
Robot Manipulator Prototyping
(Complete Design Review)

Mohamed Dekhil, Tarek M. Sobh, Thomas C. Henderson, Anil Sabbavarapu, and
Robert Mecklenburg1

UUSC-94-010 ‘

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA

March 30, 1994

Abstract
Prototyping is an important activity in engineering. Prototype development is a good test for

checking the viability of a proposed system. Prototypes can also help in determining system param­
eters, ranges, or in designing better systems. The interaction between several modules (e.g., S/W,
VLSI, CAD, CAM, Robotics, and Control) illustrates an interdisciplinary prototyping environment
that includes radically different types of information, combined in a coordinated way. Developing
an environment that enables optimal and flexible design of robot manipulators using reconfigurable
links, joints, actuators, and sensors is an essential step for efficient robot design and prototyping.
Such an environment should have the right “mix” of software and hardware components for de­
signing the physical parts and the controllers, and for the algorithmic control of the robot modules
(kinematics, inverse kinematics, dynamics, trajectory planning, analog control and digital computer
control). Specifying object-based communications and catalog mechanisms between the software
modules, controllers, physical parts, CAD designs, and actuator and sensor components is a nec­
essary step in the prototyping activities. We propose a flexible prototyping environment for robot
manipulators with the required subsystems and interfaces between the different components of this
environment.

1 '['his work was supported in part by DARPA grant N00014-91-J-4123, NSF grant CDA 9024721, and a University
of Utah Research Committee grant. All opinions, findings, conclusions or recommendations expressed in this document
are those of the author and do not necessarily reflect the views of the sponsoring agencies.

C o n t e n t s

1 Introduction 6
1.1 O b jectiv es .. 7

2 Background and Related Work 9
2.1 Phases of Building a Robot .. 9
2.2 Robot Modules and P aram eters.. ... 9

2.2.1 Forward Kinematics ... 9
2.2.2 Inverse K in em a tics ... 10
2.2.3 D y n a m ic s ... 10
2.2.4 Trajectory G e n e ra tio n ... 12

2.3 Linear Feedback C o n tr o l ... 12
2.3.1 Local PD Feedback C o n t r o l ... 13
2.3.2 Continuous vs. Discrete Time Control ... 15
2.3.3 Disturbance R e je c t io n ... 15

2.4 Speed Considerations.. 16
2.4.1 Types o f In p u ts ... 17
2.4.2 Desired Frequency o f the Control S ystem ... 17
2.4.3 Error Analysis.. 17

2.5 Optimal Design o f Robot M anipulators.. 18
2.6 Integration of Heterogeneous System s.. 20

3 Special Computer Architecture for Robotics 21
3.1 Design Issues ... 22
3.2 Parallel Architectures and m ultiprocessors... 23
3.3 Application-Specific Integrated C ircu its.. 23
3.4 Neural Networks and R ob otics ... 25
3.5 2400-MFLOPS Reconfigurable Parallel VLSI P ro ce s so r 27

4 Three-link Robot Manipulator 32
4.1 Analysis S tage... 32
4.2 One Link M a n ip u la tor .. 33
4.3 Controller D e s ig n ... 34
4.4 Sim ulation.. 35
4.5 Benchmarking... 35
4.6 PID Controller Simulator... 38
4.7 Building the R o b o t ... 38

1

5 R o b o t -c o m p u te r In terface 40
5.1 The MC68HC11EVBU Chip . .. 41

5.1.1 Operating Instructions... 43
5.2 The MC68HC11E9 C h i p ... 44

5.2.1 PIN C O N FIG U R A TIO N .. 46
5.2.2 The CPU ... 46
5.2.3 Accumulators A, B and D .. 48
5.2.4 Index Registers X and Y .. 48
5.2.5 Stack Pointer (S P) .. 48
5.2.6 Program Counter (P C) ' 48
5.2.7 Condition Code Register (C C R) .. 48
5.2.8 Opcodes and Addressing M o d e s .. 48
5.2.9 Memory M a p .. 49

5.3 Serial Communications Interface (S C I) .. 49
5.3.1 Transmit O peration.. 50
5.3.2 Receive Operation .. 50
5.3.3 SCI R e g is te rs .. 50

5.4 Analog to Digital C on v erte r .. 51
5.4.1 M ultip lexer:... 51
5.4.2 Analog Converter: .. 51
5.4.3 Digital C o n tro l:... 52
5.4.4 Result R e g is te rs :... 52

5.5 Digital to Analog C on v erte r .. 52
5.6 Operations in the C h ip .. 53
5.7 Workstation’s R o l e ... 54
5.8 Problem s.. 55
5.9 Motors and Sensors... 56

6 T h e O ptim al D esign S ubsystem 56
6.1 Constructing the Optimization Problem ... 57

6.1.1 Structural Length I n d e x .. 58
6.1.2 Manipulability ... 59
6.1.3 Force Transmissibility ... 59
6.1.4 Accuracy ... 59

6.2 The User In te r fa c e ... 60
6.3 Some Design E xam ples... 60

6.3.1 Example (1) ... 60
6.3.2 Example (2) ... 62
6.3.3 Example (3) ... 63

2

7 The Prototyping Environment 65
7.1 Interaction Between Subsystem s.. 68
7.2 The Interface Schem e.. 69
7.3 Overall D esign... 69

7.3.1 Communication P r o t o c o ls .. 71
7.3.2 Design Cycles and Infinite Loops 75
7.3.3 Central Interface Design O p t io n s ... 77

7.4 Object-Oriented Analysis... 79
7.5 Prototyping Environment D atabase ... 79

7.5.1 Design Parameters 82
7.5.2 Database Design ... 82
7.5.3 The Design H istory .. 82

7.6 Constraints and Update Rules C o m p ile r ... 85
7.6.1 Language S y n ta x ... 86
7.6.2 The Generated C o d e .. 88

7.7 Im plem entation.. 89
7.7.1 The Central Interface.. 89
7.7.2 The PE Control S y s t e m .. 91
7.7.3 Initial Implementation of the S S Is ... 91
7.7.4 The Central Interface M on itor .. 95

8 Testing and Results 95
8.1 One-link R o b o t .. 97
8.2 Simulator for three-link R o b o t ... 97
8.3 Software PID C o n tro lle r ... 97
8.4 The Prototyping Environm ent... 103
8.5 Case Study ... I l l

9 Conclusions 112
9.1 Contribution... 113
9.2 A pplications... 113
9.3 Possible Future Extensions.. 114

10 Appendix A 120

11 Appendix B 143

12 Appendix C 151

6.3 .4 Exam ple (4) ... 64

3

1 The interaction between the groups involved in the prototyping activity. . 7
2 High-level block diagram of a robot control system... 13
3 Different types o f damping in a second order control system............................ 14
4 Block diagram of the controller o f a robot manipulator..................................... 14
5 Overview of SIERA... 24
6 Armstrong processes.. 24
7 Comparison o f traditional design and ASIC design.. 26
8 A basic ANN model.. ; 26
9 Reconfigurable parallel VLSI processor... 28
10 Reconfiguration of a multi-operand multiply-adder... 28
11 Reconfiguration for the floating-point multi-operand multiply-adder. . . . 29
12 Conventional floating-point multi-operand multiply-adder................................ 30
13 Structure of the PE... 30
14 Reconfigurable parallel VLSI for matrix operations... 31
15 Chip layout of the PE...................................... .. 31
16 Features of the PE... 32
17 The relation between torque the voltage... 33
18 Circuit diagram of the DC-motor used in the experim en t.............................. 34
19 Three different configurations of the robot manipulator..................................... 37
20 Performance comparison for different platforms... 37
21 The interface window for the PID controller simulator....................................... 39
22 The physical three-link robot manipulator... 39
23 Controlling the robot using different schemes.. 40
24 The MC68HC11E9 block diagram.. 45
25 Programming model.. 47
26 D /A conversion unit.. 53
27 Error vs reference voltage.. 54
28 The optimal design cycle... 61
29 Schematic view for the robot prototyping environment...................................... 66
30 Three different methods for subsystem interface communication.................... 70
31 Overall design of the prototyping environment... 72
32 Finite state machine representation for the change protocol............................. 74
33 Finite state machine representation for the data request protocol................... 74
34 Possible scenario for the communication between the subsystems................... 76
35 The main components of the robot prototyping environment........................... 80
36 Detailed analysis for the robot classes... 81
37 Database design for the system... 84

L i s t o f F i g u r e s

4

38 Schematic overview of the PECS..
39 The main window for the PE control system....................................
40 The current robot configuration window...
41 Updating the design constraints through the PECS........................
42 The user interface for the SSI..
43 The user interface for the SSI..
44 The behavior of the one-link robot for the first input sequence.
45 The behavior of the one-link robot for the second input sequence
46 The behavior of the one-link robot for the third input sequence.
47 The output window of the simulator for the three-link robot'. .
48 The effect of changing the update rate on the position error. . .
49 Desired and actual position for test case (1)......................................
50 Desired and actual position for test case (2)......................................
51 Desired and actual position for test case (3)......................................
52 Desired and actual position for test case (4)......................................
53 Cl test case one, success case for data change...................................
54 Cl test case two, negative acknowledgment case...............................
55 Cl test case three, nonsatisfied constraints case...............................

L i s t o f T a b l e s

1 Number of calculations involved in the dynamics module. . . .
2 Configuration of the machines used in the benchmark...................
3 Subsystem notification table according to parameter changes. .
4 Message types used in the communication protocols.......................

1 I n t r o d u c t i o n

In designing and building a robot manipulator, many tasks are required, starting with spec­
ifying the tasks and performance requirements, determining the robot configuration and
parameters that are most suitable for the required tasks, ordering the parts and assem­
bling the robot, developing the necessary software and hardware components (controller,
simulator, monitor), and finally, testing the robot and measuring its performance.

Our goal is to build a framework for optimal and flexible design of robot manipulators
with software and hardware systems and modules which are independent of the design
parameters and which can be used for different configurations and'Varying parameters.
This environment is composed of several subsystems. Some of these subsystems are:

• Design.

• Simulation.

• Control.

• Monitoring.

• Hardware selection.

• C A D /C A M modeling.

• Part Ordering.

• Physical assembly and testing.

Each subsystem has its own structure, data representation, and reasoning strategy. On
the other hand, much of the information is shared among these subsystems. To maintain
the consistency of the whole system, an interface layer is proposed to facilitate the com­
munication between these subsystems, and set the protocols that enable the interaction
between the subsystems to take place.

This project involved the interaction and cooperation of several different research groups.
The robotics group (Prof. Thomas Henderson, Prof. Tarek Sobh, Prof. Sam Drake and
myself), was involved in the design and analysis of the prototype robot, and also the im­
plementation of the necessary software systems for the prototyping environment and for
controlling and simulating the three-link robot. The Alpha_l group, represented by Mircea
Cormos was involved in designing the C A D /C A M model for the robot using the Alpha_l
CAGD system. The VLSI group, represented by Prof. Kent Smith and Anil Sabbavarapu,
helped in the analysis stage, particularly, in making the decision of using hardware vs. soft­
ware solutions. Also this group was involved in the design of the communication circuitry

and optimal design of robot manipulator parameters, with online control, monitoring, and
simulation for the chosen manipulator parameters. This environment should provide a
mechanism to define design objects that describe aspects of design, and the relations be­
tween those objects.

Another goal is to build a prototype three-link robot manipulator. This will help de­
termine the required subsystems and interfaces to build the prototyping environment, and
will give us hands-on experience for the real problems and difficulties that we would like to
address and solve using this environment.

The importance of this project arises from several points:

• This framework will facilitate and speed the design process of robots.

• The prototype robot will be used as an educational tool in the robotics and automatic
control classes.

• This project will facilitate the cooperation of several research groups in the depart­
ment (VLSI group, Robotics group), and the cooperation of the department with
other departments (Mechanical and Electrical Engineering).

• This project will establish a basis and framework for design automation of robot
manipulators.

A brief background of robot design and modules is presented in Section 2 with the
related work in this area. A review about the current research efforts in building spe­
cial hardware architectures for robotic applications is represented in Section 3. A detailed
description of prototyping and simulating a three-link robot manipulator is presented in
Section 4. The communication between the robot and the workstation is discussed in detail
in Section 5. The optimal design for robot manipulators is discussed, and the proposed
optimal design system is described and investigated in Section 6. Section 7 describes the
prototyping environment components such as the interface between the systems and the
required representations to implement this interface (e.g., knowledge base, object oriented
scheme, rule-based reasoning, etc.). Section 8 shows some examples and results of the
implemented systems. In Section 9, conclusions from the work are presented along with
possible future extensions. The dynamics equations for the three-link robot, before and
after simplifications, are described in Appendix a and Appendix B. The assembly pro­
gram used in the communication between the robot and the workstation is described in
Appendix C.

8

2 B ackground and R elated W ork

2.1 Phases o f B uilding a R obot

The process of building a robot can be divided into several phases as follows:

1. D esign Phase: which includes the following tasks:

• Specify the required robot tasks.

• Choose the robot parameters.

• Set the control equation and the trajectory planning strategy.

• Study the singular points.

2. Sim ulation Phase: test the behavior and the performance of the chosen manipula­
tor.

3. Prototyping and Testing Phase: test the behavior and performance, and compare
it with the simulated results.

4. M anufacturing Phase: order the required parts and manufacture the actual robot.

2.2 R obot M odules and Param eters
Controlling and simulating a robot is a process that involves a large number of mathemat­
ical equations. To be able to deal with the required amount of computation, it is better
to divide them into modules, in which each module accomplishes a certain task. The most
important modules, as described in [7], are kinematics, inverse kinematics, dynamics, tra­
jectory generation, and linear feedback control. In the following sections, we will briefly
describe each of these modules, and the parameters involved in each.

