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We present a technique for mapping recurrence equations to systolic arrays. 
While this problem has been studied in fairly great detail, the recurrence 
equations that are analysed here are a generalization of those studied 
previously. In an earlier paper (14) we have showed how systolic arrays can be 
synthesized from such generalized recurrence equations by a combination of 
aiftne transjonnatt.ons and expltcit ptpelfning. This paper extends the results in 
two directions. Firstly, a multistage pipelining technique is proposed. which 
permits the synthesis of systolic arrays with irregular data flow. Secondly we 
develop analysis techniques for the synthesis of systolic arrays whose 
computation is governed by control signals in a systematic manner which is 
amenable to mechanization. The full paper also disCUSses how these techniques 
can be applied to the mapping problem for more general architectures. 

1. INTRODUCTION 
Systolic arrays are a class of parallel architectures consisting of regular interconnections of 

a very large number of simple processors, each one operating on a small part of the problem. 
They are typically designed to be used as back-end, special-purpose devices for computation
intensive processing. A number of such architectures have been proposed for solving problems 
such as matrix multiplication, L-U decomposition of matrices. solving a set of equations, 
convolution, dynamic progranuning, etc. (see (5, 6, 7] for an extensive bibliography). 

Most of the early systolic arrays were designed in an ad hoc. case-by-case manner. Recently 
there has been a great deal of effort on developing unifying theories for automatically 
synthesizing such arrays (1, 2, 3,8,9. 10. 11. 12. 13. 16. 17). The approach is to analyze the 
program dependency graph and transfonn it to one that represents a systolic array. The 
problem of synthesis can thus be viewed as a special case of the graph-mapping problem where 
the objective is to transfonn a given graph to an equivalent one that satisfies certain 
constraints. For systolic array synthesis there are two major constraints. namely 

nearest-neighbor communicatt.on and constant-delay interconnections. 

The initial specification for the synthesis effort is typically a program consisting of a set of 
(say n) nested loops. The indices of each of the loops together with the range over which they 
vary define an n-dimensional domain in Zn (Z denotes the set of integers). The computation in 
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the loop body is performed at every point p in this domain. and the usage of variables within it 
defines the dependencies of the point p. For example. if the body contains a statement of the 
form a [i, j, k] := 2*b [i, j+2, k-l] then the point p = Ii. j. kIT depends on q = [i. j+2. k_l]T. 
and (in this case p-q is a constant vector independent of p. namely [0, -2,1] T). Such a nested

loop program is exactly equivalent to a recurrence equation defined on the same domain. For 

notational convenience we shall use recurrence equations in the rest of this paper. In most of 

the earlier work cited above the underlying assumption is that the dependencies are uniquely 
characterized by a finite set. Wof constant vectors in Z n. The recurrence equations in this case 

are called Uniform Recurrence Equations (UREs). and the dependency graph can be shown to 

be a lattice in Z n. Under these restrictions the problem of syntheSizing a systolic array can be 

solved by determining an appropriate aJfine transformation (I.e .• one that can be expressed as 
a translation. rotation and scaling) of the ortginallattice. 

In an earlier paper [14) we have argued that this constraint of uniform dependencies is very 
restrictive and have proposed and analyzed the case when they are linear functions of the 

point. Thus. for the simple example above. the body of the loop may contain a statement of the 
forma[i,j,k] := 2*b[i',j',k'l.whereeachofi'. j' andk' arelinearfunctionsofi. j 
and k. The recurrence equations characterizing such computations are called Recurrence 
Equations with Linear Dependencies (RELDs). In this paper we extend these results to permit 

the synthesis of systolic arrays with control signals and irregular data flow. To do so we 
propose a new class of recurrence equations. called Conditional Uniform Recurrence Equations 
(CUREs). The synthesis problem then involves two steps. It is first necessary to derive such a 
CURE from the initial RELD. This step is achieved by means of a technique called multistage 

pipelining which is a generalization of the pipelining presented in [14). The second step 
involves mapping the CURE to a target systolic array. and involves introducing control 

dependencies and then detennining an affine transformation. We illustrate the technique by 
systematically deriving a well known systolic array for dynamic programming (5). A 

satisfactory technique that can synthesize this. architecture has not appeared in the literature. 1 

2. RECURRENCE EQUATIONS WITH LINEAR DEPENDENCIES 

Definition 2.1: A Recurrence Equatton. with Linear Dependence (RELD) over a 
domain D is defined as an equation of the form 

j(p) = g (j(A1P + b l ), j(A2P + b 2) ... j(AkP + b k» 

where P E D: 
Ai'S are constant n x n matrices; 
bi'S are constant n-dimensional vectors; 

and g is a strict. Single-valued function. 

