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A b s tra c t .  The Set Theory of Arithmetic Decomposition is a method for designing complex addi
tion/subtraction circuits at any radix using strictly positional, sign-local number systems. The specifi
cation of an addition circuit is simply an equation that describes the inputs and the outputs as weighted 
digit sets. Design is done by applying a set of rewrite rules known as decomposition operators to 
the equation. The order in which and weight at which each operator is applied maps directly to a 
physical implementation, including both multiple-level logic and connectivity. The method is readily 
automated and has been used to design some higher radix arithmetic circuits. It is possible to compute 
the cost of a given adder before the detailed design is complete.

1 Introduction

The design of circuit structures for binary (radix 2) addition and subtraction is a 
mature discipline and is reasonably well understood for a wide variety of different 
types of adders. Among these are the ripple carry adders (two’s complement, one’s 
complement and sign-magnitude), the carry lookahead and block carry lookahead 
adders, the carry completion adder, the signed-digit adders, the carry save adder 
and the Wallace Tree adders. All of these are described in Hwang [16]. For the 
most part, practical designs have been done only for radix 2 arithmetic units since 
this represents the least complex design problem. The design of higher radix adders 
has not been considered in the design techniques commonly used today.

Of the techniques mentioned above, there are several which can be drawn to
gether into a single design framework: two’s complement ripple cany adders, carry
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save adders [17, 21], signed digit adders [1, 22] and Wallace Tree adders [3, 28]. 
Although these techniques for addition were developed for radix 2, they can easily 
be extended to arbitrarily high radix.

The Set Theory of Arithmetic Decomposition provides a uniform method of 
describing, specifying and designing adders (and subtracters) of these types at radix
2 or higher. It is based, as described below, on the notion of set arithmetic. With the 
theory, the design of circuits to implement the addition is reduced to applying a set 
of rewrite rules to an equation involving set addition and set scalar multiplication 
of digit sets that represent the inputs and outputs of the adder. Chow [10], Borovec
[2], Ozarka [19] and Rohatsch [25] have all looked at the problem of designing 
redundant adders. The Set Theory of Arithmetic Decomposition provides a method 
for easily designing this class of adders without any extraordinary effort required 
to perform the logic design.

2 D efin itions

The Set Theory of Arithmetic Decomposition deals with number representations 
that are strictly positional and sign-local. A strictly positional number representation 
is one in which the value of a number, whether positive or negative, is computed 
by a single formula. In sign-local representations, the sign digit does not affect the 
value of any other digit in the number. In sign-magnitude, the sign digit causes the 
value of every other digit to be negated. In diminished radix complement the sign 
digit affects at least the value of the least significant digit via the end around carry.

Table 1 shows the evaluation functions for four strictly positional number rep
resentations. We modify slightly the radix complement and diminished radix com
plement representations in that the most significant (or sign) digit can assume only 
the values 0 and 1 (we use x =  — x) rather than 0 and (r — 1). In these equations, I 
is the lower bound and u is the upper bound and u >  I. Thus, they may represent 
integers (I = 0), fractions (u = 0) or general fixed-point numbers (1 ^ 0  and u ^  0).

Each xi in these equations is a digit that represents a set of integer values known 
as a digit set. A digit set is characterized by two parameters:

• 6, its diminished cardinality (one less than the number of its elements), and

• u>, its offset (the magnitude of its smallest element).

A digit set is denoted as {6W). Thus, (1°) represents the binary digit set {0 ,1} and 
(9°) represents the decimal digit set {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 } . The notation (6*) 
denotes the set of digit sets whose elements are all the offset variations possible 
with that given 6. For example, (2*) means {{0 ,1 ,2 } , {1 ,0 ,1 }, {2 ,1 ,0}}. Using 
the concepts of diminished cardinality and offset, a digit set D  is defined as follows:

1. A digit set is a sequence of 6 + 1 consecutive integers, { -w  + 0, ■••,-<*> + £}.
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Table 1: Strictly Positional Number Representations
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u —1
Sign-Magnitude X = (-1 )*“ ^  r'x;, [xu e {0 ,1 } ,xt- G {0, • • • ,(r -  1)}]

i=l
U

Radix Complement X = 'JjT r'x i, [xu G {0, G {0, • • • ,( r  -  1)}]
i=i

Dim. Radix Comp. X = — xu, \xu G {0 ,1 } ,a:,- G {0,• ■ • ,(r — 1)}]

U

Signed-Digit X = r'x i, [|z,| < a , [§] < a < ( r -  1)] 
_______________________ «=/___________________________________________

2. 6 >  1. At radix r, 6 <  (2r — 2).

3. S > u > 0 which implies that 0 G D.

4. Where r is the radix, 6 > r — 1 which implies that (r > 2).

There are several other useful auxiliary definitions of specific digit sets:

1. If oj = 0, the digit set is normalized.

2. If (S mod 2 = 0) and (u = 6/2), the digit set is symmetric.

3. If (6 > r — 1), the digit set is redundant.

4. The negative of a digit set is defined as D  = { —d \ d G D }.

Central to the Set Theory of Arithmetic Decomposition are two operations on 
sets of integers: set addition and set scalar multiplication. Given sets of integers 
D{, set addition is defined as:

Do + D \ = { ( *  + d\) | do G D q and d\ G D \ }.

Based on integer addition, set addition is both associative and commutative. Given, 
in addition to D;, a scalar s, set scalar multiplication is defined as:

sD  = {(« • d) | s is an integer and d G D }.

Based on integer multiplication, set scalar multiplication is associative, commutative 
and both right and left distributive over set addition. Set scalar multiplication takes 
precedence over set addition.
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We also define the decomposition relation, •<= , which indicates that the right 
hand arithmetic set expression is to be transformed into the left hand expression. 
The •<= relation is not reflexive; swapping the right and left hand sides of a set 
decomposition equation results in a different, inverse physical structure.

An arithmetic set expression is a collection of weighted digit sets involving set 
addition and set scalar multiplication. It is defined as

N

1=0

where s; is a scalar and Z>, is a digit set. An arithmetic set expression that represents 
a digit set is called a composite digit set and has

N  N

SC = Y 2  311(1 = SW -
i=0 i=0

Thus the set expression 8 ( l ' )+ 4  (2°)+2 ( l 1) + (2°) has Sc = 8-1+4-2+2-1 +2 = 20, 
o;c = 8-l + 2 ’l = 10 and represents the (2010) digit set.

The notion of composite digit sets is of prime importance since it indicates that 
digit sets of high diminished cardinality can be represented by weighted sums of 
digit sets of lower diminished cardinality. This is clear when considering that a 
clean, strictly positional number of finite length represents a digit set. A four bit 
two’s complement number represents the digit set

( l 5 8)  = {8, • • • ,0, • ■ ■ ,7}

for which the representation as an arithmetic set expression is

8 ( l 1} + 4 ( l 0) + 2 ( l 0)  + ( l 0} .

In fact, for binary addition and subtraction, all high-<5 digit sets can be represented 
as weighted sums of binary ((1*)) and ternary ((2*)) digit sets. This is critical for 
the physical design method based upon the theory.

Another critical notion is the information content of digit sets and composite digit 
sets. This is defined to be the number of distinct signals (or bits) required in its 
physical realization. Table 2 contains the representations of the first few digit sets 
as composite digit sets composed only of a minimal number of binary and ternary 
digit sets and the corresponding information content.