2.2.1 Forward K inem atics

This module is used to describe the static position and orientation of the manipulator link­
ages. There are two different ways to express the position of any link: using the C a rte s ia n
space, which consists of position (x , y , z), and orientation, which can be represented by a
3x 3 matrix called the rotation matrix; or using the jo in t space, by representing the position
by the angles of the manipulator’s links. Forward kinematics is the transformation from
joint space to Cartesian space.

This transformation depends on the configuration of the robot (i.e., link lengths, joint
positions, type of each joint, etc.). In order to describe the location of each link relative
to its neighbor, a frame is attached to each link, then we specify a set of parameters that

9

characterizes this frame. This representation is called D e n a v it-H a rte n b e rg n o ta tio n . See [7]
for more details.

One approach to the problem of kinematics analysis is described in [45], which is suitable
for problems where there are one or more points of interest on every link. This method
also generates a systematic presentation of all equations required for position, velocity, and
acceleration, as well as angular velocity and angular acceleration for each link.

2.2.2 Inverse K inem atics

This module solves for the joint angles given the desired position and orientation in Carte­
sian space. This is a more complex problem than forward kinematics. The complexity
of this problem arises from the nature of the transformation equations, which are nonlin­
ear. There are two issues in solving these equations: existence o f solutions and m ultiple
solutio ns. A solution can exist only if the given position and orientation lies within the
workspace of the manipulator’s end-effector. By workspace, we mean all points in space
that can be reached by the manipulator’s end-effector. On the other hand, the problem
of multiple solutions forces the designer to set a criterion for choosing one solution, e.g., a
good choice is the solution that minimizes the amount that each joint is required to move.

There are two methods for solving the inverse kinematics problem: closed f o r m solutions
and n u m e ric a l solutio ns. Numerical solutions are much slower than closed form solutions,
but, for some configurations it is too difficult to find a closed form solution. In our case,
we will use closed form solutions, since our models are three link manipulators with easy
closed form formulas.

A software package called SRAST (Symbolic Robot Arm Solution Tool) that symbol­
ically solves the forward and inverse kinematics for n-degree of freedom manipulators has
been developed by Herrera-Bendezu, Mu, and Cain [18]. The input to this package is the
Denavit-Hartenberg parameters, and the output is the direct and inverse kinematics solu­
tions. Another method of finding symbolic solutions for the inverse kinematics problem
was proposed in [47]. Kelmar and Khosla proposed a method for automatic generation of
forward and inverse kinematics for a reconfigurable manipulator system [23].

2.2.3 D ynam ics

Dynamics is the study of the torques required at each joint to cause the manipulator to
move in a certain manner. It is also concerned with the way in which a manipulator moves
when certain torques are applied to its joints. The serial chain nature of manipulators
makes it easy to use simple methods in dynamic analysis.

There are two problems related to the dynamics of a manipulator: contro lling the
manipulator, and s im u la tin g the motion of the manipulator. In the first problem, we have
a set of required positions for each link, and we want to calculate the required torques to

10

be applied at each joint. This is called inverse d ynam ics. In the second problem, we are
given a set of torques applied to each link, and we wish to calculate the new position and
the velocities during the motion of each link. The latter is used to simulate a mathematical
manipulator model before building the physical model, which makes it possible to update
and modify the design without the cost of changing or replacing any physical parts.

The dynamics equations for any manipulator depend on the following parameters:

• The mass of each link.

• The mass distribution for each link, which is called the in e rtia ten sor, which can be
thought of as a generalization of the scalar moment of inertia of an object.

• Length of each link.

• Joint type (revolute or prismatic).

• Manipulator configuration and joint locations.

The dynamics model we are using to control the manipulator is in the form:

r = M { 9)9 + V (9 , 9) + G { 9) + F (0 ,9)

To simulate the motion of a manipulator we must use the same model we have used in
controlling that manipulator. The model for simulation will be in the form:

9 = M - \ 6) [r - V { 9 , 9) - G (9) - F { 9 ,0)]

The dynamics module is the most time consuming part among the manipulator’s mod­
ules. That is because of the tremendous amount of calculation involved in the dynamics
equations. This fact makes the dynamics module a good candidate for hardware imple­
mentation, to enhance the performance of the control and/or the simulation system.

There are some parallel algorithms to calculate the dynamics of a manipulator. One
approach described in [37], is to use multiple microprocessor systems, where each one is
assigned to a manipulator link. Using a method called b ran ch -an d -b oun d , a schedule of the
subtasks of calculating the input torque for each link is obtained. The problem with this
method is that the scheduling algorithm itself was the bottleneck, thus limiting the total
performance. Several other approaches have been suggested [29, 30, 44] based on a multi­
processor controller, and pipelined architectures to speed the calculations. Hashimoto and
Kimura [17] proposed a new algorithm called the resolved N e w to n -E u le r a lg o rith m based
on a new description of the Newton-Euler formulation for manipulator dynamics. Another
approach was proposed by Li, Hemami, and Sankar [34] to drive linearized dynamic models

about a nominal trajectory for the manipulator using a straightforward Lagrangian formu­
lation. An efficient structure for real-time computation of the manipulators dynamics was
proposed by Izaguirre, Hashimoto, Paul and Hayward [20]. The fundamental character­
istic of this structure is the division of the computation into a high-priority synchronous
task and low-priority background tasks, possibly sharing the resources of a conventional
computing unit based on commercial microprocessors.

2.2.4 Trajectory G eneration

This module computes a multidimensional trajectory which describes the manipulator’s
position, velocity, and acceleration for each link. This module includes the human interface
problem of describing the desired behavior of the manipulator. The complexity of this
problem arises from the wide meaning of m a n ip u la to r ’s behavior. In some applications we
might need to specify only the goal position, whereas in some other applications, we might
need to specify the velocity with which the end effector should move. Since trajectory
generation occurs at run time on a digital computer, the trajectory points are calculated at
a certain rate, called the p a th update rate. We return to this issue when we consider speed.

There are several strategies to calculate trajectory points which generate a smooth
motion for the manipulator. It is important to guarantee this smoothness of the motion
due to physical considerations such as the required torque that causes this motion, the
friction at the joints, and the frequency of update required to minimize the sampling error.

One of the simplest methods is cubic p o lyn o m ia ls , which assumes a cubic function for
the angle of each link, by differentiating this equation the velocity and acceleration are
computed (see [7]).

2.3 Linear Feedback Control

We will use a linear control system in our design, which is an approximation of the nonlinear
nature of the dynamics equations of the system, which are more properly represented by
nonlinear differential equations. This is a reasonable approximation, and it is used in
current industrial practice.

We will assume that there are sensors at each joint to measure the joint angle and
velocity, and there is an actuator at each joint to apply a torque on the neighboring link.
Our goal is to cause the manipulator joints to follow a desired trajectory. The readings
from the sensors will constitute the feedback of the control system. By choosing appropriate
gains we can control the behavior of the output function representing the actual trajectory
generated. Minimizing the error between the desired and actual trajectories is our main
concern. Figure 2 shows a high level block diagram of a robot control system.

12

When we talk about control systems, we should consider several issues related to that
field, such as: s ta b ility, con tro lla b ility, and observability. For any control system to be
stable, its poles should be negative, since the output equation contains terms of the form
fc,ep'; if pi is positive, the system is said to be unstable. We can guarantee the stability of
the system by choosing certain values for the feedback gains.

We will assume a second order control system of the form:

mO + b0 + kO. '

Another desired property of the control system is that it be c ritic a lly dam ped, which
means that the output will reach the desired position in minimum time without overshoot­
ing. This can be accomplished by making b2 = 4mA:. Figure 3 shows the three types of
damping: underdam ped, c ritic a lly dam ped, and overdam ped.

Figure 4 shows a block diagram for the controller, and the role of each of the robot
modules in the system.

More about robot control can be found in [3, 33, 46].

2.3.1 Local PD Feedback Control

Most of the feedback algorithms used in the current control system are digital implemen­
tation of a proportional plus derivative (PD) control. In industrial robots, a local PD
feedback control law is applied at each joint independently. The advantages of using a PD
controller are the following:

• Very simple to implement.

• Does not require the identification of robot parameters.

• Suitable for real-time control since it has very few computations compared to the
complicated nonlinear dynamic equations.

• The behavior of the system can be controlled by changing the feedback gains.

e*t) x
Trajectory act) s Control T

ManipulatorGenerator — assu. System

r n r

F ig u r e 2: H ig h - le v e l b lo c k d ia g r a m o f a r o b o t c o n t r o l s y s te m

13

Feedback Control Dynamics

F ig u r e 4: B lo c k d ia g r a m o f th e c o n t r o l le r o f a r o b o t m a n ip u la to r .

On the other hand, there are some disadvantages of using a PD controller instead of
the dynamic equations such as:

• High update rate is required to achieve reasonable accuracy.

• Dynamic equations should be used to simulate the robot manipulator behavior

• There is always trade-off between static accuracy and the overall system stability.

• Using local PD feedback law at each joint independently does not consider the cou­
plings of dynamics between robot links.

Some ideas have been suggested to enhance the usability of the local PD feedback
law for trajectory tracking. One idea is to add a lag-lead compensator using frequency
response analysis [5]. Another method is to build an inner loop stabilizing controller using
a multivariable PD controller, and an outer loop tracking controller using a multivariable
PID (proportional, integral, and derivative) controller [53].

In general, using a local PD feedback controller with high update rates can give an
acceptable accuracy for trajectory tracking applications. It was proved that using a linear
PD feedback law is useful for positioning and trajectory tracking [21].

2.3.2 Continuous vs. D iscrete T im e Control

In computer-controlled systems, the calculated actuator forces are not continuous functions
in time any more. This is because of the time needed by the computer to perform the
required calculations. In this case, we can study the system using d igital control theory
which takes the calculation time into account when analyzing the system. To be able to
use the continuous model, we must use high update rates (i.e., reduce the computation
time). This can be achieved by using a faster computer, and/or using parallel architectures
and using some parallel algorithm to calculate the complicated parts in the computations
(usually the dynamics of the system). The effect of choosing the update rate on the system
performance and stability is discussed in Section 2.4.

Another method is to use a mixture of continuous and discrete control for the system.
This can be done by using the computer to generate the required trajectory and the torques
for the actuators in discrete time, and an analog PID controller in the interval between
the computer samples. This will enable us to assume a continuous control law and will
minimize the error during the computation time.

2.3.3 D isturbance R ejection

In any real-time control system, there is always some amount of external noise fd ist(t)i and
usually this noise is stochastic in nature. The distribution and magnitude of this noise

15

depends on the working environment, and sometimes it is too difficult to prevent the noise
from happening, but we can modify the control model to reduce the effect of such noise
to an acceptable degree. This noise can be modeled using statistical measures and some
assumptions about its nature. To deal with this noise we must assume that it is bounded,
that is, there is a constant a such that:

max,- fdisi{t) < a

This maintains the property of a stable linear system known as bounded-input bounded-
ou tp u t (BIBO) stability.

As a simple case, assume that fdist is a constant. In this case, the steady state error can
be calculated by analyzing the system at rest (i.e., set all derivatives to zero) as follows:

kpG — fdist

or
6 = fdisl/kp

The value of e here represents the steady state error of the system. From the last
equation, it is clear the increasing k p will decrease the steady state error. On the other
hand, there is a limit on the value of k p to maintain the stability of the system.

Another way to reduce (and sometimes eliminate) the steady state error, is by adding
an integral term to the control low. That is what is known as the (PID) Proportional,
Integral, Derivative controller. By adding this term, the steady state error can be calculated
as follows:

kpC “I- k ̂ f edt — fdist
or

kp 6 k{C — fdist

We assumed, however, that fdist is a constant, thus, fdist = 0, which gives:

k{e = 0

So, the addition of this integral element can eliminate constant disturbances.

2.4 Speed Considerations

There are several factors that affect the desired speed (frequency of calculations), the
maximum speed we can attain using software solutions, and the required hardware we
need to build if we are to use a hardware solution. The desired frequency of calculation
depends on the type and frequency of input, the noise in the system, and the required
output accuracy.

16

2.4.1 Typ es of Inputs

The user interface to the system should allow the user to specify the desired motion of
the manipulator in different ways depending on the nature of the job the manipulator is
designed to do. The following are some of the possible input types the user can use:

• Move from point xo,j/0) ô to point Xd, yd- , Zd in Cartesian space.

• Move in a predefined position trajectory [x i , j/;, z i \. This is called p o s itio n p la n n in g .

• Move in a predefined velocity trajectory [i;, y,-, £,■]. This is called velocity p la n n in g .

• Move in a predefined acceleration trajectory [x,-, i/;, z,-]. This is called force control.

The input type will affect the placement of the inverse kinematics module: outside the
update loop, as in the first case, or inside the update loop, as in the last three cases. For
the last three cases we have two possible solutions; we can include the inverse kinematics
module in the main update loop as we mentioned before, or we can plan ahead in the joint
space before we start the update loop. We should calculate the time required for each case
plus the time required to make a decision.

2.4.2 D esired Frequency of the Control System

We must decide on the required frequency of the system. In this system we have four
frequencies to be considered:

• Input frequency, which represents the frequency of changes to the manipulator status
(position, velocity, and acceleration).

• Update frequency, representing the speed of calculations involved.

• Sensing frequency, which depends on the A/D converters that feed the control system
with the actual positions and velocities of the manipulator links.

• Noise frequency: since we are dealing with a real-time control system, we must con­
sider different types of noise affecting the system such as: input noise, system noise,
and output noise (from the sensors).

2.4.3 Error A nalysis

The error is the difference between the desired and actual behavior of the manipulator. In
any physical real-time control system, there is always a certain amount of error resulting
from modeling error or different types of noise. One of the design parameters is the maxi­
mum allowable error. This depends on the nature of the tasks the manipulator is designed

17

to accomplish. For example, in the medical field the amount of error allowed is much less
than in a simple laboratory manipulator. The update frequency is the most dominant
factor in minimizing the error. It is clear that increasing the update frequency results in
decreasing the error. The update frequency, however, is limited by the speed of the ma­
chine used to run the system. Khosla performed some experiments to study the effect of
changing the control sampling rate on the performance of the manipulator behavior [25]
and showed that increasing the update rate decreases the error. .