IThe techniques that do synthesize this arnly either require one to expl1citly enumerate the dependencies and do not 
give systematic techniques to dertve the a.fJlne transformations (12); or require an inductive analysis of the entire 
dependency graph (2). Recently another l=hnlque has been presented (4), but that requires a somewhat awkward 
notation, and is less general! than ours. 
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A system of m RELDs over a domain D is defined to be a family of m mutually 
recursive such equations. with each equation defining one of the it's. 

Note that if the Ai matrices are all equal to the identity matrix I. the RELD becomes a URE. 
Thus RELDs are a super-set of UREs. Synthesizing a systolic architecture from an RELD 

involves two major steps as follows. 

2.1. Synthesis by Affine Transformations 
The function 9 is assumed to be computed in one time instant. and this represents the 

granularity of the computation. Thus the problem of synthesizing a systolic array is exactly 
the problem of assigning each point in D to a processor. and scheduling it at a particular time 
instant. This is achieved by means of an a.Iftne transjonnatton (defined by an n x n matrix A 
and an n x 1 vector a). The image p' of p under this transfonnation is given by 

~ rAt l rat l 
p' = II.p + a = LAaJ p + LaaJ 

It is convenient, as shown above. to separate A and a into two parts, At and Aa (and at and aa 
respectively). where ~ is an 1 x n vector, Aa is an (n-1) x n matrix, Aa is a scalar constant and 

Aa is an (n-1) x 1 vector. The pair (At. ~I defines what is called a timing junction and (Aa, aal 
defines an aUocationjunctton for the RELD. Thus AtP + ~ defines the time instant at which the 
computation of j (p) is scheduled. and AaP + aa defines the processor (in an (n-1)-dimensional 
processor dOmain l ) at whichj(p) is to be penonned. There are two major constraints that the 

timing and allocation functions must satisfy. Firstly. the timing function must preserve 

causality, I.e .• if p depends on q then ~p + ~ must be greater than ~q +~. Secondly, the 
timing and allocation functions must not assign two different points in D to the same processor 

at the same time, 1.e .• 'ip. q ED t (p) = t (q) and a (p) = a (q) => P = q Techniques for 
determining appropriate timing and allocation functions have been discussed elsewhere (15] 

and are beyond the scope of this summary. 

2.2. Explicit PipeUntna 
The idea of synthesizing systolic arrays by using affine transfonnations is identical to that 

used for UREs. For. UREs. however. the original problem-dependencies define a lattice. and 

affine transformations are guaranteed to yield a regular interconnection in the final 

architecture. This is not true for RELDs, and this fact motivates the need for explicitly 

pip~lining the dependencies. The idea behind pipelining is as follows. Consider a dependency 

(~. bjl in the original RELD. Thus. any point p in D requires the value ofJat q = ~P +bj) as its 
jth argument. It is clear that if there is one (or more) other point p' in D that also depends on 

q. then the dependency of p on q may be replaced by a .dependency of p on p'. It can be shown 

lSince systoUc arrays are planar architectures this would seem to restrict the appUcation of our techniques to 
RELDs that are at most three-dimensional. This Is not true, since for a higher dimensional RELD. one may first 
synthesize an architecture which 1s n·l dl~nslona1, and then optimize 1t to obtain a two dimensional one. The 
interested reader Is referred to (I5) for details. 
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that there is a direct correspondence between the set of such pOints that share f (q). and the 
solution space of the equation ~x = O. In fact. if p is a basis vector for this solution space. then 
the linear dependency can be replaced by a unifonn dependency p. provided ~,(~p + bj - p) is a 
constant vector p' . independent of p (p' is called the tenninal dependency). Intuitively this 
condition is explained as follows. If p depends on a point q (= ~P + bj ) and if p is the basis 

vector for the space ~x = 0 then the set S) = { p+kp IkE Z} is exactly the set of pOints that 
depend on q. henceforth called the nuU set for the jth dependency. Then the condition for direct 
pipelining merely states that the point q must belong to this set (or be a constant vector away). 