In most cases, the weighting radix is 2; however it is possible to design structures 
with higher weighting radices. The selection of the weighting radix in an arithmetic 
unit represents a compromise between operational speed and the complexity and 
cost of design.
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Digit Set Binary/Ternary Representation Info. Content
(1*) (1*) 1
(2*) (2*) 2
(3*) 2 <!*)+(!*) 2
(4*) 2 (1*)+  (2*) 3
(5*) 2(2*) + (l*> 3
(6*) 2 (2*)+ (2*) 4
(?*> 4(1*) + 2(1*) + (1*) 3
(8*) 4(1*) + 2(1*) + (2*) 4
(9*) 4 (l* )+ 2 (2 * ) + (l*) 4

<10*) 4(1*) + 2  (2*) + (2*) 5
(11*) 4 (2 * )+ 2 (l* )  + (l*) 4
(12*) 4 (2*) + 2(1*) + (2*) 5
(13*) 4 (2*) + 2  (2*) + (1*) 5
(14*) 4 (2*)+2 (2*)+ (2*) 6
(15*) 8 (1*) + 4 (1*) +2 (1*) + (1*) 4

3 D ecom p osition  Equations

A decomposition equation has a digit set or composite digit set on both right and 
left hand sides of the decomposition relation. For example, we can specify a two 
digit radix-r complement adder as

r2 ( l 1) + r ((r — 1)°} + ((r — 1)°) •<=
(r <1>> + <(r -  1) »  + (r (1>> + <(r -  1)°)) + <1">

in which the final (1°) digit set on the right hand side represents the carry in. Here, 
both right and left hand sides are composite digit sets. This can be rewritten so the 
left hand side is not a composite digit set as

^ (r2 + r (r — l) + (r — 1 ) ) ^  «= <(r + (r -  l))r) + ((r + (r -  l))r) + ( l ° )  .

To facilitate negation, signed digit adders generally use symmetric digit sets so 
that negation can be done on a digit-by-digit basis. They are multi-staged structures 
specified by a set of arithmetic set equations. The general structure of an even radix
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signed digit adder with minimal redundancy involves a set of equations of the form

r(l1) + (r°) <= +

r(l°) + ( (r -  1 ) ^  ■<= (r°) + (l1) + |^(r-2)(^_1)^| 

r̂§) <= ((r - 1)7^ + (1°)

whereas the general structure of an odd radix signed digit adder involves non min
imal redundancy and a set of equations of the form

Additional redundancy in a signed digit number representation can reduce the num-

Here, the adder requires only two stages. Each of the digit sets with 6 > 2 can be 
represented by a composite digit set in which the weighting radix is 2.

It should be noted above that there are frequently cases where the diminished 
cardinality and/or offset of the right hand side is not equal to that of the left hand 
side. There are three cases to consider:

1- ^out fiin-

2. bout =

3. Sout > S{n.

In the first case, the structure is unrealizable since the input expression can represent 
more values than the output expression. The equations of the second case are called 
decomposition equations and are both realizable and decomposable. The equations 
of the third case are realizable but not decomposable since the output can represent 
more values than the input. Since decomposition deals with addition and subtraction, 
it is possible to transform equations of the third case (6out >  ) to the second 
case (6out = «5,„) by adding a mythical input to the right hand side of the equation 
such that 6out = Sin +  8myth  and ujout = u in +u)m y th. Mythical inputs always assume
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a zero value and so do not change the result of an addition or subtraction. Since 
mythical inputs are not true inputs and always assume a value of zero, they may be 
used after decomposition to simplify the physical design.

The inverse of a decomposition equation is a decomposition equation in which 
the right and left hand sides have been switched. An equation that is decomposable 
(f>out = &in) has an inverse that is also decomposable. An unrealizable equation 
(60ut < bn) has an inverse that is realizable but not decomposable. A realizable 
but undecomposable equation (Sout > Sin) has a non-realizable inverse. Thus, 
decomposition equations that involve the use of a mythical input cannot be inverted.

A decomposition equation represents a structure for addition or inverse addition 
and a circuit that can be used to implement that structure. The right hand side of 
the decomposition equation represents the inputs to the structure while its left hand 
side represents the outputs of the structure. The logical design of the entire structure 
could be done by assigning logical variables to implement each of the inputs and 
outputs. The function is specified by the mapping of digit set values to boolean 
variables. Unfortunately, for many significant designs, the logical design problem 
is far too complex to be solved reasonably by known techniques. For example, 
in the design of a processor that uses radix-16 arithmetic with (2010) digit sets 
[4, 6, 7, 11, 23], the following decomposition equation is encountered.

64 (21) + 32 (l1) + 16 (2°) + 4  (21) + 4  (l1) + 2(1°) + (2°) «=
32 ( l 1) + 32 ( l 1) + 16 <2°) + 16 (2°)+  8 ( l 1) + 8 ( l 1) + 8 ( l 1) + 8 ( l 1) +
4 (2°) + 4 (2 ) + 4 (2°) + 4(2°) + 4 (21) + 2 ( l 1) + 2 ( l 1) + (2°) + (26>

It represents a structure with 26 inputs and 11 outputs. Fully specifying 226 input 
patterns, their mapping to 11 separate outputs and minimizing the resulting multiple- 
output function is a formidable problem not readily approachable using conventional 
techniques. Decomposition provides a method to design such circuits easily.

4 D ecom p osition  (and R ecom position)

Decomposition is the process of applying decomposition operators to the right 
hand side of a decomposition equation to produce the left hand side. Recompo
sition is the inverse of decomposition in which inverse decomposition operators 
are applied to the right hand side of a decomposition equation to produce the left 
hand side. In decomposition, the information content of the right hand side is re
duced to that of the left hand side. In recomposition, the information content of the 
right hand side is increased to that of the left hand side. Both decomposition and 
recomposition are based on two constraints:

1. Diminished cardinality is preserved. That is, 80Ut = 6{n.

2. Offset is preserved. That is, usout = w,-„.
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4.1 Decomposition Operators and Their Inverses

Decomposition operators and their inverses are specified by decomposition equa
tions in which Sout = Each constitutes a rewrite rule that may be applied to the 
right hand side of a more complex decomposition equation and corresponds directly 
to a circuit module. The set of available decomposition operators depends on the 
set of allowed digit sets and the weighting radix.

To design non-redundant radix-r adders, we use the non-redundant ((r — 1)*) 
digit sets to represent digits of the operands and the result. We also need the (1*) 
digit sets to represent carries. In this case, only one class of decomposition operators 
is required, a radix-r full adder. In general, radix-r full adders are of the form

For example, all that is required to implement all possible clean, strictly positional 
non-redundant adders in radix-2 is the set of radix-2 full adders:

These four radix-2 full adders are commonly used in array multipliers such as those 
proposed by Pezaris [20]. The number of radix-r full adders, N ja, at radices r > 2

so there are 12 distinct radix-3 full adders, 20 distinct radix-4 full adders and 272 
distinct radix-16 full adders.

In redundant number representations such as signed digit, we must allow the use 
of all digit sets from (1*) up through ((2r — 2)*). The reason for this will shortly 
be evident. There are five forms of diadic decomposition operators. At weighting 
radix r, each form specifies a set of diadic operator classes each of which consists 
of a set of offset variants. The total number of diadic operator classes is given by

r (1*) + ((r -  1)*) <= <(r - 1)*) + <(r -!)*)+< 1*).