2.5 O ptim al D esign o f R obot M anipulators

It is important to choose the parameters of a robot manipulator (configuration, dimension,
motors, etc.) that are most suitable for the required robot tasks. Considerable research has
been done in this area. Depkovich and Stoughton [11] proposed a general approach for the
specification, design and validation of manipulators. The concept of Reconfigurable M o d ­
u la r M a n ip u la to r S yste m (RMMS) was proposed by Khosla, Kanade, Hoffman, Schmitz,
and Delouis [24] at Carnegie Mellon University. There goal is to create a complete manip­
ulator system, including mechanical and control hardware, and control algorithms that are
automatically and easily reconfigured.

Designing an o p tim a l manipulator is not yet well defined, and it depends on the defi­
nition and criterion of optimality. There are several techniques and methodologies to for­
malize this optimization problem by creating some objective functions that satisfy certain
criteria, and solving these functions with the existence of some constraints.

One criterion that is used is a kinematic criterion for the design evaluation of manipu­
lators by establishing quantitative kinematic distinction among a set of designs [6, 40, 41].
Another criterion is to achieve optimal dynamic performance; that is to select the link
lengths and actuator sizes for minimum time motions along specified trajectory [38, 49].

TOCARD (Total Computer-Aided Design System of Robot Manipulators) is a system
designed by Takano, Masaki, and Sasaki [52] to design both fundamental structure (degrees
of freedom, arm length, etc.), and inner structure (arm size, motor allocation, motor power,
etc). They describe the problem as follows: there is a set of design parameters, a set of
objective functions, and a set of Gavin data (constraints). The design parameters are:

• Degrees of freedom.

• Joint type and its sequence.

• Arm length and offset.

• Arm cross-sectional dimensions.

• Motor allocations.

18

»

• Joint mechanisms and transmission mechanisms.

• Reduction gears.

• Motors.

The objective functions for the design of robot arm are as follows:

• Manipulability.

• Total motor power consumption. ,

• Arm weight.

• Total weight of robot.

• Cost.

• Workspace.

• Joint displacement limit.

• Maximum joint velocity and acceleration.

• Deflection.

• Natural frequency.

• Position accuracy.

The constraints can be:

• Workpiece and degrees of freedom of orientation.

• Maximum velocity and acceleration of workpiece.

• Position accuracy.

• Weight, gravity center and moment of inertia of workpiece.

• Dimensional data of hand and grasping manner of workpiece.

Hollerbach proposed an optimum kinematic design for a seven-degree of freedom
nipulator [191.

2.6 Integration o f H eterogeneous System s

To integrate the work among different teams and sites working in such a large project, there
must be some kind of synchronization to facilitate the communication and cooperation
between them. A concurrent engineering infrastructure that encompasses multiple sites
and subsystems, called Pallo Alto Collaborative Testbed (PACT), was proposed in [8].
The issues discussed in that work were:

• Cooperative development of interfaces, protocols, and architecture.

• Sharing of knowledge among heterogeneous systems. '

• Computer-aided support for negotiation and decision-making.

An execution environment for heterogeneous systems called “InterBase” was proposed
in [4]. It integrates preexisting systems over a distributed, autonomous, and heterogeneous
environment via a tool-based interface. In this environment each system is associated with
a R e m o te S yste m In te rfa ce (R S I) that enables the transition from the local heterogeneity
of each system to a uniform system-level interface.

Object orientation and its applications to integrate heterogeneous, autonomous, and
distributed systems are discussed in [43]. The argument in this work is that object-oriented
distributed computing is a natural step forward from the client-server systems of today.
A least-common-denominator approach to object-orientation as a key strategy for flexibly
coordinating and integrating networked information processing resources is also discussed.
An automated, flexible and intelligent manufacturing based on object-oriented design and
analysis techniques is discussed in [39], and a system for design, process planning and
inspection is presented.

Several important themes in concurrent software engineering are examined in [12]. Some
of these themes are:

Tools: Specific tools that support concurrent software engineering.

Concepts: Tool-independent concepts are required to support concurrent software engi­
neering.

Life cycle: Increase the concurrency of the various phases in the software life cycle.

Integration: Combining concepts and tools to form an integrated software engineering
task.

Sharing: Defining multiple levels of sharing is necessary.

20

A management system for the generation and control of documentation flow throughout
a whole manufacturing process is presented in [13]. The method of quality assurance is
used to develop this system that covers cooperative work between different departments
for documentation manipulation.

A computer-based architecture program called the D is trib u te d an d Integrated E n v i ­
ro n m e n t f o r C o m p u te r-A id e d E n g in e e rin g (Dice), which addresses the coordination and
communication problems in engineering, was developed at the MIT Intelligent Engineering
Systems Laboratory [51]. The Dice project addresses several research issues such as, frame­
works, representation, organization, design methods, visualization techniques, interfaces,
and communication protocols. '

Some important topics in software engineering, such as the lifetime of a software sys­
tem, analysis and design, module interfaces and implementation, and system testing and
verification, can be found in [28]. Also, a report about integrated tools for product, and
process design can be found in [55].

In the environment we are proposing, several subsystems are communicating through a
central interface la ye r (Cl), and each subsystem has a subsystem interface (SSI) responsible
for data transformation between the subsystem and the CI. The flexibility of this design
arises from the following points:

• Adding new subsystem can be achieved by writing an SSI for this new subsystem,
adding it to the list of the subsystems in the CI. There are no changes required to
the other SSIs.

• Removing a subsystem only requires removing its name from the subsystems list in
the CI.

• Any changes in one of the subsystems require changing the corresponding SSI to
maintain correct data transformation to and from this subsystem.

More about this design is discussed in Section 7.

3 Special C om puter A rch itecture for R ob otics

When we design real-time systems that involves a huge number of floating point calcu­
lations, the speed becomes an important issue. In such situations, a hardware solution
might be used to achieve the desired speed. In the following sections we will investigate
the different solutions and platforms proposed for robotics.

21

VLSI design for robot application is a complex task which requires a conceptual framework
that control its complexity. Several decisions should be taken during the design process
such as: What is the best architecture for this application, how specific the hardware
implementation should be, what kind of tools needed to implement such design, and the
cost of the design.

To be able to take such decisions, the computational needs for the applications should
be analyzed and the performance requirements of the robot has to be considered.

For a generic robot system there are three major layers of computation proposed in [31]:

• Management layer which includes:

— user interface

— operating system support

— resource allocation

— coordination

• Reasoning layer which includes:

— decision making

— causal reasoning

— temporal reasoning

— geometric reasoning

— planning

— world modeling

• Device interaction layer includes:

— adaptive control

— kinematics and dynamics

— multi-sensor fusion

— interpretation

— feature extraction

— preprocessing

One of the most important tools the has been developed recently is the hardw are de­
sc rip tio n languages (DHL) which enables top-down design using high-level descriptions.

3 . 1 D e s i g n I s s u e s

22

3.2 Parallel A rchitectures and m ultiprocessors

There are many forms of parallelism and concurrency which can be applied to advanced
computational problems in robot control and simulation. This fact leads to the develop­
ments of many parallel architectures that utilizes this property.

A real-time robot control based on multi-processor architecture was proposed in [1], in
this design the control tasks are analyzed to obtain a lower bound on the number of math­
ematical operations required to generate the control signal, then a parallel computation
structure is designed according to the maximum sample time based on the stability of the
control system. This design can be implemented as a custom VLSI or as a systolic array
based system.

An optimal design for multiple-APU (Arithmetic Processing Unit) based robot con­
trollers is discussed in [2]. In this paper it was shown that using eight APUs, it is possible
to compute the inverse kinematics, inverse dynamics and the trajectory for the PUMA arm
in less than 3ms using 16.7 MHZ 68881.

A dataflow multiprocessor system for robot arm control was proposed in [15]. In this
method, the maximum parallelism would require 1834 processing elements. However, a
reasonable engineering solution requires 42 processing elements.

SIERA (System for Implementing and Evaluating Robotic Algorithms) is a multipro­
cessor system that has been developed at the Laboratory for Engineering Man/Machine
Systems (LEMS) at Brown University. It incorporates a tightly coupled bus-based system
(the Real-time Servo System) and a loosely coupled point-to-point network (the Armstrong
Multiprocessor System). Figure 5 shows an overview of the SIERA system and Figure 6
shows the Armstrong processes. More details can be found in [22].

A parallel computer architecture for real-time control application in grasping and ma­
nipulation was proposed in [26]. In this paper a new scheduling algorithm for multiprocessor
architecture based on either complete or incomplete crossbar interconnection networks is
presented. The mean feature of the proposed algorithm is that it takes into account the
communication delays between processors and minimizes both the execution time and the
communication cost.

Several parallel architectures are proposed in [35, 36, 44, 48, 56]

3.3 A pplication-Specific Integrated C ircuits

The increasing demand for more computation power to meet the current speed require­
ments of robot controllers made it clear that general purpose processors are no longer
satisfactory. The recent ASIC (A p p lic a tio n -S p e c ific Integrate d C irc u its technology was the
solution that created better opportunities for implementing real-time controller for more
sophisticated robot manipulators. An overview of ASIC technology for robotics was pre-

23

Figure 5: Overview of SIERA.

F ig u r e 6: A r m s t r o n g p ro cesses .

sented in [32], In this paper, a conceptual framework for ASIC design is presented along
with the characteristics of the ASIC design.

The advantages of ASIC for robotic applications include:

• Better performance.

• Smaller size.

• Higher reliability.

• lower non-recurring cost. .

• Faster turnaround time.

• Tighter design security.

ASIC includes several custom and simicustom hardware designs including:

• programmable logic devices (PLD).

• gate arrays (GA).

• standard cells (SC).

• full custom design (FC).

The main difference between these styles is the degree of design freedom in layout. The
greater the degree of design freedom, the is the design effort and the longer the design
turnaround time. Figure 7 summarizes the differences between ASIC and SIC (s ta n d a rd
integrated circ u its).

3.4 N eural N etworks and R obotics

Neural networks has a unique feature of robust processing and adaptive capability in chang­
ing even in noisy environments. It is estimated that the human brain contains over 100
billion neuron. Several application has been implemented using artificial neural networks
(ANN) such as pattern recognition, image processing, and machine learning.

A basic ANN model consists of a large number of neurons linked to each other with
connection weights (see Figure 8).

The ANN processing can be divided into two phases:

25

Approach

Attribute

SIC Design A S IC Design

Cost constraint Component count Design effort

! Performance

limitation

Functional unit

design

Data

communication

M ajor design

alternatives

M ajor components

(e.g., processors)

Design $tyies

(e.g., G A , SC, FC)

Coupling between

design steps
Loose Tight

Testability

requirement

Nodes accessible

at board level

Must be incorporated

early in the design

Verification Breadboarding Simulation

Prototyping Usually in-house
In cooperation

with vendor

Last-minute changes Possible Costly

I Design guidance Informal Strong methodology

■ TooJs
i-------------------------------- Relatively simple C A E intensive

Figure 7: Comparison of traditional design and ASIC design

PUi

F ig u r e 8: A b a s ic A N N m o d e l

26

R etrieving Phase: this phase performs the iterative updating of the activation values a,-.
A generic iterative formulation for the updating phase is:

Ui(l + 1) = Wij(l + i K (0 ,

0 . i { l + 1) = + 1), O i (l + 1))

where, u,- is the input to the PU i , a,i is the activation value of PU i , W{j is the effect of
PU j on PU i , 6{ an external input to PE i , and /,• is a nonlinear activation function
at PE i .

Learning Phase: In this phase, the synaptic weights are updated based on the input
and the target training pattern using an adopted learning rule. The following is an
example of learning rule:

W i j (l) Wij(l) + r jAwij (l)

where rj is the update rate parameter, and A w i j (l) is the increment of weight change.

The application of neural networks can be grouped into two classes: o p tim iza tio n and
associative retrie va l/cla ssificatio n . Most robot problems can be formulated as one of the
two classes. For example, stereo vision for task planning, autonomous robot path planning,
and position control can be formulated as optimization problems.

A ring VLSI systolic architecture for implementing ANNs with application to robotic
processing was proposed in [27]. It is demonstrated that the ANNs are suitable for several
robot processing applications such as: task planning, path planning, and path control.
Several models of ANNs are investigated in this paper such as: single-layer feedback neu­
ral networks, competitive learning neural networks, and multi-layer feed-forward neural
networks.

3.5 2400-M FLO PS Reconfigurable Parallel VLSI Processor

A new concept was introduced in [14] for a reconfigurable flo a tin g -p o in t m u ltip ly-a d d e rs
to reduce the latency for robot control. This reconfigurations involves direct hardware
connections between the multipliers and the adders. A parallel VLSI processor composed
of several processor elements (PE) was proposed. In each PE, a switching hardware is used
to change the connection between the multipliers and the adders, so that the multiply-
adders with a desired numbers of multipliers can be constructed.

Each PE consists of two multipliers, two adders, a local memory (LM) and a switch
circuit (SC) as shown in Figure 9. The inner connection of the SC is changed every clock
cycle to reconfigure the multiply-adder. Figure 10 shows an example of a reconfigured
multiply-adder that contains four multipliers.

27

®: Multiplier LM:Local memory

© : Adder SC:Switch circuit

Figure 9: Reconfigurable parallel VLSI processor.

F ig u r e 10: R e c o n f ig u r a t io n o f a m u lt i- o p e r a n d m u lt ip ly - a d d e r .

Figure 11: Reconfiguration for the floating-point multi-operand multiply-adder.