These two steps (affine transfonnations and explicit pipelining) are both independent of each 
other. In a typical synthesis process one would first detennlne an appropriate timing function. 

then pipeline the dependencies. and finally choose an allocation function. Henceforth. the kind 
of pipelining discussed here will be referred to as direct pfpelfnfng. It is also important to note 
that the choice of the pipelining dependency p is not unique. In particular. if p and P' are two 
("neighboring") points in D that both depend on some other point q (and P' - P = p). then it is 
equally correct to choose to have either p depending on P' (Le .. have p as a dependency) or to 

have p' depending on p (Le .. have -p as a dependency). As a result. the choice of the directiDn 

of pipelining is governed by the timing function. The idea is to introduce the new dependencies 

in a A(consistent manner (I.e .. if AtP > ~P' then p should depend on P' and thus the new 
dependency should be p. otherwise it should be _pl.l 

3. CONDITIONAL UNIFORM RECURRENCE EQUATIONS 

Definition 3.1: A Conditional Unifonn ReCWTence Equation (CURE) over a domain 
D is defined to be an equation of the fonn 

r gl (f(p - wl.l).f(p - wl.2) · .. f(p - w1.k
l
)) 

I g2 (f(p - w2.l).f(p - w2.2) ···f(p - w2.~)) 

. I[PI = 1 
gk·1 (f(p - wk-l.l)·f(p - wk-1.2) ···f(p - wk-l.~) ifak_lP>1tk_1 

where 

and 

L 9k (f(p - wk,ll.j(p - wk.2) .. ·f(p - wk,kk)) otherwise 

pE D; 
at's are constant vectors in In; 
1ti 's are scalar constants in I ; 
w i •J are constant n-dimensional vectors ; 
gis are strict, single-valued functions. 

A family of m CUREs is a set of m such mutually recursive equations, each one 
deftntng one of m such functions. In addition, we may define CUREs where the 
condition is not just a single linear inequality, but a conjunction of a number of 
linear inequalities. 

IThe only problem artses when neither p nor .p can be At-conststent. This wtll be the case IfAtP '" Atp·. t.e .• At'P = O. 
In this case it is necessary to choose an alternate ttming function. This is illustrated in the example of Sec. 6. 
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A CURE is thus very similar to a URE in the sense that a point p depends on others that are 

a constant vector away. In addition. the domain for a URE has to be explicitly defined. while in 

CUREs the hyperplanes (91' 1tl11 = l..k automatically define a convex hull. The important 
distinction is that in UREs the value of j at the boundaries of the domain is a constant 

(obtained from the external world) while in CUREs the value at a boundary depends on the 

boundary and is in general a function gt of the values at some other pOints in the domain. 1 It 

is in fact. this redirection of the computation back within the domain that makes the 

determination of an affine timing function (ATF) for an arbitrary CURE a difficult problem in 

general. 

4. DERIVING CUREs FROM RELDs 
From the above discussion it is clear that CUREs represent a class of computations that are 

more general than UREs. but less so than RELDs. As a result they seIVe as a useful 

intermediate step in deriving a systolic array from a RELD. As we have discussed earlier. a 

dependency of an RELD can be directly pipelined if ~.(~p+bj - p) = p'. However, this condition 

may not always hold. and this motivates the need for multistage pipelining. 