2 (1*) + (1*) <= (1*) + (1*) + (1*) 

which is composed of the following four offset variations.

is

At r = 2 there are only 3 classes of diadic operators. At r = 3 there are 10 and at 
r = 4 there are 21. The five forms of diadic decomposition operators are as follows.
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Partial Adders

<**) <= (3/*) + <**>

Carry Generators

r  (1*) + ((r — 1)*) <{= (y*) + (z*) 

Super Carry Generators

r (2*) + <(r -  1)*) <= (y*) + (z*) 

Redundant Carry Generators

r (l* ) + <®*) «= (y* )+ (z* )  

Super Redundant Carry Generators 

r(2*) + {x*) ■$= (y k) + {z*)

2r — 2 > (x = y + z) > 2 
2r — 2 > y , z > 0

2r  — 1 = y + z 
2r — 2 > y , z > 0

3r — 1 = y + z;
2r — 2 > y , z > 0

2r — 2 > ( x  = y + z  — r) > r 
2r — 2 > y , z  >  0

2r — 2 > ( x  = y +  z  — 2 r) > r 
2r — 2 > y , z  >  0

Table 3 shows the diadic operator classes for radices 2, 3 and 4. The availability 
of (42) for radix 3 implies that it is possible to build a signed digit adder at radix
3 for which negation can be done on a digit by digit basis.

A non-redundant, radix-r full-adder can be built by combining a partial adder 
and a carry generator of the following forms:

PAr.(r—1) (r )
CG(r_i).r r<l*) + < (r - l)* )

<(r — 1)*) + (1*) 
<r*) + ( 0  -  1)*)

Decomposition operators may themselves be hierarchically composed [18]. That 
is, a decomposition operator at a higher weighting radix can be implemented by 
specifying it using a lower weighting radix and decomposing. For example, the 
radix-4 super redundant carry generator

SRCG12.6 = 4 (2*) + (4*) «*= (6*)+ (6*) 

can be rewritten at a weighting radix of 2 as follows.

4 (2*) + 2 (1*) + (2*) <= (2 (2*) + (2*)) + (2 (2*) + (2*))

When decomposed, this generates a three level structure consisting of two RCG4 .2 S 
followed by a CG3 .2  followed by a PA2 .1 . Thus decomposition can be carried 
out using higher radix decomposition operators and actually implemented using 
operators at a lower radix.

In general, for higher weighting radices, the decomposition operators for the 
partial adders {x*) -£= (y*) + (z*) can be replaced by a series of applications of
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Table 3: Diadic Decomposition Operators at Radices 2, 3 and 4

PA2.1 2*) (1* + 1*)
CG3 .2 2(1*) + 1*) (2* + 1*)
RCG4 .2 2(1*) + 2*) (2* + 2*)

PA2.1 2*) (1* + 1*)
PA3 .2 3*) <= (2* + 1*)
PA4 .2 4*) (2* + 2*)
PA4 .3 4*) (3* + 1*)
CG5.3 3(1*)+ 2*) (3* + 2*)
CG5 .4 3(1*)+ 2 } <J= (4* + 1*)
RCG6.3 3(1*) + 3* (3* + 3*)
RCG6 .4 3 (1*> + 3*) (4* + 2*)
RCG7 .4 3(1*) + 4*) 4= (4* + 3*)
SCG8.4 3(2*)+ 2*) (4* + 4*)

PA2.1 2*) (1* + 1*)
PA3 .2 3*) (2* + 1*)
PA4 .2 4*) <= (2* + 2*)
PA4 .3 4*) (3* + 1*)
PA5 .3 5*) (3* + 2*)
PA5 .4 5*) (4* + 1*)
PA6.3 6*) <= (3* + 3*)
PA6.4 6*) (4* + 2*)
PA6.5 6*) <= (5* + 1*)
CG7 .4 4(1*) + 3 ) <= (4* + 3*)
CG7 .5 4(1*) + 3*) <= (5* + 2*)
CG7 .6 4(1*) + 3*) <= (6* + 1*)
RCGg.4 4(1*) + 4*) 4= (4* + 4*)
r c g 85 4(1*) + 4*) 4= (5* + 3*)
RCG8.6 4(1*) + 4*) <£= (6* + 2*)
RCG9.5 4(1*) + 5*) (5* + 4*)
RCG9 .6 4(1*) + 5*) 4= (6* + 3*)
RCG10.5 4(1*) + 6*) (5* + 5*)
RCGjo.6 4(1*) + 6*) <*= (6* + 4*)
SCGh .6 4(2*)+ 3*) (6* + 5*)
SRCG12.6 4(2*)+ 4*) <̂= (6* + 6*)
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the decomposition operators for radix 2. This follows directly from Theorem 1, 
with r = 2. First, each of the digit sets (x*), (y*) and (z*) can be represented 
by its unique binary representation with minimum information content. A series of 
applications of the binary decomposition operators can then be applied to transform 
the representation of <?/*) + (z*) into that of {x*).

If the weighting radix r is an odd prime, the decomposition operators for the carry 
generators can be replaced by a series of applications of the binary decomposition 
operators, augmented by a radix r carry generator of the form

r<l*) + ( (r - l)* >  «= «2r -  2)*) + <1*>.

Each use of the radix r carry generator may require the use of at most one inverse 
binary partial adder. Consider the expression

{(2r — 1)*) + (s*) <= (y*) + (z*)

with 2r — 1 + s = y + z; 2r — 1 < y +  z. The binary representation of {(2r — 1)*) 
which has minimum information content has the least significant terms 2 (2*)+(1*), 
since r is odd. If both y  and z  are even, the binary representation of {y*) and 
(z*) terminate in (2*). It is necessary to use an inverse partial adder of the form 
(1*)+(1*) <= (2*) to represent the input {(2r — 1)*) for the radix r carry generator.

There also exist pathological cases for radices r = 9 + 4 i (i = 0 ,1 ,2 , • • •), with 
(y*) and {z*} terminating in4(2*) + 2 (l* ) + (l*), which require use of the inverse 
binary carry generator (2*) + <1*) <*= 2 (1*) + (1*) followed by an inverse binary 
partial adder (1*) + (1*) ■$= (2*). This particular combination of inverse binary 
operators is called a. fanout function. For radices r = 19 + 8 i (i = 0 ,1 ,2 , • • •), two 
such fanout functions are required. The general formula for these cases is

r = (2n+1 + 2n~1 -  1) + 2ni (" J o  i3,2 ’.V.)*

for which 1 inverse partial adder and n — 1 fanout functions are required. Both (y*) 
and (z*) terminate in

2 n (2*) + 2 n ~ 1 (1*) + • • • + 2 (1*) + (1*).

If the weighting radix r is composite, i.e., r = p ■ q, it can be shown that radix p  
and radix q carry generator operators can be used for decomposition [18]. Consider 
the radix r carry generator

r(l* ) + < (r - l)* )  <= <(2r -  2)*) + <1*).

With r = p  ■ q, the identities

r -  1 = pq -  1 = q(p -  1) + (q -  1)
2r — 1 = 2pq — 1 = q [(2p — 2) + 1] + (g — 1)
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are substituted in the equation for the radix r cany generator to yield

q [P <1*) + ((P -  1)*)] + <(9 -  1)*) <= 9 [<(2P -  2)*) + (1*)] + i(q ~  1)*)

in which the expressions in [ ] clearly represent a radix p  carry generator.
As an example of the practical consequence of these observations, decomposition 

for radix 10 can be accomplished by augmenting the binary decomposition operators 
with the radix 5 carry generators [18]

5(1*)+  2(1*)+  (2*) «= 4 (l* )  + 2(2*) + (l* ).

4.2 Theorems About Decomposition

First, we must show that decomposition and recomposition can actually work. 
This is achieved through the following proofs. We stipulate beforehand that at radix 
r, digit sets have at most 6 = (2r — 2).