The following examples shows the speed improvement of using this processor. The
latency for differential inverse kinematics (DIK) computations of twelve-DOF manipulator
is about I f i sec which is about 180 times faster than the latency of a parallel processor
approach using general-purpose microprocessors. Also, the latency for resolved acceleration
control of a twelve-DOF manipulator is 32/j, sec which is about 60 times faster than the
latency of a parallel processor approach using conventional DSPs.

Figure 11 shows the reconfigured floating-point multi-operand multiply-adder in which
there is a pre-normalize circuit before each stage of the addition, and only one post-
normalize circuit only in the final stage adder, this reduces the time needed for pre- and
post-normalization of the operands about one half using this method in comparison with
the multi-operand adder shown in Figure 12.

To perform multiplication in one clock cycle, the PE has pipeline registers as shown
in Figure 13. For matrix operations, a reconfigurable parallel VLSI processor is shown
in Figure 14. In this configuration, each PE has seven sixty-for-bit wide I/O channels
to construct a two-dimensional linear array processor. Three I/O channels are provided
for common data busses. The other four are to connect the neighboring PEs for the
reconfiguration.

Figure 15 shows the chip layout of the PE, and Figure 16 shows the features of this
chip.

29

L
U

—
t

i i i
LM

i i

-Q--

*

r-rJ

iT

■ * t !

to cannon bu»«»

C7 :Po»t-nor»»lii« circuit ;Floating-point multiplier

5 - j : P i p # l i n * r « g l f l t * r : P r * - n O r r a « l i z h c i r c u i t A n d a d d e r

F ig u r e 13: S t ru c tu r e o f th e P E .

30

Technology O.S-fAm two-level-layer CMOS
No. o f transistors 1745K
Chip size 11,0mm x 14.8mm (except I/O)
Int. machine cycle 50nsec at 20M H z
Arithmetic 64bit floating-point representation
Local memory 256 x 64bit two-port RAM x 6
Multiplier 64 x 64bit, Booth’s algorithm,

Carry-save adder tree x 2
Adder 64bit, carry lookahead x 2
Switch circuit Transmission gate x 64 x 107
I/O channel 64bit X 7
Control V L IW

Figure 16: Features of the PE.

4 T hree-link R ob ot M anipulator

To explore the basis of building a flexible environment for robot manipulators, A three-link
robot manipulator was designed. This enabled us determine the required subsystems and
interfaces for such an environment. This prototype robot will be used as an educational
tool in control and robotics classes.

4.1 A nalysis Stage

This project was started with the study of a set of robot configurations and analyzed the
type and amount of calculation involved in each of the robot controller modules (kinemat­
ics, inverse kinematics, dynamics, trajectory planning, feed-back control, and simulation).
This phase was accomplished by working through a generic example for a three-link robot
to compute symbolically the kinematics, inverse kinematics, dynamics, and trajectory plan­
ning; these were linked to a generic motor model and its control algorithm. This study
enabled us to determine the specifications of the robot for performing various tasks, it
also helped us decide which parts (algorithms) should be hardwired to achieve specific me­
chanical performances, and also how to supply the control signals efficiently and at what
rates.

32

Torque-Vo It
Torque-Volt Relation

0.00 2.00 4.00 6.00 8.00 10.00

Figure 17: The relation between torque the voltage.

4.2 One Link M anipulator

Controlling a one-link robot in a real-time manner is not difficult, but on the other hand
it is not a trivial task. This is the basis of controlling multi-link manipulators, and it gives
an indication of the type of problems and difficulties that arise in a larger environment.
The idea is to establish a complete model for controlling and simulating a one-link robot,
starting from the analysis and design, through the simulation and error analysis.

A motor from the Mechanical Engineering lab was used. This motor is controlled by a
PID controller. An analog I/O card, named PC-30D, connected to a Hewlett Packard PC
was used to connect the motor with the serial port of the PC. This card has sixteen 12-bit
A/D input channels, two 12-bit D/A output channels. There are also the card interface
drivers with a Quick BASIC program that uses the card drivers to control the DC motor.

One of the problems we faced in this process was to establish the transfer function
between the torque and the voltage. The motor parameters were used to form this function
by making some simplifications, since some of the motor parameters have nonlinear com­
ponents that make it too difficult to make an exact model. Figure 17 shows the relation
between torque and voltage for a certain input sequence, and Figure 18 shows the circuit
diagram of the motor and its parameters.

33

R L

-AMA mnnr

motor

Figure 18: Circuit diagram of the DC-motor used in the experiment

In general, this experiment gave us an indication of the feasibility of our project, and
good practical insight. It also helped us determine some of the technical problems that
we might face in building and controlling the three-link robot. More details about this
experiment can be found in [9, 50].

4.3 Controller D esign

The first step in the design of a controller for a robot manipulator is to solve for its
kinematics, inverse kinematics, dynamics, and the feedback control equation that will be
used. Also the type of input and the user interface should be determined at this stage.
We should also know the parameters of the robot, such as: link lengths, masses, inertia
tensors, distances between joints, the configuration of the robot, and the type of each link
(revolute or prismatic). To make a modular and flexible design, variable parameters are
used that can be fed to the system at run-time, so that this controller can be used for
different configurations without any changes.

Three different configurations have been chosen for development and study. The first
configuration is revolute-revolute-prismatic with the prismatic link in the same plane as
the first and second links. The second configuration is also revolute-revolute-prismatic
with the prismatic link perpendicular to the plane of the first and second links. The last
configuration is three revolute joints (see Figure 19).

The kinematics and the dynamics of the three models have been generated using some
tools in the department called genkin and gendyn that take the configuration of the ma­
nipulator in a certain format and generate the corresponding kinematics and dynamics for
that manipulator.1 The kinematics and the dynamics of the three models are shown in
Appendix A. One problem with the resultant equations is that they are not simplified at
all; therefore, The results were simplified using the mathematical package M a th e m a tic a ,
which gives more simplified results, but still, not totally factorized. Appendix B shows the
dynamics after simplifying the equations using M a th e m a tic a . The comparison between the

1 These tools were developed by Patrick Dalton.

34

number of calculations before and after simplification will be discussed in the benchmarking
section.

For the trajectory generation, The cubic polynomials method, described in the trajec­
tory generation section, was used. This method is easy to implement and does not require
much computation. It generates a cubic function that describes the motion from a starting
point to a goal point in a certain time. Thus, this module will give us the desired trajectory
to be followed, and this trajectory will serve as the input to the control module.

The error in position and velocity is calculated using the readings of the actual position
and velocity from the sensors at each joint. Our control module simulated a PID controller
to minimize that error. The error depends on several factors such as the frequency of
update, the frequency of reading from the sensors, and the desired trajectory (for example,
if we want to move through a angle in a very small time interval, the error will be large).

4.4 Sim ulation

A simulation program has been implemented to study the performance of each manipu­
lator and the effect of varying the update frequency on the system. Also it helps to find
approximate ranges for the required torque and/or voltage, and to determine the maxi­
mum velocity to know the necessary type of sensors and A/D. To make the benchmarks,
as described in the next section, we did not use a graphical interface to the simulator, since
the drawing routines are time consuming, and thus give misleading figures for the speed.

In this simulator, some reasonable parameters have been chosen for our manipulator.
The user can select the length of the simulation, and the update frequency. The third
model was used for testing and benchmarking because its dynamics are the most difficult
and time consuming compared to the other two models. Table 1 shows the number of
calculations in the dynamics module for each model.

4.5 Benchm arking

One important decision that had to be made was: do we need to implement some or all of
the controller module in hardware? And if so which modules, or even parts of the modules,

Table 1: Number of calculations involved in the dynamics module.

Additions Multiplications Divisions
Model 1 89 271 13
Model 2 85 307 0
Model 3 195 576 22

35

T a b le 2: C o n f ig u ra t io n o f th e m a c h in e s u sed in th e b e n c h m a rk .

SPARC-2 SPARC-10 (30) SPARC-10 (41) HP-700
Clock Rate(MHz) 40.0 36.0 40.0 66.0
MIPS 28.5 101.6 109.5 76.0
MFLOPS 4.3 20.5 22.4 23.0

should be hardwired? To answer these questions we chose approximate figures for the
required speed to achieve a certain performance, the available machines for the controller,
the available hardware that can be used to build such modules, and a time chart for each
module in the system to determine the bottlenecks. This also involved calculating the
number of operations in each module giving a rough estimate of the time taken by each
module.

The simulator described in Section 4.4 was used to generate time charts for each module,
and to compare the execution time on different machines. The machines used in this
benchmarking effort include: SUN SPARCStation-2, Sun SPARCStation-10 model 30, Sun
SPARCStation-10 model 41, and HP-700. Table 2 shows the configurations of the machines
used in this benchmark, with the type, clock cycle rate, the MIPS and MFLOPS for each.

To generate time charts for the execution time of each module, a program called g p ro f
was used. This program produces an execution profile of C, Pascal, or Fortran77 programs.
It gives the execution time for each routine in the program, and the accumulated time for
all the routines. Then xgraph was used to draw charts showing these time profiles. The
simulation program was executed with an update frequency of 1000 Hz for 10 seconds,
which means that each routine was called 10,000 times. From this output, it was obvious
that the bottleneck was the dynamics routine and usually it took between 25% to 50% of
the total execution time on the different machines.

From these results we found that the HP-700 was the fastest of all, followed by the
SPARC-10 machines. After the simplification using Mathematica, the execution time in­
creased because the results contained many different trigonometric functions, and it seemed
that these machines do not use lookup tables for such functions. So, all nonbasic trigono­
metric functions were replaced by basic trigonometric functions. For example, s in 20 was
formulated as 2 s in 0 cos 0. Using this conversion, the performance improved significantly.
Figure 20 shows a speed comparison between the machines. The graph represents the speed
of each machine in terms of iterations per second. The machines are SPARC-2, SPARC-
10-30, SPARC-10-41, and HP-730, respectively. For each machine, the first column is the
speed before any simplification, the second column is the speed after using Mathemat­
ica (notice the performance degradation here), and the third column after simplifying the
trigonometric functions.

36

These benchmarks helped us decide that a software solution on a machine like the Sun
SPARC-10 would be enough for our models, and there was no need for a special hardware
solutions. However, for a greater number of links, the decision might be different.

4.6 P ID Controller Sim ulator

As mentioned in Section 2.3.1, a simple linear feedback control law can be used to control
the robot manipulator for positioning and trajectory tracking. For this purpose, a PID
controller simulator was developed to enable testing and analyzing, the robot behavior
using this control strategy.

Using this control scheme helps us avoid the complex (and almost impossible) task of
determining the robot parameters for our three-link prototype robot. One of the most
complicated parameters is the inertia tensor matrix for each link, especially when the links
are nonuniform and have complicated shapes.

This simulator has a user friendly interface that enables the user to change any of the
feedback coefficients and the forward gains on-line. It can also read a pre-defined position
trajectory for the robot to follow. It also serves as a monitoring system that provides
several graphs and reports. The system is implemented using a graphical user interface
development kit called GDI.2 Figure 21 shows the interface window of that simulator.

4.7 B uild ing th e R obot

The assembly process of the mechanical and electrical parts was done in the Advanced
Manufacturing Lab (AML) with the help of Mircea Cormos and Prof. Stanford Meek. In
this design the last link is movable, so that different robot configurations can be used (see
Figure 22).

There are three different motors to drive the three links, and six sensors (three for
position and three for velocity), to read the current position and velocity for each link to
be used in the feedback control loop.

This robot can be controlled using analog control by interfacing it with an analog PID
controller. Digital control can also be used by interfacing the robot with either a workstation
(Sun, HP, etc.) or a PC via the standard RS232. This requires an A/D and D/A chip to be
connected to the workstation (or the PC) and an amplifier that provides enough power to
drive the motors. Figure 23 shows an overall view of the different interfaces and platforms
that can control the robot. A summary of this design can be found in [10].

2GD1 was developed in the department of Computer Science, University of Utah, under supervision of
Prof. Beat Briiderlin.

38

Digital Control

PC

Figure 23: Controlling the robot using different schemes.

5 R ob ot-com p u ter Interface
The sensor and actuator interface is an essential part of the project. It is concerned with
the communication between the manipulator and the workstation used to control it.3 The
problem required interfacing a SUN workstation with 3 Motors, each of which drives a link
of the 3 link robot arm. A resident program on the SUN can send out voltage values that
will drive the motors in a desired direction (forward or backward), and read values from
sensors placed on the motors that correspond to the position of the motors. So thinking
at a higher level, it was obvious that we would need A/Ds to convert the values coming
from the motors to digital so that they can be sent to the workstation (where the control
program resides), D/As to convert the values sent by the program to the actual analog
voltage and an RS-232 communication to the workstation to send these digital data to and
from the workstation. Also we would need some control of sampling, sending and receiving
data outside the workstation.

So based on the suggestion of Digital Systems Laboratory (DSL), we decided to go for
a Microcontroller which can control the A/D conversion , D/A conversion and the RS-
232 communication protocol with the workstation. The one that came in handy was the
MC68HC11EVBU - Universal Evaluation Board, which has a microcontroller, an 8-channel
A/D, an RS-232 compatible terminal I/O port, and some wire wrap area for additional
circuitry like the D/A unit.

3This part has been done by Anil Sabbavarapu, a graduate student in the Computer Science Department.

40

5.1 T he M C 68H C 11E V B U Chip

The MC68HC11 MCU device is an advanced single-chip MCU with on-chip memory and
peripheral functions. The EVBU comes with a monitor/debugging program called BUF­
FALO (Bit User Fast Friendly Aid to Logical Operations), which is contained in the MCU
ROM. User code can be assembled using the line assembler in the BUFFALO monitor
program, or else by assembling code on a host computer, and then downloading the code
to the EVBU user RAM via Motorola S-records. In the later case the monitor program
can be used to debug the assembled user code. There are a lot of utility subroutines in the
BUFFALO program that can be used for any program of our own. The MCU that is being
used here is MC68HC11E9FN1.