4.1. Multistage PipeUnlng 
Multistage pipelining may be applicable if a particular dependency cannot be directly 

pipelined. Let SJ = {p+kpj Ike Z} be the null set for ~. bjl. It is clear that SJ must intersect 

boundary (say 9j p = 1tj ) of D. Let the point of intersection be q'.2 Now. the dependency (~, bjl 
can be multistage ptpelined if 

~~p+bj - q' -P{) = Pi' 
and lAt. bil is a dependency that can be pipelined (with Pi' as its terminal dependency). and P{ 

is a constant. Intuitively, this means that the point q' needs the value off at ~P + bj as it's jth 
argument (which is obvious since it is a member of S}. and also requires the same value as its 

ith argument. and the ith dependency can be pipelined. The modified RELD (Le., the RELD with 
. the jth depe"ndency pipelined as above) is as follows. 

j(p) = g (j(AIP + b l ), j(A2P + b 2 ) Ji(p) ... !j (p) 

r Ji (P+Pj' ) if 9j P = 1tj 
.lj (p) = i 

l i.J (P+PJ) otherwise 
and 

r j(P+Pi') 
Ji (p) = i ~ ( ) 

lJf P+Pi otherwise 

The functionsJi andi.J are additional computations to be performed at every point in D. They . 

are "dummy" functions since at all internal pOints they merely return their value from a 

neighboring point, and thus achieve the pipelining effect. 

lit is clear that a URE can be easily v1~ aa CUREs where all except one of the 9;S are constant functions. 

:znus is so because D is a convex: hull. and SI\S a straight Une passing through p. which a a point inside D. It is also 
shown in the full paper that q' must be the: ~arllest scheduled point in SJ' if PJ is A.t -consistent. 



5. SYNTHESIZING SYSTOLIC ARRAYS FROM CUREs 
By the process described above the original RELD is reduced to a CURE for which [At. atl is a 

valid ATF.l Thus the final step in the synthesis procedure is choosing an appropriate 
allocation function [Aa. <la1 and deriving from it the final architecture and its interconnections. 
The constraints that the allocation function must satisfy are that the interconnections induced 

in the final architecture are nearest-neighbor. This will be true provided that for each of the 

dependency vectors Wi' 

Aa Wi E p: where P = { (0.0). (0.1). (0.-1). (1.0). (-1.0). (1.1). (-I.-I)} is the set of 
permissible interconnections in the final architecture. 

This technique. which is applicable to UREs. can be directly used 'for CUREs toO. 2 This 
naive implementation would require the computation of each of the conditional expressions in 

every processor at all time instants. and would therefore be hopelessly inefficient. We shall 
therefore describe an approach whereby the evaluation of these conditions is achieved by 
means of control signals. We shall also describe how the control Signals can be derived in a 

straightforward manner by a technique very similar to the pipelining of dependencies. 

One Simple solution to this problem is to again use the notion of pipelining that we have 

developed in the previous section. Observe that (1) part of the computation that is to be 
performed at each point is the evaluation of a (set of) boolean expression(s) a p = 7t; and (2) 
a p = 7t corresponds to a hyper-plane. Then if we choose a new vector cr such that (1) the dot 

product cr a = 0; and (2) cr is At-consistent; then for any point p. the set 

S = {p' I p' = p+kcr. k E 2} is the set of points for each of which the condition ap' = 7t is true. 
The earUest scheduled point in S is a point at the edge of the bounding (hyper)plane of the 
domain. The value of the conditional expression (i.e .• the boolean value true) is assumed to be 

available from the external world at this point. Thus. just as the linear dependencies were 
replaced by uniform dependencies. the evaluation of conditional expressions can be replaced 

by the propagation of control signals. Now. ~ll that remains in the synthesis procedure. is to 
.choose an allocation function [A.a. <la1 subject to the additional constraints that each of the 
control dependencies cri's are also mapped to neighboring processors. 1.e .. A.aWi E P. 

6. EXAMPLE: OPTIMAL STRING PARENTHESIZATION 
We shall now illustrate the entire procedure by synthesizing a systolic architecture for the 

optimal stiing parenthesization problem. The problem is specified as follows. Given a string of 
n elements the minimum cost of parenthesizing substring i through j is given by the following. 

and 

lRemember that each of the new dependencies that have been introduced is A.t-consistent. 