Theorem 1 (Fundamental Theorem of Decomposition) Any representation p o f  
a digit set of diminished cardinality So can be transformed through a series o f  
decomposition operator applications to a unique representation pu o f that digit set 
which has minimum information content and a single digit set a t each weight.

Proof: The proof for this theorem is contained in the following two lemmas.

Lemma 1 (Uniqueness of Representation) For every digit set atid a given weight
ing radix r there exists a unique representation pu that has a single digit set at 
each required power o f the weighting radix.

Proof: Given a digit set with diminished cardinality Sq and a weighting radix 
r ,  let the digit set be represented initially by a random distribution of 6q across 
a set of weights r%(0 <  i <  m) where there are JV, (1*) digit sets at weight rl 
CCEo* Ni = So). Note that the process could begin with a set of other (not (1*)) 
digit sets at each weight. We can easily get to the representation proposed above 
by applying a series of inverse partial adders at each weight to break each higher-6 
digit set down to (1*) digit sets.

For each weight r! starting at i = 0, do the following until Ni = 0:

1. If Ni >  (2 r -  2)

(a) Combine r — 1 of these Ni (1*) digit sets using a succession of partial 
adders to form a single ((r -  1)*) digit set at weight rl.

(b) Repeat the following [N i/(2 r — 2)J times:
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i. Using partial adders, combine the ((r — 1)*) digit set with r — 1 
more (1*) digit sets to form a single ((2r — 2)*) digit set.

ii. Combine the single {(2r -  2)*) digit set with one (1*) digit set 
using a r (1*) + ((r -  1)*) <= ((2r — 2)*) + (1*) carry generator.

iii. Ni+i = Ni+1 + 1.
(c) There will now be at most (r — 1) (1*) digit sets and exactly one 

{(r — 1)*) digit set remaining at weight r \  Partial adders combine these 
to form a single digit set at weight r* which has 6 <  (2r — 2).

2. Otherwise, JV,- < (2r -  2). The Ni (1*) digit sets are combined using partial 
adders to form a single digit set. Only at rm can Nm < (r — 1).

At the conclusion of this algorithm, there is a single digit set with diminished 
cardinality of at least (r — 1) at each weight r! except possibly the most significant. 
This shows that any representation p of a digit set can be reduced to a represention 
pu with a single digit set at each weight.

Assume pu is not unique, it would then be possible to leave out a digit set at a 
given weight, compensating by increasing the diminished cardinalities of any or all 
digit sets of other weights. p u is of the form

rmD m + + • • ■ + r'D i + r,_1 A - 1  + • • • + -Do-

Let us assume that we can leave out the r* D{ term. If all less significant Di have 
the maximum allowable diminished cardinality (2r — 2), then the maximum value 
representable by all less significant digit sets is

»-i
^ m ax = E ( rJ(2r- 2))=(2ri- 2>

j=0

and the smallest value representable by the more significant digit sets is

V  ■ = r‘+1vu m m  1 •

For the expression without rlD, to represent a digit set, it must be the case that

V u m t n  —  V l m a x 1

But, for (rl+1 = 2r‘ -  1), r must be less than 2. This is not allowed (by the definition 
of a digit set), therefore the representation is unique.

Lemma 2 (Condition for Digit-Set-ness) At weighting radix r and with digit sets 
of (8*),  (0 < i < m) limited such that 0 < <  (2r — 2), an arithmetic set 
expression with a single digit set at each weight represents a digit set if and only 
if all Si > (r — 1), (0 < i < m).
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Proof: Consider an arithmetic set expression of the form

r m ^  +  r m - 1 (( r  _  + . . . +  r i ^ r  _  +  r i- 1 (( r  _  + . . . +  (( r  _  j)* )

The largest value representable by the digit sets at weights r° through r,_1 is

((rl -  r’"1) + (r®-1 -  r’"2) + • • • + (r -  1)) = r{ -  1

The smallest non-zero value representable by the digit sets at weights r‘ through 
rm is r* • 1 = r*. So, the expression represents the digit set

{o , • ■ •, r’ — 1, r* , • • •, (rTO+1 — l)  }  .

Now, consider the case where the digit set at weight rt_1 has diminished cardinal
ity r — 2 and all digit sets at weights lower than r,_1 have the maximum allowable 
diminished cardinality of 2r — 2. In this case, the set expression is

rm (1*) + rm_1 ((r — 1)*) + • • • + r* ((r — 1)*) + 

r*'"1 ((r -  2)*) + r - 2 ((2r -  2)*) + • • • + ((2r -  2)*)

Here, the largest value representable by the digit sets at weights r° through r‘-1 is

(r{ -  2r*_1) + (2ri_1 -  2r '~2) + • • • + (2r -  2) = r{ -  2

and the expression cannot represent the value (r* -  1) and does not represent a digit 
set. Therefore, for pu to represent a digit set, every 6, > (r — 1).

Lemma 3 (Minimum Information Content) The unique representation, pu, has 
minimum information content.

Proof: Information content is defined as the number of boolean variables required 
to implement a digit set representation. We have already shown that the diminished 
cardinality of a digit set in pu must be at least r — 1 and have stipulated that it can 
be no larger than (2r — 2).

Assume that pu does not have minimum information content. It must then be 
possible to represent a single digit set as a sum of two digit sets for which the 
implementation would require fewer bits. The number of bits required to represent 
a digit set is [log2 . So, if pu does not have minimum information content then

flog2 x] >  flog2 y] + riog2 z]

where x = y + z. First, assume that 2̂  < x <  2J+1. The information content, 
j  + 1 < Ix < j  + 2. Let us then represent x using y = 1 and z  = x -  1. So,
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Iy = 1 and j  <  Iz <  j  + 1. The information content of the output in this case 
is j  + 1 < Iy + Iz <  j  + 2 which is the same range as for x. In fact, if x > 2J 
then Iz = j  + 1 and Iy + Iz = j  + 2 whereas Ix -  j  + 2 only when x = 2J+1, so 
when y = 1 it is not possible to represent x with fewer bits. We cannot lower the 
information content below one bit, so if we wish to reduce the total information 
content of y + z  we must reduce the information content of z. This may be done 
by setting 2  = [|J  — 1 for which j  — 1 < Iz <  j .  But, when we do this, we must 
set y = [ | ]  + 1 for which j  <  Iy <  j  + 1 so that 2 j — 1 < Iy + Iz <  2j  + 1. If a; 
does not have minimum information content then ( j  + 1) > (2j  — 1) => 0  = 1) or
0  + 2) > (2 j  +1) =>■ (J = 0). In the first case Ix is at the absolute minimum of 1 bit 
so no representation with less information content exists. The second case cannot 
occur since it must be that Ix >  0. Therefore, by contradiction, the representation 
pu must have minimum information content

Theorem 2 (Fundamental Theorem of Recomposition) Any representation p\ of  
a digit set can be converted to any other representation pz o f that digit set.

Proof: By theorem 1, both representations p\ and P2 are decomposable to the 
same unique minimal representation pu. Since there exist (by definition) inverses 
to each of the operators applied during decomposion, pi can be decomposed to pu 
and then the steps used to decompose p2 into pu can be followed in inverse order 
from pu using these inverse operators to arrive at p2 -

4.3 Verification of Digit Set-ness

There are two methods of determining if an arithmetic set expression represents 
a digit set. The first and most efficient is suggested in lemma 2. If the terms of an 
arithmetic set expression are arranged in order of ascending weight

w m (^m) + • • • +  w i iSi )  + w i~ 1 < ^ - l>  + • ■ ' +  (^o)

then it represents a digit set if

Vi > 0, Si- 1 > —  -  1.
Wi- 1

The second is to compute the values of S and u  for the expression as if it did 
indeed represent a digit set, checking that S > 0 and 0 < c*> < 8. Then perform the 
complete set addition and verify that the resulting set contains all integers between 
—u> and —u  + S.