Evaluation and debugging control of the EVBU is provided by the monitor program via
terminal interaction. RS-232C terminal I/O port interface circuitry provides communica­
tion and data transfer operations between the EVBU and external terminal/host computer
devices. A fixed 9600 baud rate is provided for the terminal I/O port.

The EVBU requires a user-supplied +5 Vdc power supply and an RS-232C compatible
terminal for operation. A host computer is used with the EVBU to download Motorola
S-record information.

The MC68HC11 MCU SCI(serial communication interface) has been set for 9600 baud
using a 2MHz E clock. This baud rate can be changed by software by reprogramming the
BAUD register in the MCU. The EVBU is wired as data communication equipment(DCE),
whereas a dumb terminal (which I used to check the communication protocol before going
to the workstation), and most serial modem ports on host computers are wired as data
terminal equipment(DTE). This requires a straight-through cable to be used. The monitor
program uses the MCU internal RAM located at $0048-$OOFF. The control registers are
located at $1000-$103F. The EVBU allows the user to use all the features of the BUFFALO
software, but then the user can only use locations $0000-$0047 and $0100-$01FF of RAM
(325 bytes) and 512 bytes of EEPROM($B600-$B7FF). The total memory map is shown
below.

ADDRESS RESTRICTIONS

$0000-$01FF 512-Bytes o f RAM(can be remapped to any 4K page by th e IN IT

R e g is t e r) .

$0000-$0047 A v a ila b le to user.

$0048-$0065 BUFFALO monitor stack area .

$0066-$00C3 BUFFALO v a r ia b le s ,

$00C4-$00FF In te rru p t pseudo vectors (ju m ps)

$0100-$01FF User a v a ila b le .

$1000-$103F MCU co n tro l r e g is t e r s .

$4000 Some ve rs ion s o f EVBs have a D f l i p - f l o p addressed at th is

lo c a t io n . During in i t i a l i z a t i o n , BUFFALO w r ite s $00 to th is

lo c a t io n to r e ta in c o m p a t ib il ity .

$9800-$9801 BUFFALO supports s e r ia l 1/0 to a term in a l v ia a ACIA

(e x te rn a l IC) lo ca ted at $9800 in the memory map.

$B600-$B7FF 512-Bytes o f EEPR0M.

$D000-$FFFF 12K ROM.

$D000-$D00F BUFFALO supports s e r ia l 1/0 to a term in a l and/or host v ia

a DUART(external IC) lo ca ted at $D0000 in the memory map.

$FFC0-$FFFF Normal In te rru p t V ec to rs .

There are some Jumpers on the evaluation board which decide as to which program
to run when reset. In one configuration (monitor mode) a program called PCBUG11 can
be run from a PC to control, load and verify programs into various memory locations.
Programming and erasing the EEPROM is also done using this software. If we change the
configuration of the jumpers, we can run the BUFFALO program. But if the Jumper J2
which connects the pin EO to logic 0 or logic 1, is changed to logic 1, then the program
jumps to location $B600 on reset. This is very useful because this is the starting location
of EEPROM. So once you program the EEPROM, then the required program can be run
on reset. I have the communication control program start at this location, and each time I
reset the board, we enter this program, and it remains in an infinite loop. There are a lot of
other jumpers which change the modes of operation but which are beyond our requirements
(like expanded-multiplexed, special-bootstrap, or special-test modes) to write about them

42

in th is r e p o r t .

The operating procedures consist of assembly-disassembly and downloading descriptions
and examples. The EVBU contains a user reset switch Si. This switch is a momentary
action pushbutton switch that resets the EVBU and MCU circuits.

Upon reset, the monitor detects the state of the PEO line (governed by the position of
jumper J2). If a low state is detected, the monitor program is executed and the prompt
displayed. If a high state is detected, the monitor will automatically jump directly to
EEPROM (address location $B600) and execute user program code without displaying the
monitor prompt.

As mentioned earlier, user code can be assembled in two ways, one by using the line
assembler in the BUFFALO monitor program, and the other by downloading the assembled
code from a host computer in Motorolla S-record format. A download to EEPROM will
work if the baud rate is slow enough to allow EEPROM programming. Since erasure and
programming both require 10 milliseconds, a slow baud rate (300 baud) will have to be
used to ensure enough time between characters. If the EEPROM is bulk erased prior to
downloading, 600 baud allows enough time between characters.

The Baud rate can be changed by writing an appropriate number into the Baud register
in the MCU, and also by using one of the menu options on the communication program
(Kermit or Procomm) on the PC. We will discuss about the Baud rates when we come to
the communication part of the project.

A standard input routine controls the EVBU operation while the user types a command
line. Command processing begins only after the command line has been terminated by
depressing the keyboard carriage return key. The command line format is as follows:

> <command> [<param eters>] (RETURN)

where

> EVBU m onitor prompt.

<command> Command m nem onic(single l e t t e r f o r most commands).
<parameters> Expression or address.

(RETURN) RETURN keyboard key - depressed to en ter command.

The command l in e form at is d e fin ed using s p e c ia l ch aracters which have the

fo l lo w in g s y n ta c t ic a l meanings:

<> Enclose s y n ta c t ic a l v a r ia b le

[] Enclose o p tio n a l f i e ld s

5 .1 .1 O p e r a t i n g I n s t r u c t i o n s

43

All input numbers are interpreted as hexadecimal. All input commands are converted
automatically to upper case lettering except for downloading commands sent to the host
computer, or when operating in the transparent mode. A maximum of 35 characters may
be entered on a command line. Command line errors can be corrected by backspacing or by
aborting the command(CTRL-X or DELETE). Pressing (RETURN) will repeat the most
recent command. The LOAD command is an exception. The list of commands with their
exact syntax can be looked up from the EVBU User’s Manual.

5.2 The M C68H C11E9 Chip

The MC68HC11E9 high-density complementary semiconductor(HCMOS) high- performance
microcontroller unit(MCU) includes the following features: 12 Kbytes of ROM, 512 bytes
of EEPROM, and 512 bytes of RAM. The MC68HC11E9 is a high-speed, low-power chip
with a multiplexed bus capable of running at up to 3 MHz. Its fully static design allows it
to operate at frequencies down to dc.

Some of the Features are:

• M68HC11 CPU.

• Power Saving STOP and WAIT Modes.

• 12 Kbytes of On-Chip ROM.

• 512 Bytes of On-Chip EEPROM with Block Protect for Extra Security.

• 512 Bytes of On-Chip RAM.

• 8-Bit Pulse Accumulator.

• Real-Time Interrupt Circuit.

• Synchronous Serial Peripheral Interface(SPI).

• Asynchronous Nonreturn to Zero (NRZ) Serial Communications Interface(SCI).

• 8-Channel 8-Bit Analog-to-Digital (A/D) Converter.

• 38 General-Purpose Input/Output (I/O) Pins.

• 16 Bidirectional I/O Pins.

• 11 Input-Only Pins, 11 Output-Only Pins.

T h e s t ru c tu re o f th e M C 6 8 H C 1 1 E 9 M C U is sh ow n in F ig u r e 1.

44

W3C*' MS08'
P5 Vjjjjy

?«8TT|5»3«

meamrs« imam mgrns

mi mums

S K O A L

(xmmamjn
fNTBW*C£

sa

mjsEXPM&m
Atxamss mxemmar*

Xt^uPuu
'Y f Y f f p

smoe£m>Hmm*i(e

‘Y f f f V
tom*

commcatfnwt
■WBT® PORTE I

I t ? \ \ I i i

Figure 24: The MC68HC11E9 block diagram

5.2.1 P IN C O N FIG U R ATIO N

Some important pins are Vdd and Vss, Reset, XTAL and EXTAL, E-clock Output,Vrl and
Vrh, and Port Signals. The XTAL and EXTAL provide the interface for either a crystal or
a CMOS compatible clock to control the internal clock generator circuitry. The frequency
applied to these pins is four times higher than the desired E-clock rate. The board uses
a 8-MHz crystal and the E (system clock) is 2-MHz. The XTAL pin is normally left
unterminated when an external CMOS compatible clock input is connected to the EXTAL
pin.

The Vrl and Vrh inputs provide the reference voltages for the analog-to digital converter
circuitry. Vrl is the low reference, and the board connects this to 0 Vdc. Vrh is the high
reference. For proper A/D converter operation, Vrh should be at least 3 Vdc greater than
Vrl, and both Vrl and Vrh should be between Vss and Vdd. The board connects Vrh to
Vdd through a IK resistor, with a 0.1 micro Farad Capacitor connected to Vss (ground).

Port pins have different functions in different operating modes. Pin functions for ports
A,D, and E are independent of operating modes. Ports B and C, however depend on the
mode for their operation. Port B provides 8 general-purpose output signals in single-chip
operating modes. When the microcontroller is in expanded multiplexed operating mode,
port B pins are the eight high-order address lines. Port C provides eight general-purpose
input/output signals when the MCU is in the single-chip operating mode, but in expanded
multiplexed operating mode, port C pins are a multiplexed address/data bus. Details of
various functions of the 40 port signals are shown in page 2-8 in the Technical Data book.

Pins PD[5:0] can be used for general-purpose I/O signals. These pins alternately serve
as the serial communication interface(SCI) and serial peripheral interface(SPI) signals when
those subsystems are enabled. Pin PDO is the receive data input(RxD) signal for the SCI.
Pin PD1 is the transmit data output(TxD) signal for the SCI. I used the 8 pins of port B
as output to write data to the D/As and 3 pins of port C to control the 3 D/As, so that we
write the correct data to the appropriate D/A at a certain time. Since the SCI is always
on for our requirement, pins PDO and PD1 are used for RxD and TxD.

5.2.2 The C PU

The CPU is designed to treat all peripheral, I/O, and memory locations identically as
addresses in the 64 Kbyte memory map. This is referred to as memory- mapped I/O.
There are no special instructions for I/O that are separate from those used for memory.
This architecture also allows accessing an operand from an external memory location with
no execution-time penalty.

The CPU registers are an integral part of the CPU and are not addressed as memory
locations. The seven registers are shown in Figure 2.

46

5.2.3 A ccum ulators A, B and D

These are general purpose 8-bit registers that hold operands and results of arithmetic
calculations or data manipulations. For some instructions, these two accumulators are
treated as a single double-byte(16-bit) accumulator called D.

5.2.4 Index R egisters X and Y

These registers provide a 16-Bit indexing value that can be added to the 8-bit offset provided
in an instruction to create an effective address. The IY register needs an extra byte of
machine code and an extra cycle of execution time because of the way the opcode map is
implemented.

5.2.5 Stack Pointer (SP)

The CPU has an automatic program stack. This stack can be located anywhere in the
address space and can be any size up to the amount of memory available in the system.
Normally the SP is initialized by one of the first instructions in an application program.
The stack is configured as a data structure that grows downward from high memory to
low memory. At any given time, the SP holds the 16-bit address of the next free location
in the stack. The stack acts like any other stack when there is a subroutine call or on an
interrupt, ie. pushing the return address on a jump, and retrieving it after the operation
is complete to come back to its original location. There are instructions that push and pull
the A and B accumulators and the X and Y index registers. These instructions are often
used to preserve program context.

5.2.6 Program Counter (PC)

The program counter, a 16-bit register, contains the address of the next instruction to be
executed. After reset, the program counter is initialized from one of six possible vectors,
depending on operating mode and the cause of reset.

5.2.7 C ondition C ode R egister (CCR)

This 8-bit register contains five condition code indicators (C,V,Z,N and H), two interrupt
masking bits, (IRQ and XIRQ) and a stop disable bit (S). These condition codes are
automatically updated by most instructions.

5.2.8 O pcodes and A ddressing M odes

This MCU uses 8-bit opcodes. A complete instruction consists of a prebyte, if any, an
opcode, and zero, one, two, or three operands. Complete instructions can therefore be

48

from one to five bytes long.
Six addressing modes can be used to access memory. They are : immediate, direct,

extended, indexed, inherent, and relative. All modes except inherent mode use an effective
address. The effective address is the memory address from which the argument is fetched
or stored, or the address from which execution is to proceed. The effective address can
be specified within an instruction, or it can be calculated. The detailed instruction set is
available in the Technical Data Book for MC68HC11E9. -

5.2.9 M em ory Map

The operating mode determines memory mapping and whether memory is addressed on-
or off-chip. Memory locations for on-chip resources are the same for both expanded mul­
tiplexed and single-chip modes. Control bits in the CONFIG register allow EPROM and
EEPROM to be disabled from the memory map. The 512-byte RAM is mapped to $0000
after reset. It can be placed at any other 4K boundary ($x000) by writing an appropriate
value to the INIT register. The 64-byte register block is mapped to $1000 after reset and
can also be placed at any 4K boundary($x000) by writing an appropriate value to the INIT
register. The Table for MCU register and control bit assignments can be looked up from
the Technical Data Manual.

5.3 Serial C om m unications Interface (SCI)

The SCI is a universal asynchronous receiver transmitter (UART), one of two independent
serial I/O subsystems in the MC68HC11E9. It has a standard non return to zero(NRZ)
format (one start, eight or nine data, and one stop bit). Several baud rates are available.
The SCI transmitter and receiver are independent, but use the same data format and bit
rate.

The serial data format requires the following conditions:

• An idle-line in high state before transmission or reception.

• A start bit, logic zero, transmitted or received, that indicates the start of each char­
acter.

• Data that is transmitted and received least significant bit(LSB) first.

• A stop bit, logic one, used to indicate the end of a frame. (A frame consists of a start
bit, a character of eight or nine data bits, and a stop bit.)

• A break (defined as the transmission or reception of a logic zero for some multiple
number of frames).

Selection of the word length is controlled by the M bit of SCI control register SCCR1.

49

5.3.1 Transm it O peration

The SCI transmitter includes a parallel data register(SCDR) and a serial shift register,
which can only be written through the SCDR. This double buffered operation allows a
character to be shifted out serially while another character is waiting in the SCDR to be
transferred into the serial shift register. The output of the serial shift register is applied to
TxD as long as transmission is enabled.