2Note however. that in the case of CUREs the computation at any point p is much more complicated than merely the 
computation of a strict function 9 on a gI~n set of arguments. It is necessaIY to evaluate one or more of the 
conditions 9\ p =,.,. and thus the computation depends in a nontrivial manner on the point p itself. 
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. By introducing an "accumulation index" we can express the computation as the following 
RELD. A pictorial view of the domain. and the dependencies is shown in Fig. 6-1. 

c(l. n) =1(1. n. 1) where 1 (1. j. k) is defined as 

1(1. j. k) = 

[1, 0, 
Al = 1, 0, 

0, 0, 

w1,J + min 

wl.J 

(
1U. i+k. 1) + 1U+k.j. 1) 1 

1U.j. k+1) I 
\1(i.j-k.I)+1U-k.j.1) ) 

00 

(
1U. i+k. 1) + 1U+k.j. 1) 1 

min 1(1,j, k+l) 
1(1. j-k. 1) + 1U-k. j. 1) 

i 

if j-i = 1 

if k = 1 

if 2*k > j-i 

otherwise 

~] b 1 = [~} [1, 0, ~] b 2 = [~} [1, 
A2 - 0, 1, A3 - 0, 

0, 0, 0, 
0, 0] 
1, ° b3 0, 1 

[1, 0, 0] [0] [0, 1,-1] 
= [~} A4 - 0, 1, -1 , b 4 = 0; and As = 0, 1, 0, b s 

0, 0, ° 0, 0, ° 1 

Figure 6-1: Depen.den.cy Structure10r the REID 

= [~} 

The first step in the synthesis procedure is to detenn1ne an ATF. (A, a] (denoted by 

[ [a, b, e), a]) for this RELD. It can be shown that this can be detenn1ned by a solution to 

the following set of inequalities. 

bU-i-k) > -elk-I); ak < e(k-l); e < 0; bk > elk-I); and aU-i-k) < e(k-1); 
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Since a, b and c are restricted to be integers, and j-i ~ 2k (from the definition of the domain 
for the RELD), these can be reduced to the following. 

c < 0: b ~ -c and a :s; c 
The optimal ATF thus corresponds to the smallest integer (absolute-valued) solution to the 

T 
above inequalities, and is given by Aopt = [-1, I, -II , (lopt = I, 1. e., 

t (1, j. k) ;: j - i - k + 1 

The next step in the synthesis procedure is to pipeline the linear dependencies. For this. the 

null space of each of AI' A:z.. A4 and As must first be computed. It is easy to show that the 
rank of each of these matrtces is 2. and hence their null spaces are all one-dimensional. 

specified by a single basis vector each. say Pl' P2' P4 and ps. respectively. It is also 
straightforward to solve the appropriate systems of equations and obtain the following. 

T T T T 
PI = [0, mI' 0) : P2 = [m2• O. m2) : P4 = [0. m4. m41 : Ps = [ms. 0.01 

However. the dot-product P2'Aopt is [m2, O. -~r[-I. 1. -II which is zero (Similarly P4'Aopt is 
also zero). This means that it is impossible to obtain a ACconsistent basis for the null spaces 

of either A:z or A4. We must therefore choose another At' for which the basis of the null spaces 

of ~ and ~ can be ~-consistent. The vector [-2,2, -1] satisfies this requirement. and hence 
a satisfactory- ATF is the following (in fact. it can be shown that this is the optimal ATF. given 

the additional constraints of ~-consistency). 

t (1. j, k) ;: 2(j - i) - k + 1 

Now, Acconsistent basis vectors for each of the dependencies can be dertved. and are 
T T T T 

[0, -1, 0] • [1,0, -1] • [0, -1, -1] and [1,0,0] • respectively. 