4.4 Determination of Mythical Inputs

When a decomposition equation has Sout > S{n, it can be made decomposable 
by adding a mythical input (not necessarily a digit set) whose value is always zero
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and therefore does not affect the result of addition or subtraction. Mythical inputs 
are selected to have minimum information content so that they impact the final 
implementation as little as possible. Our algorithm (which follows) involves using 
as much of the diminished cardinality and offset at as high a weight as possible. For 
example, it is better to use an 8 (1°) digit set with one bit of information content 
than a 4 (2°) digit set which has two bits of information content.

1. Let = ([3  o u t  $ i n ) '

Let Wfc+l = (j^out l-L/'in)*

2. If (0 > 5̂ +1 or 0 > Uk+1 or 8k+\ <  ^Jt+i) then the determination of mythical 
inputs is not possible.

3. Let k = |_logr( 4 +i)J.

4. Until (k = -1  or <5̂ +1 = 0) do the following:

(c) if (Sm > 0) add r7 (<5"m) to the mythical input
(d) 6k = Sk+1 -  Sm
(e) Wjfc = Wfc+1 -  Um
(f) k = k -  1

This algorithm generates mythical inputs with minimum information content, and 
with offset used up at as high a weight as possible. For the purposes of logical 
design, mythical inputs may be used to simplify some operators, often reducing 
them to a set of wires (possibly involving fanout) with no logic required.

4.5 Information Loss Tables

Decomposition is achieved by applying decomposition operators at a given weight 
and level. The best design will use the fewest operators and levels possible. The 
design process can be captured in a form known as an information loss table, the 
generation of which is readily automated.

The form for an information loss table is shown in table 4 which is developed 
for r = 2. There are columns for each power of the weighting radix. Under each 
of these columns there are up to N  = + 1) subcolumns, one for each
allowable digit set, including offset variations. The first line tallies the digit sets 
in the input representation of the digit set, the second holds the digit sets in the

(a) u)m — •
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Table 4: An Information Loss Table Skeleton

Level Operator 
(#,2 i) Name

A 2
<22) (2 1)(2°)<1 i)(1°)

i
<2*><2‘><2»><1'><1°>

Input
Myth.

0
1
•
•

N

mythical input (if any) and the third the sum of the first two. All subsequent rows 
in the table contain intermediate representations of the digit set that result from 
application of the decomposition operators) noted by name (as contained in table 
3) in the “operator” column. The column labelled A holds the value of the current 
information content.

The following sections contain some examples of decomposition. The informa
tion loss table for each design contains columns at each weight for only those digit 
sets actually used in the design. The information loss table is also rendered as a 
block diagram showing the interconnection of circuit modules required to imple
ment the arithmetic function described. We have limited the use of offset in the 
examples to reduce the width of information loss tables. The operator names (as 
contained in table 3) are followed by a list of the digit set offsets. For example,

RCG4.2(1011) =  2 ( l 1) + {2°) <= (21) + (21)

4.6 A Radix-2 Parallel Counter with Eleven Inputs

The following decomposition equation for a radix-2 parallel counter ([15, 27]) 
with eleven inputs results in the information loss table and equivalent block diagram 
shown in figure 1.

4 (2°) + 2 (1°) + (1°) <=
(1°) + (1°) + (1°) + (1°) + (1°) + (1°) + (1°) + (1°) + (1°) + (1°) + (1°).

The design has seven levels and uses fifteen decomposition operators. The initial 
input is (11°) and the output is (11°) so no mythical inputs are required. Decompo
sition begins with eleven (1°) at weight 2° = 1. The succession of decomposition
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Lev Operator 
(#,W) Name

A
(2° ) ( 1°) (2° ) ( 1°) (2° ) ( 1°)

I
M
0

11

11

11

11
1 (5,1) PA2.i(000) 11 5 1
2 (2.1) RCG4 2(0000)

(1.1) CG3.2(0000) 8 3 2 1
3 (1,2) PA2.i(000) 

(1,1) RCG4 2(0000) 7 1 2 1 1
4 (1,2) PA2.!(000) 

(1,1) CG3.2(0000) 6 2 1 1
5 (1,2) RCG4.2(0000) 5 1 1 1 1
6 (1,2) CG3.2(0000) 4 1 1 1
7 (1,4) PA2.i(000) 4 1 1 1

<1.0> <1.0> <1.0> <1.0> <1.0> <L0> <1.0> <1.0> <1.0> <1.0> <1.0>

Figure 1: Design of a Radix-2, 11-Bit Parallel Counter
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equations represented in the information loss table of figure 1 is as follows.

1 4 (2°) + 2(1°) + (1°) *= (2°) + (2°) + (2°) + (2°) + (2°) + (1°)
2 4 (2°) + 2 (1°) + (1°) <= 2 ( l ° )  + 2 ( l 0) + 2 ( l 6) + (26) + (26) + (l° )
3 4 (2°) + 2 (1°) + (1°) ^  2 (2°) + 2 (1°) + 2 (1°) + (2°) + (1°)
4 4 (2°) + 2(1°) + (1°) <= 2 (2°) + 2 (2°) + 2 (1°) + (1°)
5 4 (2°) + 2(1°) + (1°) ^  4 (1°) + 2 (2°) + 2 (1°) + (1°)
6 4 (2°) + 2(1°) + (1°) 4 (1°) + 4 (1°) + 2 (1°) + (1°)
7 4 (2°) + 2 (1°) + (1°) 4 (2°) + 2 (1°) + (1 )

Figure 2 shows the information loss table and block diagram for the radix-3 
parallel counter specified by the following decomposition equation.

9 (1°) + 3 (2°) + (2°) <=
( 1°) + ( 1°) + ( 1°) + ( 1°) + ( 1°) + ( l6) + <ld) + ( 1°) + <1°) + ( 1°) + ( 1°)

In this case, Sin = 11 and Sout = 17, so the equation represents a structure which 
is realizable but not decomposable. We must add mythical inputs for which 8 = 6 
and cu = 0. We do this by adding 3 (2°) = 0.

4.7 A Carry Save Adder

Figure 3 shows the information loss table and block diagram for a 3-bit radix-2 
unsigned carry save adder as specified by the equation

8 (1°) + 4 (2°) + 2 (2°) + (2°) «=
(4 (2°) + 2 (2h) + (2°)) + (4 (1°) + 2 (1°) + (1°)) + <1°).

The first subexpression on the right hand side corresponds to the accumulating 
carry save sum. The output of a bit position in a carry save adder is a digit 
set that can represent values between 0 and 2 which is the (2°) digit set. The 
second subexpression represents the unsigned radix-2 number that is to be added 
to the accumulating carry save sum. The third subexpression is the carry in. Here, 
Sout = Sin = 22 so no mythical inputs are needed.