5.3.2 R eceive O peration

During receive operations, the transmit sequence is reversed. The serial shift register
receives data and transfers it to a parallel receive data register (SCDR) as a complete
word. An advanced data recovery scheme distinguishes valid data from noise in the serial
data stream. The data input is selectively sampled to detect receive data, and a majority
voting circuit determines the value and integrity of each bit.

Two methods of wakeup are available: idle-line wakeup and address-mark wakeup.
During idle-line wakeup, a sleeping receiver awakens as soon as the RxD line becomes idle.
In the address-mark wakeup, logic one in the most significant bit (MSB) of a character
wakes up all sleeping receivers. Since we are using only one chip, we use the idle-line
wakeup.

Three error conditions occur during generation of SCI system interrupts. They are the
SCDR overrun, received bit noise, and framing errors. Three bits (OR, NF, and FE) in the
SCSR register are set to indicate that the respective error has occured. A read of the SCSR
(with the respective bit set) followed by a read of the SCDR clears the bit, and ensures
normal operation.

5.3.3 SCI R egisters

There are five addressable registers in the SCI:

1. Serial Communications Data Register: SCDR is a parallel register that receives data
when it is read, and transmits data when it is written. Reads access the receive data
buffer and writes access the transmit data buffer. Receive and transmit are double
buffered.

2. Serial Communications Control Register 1: SCSR1 provides the control bits that
determine word length and select the method used for the wakeup feature.

3. Serial Communications Control Register 2: SCSR2 provides the control bits that
enable or disable individual SCI functions like transmit interrupt enable, receiver
interrupt enable, idle-line interrupt enable, transmitter enable and receiver enable
among others.

50

4. Serial Communication Status Register: SCSR provides inputs to the interrupt logic
circuits for generation of the SCI system interrupt. It contains all the error detection
flags, besides the transmit complete and receive data register full flags.

5. Baud Rate Register: This register is used to select different baud rates for the SCI
system. The SCP[1:0] bits function as a prescaler for the SCR[2:0] bits. Together
these five bits provide multiple baud rate combinations for a given crystal frequency.
Right now the EVBU has an 8MHz crystal, and we are using a 9600 Baud rate.

For our communication, I used a standard available subroutine called INIT to initialize
the SCI, and then wrote two subroutines to read and write data, which were very similar
to the standard ones, except that they do not modify the data, read carriage return or line
feed as they are and also use all 8 bits instead of masking off the 8th bit for parity.

5.4 Analog to D ig ita l Converter

The S/D system is an 8-channel. 8-bit, multiplexed-input converter. It does not require
external sample and hold circuits because of the type of charge redistribution technique
used. A/D converter timing can be synchronized to the system E clock, or to an internal
RC oscillator. The A/D converter system consists of four functional blocks: multiplexer,
analog converter, digital control, and result storage.

5.4.1 M ultiplexer:

The multiplexer selects one of 16 inputs for conversion. Input selection is controlled by
the value of bits CD-CA in the ADCTL register. The eight port E pins are fixed direction
analog inputs to the multiplexer, and additional internal analog signal lines are routed to
it.

5.4.2 Analog Converter:

Conversion of an analog input selected by the multiplexer occurs in this block. It contains
a digital-to-analog capacitor (DAC) array, a comparator and a successive approximation
register. Each conversion is a sequence of eight comparisons operations, beginning with
the MSB. Each comparison determines the value of a bit in the successive approximation
register(SAR). The DAC array performs two functions. It acts as a sample and hold circuit
during the entire conversion sequence, and provides comparison voltage to the comparator
during each successive comparison.

The result of each successive comparison is stored in the SAR, and when the conversion
sequence is complete, the contents of the SAR are transferred to the appropriate result
register.

51

5.4.3 D igital Control:

All A/D converter operations are controlled by bits in register ADCTL. In addition to
selecting the analog input to be converted, ADCTL bits indicate conversion status, and
control whether single or continuous conversions are performed. Also the ADCTL bits
determine whether conversions are performed on single or multiple channels.

5.4.4 R esult Registers:

Four 8-bit registers (ADR[4:1]) store conversion results. The conversion complete flag
(CCF) indicates when valid data is present in the result registers. The result registers are
written during a portion of the system clock cycle when reads do not occur, so there is no
conflict.

A/D converter operations are performed in sequences of four conversions each. A conver­
sion sequence can repeat continuously or stop after one iteration. The conversion complete
flag (CCF) is set after the fourth conversion in a sequence to show the availability of data
in the result registers.

We used multiple channel conversion, continuous scan and the lower four channels since
we need 3 sensor values converted in one shot. Since the Vrl was OV and Vrh was 5V, a OV
input got converted to 0x00 and a 5V input got converted to OxFF. To change the range
of the analog input, we have to scale the input and consequently interpret the digital data
accordingly. But since the sensors that we have on the robot arm have a range from OV to
5V, we can directly connect their output to the A/D input.

5.5 D igita l to Analog Converter

For the D/A conversion, we used an 8-Bit microprocessor compatible, double buffered
DAC0830. The DAC0830 is an advanced CMOS 8-bit multiplying DAC designed to inter­
face directly with most of the popular microprocessors. The circuit uses CMOS current
switches and control logic to achieve low power consumption and low output leakage cur­
rent errors. Double buffering allows these DACs to output a voltage corresponding to one
digital word while holding the next digital word. The DAC can be used in different modes
of operation. We used it in a Voltage Switching Configuration with bipolar output with in­
creased output voltage swing which ranges from -10V to +10V (ie. 0x00 would correspond
to -10V and OxFF to +10V)

There are two important things to keep in mind when using this DAC in the voltage
switching mode. The applied reference voltage must be positive since there are internal
parasitic diodes from ground to the loutl and Iout2 terminals which would turn on if the
applied reference went negative. There is also a dependence of conversion linearity and
gain error on the voltage difference between Vcc and the voltage applied to the normal

52

D A C 0 8 3 0 S e r i e s A p p l i c a t i o n H in ts (Continued)

Figure 26: D/A conversion unit.

current output terminals. To ensure that all 8 switches in the R-2R ladder turn on, it is
recommended that the applied reference voltage be kept less than +5Vdc and Vcc be at
least 9V more positive than Vref. These restrictions ensure less than O.llinearity and gain
error change. See Figure 3. for the circuit of the D/A conversion unit.

But we used +/-12V for Vcc and used a 3.3V Zener instead of 2.5V zener, due to lack
of availability of the part on time. First we tried out the circuit with a 5V LM336 zener,
but the error was so high that the conversion was way off. The error vs reference voltage
curve is shown in Figure 4. Since the chip had to output 3 different voltages (to the 3
motors), we needed 3 D/As. So I use port B to output the 8bit digital data which goes to
all 3 DACs. But I write to one D/A at one time. So I use 3 pins of port C to control the 3
DACs, making one of the pins low at one time, thus enabling the write for that D/A. This
way, I have the chip output data to all the 3 D/As, thus controlling the 3 motors.

5.6 O perations in th e Chip

The Chip has been programmed to first start a continuous A/D conversion which keeps
updating the result registers as and when the data is ready. It then establishes a commu­
nication with the workstation. Now the chip reads the voltages to be sent to the motors,
then transmits the sensor values from the A/D result register to the workstation, and sends
the voltage values to the DACs and goes back to getting the new voltage value from the
workstation. The chip does not wait for an A/D conversion to complete, but gets the last
updated value. The A/D conversion takes place rapidly in the back ground at 2 MHz
clock rate. The chip has been programmed to go in step with the program running on
the workstation. It reads 3 values (voltages to the motors) from the workstation, sends
back 3 sensor values, then sends the voltages to the DACs, and goes back to reading new
voltage values from the workstation. Appendix C Shows the assembly program used in the
controller.

53

Gain and Linearity Error
Variation vs. R eferen ce Voltage

6 ? 4 l 6 10
Vmf. KFMENCf V01TASE (VK)

Figure 27: Error vs reference voltage.

5.7 W orkstation’s R ole

The workstation has the control program running on it. For the communication protocol,
the program opens the port /dev/ttya using the system call ’’open” and then controls
the configuration of the port by using the call ’’ioctl” which can set the baud rate, type
of transmission and reception, length of each character etc. The port was configured to
operate at 9600 baud rate, non-echoing, raw mode where all the 8bits are received and
transmitted as they are without checking or masking the 8th bit for parity. Also there
is absolutely no processing done on the characters, so that the carriage return and line
feed are read and sent as different characters, and the lower and upper case letters are
mapped differently. Also the port was configured to be non-blocking using another system
call ’’fcntl”, which makes the read operations easier. So once the port has been opened in
the correct format, all the program has to do is read or write to this port, using commands
’’read” and ’’write”.

So the program gets the sensor values from the chip by reading from the port, and then
scales them appropriately from Hex to Integers, uses them in the program to calculate the
voltage to be sent out, and then again scales them to be between 0x00 and OxFF (so that
0x00 corresponds to -10V and OxFF to +10V), before writing to the port so that the chip
can read it. Once the whole program is completed , the port is closed to prevent further
communication, and allow access to other programs.

54

5.8 Problem s

There were a series of problems all along the project. First the port /dev/ttya was not
configured, and later it was configured to be a terminal. A terminal is configured by default
to be echoing, carriage return line feed mapped together and a cooked mode ie. lines of
input are collected and input editing is done, and the edited line is available when it is
completed by a newline. Without knowing this default mode, I had the protocol set up
such that the chip sends some data and waits for the workstation to send back some data.
But instead the chip would read the data it had just sent which got echoed back from the
port. Also the workstation wouldn’t read any data since it did not receive a carriage return.
Later with a carriage return- line feed inserted with each data, the workstation was reading
the data OK, but the input and output data was being processed for parity and the 8th
bit was masked, so the range of data in the communication was now reduced to 0x00 to
0x7F. The in step protocol had no meaning at all and the communication would just lock
up. After I had the configuration set up properly, the communication worked correctly.

Also a different cable had to be used for communication with the workstation. I had the
communication tested with a PC, but then it wouldn’t work on the workstation, because
it needed some extra jumpers on the connector. DSL helped me out with the right ca­
bles. Testing with the dumb terminal tlO caused some problems because it also did parity
checking and masking and I was checking to see if output processing was being done by
the workstation or not.

Though the communication on the sun works perfect, the read operations from the
sensors through the chip take up a lot of time. After running a lot of tests on the com­
munication, like reading and writing different number of bytes from and to the chip, we
figured out that most of the time was being used up in the OS during the read operations.
Though we couldn’t find out what exactly was going on in the kernel that was causing the
delay (we couldn’t find any documentation on it), we guessed that there was a read buffer
that was being filled up each time a byte is sent by the chip, but the buffer is not available
in user space for the program to read it until the buffer contains a certain number of bytes,
or a certain time-out value has expired. But we had no way of either proving it or changing
it.

So we moved from hayduke (Sparc 10) to kahlua (HP - 730), because we were assured
of some low level hacking by Mike Hibler of CSS, to see what the problem was, and correct
it, if it persists. On running the program a few times on the HP, Mike figured out that it
was a buffer timeout value problem on an HP, and found that the default value was set to
14 characters. So he changed the timeout to one character, and rebooted the machine. He
also mentioned that usually this timeout value cannot be changed by a normal user. So
once this change was done, the 10,000 loop program with 2 reads and 1 write per loop ran
in 30 seconds, which is around the optimum speed that can be attained at 9600 baud rate.

55

To get a higher update rate , we have to use 19200 or 38400 baud rate.
But the EVBU uses a crystal of 8-MHz frequency. With this frequency, the maximum

attainable useful baud rate is 9600. To get 19.2K or 38.4K, we will have to replace the
crystal by a different crystal. But with a 10-MHz crystal, the system E-clock rate increases
to 2.5-MHz which might cause problems since the part has been tested only for 2.0MHz.
Another option is to go to a lower frequency crystal (4.9152 MHz) which also gives the
standard baud rate options, but this slows down the internal clock and hence execution of
the instructions, and the A/D conversions. Also the PCBUGll and the BUFFALO monitor
programs have been written for 8MHz crystal frequency, and they have to be modified for
any other crystal. But after Mohammed simplified the control program to normal linear
control, the communication speed on the SUN was sufficient for control of the 3 links.

5.9 M otors and Sensors

Mircea Cormos took care of the motors and sensors that would be used on the robot arm.
There are 3 different motors, one for the base, one for the shoulder, and one for the elbow.
The Base motor is a Clifton Precision Products Servo Motor with Double Shaft. It is rated
at 24VDC, 2200 RPM at no load and a peak torque of 350 oz-in. The current at peak
torque is rated at 24 Amps. The Shoulder motor is a PM motor with optical incremental
encoder. It is rated at 18 VDC, 3000 RPM at no load and a peak current of 51 Amps. The
Elbow motor is a Canon geared DC motor with ratings of 24 VDC and 86 RPM at no load.

One of the sensors is a tachometer. It has an output of 6.5 Volts/1000 RPM. The A/D
on the chip has a limit of 5 VDC. But the motor is never expected to reach a very high
RPM and hence the input to the A/D would be well within the limit. The other sensors are
optical encoders, which have an input rating of 5VDC and 60 mA, and the output varies
within this range, which is also perfect for our purpose.

The D /A ’s give out an output swing of +/-10V, and the current rating is only 2mA. So
the motors need power amplifiers that will transfer this voltage to the motors and withstand
the current requirements of the motors. But right now, the setup has 3 PIDs which get the
output voltage from the D/As and amplifies them before feeding them to the motors.

6 T he O ptim al D esign S ub system

The role of this subsystem is to assist robot designers in determining the optimal config­
uration and parameters given some task specifications and some of the parameters. The
following sections describe the required tasks to be done to accomplish this part along with
some design examples.

56

6.1 C onstructing th e O ptim ization Problem

Any optimization problem has three main components:

• Objective function to be minimized or maximized.