The next step is to test each of the dependencies for direct pipelining. The values of 
T T T 

~(~p+bj - p) for each of AI' A:z, A4 and As are computed to be [0. -k+l. 01 • [-1. o. 01 , [0. 1.0) . 
T 

and [-k+l. O. 01 respectively. Thus. it is clear that only [A:z. b21 and (A4' b41 can be directly 

pipelined by introducing a new pair of dependencies, P2 and P4 (along with the terminal 
T T . 

dependencies P2' = [1. o. 01 and P4' = [0. -1. 01 ), respectively. It is also a simple matter to 
determine that both the nuU sets S2 and S4 of A:z and A4 intersect the domain boundaty k=1 at 
[i+k-l. j. 1) and [1. j-k+l. 1). respectively. Thus the auxiliary- (pipelining) functions 12 and 14 are 
as follows. 

{
1U+l. j. k) if k = 1 {1U. j-l. k) if k = 1 

.12 (i.j. k) = 12 (i+l.j. k-l) otherwise and 14 (i.j. k) = 14 (i.j-l. k-l) otherwise 

Since (AI' bil and [As. bsl cannot be directly pipelined. it is necessary- to test for mUltistage 
pipelining of these dependencies. First. we must determine ql' and %' . the pOints at which 

the two null sets S 1 and S5 intersect the domain boundaty. These c~ be computed to be 

[i. i+2k, kl and U-2k. j. kl. respectIvely. Thus qI' - q (= d 1• say) is [0. k, k-IJ. and %' - q (= dsl 

is [-k. o. k-IJ. Then. for (AI' bll to be multistage pipelined. it must be the case that either 

A:z(d1 - PI') = P2' or A4(dl - PI') = P4' for some constant vector PI'. We see that the latter' 
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condition holds with PI' = [0. O. 0). Similarly. since ~d5 = P2'. the dependency [As. b5) can 
also be mUltistage pipelined. The resulting CURE is as follows. 

c(l. n) =1(1. n. 1) wherelU. j. k) is defined as 

r w1•j if j-i = 1 

I ( 11 U. i+k. 1) + 12 (t+k. j. 1) 1 
I W1,j + min I 1(t.j. k+1) I if k = 1 
I ~14 (1. j-k. 1) + 15 U-k. j. 1) ) 

1(1. j. k) = j 00 if 2*k > j-1 

( 11 (i. i+k. 1) + 12 (1+k. j. 1) 1 
I min l 1(1. j. k+1) ) otherwise 

14 U. j-k. 1) + 15 U-k. j. 1) 
l 

where 
{1(1+1. j .k) ifk=1 { 1(1. j-1. k) ifk=l 

12 (1.j. k) = 14 (t. j. k) = 
12 (i+l. j. k-1) otherwise 14 (1. j-1. k-1) otherwise 

r 14 (1. j. k) if 2k = j-i r 12 (1. j. k) if2k = j-i 
11 (1.j. k) = tIl (1.j-1. k) otherwise 

and 15 (1. j. k) = t15 U+l. j. k) otherwise 

The final step in the synthesis procedure is to choose an allocation function that satisfies 

the constraints of locality of interconnections. and if necessary. choose appropriate 

At-Consistent control dependencies 0'1' From the above CURE. it is clear that the various 
conditional expressions lthat need to be evaluated are k = 1. j - i = 2 k, and j - i = 1. 

The data dependencies of the CURE and the associated delays (derived from A'Pi) are 
[0, -1, 0] for II with a delay of2 units 
[ 1 , 0 , -1] for 12 with a delay of 1 unit 
[ 0 , -1, -1] for 14 with a delay of 1 unit 
[ 1 , 0 0] for 15 with a delay of 2 units 

and [ 0 , 0 , 1] for 1 with a delay of 1 unit 

The terminal dependencies are [1, 0 , 0] for 12 and [0, -1, 0] for 14 

It is also clear that the value W1,j is a constant value. to be input from the external world. 
and that all the pOints in D need 1ts value when k = 1. The most obvious cho1ce is thus a 

simple vertical projection. i.e .• AaP + tla = 11. j). 