4.8 A Radix-4 Signed Digit Adder

Signed digit adders are similar to carry save adders, except that both inputs are 
in redundant form. Consider the design of a radix-4 structure that uses (42) digits. 
It is a three level structure requiring three decomposition equations.
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Lev Operator 
(#,W) Name

A 9
( 1°)

3
(4°) (30)(2 °)(1 °)

1
(3°)(2 °)(10)

I 11 11
M 1
0 13 1 11
1 (4,1) PA2.,(000) 13 1 4 3
2 (2,1) PA3.2(000) 11 1 2 2 1
3 (2,1) CG5.3(0000) 9 1 2 2 1
4 (1,3) PA3.2(000) 

(1,1) PA3.2(000) 7 1 1 1 1
5 (1,3) PA4.3(000) 

(1,1) CG5.3(0000) 6 1 1 1
6 (1,3) CG5 4(0000) 5 1 1 1

<1.0> :1.0> <1.0> <1.0> <1.0> <1.0> <1.0> <1.0> <1.0> <1.0> <1.0>

PA2.1
1

PA2.1 j
<2.0>

PA3.2

l_l l_]
PA2.1

<2X)> |
PA2.1

<2.0>

PA3.2
<3.0x3.0>

CG5.3

3<2.0>=0 3<1.0>

" 1

<2.0>

PA3.2
3<3.0>

V  V

CG5.3
3<1.0> <2.0>

PA3.2
<3.0>

PA4
3<4.0> $<1.0>

T J
1

CG5.3

CGS.4

9<1.0>3<2.0> <2.0>

Figure 2: Design for a Radix-3, 11-Bit Parallel Counter



THE SET THEORY OF ARITHMETIC DECOMPOSITION 21

Lev Operator 
(#,W) Name

A 8
( 1°) (2°>(1°> (2° ) ( 1°)

1
(2°> (1°>

I
M
0 10

1 1 

1 1

1 1 

1 1

1 2 

1 2
1 (1,4) CG3.2(0000) 

(1,2) CG3.2(0000) 
(1,1) CG3.2(0000) 7 1 2 2 2

2 (1,4) PA2.!(000) 
(1,2) PA2.i(000) 
(1,1) PA2.!(000) 7 1 1 1 1

4<2.0> 4<1.0> 2<2.0> 2<1.0> <2.0> < 1 .0> < 1 .0>

8< 1 .0> 4<2.0> 2<2.0> <2.0>

Figure 3: Design of a 3-Bit Carry Save Unsigned Adder
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Only the second module requires a mythical input. For this module, Sout = 7, 
u 0Ut = 2, 8in = 5 and u>in = 1 so it requires a ( l 1) mythical input at weight 2. 
Decomposition results in the information loss tables and block diagram in figure
4. Note that, depending on its logic implementation, the PA2.i(110) that uses the 
mythical input may possibly be optimized away.

4.9 A Radix-2 Redundant Array Multiplier

Array (or parallel) multipliers have been discussed at length in the literature (e.g., 
[13, 14, 26, 28]). A radix-2 n-digit redundant array multiplier is one in which the 
starting representation is redundant as in

2n“ 1 ( 21)  + --- + 2° ( 21) .

Array multipliers are essentially an array o f elementary multipliers followed by a 
summation network. Consider a small, two-bit array multiplier. In this case we 
would need an array of four elementary multipliers that each perform

<2>) = <2').<21)

where the set multiplication operation is analagous to set addition. That is,

Do ■ D\ = {(do • di) | do € D q and di € D\}.

Set multiplication is associative and commutative and is also distributive over set 
addition.. Although in this particular elementary multiplier the result is a digit set, 
set multiplication applied to digit sets does not necessarily produce a digit set.

The overall structure of the elementary multiplier can be summarized as the 
following equation:

4 (2 1) + 2 ( 2 1)  + 2 ( 21)  + ( 21}  «- (2 ( 21)  + ( 21) )  • (2 ( 21)  + ( 21) )  .

The input does not represent a digit set since the multiplication (63) • (63) is 

{3 ,2 ,1 ,0 ,1 ,2 ,3 }-{3 ,2 ,1 ,0 ,1 ,2 ,3 } =  {9 ,6,4 ,3 ,2 ,1 ,0 ,1 ,2 ,3 ,4 ,6,9 }

and the values 5, 7, and 8 and 5, 7 and 8 are not present. It can, however, be repre
sented as a ^3015̂  digit set even though many values are missing. Figure 5 shows 
the information loss table for the summation network of the multiplier and the block 
diagram for the entire multiplier. The output of the elementary multiplier structure 
is the input to a summation network described by the decomposition equation

8 (2 1) + 4 ( 2 1)  + 2 ( 21)  + ( 21)  «= 4 ( 21)  + 2 ( 21)  + 2  ( 21)  + ( 21)
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Lev Operator 
(#,W) Name

A
( I 1)* !0) ( ^ X ^ X I 0) (2° ) ( I 1) ( 1°)

I 6 2 2
M
0 6 2 2
1 (1,2) PA2.i(211)

(1,1) RCG42(0000) 5 1 1 1
2 (1,2) CG3.2(1020) 4 1 1 1
Lev Operator A 4 2 i

(#,W) Name <2!> ( l 1) ( 1°) (2°) ( l 1) ( l° )
I 4 1 1 1

M 1
0 5 1 1 1 1
1 (1,2) PA2.i(110)

(1,1) CG3.2(0101) 4 1 1 1
2 (1,2) CG3.2(1011) 3 1 1 1

Lev

I
M
0

Operator 
(#,W) Name

1 (1,2) PA2.i(000) 3 1 1

2

( i l (2°)(1°)
2

2

2<1.1> 2<1.1> <2.»> <2.0> 
1 1  J J

I PA2.1 | | RCG4.2 |
2<2.2> 2<1.0> |<2.0>

£
| CG3.2 | 2<1.1>=0

J2<1.0> ' i
| PA2.1

2<2.1> p T
C G 3.2J

,___r
CG3.2 |

■ <1.1>

<1.1>

<1.0>
| PA2.1 |

Figure 4: Design of a Radix-4 Signed Digit Adder



THE SET THEORY OF ARITHMETIC DECOMPOSITION 24

Table 5: Binary Information Contents of Decomposition Operators

Operator (Xin ®out $ in f3out Am Aout A/3AaVar.
(1*} + <1*> <= (2*) 0 2 1 0 2 2 1 0 2

(2*)<=(1*)  + (1*) 2 0 0 1 2 2 - 1 0  y
2 (1*)+ (1*) (2* ) + (1*) 1 2 1 0 3 2 1 1 X
2 (1*) + (2*) <= (2*) + (2*) 0 1 2 1 4 3 1 1  w

r ( l* )  +  ( ( r - l ) * >  <= 2 ( ( r -1 )*>  + (1*) 1 1 0 0 Vr

in which 6out = 30, u out = 15, <$,„ =  16 and u>,-n =  8. Therefore a mythical input 
with 6 = 12 and u> = 6 is required. The mythical input chosen is

4 ^ 2 1)  + 2 ( 21)  .

5 Cost Estimation for Decomposition

With some limitations, it is possible to estimate the cost o f a structure in terms 
of the number of decomposition operators in advance of detailed design. First, 
we list the number a  of (1*) digit sets, the number (3 of (2*) digit sets, and the 
information content A for the inputs and outputs of each of the binary decomposition 
operators as shown in table 5. The net changes A/3 and A A  for each operator are 
then determined. A  a is not listed, since A A  = 2A /3 + A  a, so only two of the 
parameters are independent.