• Optimization variables.

• Set of constraints.

A set of objective functions that can be used in the optimization problem are specified.
This set will form the database for the formation of the final objective functions for some
of the parameters using the task specification and the performance requirements.

Some of the criteria that can be used to form objective functions are:

• Work space.

• Manipulability.

• Speed.

• Accuracy.

• Power consumption of motors.

To form the objective functions, we need to find quantitative measures for the manipula­
tor specification and the performance requirements. In some cases, a closed form expression
is not available. In such cases, the simulation programs can be used to determine the re­
quired quantitative measure. For example, the maximum velocity is a function of most of
the parameters (link lengths, masses, friction, motor parameters), but it is not easy to get
a closed form expression for the velocity as a function of all of these parameters; therefore,
the simulation program can be used to measure the maximum velocity for different values
of these parameters.

In addition to these quantitative measures, there are some rules and assumptions that
will be used to solve for some of the parameters, and to give guidance during the design
cycle. Some of the assumptions we made to simplify the problem are:

• The robot type and the degrees of freedom are given.

• Only revolute and prismatic joints are considered.

• The links are uniform with rectangular or cylindrical cross section.

• There is a finite set of materials used to build the robot with known densities.

57

• There is a finite number of actuators and sensors with known specifications that can

• Select the solution with equal link lengths or masses because this will simplify the

• Choose the feedback controls kp,k v that give critically damped behavior (kv = 2yjhp)-

• Consider a minimum length for each link to satisfy some assembly and manufacturing

Our strategy for solving this optimization problem will be to divide it into stages,
at each stage solve for some of the parameters, then use the values obtained for these
parameters in the following stage. The reason for choosing this strategy is that, some of
the robot parameters must be determined before we can start solving for other parameters.
For example, the robot type must be determined first. The other parameters are largely
affected by the choice of the robot type. The selection of the robot type depends on the
tasks and performance requirements. For the time being, we assume that the robot type
is given, and later the selection of the robot type can be added to the system.

There are many algorithms for solving the optimization problem. In our case most
of the objective functions will have more than one variable. In this case multidimen­
sional optimization techniques are recommended. One of the simplest methods is pattern
search which alternates sequences of local exploratory moves with extrapolations (or pat­
tern moves). Another method is simple random search which selects random search points
and evaluates the function at each of those points. More details about these methods and

The following are some quantitative measures that can be used as objective functions
for some of the design parameters with some examples of forming the optimization problem

This measures the efficiency of the design in terms of generated workspace. It is defined
as the ratio of the manipulator length sum to the cube root of the workspace volume. The

58

where a, is link length, and d{ is the maximum offset for prismatic joints.

As an example of using this measure, suppose that the given specification for the ma­
nipulator is three degrees of freedom with a certain workspace shape (sphere, cylinder,
etc.), the maximum total length for its links is L, and the first two links are equal. The
optimization problem will be:

min /(/,•) .
where:

£ h = L,

l\ = h '

The last two equations constitute the constraints in the optimization problem. This
problem is very easy to solve for the lengths. The problem here is to calculate the volume
of the workspace, because sometimes it is too difficult to calculate when the workspace is
irregular and if it has some gaps (nonreachable areas).

6.1.2 M anipulability

Another measure is the m a n ip u la b ility . This measures the ability of the manipulator to
move uniformly in all directions. At the singular points, the manipulator loses one or more
degrees of freedom. In other words, some tasks cannot be performed at or near singular
points. A quantitative measure for the manipulability of a robot is defined as:

w = | det(J(0)) |
where J (0) is the Jacobian matrix which is the first derivative of the position vector of the
end-effector. By maximizing this measure for the length of each link, the manipulator will
have a maximally large well-conditioned workspace.

6.1.3 Force Transm issibility

Another measure for robot capability is u = 1 / w , which called force tran sm issib ility. If
motion capability is the desired behavior then we maximize for w (the manipulability),
but if a powerful work capability is the desired characteristic, then we maximize for u .
On the other hand, if we want a flexible robot that can handle both situations reasonably
efficiently, then we find the average value of u and w .

6.1.4 Accuracy

Frequency of update and sampling rates are the main parameters affecting the accuracy
of the manipulator motion. In general, increasing the frequency of update and the sensor
readings results in smaller error patterns. There is no formal or closed form solution to
determine the optimal value for the frequency of update that gives a specified maximum

59

allowable error. The only practical way is to use simulation programs and change the value
for both frequencies until the desired behavior is obtained. The constraint in this case is
the maximum speed of the machine used and the maximum speed for the interface between
the robot and the actuators and sensors.

6.2 T he U ser Interface .

The user interface is interactive and enables the user to select the performance criteria
and specify some of the parameter values (which will form the system constraints); it also
displays the results of the recommended values for the other parameters. After selecting
values for the required parameters, the new configuration can be tested using the simulation
and monitoring subsystems, and each performance criterion can be measured and compared
with the prespecified performance requirements, then, changes can be made to the tasks or
the constraints if necessary, and the design subsystem run again to get new values. This
design cycle is shown in Figure 28.

6.3 Som e D esign Exam ples

In this section we will demonstrate the strategy used in the optimal design module by
showing some design examples. In each example the performance requirements are stated
which form one or more objective functions, a set of constraints are formed from the given
specifications, the parameters to be determined for optimal performance are specified, and
finally the strategy for solving the problem is explained.

6.3.1 Exam ple (1)

• Performance Criteria:

— Efficient link lengths.

— Maximum manipulability.

• Optimization Parameters:

— Link lengths.

• Optimization Functions:

= W

w —\ det(J(0)) |

60

• Constraints:

— Total link lengths (L).

• Strategy:

Combining these two objective functions using weighting coefficients according to the
importance of of each one, we get one objective function: .

CiQ l + c2w

where c\ and c2 are the weighting coefficients. .

By minimizing the new objective function over the link lengths, we can get values for
the link lengths. If the generated function is differentiable, then we can get a direct
solution to the problem. Usually, there is more than one solution for selecting the
link lengths (for more than two link robots). In this case, some other rules can be
used to select among these solutions. For example, each link may have bounds on
its length. Also, selecting a solution which gives similar length for several links is
better from the manufacturing point of view. On the other hand, if the function is
not differentiable, then we can use a heuristic optimization technique such as pattern

search which does not require gradient information.

6.3.2 Exam ple (2)

• Performance Criteria:

— Minimum position error (e).

— Maximum speed (x).

• Optimization Parameters:

— The feedback gains kp,kv.

— Joint friction fr.

• Optimization Functions:

c f (kp, kv , fr)

X kvi f r)

where kp, kv, and f r are vectors of length N, where N is the number of links.

• Constraints:

62

Link lengths and masses.

Maximum torque available

Motor parameters.

Update frequency.

Feedback frequency.

modules. Therefore, the simulation program will be used to determine the optimal

6.3.3 Exam ple (3)

• Performance Criteria:

— Maximum acceleration (£).

— Minimum position error (e).

— Minimize power consumption for the motors (P)

• Optimization Parameters:

— Link lengths.

— Link masses.

• Optimization Functions:

• Strategy:

In this case, the functions / and g are not in a closed form since the error and
the velocity are calculated iteratively using the dynamic and the feedback control

values for the required parameters. Also here, we can form one objective function
as in the first example. Notice here that we can consider that a critically damped
behavior is preferred, so we can use the relation between kp and kv that produces this
behavior, which is:

This will reduce the number of optimization variables from three to two.

T h e o v e r a l l o b je c t i v e fu n c t io n is:

a i f + 0,2 9 + a 3^

63

• Constraints:

— Feedback gains.

— Update frequency.

— Feedback frequency.

— Friction.

— Set of available densities for the link material.

— Catalog of available motors.

• Strategy:

This problem is solved in two stages: first the manipulability and the structured
length index can be used to determine the optimum link lengths (as in the first ex­
ample); then, we use these lengths to get the optimum masses. From the assumptions
stated before, there is a finite set of densities, and the links are uniform, which means
we need to select the density that gives optimum performance, since we already have
the lengths. This problem can be solved using pattern search on the densities, or
using some other integer optimization techniques.

The power consumption of the motor is related to the torque, which means we need
to minimize the maximum torque. Also, here we use the simulation program to get
a quantitative measure for the overall objective function.

6.3.4 Exam ple (4)

• Performance Criteria:

— Maximum speed (x).

— Minimum position error (e).

• Optimization Parameters:

— Update frequency (u).

— Feedback frequency (sensor reading rate, r).

• Optimization Functions:

x = f { u , r)

e = g (u , r)

a i f + (*29

64

T h e o v e r a l l o b je c t i v e fu n c t io n is:

• Constraints:

— Link lengths and masses.

— Feedback gains.

— Motor parameters.

— Friction.

— Sensor ranges.

— Maximum computer speed.

— Maximum speed for the communication part (A/D and D/A).

• Strategy:

We again use simulation to get a quantitative measure for the overall objective func­
tion, with the pattern search on the two frequencies given the maximum speed for
the computer and the sensor reading rate.

7 T he P rototyp in g E nvironm ent

The prototyping environment consists of several subsystems such as:

• Design.

• Simulation.

• Control.

• Monitoring.

• Hardware selection.

• CAD/CAM modeling.

• Part ordering.

• Physical assembly and testing.

Figure 29 shows a schematic view of the prototyping environment with its subsystems
and the interface.

These subsystems share many parameters and information. To maintain the integrity
and consistency of the whole system, a central interface (Cl) is proposed with the required
rules and protocols for passing information. This interface will be the layer between the

65

Figure 29: Schematic view for the robot prototyping environment.

robot prototype and the subsystems, and it will also serve as a communication channel
between the different subsystems.

The tasks of this interface include:

• Building relations between the parameters of the system, so that changes in any
of the parameters will automatically perform a set of modifications to the related
parameters on the same system, and to the corresponding parameters in the other
subsystems.

• Maintaining a set of rules that governs the design and modeling of the robot.

• Handling the communication between the subsystems using a specified protocol for
each system.

• Identifying the data format needed for each subsystem.

• Maintaining comments fields associated with some of the subsystems to keep track
of the design reasoning and decisions.

The difficulty of building such an interface arises from the fact that it deals with different
systems, each with its own architecture, knowledge base, and reasoning mechanisms. In
order to make these systems cooperate to maintain the consistency of the whole system,
we have to understand the nature of the reasoning strategy for each subsystem, and the
best way of transforming the information to and from each of them.

In this environment the human role should be specified and a decision should be taken
about which systems can be fully automated and which should be interactive with the
user. The following example illustrates the mechanism of this interface and the way these
systems can communicate to maintain system consistency.

Assume that the designer wants to change the length of one of the links and wants to see
what the motor parameters should be that give the same performance requirements. The
optimal design subsystem is used to determine the new values for the motor parameters
given the new length, then it sends a request to the Cl to look for the motor with the
required specifications in the part-ordering system. Here we have two cases: a motor
with the required specifications is found in the catalogs, or no motor is available with
this specification. In the second case, this will be reported and another motor with the
closest specifications will be selected. Next, the motor specifications will be updated in the
database; then the CAD/CAM system is used to generate the new model and to check the
feasibility of the new design. For example, the new motor might have a very high rpm,
which requires gears with high reduction ratio. This might not be possible in some cases
when the link length is relatively small. In this case, this will be reported and the user
will be notified of this problem and will be asked to either change some of the parameters

67

or the performance requirements and the loop will start again. Once the parameters are
determined, the monitoring program is used to give a performance analysis and compare
the results with the required performance. Finally, a report with the results is produced.

7.1 Interaction B etw een Subsystem s

To be able to specify the protocols and data transformation between the subsystems in the
environment, the types of actions and dependencies among these subsystems must be iden­
tified. Also, the knowledge representation used in each subsystem should be determined.

The following are the different types of actions that can occur in the environment:

• Apply relations between parameters.

• Check constraints.

• Make decisions. (Usually, the user makes the decisions.)

• Search in tables or catalogs.

• Update data files.

• Deliver reports (text, graphs, tables, etc.).

There are several data representations and sources such as:

• Input from the user.

• Data files.

• Text files (documentation, reports, messages).

• Geometric representations (Alpha_l).

• Mathematical Formulae.

• Graphs.

• Catalogs and tables.

• Rules and constraints.

• Programs written in different languages (C, C ++, Lisp, Prolog, etc.).

68

7.2 T he Interface Schem e

There are several schemes that can be used for the interface layer. We will consider a
scheme in which each subsystem has a subsystem interface (SSI). The SSI has the following
tasks:

• Transfer data to and from the subsystem.

• Send requests from the subsystem to the other interfaces through the central interface.

• Receive requests from other subsystem interfaces and translate them to the local
language.

These subsystem interfaces can communicate in three different ways (see Figure 30):

1. Direct connection: which means that all interfaces can talk to each other. The
advantage of this is that it has a high communication speed; however, it makes the
design of such interfaces more difficult, and the addition or modification of one of the
interfaces requires the modification of all other interfaces.

2. Message routing: in which any request or change in the data will generate a message
on a common bus, and each SSI is responsible for taking the relevant messages and
translating then to its subsystem. The problem with this scheme is that it makes
the synchronization of the subsystems very difficult, and the design of the interface
is more complicated.

3. Centralized control: in which all interfaces talk with one centralized interface that
controls the data and controls flow in the environment. The advantage of this scheme
is that it makes it much easier to synchronize between the subsystems, and the
addition or modification of any of the SSIs will not affect the other SSIs.

7.3 Overall D esign

The Prototyping Environment (PE) consists of a central interface (CI) and subsystem
interfaces (SSI). The tasks of the central interface are to:

• Maintain a global database of all the information needed for the design process.

• Communicate with the subsystems to update any changes in the system. This requires
the central interface to know which subsystems need to know these changes and send
messages to these subsystems informing them of the required changes.