With such an allocation function. the five dependencies above are mapped to [0. -1). [1, 0], 

[0, -1]. [1, 0]. and [0. 0]. respectively. This means that each processor [x. y] gets two values 

INote that the condition 2k > j . I haa not been listed. since It Is really concerned with points that are outside the 
domain. 
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(corresponding to 12 and 15 ) from processor [x+ 1. yJ over lines of delay and 2 time units. 

respectively; it similarly receives two values ([1 and 14 ) from processor [x. y-1J over lines of 
delay 1 and 2. respectively. The value corresponding to 1 remains in the processor (in an 
accumulator register) and is updated on every cycle. Thus the only remaining problem is to 

choose appropriate control dependencies for the three control planes k = 1. j - i = 2 k and 
j - i = 1. specified by 91 = [O,O,l]T 92 = [-1,1,-2]T and 93 = [-l,l,-l]T. respectively. 

However. the third one intersects the domain at only one line Ii, t+1. II and this line is mapped 

by the allocation function to the processors [i, t+ 11.1 As a result there is no need for a control 

signal. All the processors [i, i+11 merely output the value wl•I+1 at time t = 1. The important 

control dependencies are thus those corresponding to 91 and 92, These correspond to control 

signals a1 and a2 if 91'0'1 = 0 and 92 '0'2 = O. It is very straightforward to deduce that a1 should 

be [Ct. lj. 01 where c, and lj are arbitrary integers. The conditions of ~-consistency yield one 

constraint. namely 2(lj - c~ must be negative. and the constraint of locality of interconnections 

yields another constraint, namely that the vector [Cit ljl must be one of the six permissible 

interconnection vectors {(±1. 0). (0. ±1). (±1. ±In. This yields only two possible values for 0'1' 

[1. 0) and [0. -I) and anyone of them can be chosen (say the former). This corresponds to a 

vertical control signal that travels with a delay of two time units. For a2• the analysis is 

similar: 0'2.92 = 0 yields a2 = [Ct. c,+2clc' ckl. ~-consistency yields 3ck < O. However. nearest
neighbor interconnection cannot be achieved. since the smallest (absolute) value for ck that 

satisfies ~-consistency is -1. and that is not nearest-neighbor (any larger absolute value for ck 

will correspond to an even more distant interconnection). If this last constraint is relaxed 

a2 = [0. -2. -I) is a valid chOice. This corresponds to a (hOrizontal) control signal that connects 

every alternate processor and travels at a speed of two processors every three time units. The 

final architecture that this yields is shown in Fig. 6-2 and is identical to the one developed by 

Guibas et al [5]. 

7. CONCLUSIONS 
We have developed a technique for analyzing the dependencies of a geneIal class of 

recurrence equations. and synthesizing systolic arrays with control signals and irregular data 

flow. In the context of this summary we had taCitly assumed that the solution space of Ax = 0 

was characterized by a single basis vector p. In general. however. this solution space is a 
hyperplane. and its dimension depends on the rank of A. The case when the rank is n (i.e .• A is 

singular) is interesting. since in that case there can be no pipelining (for every point p there is a 
unique point A-lp which depends on It). and alternative techniques [161 need to be used. If the 

rank of A is less than n-l. then the set of pOints that share a value constitute a (hyper)plane. 

Both these cases are discussed in greater detail in the full paper. 

In the beginning of this summary we had stated that most of the previous work concentrated 

on an analyzing lUliform dependencies. There have been a few attempts towards a more 

lIn fact this line Is the only part of the domain that Is mapped to this subset of the processors 



10 

Figure 6-2: Final Architecture for Optimal Strtng ParenthestzatfDn 

generallzed approach. Moldovan (12) and Lam and Mostow (8) have proposed the analysis of a 
general dependencies. In both these approaches it is necessaxy to explicitly enumerate the 
dependencies at evety point in the domain. Out approach of using a ftntte set of matrices is 
more compact. In addition, Moldovan does not indicate a systematic procedure for detenn1n.1ng 
the transformations, and in the Lam and Mostow approach the user is expected to supply the 
t1m1ng and allocation functions (or the system computes it heuristically). L1 and Wah (10) and 
also Delosme and Ipsen (3) have proposed certain extensions to the unifonn dependencies, and 
have also proposed optimality criteria to guide the clwtce of the timing and allocation functions. 
Similar criteria which result in linear constraints can be used in our approach too (as was 
illustrated in Sec. 6. Chen (2) has proposed a technique where the synthesis is perfonned by 
inductively traversing the dependency graph. Ramalo1shnan et al (16) also approach the 
problem from a graph-theoretic perspective, and there too it is necessaxy to analyze the entire 
graph. It is not clear how there techniques can be adapted to handle infinite computations. 1 

