Cecho " (progn (zap-to-char -1 ?=) (insert \"TICKSIZE\"))))">>$C

Cecho "" »  $C

Cecho "(goto-char (point-min))" »  $C

Cecho "(if (search-forward W R E F A 2 D  VREFA2D 0 DC \" nil t)" »  $C

Cecho " (progn (kill-line) (insert V ' V M I N V )))" »  $C

cleanup:

®echo "#!/bin/csh -f" > $®

Cecho -n "/bin/rm -f " »  $C

®echo "$(NAME).{1,c i r ,cmd,inc,ppg,spplice,tmp.total-time}" »  $C

®echo "/bin/rm -f $ (NAME).analog-voltages" »  $®

Gecho "/bin/rm -f set-project.el fix.cir.el viewsim.ini" »  $®

Cecho "/bin/rm -f spcurins.ins powerview-create-project.xse" » $ C

Gecho "/bin/rm -f .cleanup" » $ C  

Cchmod 755 $C

Cecho "adsim is done." | alert \

button="Type \".cleanup\" to remove all generated files."



# Makefile to do digital simulation using viewlogic (viewsim)

#
# NAME comes from the dsim script that invokes make with this Makefile

# (e.g., NAME=dtest)

#
PVNAME = 'Powerview C o c kpit’

PVDIR = $(shell echo $(WDIR) I cut -d: -fl)

PROJDIR = $ (PVDIR)/ $ (NAME)

PROJECT_LIST = $(PVDIR)/vf/project.1st 

SPPLICE = spplice -V -f 

VIEWSIM = viewsim

all: .setup goal .cleanup

.setup: $(NAME).ppl $(NAME).src set-project

goal: $ (PROJDIR)/ $ (NAME).wfm

if [ -r $ (PROJDIR)/.streamed ]; then \ 

rm $ (PROJDIR)/.streamed; else \ 

cd $(PR0JDIR); viewtrace $(NAME).wfm; fi

$(NAME).ppl:

fiecho "After writing $(NAME).ppl" I alert button="click here" 

fitest -f $fi II (echo No such file: $fi && false)

$(NAME).src:

fiecho "After writing $(NAME).src" | alert button="click here" 

fitest -f $fi II (echo No such file: $fi k k  false)

set-project: $(PROJECT_LIST) $(PR0JDIR) set-project.el

# set current project by changing the index number on the

# first line of the file $(PROJECT_LIST) to be

# the position of the current project in the 0-based

# one-project-per-line list that follows in the file.

#
ficheck-current-project $(PROJECT_LIST) $(PR0JDIR)/ I I \

emacs -batch $(PROJECT_LIST) -1 $(shell /bin/pwd)/set-project.el \

-f save-buffer -kill >/dev/null

$(PROJDIR)/$(NAME).wfm: $(NAME).l $ (NAME).cmd v i e w s i m .ini 

cp -p $ ( N AME).1 $(PROJDIR)/wir

# add digital watch list to $(NAME).cmd 

echo -n "watch " > $(NAME).tmp

-grep "“wave" $(NAME).cmd | cut -d" " -f3- »  $(NAME).tmp

#



sed ’/“wave/r $(NAME).tmp’ < $(NAME).cmd |\

sed ’s/QUIT/ECHO Reached end of $ (NAME).cmd file: enter q to quit./

> $ (NAME)-cmd.tmp; mv $ (NAME)-cmd.tmp $(NAME).cmd 

cp -p $(NAME).cmd viewsim.ini $(PROJDIR) 

cd $(PROJDIR); vsm $(NAME) > /dev/null 2>&1;\

$(VIEWSIM) $(NAME) -$(NAME).cmd > $ (PROJDIR)/.streamed

$ ( N AME).1 $ (NAME).cmd viewsim.ini : $(NAME).ppl $(NAME).src $(NAME).dit 

$ (SPPLICE) $(NAME) > $ (NAME).spplice 2>&1 

sed ’s/\.00//g’ < viewsim.ini > viewsim.ini.tmp 

mv viewsim.ini.tmpviewsim.ini

$(NAME).dit:

Qecho TICKSIZE lOO.OOps > $CI 

Qecho STEPSIZE 100.00ns »  $Q

$ (PROJECT_LIST) $(PR0JDIR):

toolwait powerview > /dev/null

©echo ’Modl<key>x’ > powerview-create-project.xse

# pdc is the command abbreviation for "project (viewdraw) create"

©echo "pdc $(PR0JDIR)" I xsekey »  powerview-create-project.xse

xse -window $(PVNAME) -file powerview-create-project.xse

until [ -d $(PR0JDIR)/wir ]; do sleep 1; done

xse -window $(PVNAME) ’Modl<Btn3Down>’ ’<key>Return’

set-proj e c t .e l :

©echo "(setq make-backup-files nil)" > $®

Qecho "(goto-char (point-min))" >> $©

©echo "(if (search-forward \"$(PR0JDIR)/\" nil t)" »  $Q

Qecho " (let ((line-number (count-lines (point-min) (point))))" >>

Qecho " (goto-char (point-min))" »  $Q

Qecho " (kill-line)" >> $Q

Qecho " (insert (format \"'/,d\" (- line-number 2)))))" >> $Q 

Qecho "(delete-file \"$(shell /bin/pwd)/$Q\")" >> $Q

.cleanup:

Qecho "#!/bin/csh -f" > $®

Qecho -n "/bin/rm -f " >> $Q

Qecho " $ (NAME).{1,c i r ,cmd,ppg,spplice,tmp,vsm>" >> $Q 

Qecho "/bin/rm -f set-project.el viewsim.ini spcurins.ins" >> $Q 

Qecho "/bin/rm -f powerview-create-project.xse" >>$Q 

Qecho "/bin/rm -f .cleanup" >>$®

Qchmod 755 $Q

Qecho "dsim is done." I alert \

button="Type V ' . c l e a n u p V  to remove all generated files."
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