The specifications of a structure designate the nature of its inputs and outputs, so 
that A/3 and A A  can be determined. The structure must be decomposable, so these 
calculations must include any mythical inputs. After decomposition, an unknown 
number y o f partial adders, x carry generators, and w redundant carry generators 
will have been used (for binary decomposition z =  Vr =  0). Multiplying the number 
of operators of each class by the corresponding A (3 and summing, we get

A/3 =  (w + x) — y 
A A  = (w + x)

Since A/3 and A A  are known, one can determine that

w + x = AA  
y =  AA  -  A/3 •

Thus, the total number of carry generators (including redundant carry generators), 
is equal to the information loss AA  of the structure and the number of partial adders 
is determined from the change in the number of (2*) digit sets.
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Lev Operator 
(#,W) Name

A
( ^ X ^ X l 0) <21)<2°><11><1°> <21)<2°> (21)

I 8 1 2 1
M 4 1 1
0 12 2 3 1
1 (1,4) RCG4.2(1011)

(1,2) RCG4.2(1011) 10 1 1 1 1 1 1
2 (1,4) CG3.2(0101)

(1,2) RCG42(0101) 8 1 1 1 1 1 1
3 (1,8) PA ndO l)

(1,4) PAndO l) 8 1 1 1 1

4<2.1> 4<2.1>=0 2<2.1> 2<2.1> 2<2.1>=0 <2.1>

8<2.1> 4<2.1> 2<2.1> <2.1>

Figure 5: Design of a Two-Digit Radix-2 Redundant Array Multiplier
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As an example, consider the 11-bit parallel counter of section 4.6. From its 
decomposition equations, = 1 1 , Pin ~ 0, Xin ~ 1 1 , &0ut — 2, Pout — 1 and 
Xout =  4; so A  A = 7 and A/3 = -1 . Therefore the implementation will use 
w + x =  AA = 7 (redundant) carry generators and y =  AA -  A/3 = 8 partial adders. 
This agrees with the detailed design of figure 1.

The cost estimates for radix r are fairly simple if binary decomposition operators 
and a single radix r carry generator are used as discussed in section 4.11. Although 
the exact expression for the radix r carry generator is not known unless r is known, 
note that the digit sets ( 1*) and ((r — 1)*) each appear once on each side of the 
expression. Therefore, independent of r, A/3 and AA are 0. The value o f Vr 
will be the diminished cardinality of the digit sets whose coefficients are r or 
binary multiples o f r. For higher radices, with 2 and Vr no longer 0, the previous 
calculations become

A/3 = (w + x) — (y — z)
AA = (w + x)

from which one determines that
w + x = AA 
y — z = AA = A/3

and, as stated above, Vr is equal to the sum of the diminished cardinalities o f the 
terms whose coefficients are 2kr (k = 0, 1 ,2 , • • •)•

As an example, consider a more or less conventional design o f a decimal adder 
whose decomposition equation is

1 0 ( l° )  + (9 °) (9 °) + (9 °) + ( l ° )

where the (1°) digit sets are carries and the (9°) digit sets are decimal digits. Using 
the binary representation of (9°), the decomposition equation becomes

10(1°) + (4 (1°) + 2 (2°) + (1°)) <!=
(4 (1°) + 2 (2°) + (1°)) + (4(1°) + 2 (2°) + (1 °»  + (1°) .

From this expression, ain = 5, (3in = 2, A,„ = 9, aout = 3, /30ut = 1, \out = 5, 
AA = 4 and A/3 = 1. The cost of this decimal adder is therefore

Binary (Redundant) Carry Generators w + x =  AA = 4 
Partial Adders y — z = AA — A/3 = 3
Radix-5 Carry Generators Vr = 1.

Since the three digit (1°) digit sets of weight 1 will generate a (1°) carry digit set 
of weight 2, it is possible to predict that, in this case, 2 = 0. The information loss 
table for this adder is shown in figure 6.

1N.B. At radices 13,17,19,29 and higher primes, the analysis that follows does not apply. It must 
be augmented by considering the effects of the fanout function.
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Lev Operator 
(#,W) Name

A 10
(1°)

8
(1°)

Oo

(2°)(1°) (2°)(1°)
I 9 2 2 3

M
0 9 2 2 3
1 (1,4) PA2.0(000) 

(1,2) RCG4o(0000) 
(1,1) PA2.o(000) 8 1 1 1 1 1

2 (1,4) CG3.o(0000) 
(1,1) CG3.o(0000) 6 1 1 1 1 1

3 (1,2) CG3.o(0000) 5 1 2 1 1
4 (1,4) PA2.o(000) 5 1 1 1 1
5 (1,2) CG9.o(0000) 4 1 1 1 1

4<1.0>4<1.0> 2<2.0> 2<2.0> <1.0> <1.0>

Figure 6: Design of a Radix-10 Adder
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6 L o g ic  D esig n

Once the set o f classes of decomposition operators has been defined based on 
the application, a logic design must be completed for each decomposition operator. 
Once die logic design for each operator is completed, a circuit module implementing 
that operator can be readily designed. Logic design for decomposition operators, 
while not difficult, is not as straightforward as for most combinational logic circuits. 
There are two significant problems:

• selecting an implementation format for a digit set, and

• dealing with coupled don’t cares in the logical design.

The following sections discuss, albeit cursorily, these two problems. If optimization 
for speed and design complexity is not desired, then the problem of logical design 
is considerably simplified.

6.1 Implementation Formats for Digit Sets

For each allowable digit set (in each of its offset variations), one must first select 
a mapping o f its values to a set o f binary variables. Such a mapping is called a 
format. For the binary digit sets, (1*), the implementation requires only a single 
binary variable and so the mapping is trivial. There are two possible ways to do the 
mapping, but the mappings are equivalent under negation of the binary variable, so 
there is only one distinct format as shown in table 6. Generally the non-negated 
mapping is used since an arithmetic zero maps to a logical zero.

For digit sets o f higher diminished cardinality, the situation is significantly more 
complex. Let us consider the ternary digit sets, (2*), which have three values that 
map onto the four states of two binary variables. This mapping may be done in 
4!/(4 -  3)! = 24 ways. The fourth state of the two binary variables may map 
to any of the three values or none of them, effectively multiplying the number of 
possible mappings by 4. Finding the best state assignment from among these 96 is 
a formidable task unless some simplifications can be made.

One simplification occurs by recognizing that under permutation and negation 
of the two binary variables, die 24 main mappings can be separated into three 
equivalence classes of 8 mappings each (four due to the four possible negations and 
four due to two permutations). Since there are four possible interpretations of the 
extra state, there are four possible interpretations for each of the three equivalence 
classes for a total of 12. All other possible implementations can be generated easily 
from these 12 by simply permuting the order o f the binary variables and/or by 
negating one or both.

The second optimization occurs when assigning a specific value to the unmapped 
state. In these cases, one of the values is duplicated and it does not matter which
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copy of the value is mapped to which state of the two binary variables. There are 
three of these duplicate cases which can be eliminated from the 12 cases, leaving
9 distinct formats', only nine distinct logical designs need to be done in order to 
easily generate all 96 possible logical designs. From these, the best can be selected 
for physical implementation. Table 7 presents the formats for the ternary digit sets. 
The mapping used in each format may be any of the eight in the equivalence class.

For radix 3, there are only 24 distinct mappings of the four digit set values to the 
four states of two binary variables. Again, under permutation and negation of the 
binary variables, there are three equivalence classes that represent all 24 possible 
logical designs. So, three distinct logical designs permit easy generation of the 
24 possible logical designs. Table 8 shows the 3 formats for the quaternary digit 
sets. For higher valued digit sets, selecting an optimal format becomes practically 
impossible. The number of formats is given by

where M  is the number of possible mappings

V  is the reduction factors due to permuting and negating the boolean variables

D  is the number of additional formats introduced through the use of don’t cares

and S  is the number of redundant mappings due to don’t cares (i.e., when there are 
two or more copies of an element of a digit set in a mapping)

M  =
(2 ri°g2(5+Di _ (s + 1)) i

V  = [log2(<5 + 1)1) - 2 ^ (5+1)̂

( 2^  (5+1)1) t

0 + 1)!