Recently Guerra and Melhem (4) have also developed a technique where the dependencies do 
not have to be constant. However instead of being completely arbitraxy, the dependencies have 
to be constant in all except one dimension. This makes for a vety awkward notation, and 
although the· theory is adequate for some examples (including the optimal string 
parenthesization which has some interesting properties of data-dependent computation) the 

general power remains to be seen. 

lThe traditional analysts of UREs [131 can tackle this easily, by ensuring that the timing function has a component 
along the ray of the domain, and the allocation function corresponds to a.ftnite projection. 



11 

References 

1. Cappello. P. R and Steiglitz. K. "Unifying VLSI Designs with Linear Transformations of 
Space-Time". Advances in Computing Research (1984).23-65. 

2. Chen, M. C. A Parallel Language and its Compilation to Multiprocessor Machines or VLSI. 
Principles of Programm1ng Languages. ACM. 1986. 

3. Delosme. J. M. and Ipsen I. C. F. An illustration of a methodology for the construction of 
efficient systolic architectures in VLSI. International Symposium on VLSI Technology. Systems 
and Applications. Taipei. Taiwan. 1985. pp. 268-273. 

4. Guerra. C. and Melhem. R Synthesizing Non-Uniform Systolic Designs. Proceedings of the 
International Conference on Parallel Processing. IEEE. 1986. To appear. 

5. Guibas. L .• Kung. H. T. and Thompson. C. D. Direct VLSI Implementation of Combinatorial 
Algorithms. Proc. Conference on Very Large Scale Integration: Architecture. Design and 
Fabrication. January. 1979. pp. 509-525. 

6. Kung. H. T. Let's design algorithms for VLSI. Proc. Caltech Conference on VLSI, January. 
1979. 

7. Kung. H. T. "Why Systolic Architectures". Computer 15, 1 (January 1982),37-46. 

8. Lam, M. S. and Mostow, J. A "A Transformational Model ofVLSI Systolic Design". IEEE 
Computer 18 (February 1985). 42-52. 

9. Leiserson, C. E. and Saxe. J. B. "Optimizing Synchronous Systems". Journal oJVLSI and 
Computer Systems 1 (1983), 41-68. 

10. Lt. G. J. and Wah, B. W. "Design of Optimal Systolic Arrays". IEEE TI-ansacttons on 
Computers C-35, 1 (1985). 66-77. 

11. Miranker. W. L. and Winkler. A. "Space-Time Representation of Computational 
Structures". Computing 32 (1984).93-114. 

12. Moldovan. D. I. "On the Design of Algorithms for VLSI Systolic Arrays". Proceedings oJ the 
IEEE 71, 1 (January 1983), 113-120. 

13. QUinton. P. The Systematic Design of Systolic Arrays. 216. Institut National de 
Recherche en Informatique et en Automatique [INRIAI. July 1983. 

14. ~opadhye. S. V .. Purushothaman, S. and FUJimoto, R M. On Synthesizing Systolic 
Arrays from Recurrence Equations with Linear Dependencies. Proceedings, Sixth Conference 
on Foundations of Software Technology and Theoretical Computer Science, New Delhi, India. 
December, 1986. to appear. 

15. RaJopadhye. S. V. Synthesis. Otimizatton and Veriflcatton oj Systolic Architectures. Ph.D. 
Th., University of Utah. Salt Lake City. Utah 84112. September 1986. 

16. Ramakrtshnan. I. V .• Fussell. D. S. and Silberschatz. A "Mapping Homogeneous Graphs 
on Linear Arrays". IEEE TI-ansacttons on Computers C-35 (March 1985). 189-209. 

17, Welser, U. C. and Davis. A L. A Wavefront Notational Tool for VLSI Array Design. VLSI 
Systems and Computations. Carnegie Mellon University. October.· 1981. pp. 226-234 . 

... 