S = (S +  i)2rio*2(<+1)1- ( 5+1)

but S is only used when there are redundant mappings, so c is

f 0 when (6 + 1) = 2 ^ (5+1)l 1 
C \ 1 when (<5+ 1) < 2l"lofo(s+1)l J
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Table 6: Format for the Binary Digit Sets

Var. Format 1
a (1°) (1^)
0 0 0
1 1 1

Table 7: Formats for the Ternary Digit Sets

Var.
bjr be

Format 1
(22) (2 1)(2°)

Format 2
(22) (2 1)(2°)

Format 3
(22) (2 1)(2°)

00 0 0 0 0 0 0 0 0 0
01 1 1 1 1 1 1 —  1 —
10 1 1 1 2 —  2 2 —  2
11 2 0 2 —  1 — 1 1 1

Var. 
bs be

Format 4
(22) (2 1)(2°)

Format 5
(22)(2 1)(2°)

Format 6
(22) (21) (2°)

00 0 0 0 0 0 0 0 0 0
01 1 1 1 —  1 — 0 1 0
10 2 0 2 1 1 1 1 1 1
11 1 1 1 1 —  2 1 1 2

Var.
bg be

Format 7
(22)(2 1)(2°)

Format 8
(22) (2 1)(2°)

Format 9
(22) (21) (2°)

00 0 0 0 0 0 0 0 0 0
01 1 1 1 2 1 2 1 1 1
10 2 1 2 2 1 2 2 1 2
11 2 1 2 1 1 1 0 1 0

Table 8: Formats for the Quaternary Digit Sets

Var. Format 1 Format 2 Format 3
Cg Ce (33)(3 2) (31) (3°) (33)(3 2) (3 1)(3°) (33)(3 2)(3 i)(3 °)

00 0 0 0 0 0 0 0 0 0 0 0 0
01 1 1 1 1 1 1 1 1 3 1 1 3
10 2 1 1 2 3 2 2 3 2 5 2 2
11 3 2 2 3 2 1 1 2 1 1 1 1
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The total number of formats is given by the equation

(2n°g2(*+»)l -  (6 + 1))! • flog2(<5 + 1)1! • (S + 1)!

So, for example, using the 8 states of 3 bits, the (6*) digit sets can be implemented 
using 6713 different formats.

6.2 Logical Design of Decomposition Operators

Once an implementation format has been selected, the task of performing the 
logical design of the decomposition operators can begin. Selection o f the optimal 
format in general requires designing the complete set o f decomposition operators in 
each format and comparing the results. This is simply tedious, not difficult as we 
now show. We illustrate the logic design process by considering the design of the 
RCG4.2(0000) = 2 (1°) + (2°) (2°) + (2°) operator. Let us select format 2 for 
the (2°) digit set. First we generate the truth table in figure 7.

Note that the entries in the output side of the table for the arithmetic value of 2 
has a pair o f value pairs from which to select during the design. These are known as 
coupled don’t cares. In effect, they link the minimizations of the logical designs of 
two or more outputs from a multiple-output function. In the case of the arithmetic 
value of two, we can represent the output as either 100 or 010. It does not matter 
which one we pick to represent each row in the truth table, but we must pick one 
of them. Representing coupled don’t cares in a Karnaugh map by a k, we arrive at 
the set of three maps in figure 7.

The k' in the second map indicate that when we pick a boolean value at a location 
in the first map, we must pick its inverse in the same location in the second map. 
With the three coupled don’t cares, there are eight possible logical implementations 
from which we must choose the best. This occurs when fcooio = 1. &oioi = 0 and 
&1000 = 1. In this case, the corresponding minimized logical equations are:

2a° = b°0 + b°0

bgo = bg0 • bg! + bg0 • b^ 
b°0 = b°0©b2,

The problem with coupled don’t cares arises when there is redundancy in the 
output of an arithmetic set expression, that is, when there is more than one way to 
represent an arithmetic value. This is avoided in the partial adders and the carry 
generators, but the redundant carry generators always involve design with coupled 
don’t cares. The design of elementary multipliers often involves coupled don’t 
cares, particularly at higher radices.
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Inputs
<2°> (2°) 

b«0 b®! b°el

Arithmetic
Value

Outputs
2 ( 1°) (2°) 
2a° b°Q b° 0

0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1
0 0 1 0 2 01 /  10 0
0 0 1 1 — — —
0 1 0 0 1 0 0 1
0 1 0 1 2 01 /  10 0
0 1 1 0 3 1 0 1
0 1 1 1 — — —
1 0 0 0 2 01 /  10 0
1 0 0 1 3 1 0 1
1 0 1 0 4 1 1 0
1 0 1 1 --- — —
1
1

1
1

0
0

0
1 __ __ __

1
1

1
1

1
1

0
1 __ __ ---

2a° b°0 b°0
00 01 11 10 00 01 11 10 00 01 11 10

00 0 0 — k 00 0 0 — k' 00 0 1 — 0
01 0 k — 1 01 0 k' — 0 01 1 0 — 1
11 — — — — 11 — — — 11 — — — —

10 k 1 - 1 10 k' 0 - 1 10 0 1 0

Figure 7: Format 2 Truth Table and Karnaugh Maps for RCG4.2(0000)
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7 C o n clu s io n s

The Set Theory o f Arithmetic Decomposition forms a basis for designing and 
evaluating the designs of arithmetic units at any integral radix. It ties together 
several known implementations of arithmetic units developed for radix 2. Decom
position allows the design of arithmetic circuits that were previously difficult or 
practically impossible to design. It facilitates the design of higher radix arithmetic 
units and has been used in a radix-16 variable precision arithmetic processor based 
on a signed digit number representation [6, 7, 8, 11, 12, 24]. The decomposition 
of the entire arithmetic unit took only a few minutes and, given the decomposi
tion operators implemented as integrated circuit modules [4, 5], the layout of the 
arithmetic circuit took less than 4 days.

Diminished radix (one’s) complement adders have almost entirely fallen into 
relative disfavor among systems implementors, as have sign magnitude adders. 
It is interesting that the Set Theory of Arithmetic Decomposition will not work 
for diminished radix complement or sign magnitude. This supports the general 
practice o f dealing primarily with radix complement numbers. While the signed 
digit number representation is not prevalent in adders, it is used extensively in 
SRT division algorithms. The theory presented in this paper can be very useful in 
evaluating the implementations of high radix dividers [9].

The decomposition algorithm has been automated for the radix-2 redundant de
composition operators. We have also used full adders as decomposition operators 
and implemented them using partial adders and carry generators, so the addition of 
hierarchical decomposition operators to the process has been demonstrated. It is 
possible to extend decomposition to design using significantly more complex de
composition operators. Certainly a radix-16 full adder could be implemented as a 
block carry lookahead module and the decomposition algorithm could be used in 
conjunction with it to build larger block carry lookahead circuits.

Although limited to arithmetic circuits, the Set Theory of Arithmetic Decom
position represents an efficient method for designing very complex multiple-level 
combinational arithmetic circuits. The complexity of design using the theory is 
linear with the number of inputs whereas design using the more powerful Boolean 
algebra is exponential with the number of inputs. The decomposition algorithm gen
erates a multiple output function using minimal multiple-level logic whereas other 
combinational logic minimization techniques are generally two-level and limited to 
a single function output.

The results of a decomposition have a one-to-one mapping with circuit structures 
for the multiple-level combinational logic function implementation, including inter
nal connectivity. This is a significant advantage since these results can be used to 
directly and easily generate a circuit implementation.
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