69

(3) Centralized Control

Figure 30: Three different methods for subsystem interface communication.

• Receive messages and reports from the subsystems when any changes are required,
or when any action has been taken (e.g., update complete).

• Transfer data between the subsystems upon request.

• Check constraints and apply some of the update rules.

• Maintain a design history containing the changes and actions that have been taken
during each design process with date and time stamps.

• Deliver reports to the user with the current status and any changes in the system.

The subsystem interfaces are the interface layers between the Cl and the subsystems.
This makes the design more flexible and enables us to change any of the subsystems without
much change in the Cl — only the corresponding SSI need to be changed. The role of the
SSIs are:

• Report any changes to the CL

• Receive messages from the Cl with required updates.

• Perform the necessary updates in the actual files of the subsystem.

• Send acknowledgments or error messages to the CL

The assumption is that there is a user at each subsystem (by a user here we mean
one or more skilled persons who understand this subsystem), and there is a user operating
the central interface as a general director and coordinator for the design process. In other
words, the C l is to assist in the coordination of the job and to help communicate with all
subsystems. Figure 31 shows an overall view of the suggested design.

In the first phase of implementing the PE, the users have more work to do. The Cl
and SSIs maintain the information routing between the subsystems by sending messages
to the corresponding user at each subsystem, then the action itself (e.g., update a file) is
accomplished by the user. Later on, the system will be automated to perform most of these
actions itself and the user will simply be informed of the actions taken.

7.3.1 Communication Protocols

The main purpose of this environment is keep all the subsystems informed of any changes
in the design parameters. Therefore, passing information between the subsystems is the
most important part of this environment. To be able to control the information flow, some
protocols were developed to enable the communication between these subsystems in an

71

organized manner. In our design, all subsystems communicate through the Cl which is
responsible for passing the information to the subsystems that need to know.

There are two types of events that can occur in this system:

1. Change reported from one of the subsystems.

2. Request for data from one subsystem to another.

Figure 32 shows the protocol used for the first event represented by a finite state machine
(FSM). The states of this FSM are:

1. Steady state: Do nothing.

2. Change has been reported: send lock message to all subsystems. Apply relations and
check constraints. If constraints are satisfied, go to state 3. If constraints are not
satisfied, report these to sender and go to steady state.

3. Constraints are satisfied: Notify the subsystems with the changes and wait for ac­
knowledgments.

4. Acknowledgments received from all subsystems: Send the final acknowledgment to
the subsystems and go to steady state.

5. Acknowledgments not Ok: Send a “change-back” command to the subsystems and
go to steady state.

Figure 33 shows the protocol for the second event. The states in this FSM are:

1. Steady state: Do nothing.

2. Request for S2 received from SI. Send the request to S2.

3. Required data found at S2. Send data to SI and go to steady state.

4. Required data not found at S2. Send report to SI and go to steady state.

The suggested protocol can be described in algorithmic notation as follows:

do while true

if change reported then

lock messages

apply relations

check constraints

73

Figure 32: Finite state machine representation for the change protocol.

Figure 33: Finite state machine representation for the data request protocol

if constraint satisfied then

report changes to subsystems

wait for subsystems acknowledgment

if all acknowledgments ok

update database

report the new status

else -

send a change-back message to subsystems

report failure to sender

else '

report nonsatisfied constraints to sender

send final acknowledgment to subsystems

else if data-request reported then

send request to the appropriate subsystem

if data received then

send data to sender

else

send negative acknowledgment to sender.

Figure 34 shows a possible scenario when applying this protocol. In this algorithm we
assume that all system constraints are located in the Cl; however, any subsystem may
reject the proposed values by other subsystems due to some unmodeled constraints. This
can happen either because there are some “new” constraints that are not reported to the
Cl, or because some constraints are too hard to be easily represented in the constraint
format in the CL

7.3.2 Design Cycles and Infinite Loops

One problem that arises in our PE is that in some cases infinite design loops might occur
due to some conflict between the constraints in different subsystems. For example, assume
that the design system changed the link length to some value, say from 3.0 to 2.0 inches, to
satisfy some performance requirements. This change would change the link mass as well,
say from 1.5 to 1.0 lbs. According to the mass change the gear ratio has to change or the
motor should be replaced, but if there is a constraint on the sprocket radius such that it
can be increased, and there is no other motor with lower rpm, then the mass should be
changed again to be 1.5 lbs, which requires the length to be 3.0 inches again. If we let
the system continue, the design system will change the link length again and the loop will
continue.

75

There are several solutions to this problem. One way is to make the user part of this
loop so that some of the performance requirements can be changed, or a solution can be
selected even if it does not meet some required criteria. This requires the user to be a
skilled person who has the knowledge and experience in the design process, and also to
have the authority to change and select solutions irrespective of the original requirements.
Another solution is to put some limitations on the subsystem regarding its ability to change
some of the design parameters. These limitations should guarantee infinite loop prevention
in the system. A third solution is to put all the constraints in the CL This allows the Cl
to check the solution and detect any violation to any of the constraints; then it may ask
the user to decide on another solution or to change some of the performance requirements
and run the design subsystem again. The last solution has the user in the loop as well,
but incorporating all the constraints in the C l reduces the interprocess communication and
speeds up the checking process. This last solution was chosen in our design.

7.3.3 Central Interface Design Options

There are several design choices for the CI. The following is a description of these options
along with the advantages and disadvantages of each one.

• The CI is responsible for any changes in the system and no other subsystem can
perform any changes, but they can make suggestions to the CI. This means that the
design subsystem is part of the CI. The advantages of this are:

— More control on the design process.

— No infinite cycles can happen.

The disadvantages of this option are:

— The user interface for the CI is more complicated.

— More data should be kept in the global database, such as performance require­
ments, objective functions, etc.

— A highly skilled user is required. This user should be able to perform both design
and coordination at the same time.

— An optimal design subsystem cannot be used in the system.

• The design subsystem gives initial values for some of the parameters and the CI
supplies the rest of the parameters and also can override some of the parameters
supplied by the optimal design subsystem. The advantages are:

— Any optimization packedge can be used to obtain the initial values.

77

— Some quick changes can be done from the Cl directly.

The disadvantages are:

— The user interface for the Cl is complicated.

— Skilled users are required at both the design subsystem and the CL

• No changes can be done by the Cl, and the Cl is only informed of any changes and
reports them to the other subsystems. Also, the Cl is responsible for checking the
constraints and applying the update rules. The advantages are:

— The user of the Cl does not need to know much about the design details and
technicalities.

— Any design subsystem can be used by writing the required SSI for it and includ­
ing it in the system.

— The infinite design cycles are eliminated since the design constraints will be
checked in the CI.

The disadvantages are:

— The CI has no control on the design parameters and any required changes should
be done through one of the subsystems.

— This scheme requires heavy use of interprocess communication which needs more
sophisticated protocols to maintain reliable data transmission.

The last option has been chosen for our design. Thus, the CI will not change any of the
parameters directly; however some of the parameters will be changed by the CI only when
applying the update rules. For example, the link mass is calculated as the link length times
the link cross-sectional area times the material density. So if any of the three parameters
(length, area, density) is changed (usually by the design subsystem), then the mass will
change by the corresponding update rule. The update rules should be cycle-free, i.e., any
derived parameter must not change — either directly or indirectly — any of the parameters
that are used in its calculations.

78

7 .4 O b j e c t - O r i e n t e d A n a l y s i s

Object analysis approach is used to determine the system components and functions, and
the relations between them. The top-down approach is used starting from the main objects
in the PE, then analyze each of these objects in more detail until the primitive data items
are reached. Second, the functionality of the system has been analyzed and described
using high level algorithms. Finally the corresponding member functions of the suggested
classes has been implemented. Figure 35 shows the top view of the main components in
the system, and Figure 36 shows one of these components in detail.

7 .5 P r o t o t y p i n g E n v i r o n m e n t D a t a b a s e

A database for the system components and the design parameters is necessary to enable
the C l to check the constraints, to apply the update rules, to identify the subsystems that
should be informed when any change happens in the system, and to maintain a design
history and supply the required reports.

This database contains the following:

• Robot configuration.

• Design parameters.

• Available platforms.

• Design constraints.

• Subsystems information.

• Update rules.

• General information about the system.

Now the problem is to maintain this database. One solution is to use a database man­
agement system (DBM S) and integrate it in the prototyping environment. This requires
writing an interface to transform the data from and to this DBM S, and this interface might
be quite complicated. The other solution is to write our own DBM S. This sounds difficult,
but we can make it very simple since the amount of data we have is limited and does
not need sophisticated mechanisms to handle it. A relational database model is used in
our design, and a user interface has been implemented to maintain this database. For the
current design, by making a one-to-one correspondence between the classes and the files,
reading and writing a file can be accomplished by adding member functions to each class.
In this case no need for a special DBM S and all operations can be performed by simple
functions.

79

Figure 35: The main components of the robot prototyping environment.

Figure 36: Detailed analysis for the robot classes.

7.5.1 Design Parameters

The design parameters are the most important data items in this environment. The main
purpose of this system is to keep track of these parameters and notify the subsystems of
any changes that occur to any of these parameters. For the system to perform this task, it
needs to know the following data:

• A complete list of the design parameters. •

• Which subsystems should be notified if a certain parameter is changed.

Table 3 shows a list of the design parameters along with the subsystem that can change
them and the subsystems that should be notified by a change in any of these parameters.
Notice that some of these parameters are changed by the CI, this change is accomplished
using the update rules. In this figure note that one of the design parameters can be removed
from this table, which is “display rate.” The removal of this parameter is valid because
only one subsystem needs to know about this parameter and it is the same subsystem that
can change it. However, we will keep it for possible future extensions or additions of other
subsystems that might be interested in this parameter.

7.5.2 Database Design

A simple architecture for the database design is to make a one to one correspondence be­
tween classes and files, i.e., each file represents a class in the object analysis. For example,
the robot file represents the robot class and each of the robot subclasses has a corresponding
file. This design facilitates data transfer between the files and the system (the memory).
On the other hand, this strong coupling between the database design and the system classes
violates the database design rule of trying to make the design independent of the appli­
cation; however, if the object analysis is done independently of the application intended,
then this coupling is not a problem.

Now, we need to determine the format to be used to represent the database contents
and the relations between the files in this database. Figure 37 shows the suggested data
files that constitute the database for the system, and the data items in each file. The figure
also shows the relations between the files. The single arrow arcs represent a one-to-one
relation, and the double arrow arcs represent a one-to-many relation.

7.5.3 The Design History

In this database design, a history of the design changes can be maintained to assist the
designers while developing the prototype robot. This history includes the following:

• Date of the design.

82

Table 3: Subsystem notification table according to parameter changes.

Design Parameter CI Design Control Simulation Monitor HW-Select CAD/CAM Ordering Assembly

robot model o • o o o o o

link length o • o o o o o

link mass • o o o o

link density o • o o

link cross area o • o o

joint friction o • o o o o

joint gear-ratio • o o

update rate o • o o o o

comm, rate o o o o •

motor rpm o • o

motor range o • o o o o o

sensor range o • o o o o o o

P1D parameters o • o o

display rate o •

plateform o o • o

• Values of the design parameters.

• Constraints and update rules at that time.

• Robot configuration (links, motors, sensors, etc.)

• Platform used for this design.

• All messages between the systems during this design. ‘

The design can be added to the design history upon the user request. This is accom­
plished by adding new records to the database files with a version number specified by the
user. For example, if the user wants to add the current design status to the design history,
this is accomplished by clicking on the “history” button, and typing the version number
(e.g., “design-dec-9-93”). A copy of the necessary records from the current design then will
be added to the files.

The retrieval of any design from the design history requires the user to input the version
number, and then the information about this design will be displayed. The file “history”
shown in Figure 37 contains some information about the design such as the design number,
the starting date, the finishing date, and the platform used for that design.

7 .6 C o n s t r a i n t s a n d U p d a t e R u l e s C o m p i l e r

A compiler is provided to generate C + + code for the constraints and the update rules.
First, the syntax of the language that is used to describe the constraints and the update
rules is described. Second, the generated code is determined.

Using a compiler instead of generic on-line evaluator for the constraints and the update
rules has the following advantages:

• All constraints are saved in one text file (likewise the update rules). This makes the
data entry very easy. W e can add, update, and delete any constraint or update rule
using any text editor.

• Complicated data structures are not required for evaluation.

• The database is very simple, which facilitates maintaining the design history.

• Format changes, or changes in the generated code require only changes to the com­
piler, and no changes in the system are required.

O n the other hand, it has the following disadvantages:

85

• The generated code has to be included in the system and the whole system must be
recompiled.

• A compiler needs to be implemented.

Notice that the changes in the constraints or the update rules are not frequent, so
recompiling the system is not a big problem. Also, the syntax used is very simple; therefore
the compiler for such language is not difficult to implement. ‘

7.6.1 Language Syntax _

By analyzing the design constraints and the update rules, we constructed a simple descrip­
tion of the language to be input to the compiler. There are two options in this design, either
to have one compiler for both the constraints and the rules, or to build two compilers, one
for each. From the analysis of the constraints and the rules we found that there are many
similarities between them; thus building one compiler for both is the logical option in this
case.

The following is the language definition in Backus Naur Form (BN F):

<program>

<constraint-prog>

<rule-prog>

<constraint-sequence>

<rule-sequence>

<constraint>

<rule>

<exp>

<term>

<factor>

<variable>

<constant>

<int>

<constraint-prog> I <rule-prog>

begin-constraints

<constraint-sequence>

end-constraints

begin-rules

<rule-sequence>

end-rules

<constraint> ; <constraint-sequence> I

<constraint> ;

<rule> ; <rule-sequence> I <rule> ;

<exp> <comparison-op> <exp>

<variable> = <exp>

<exp> * <term> I <exp> / <term> I <term>

<term> + <factor> I <term> - <factor> I

<factor>

<variable> I <constant> | (<exp>)

<alphabet> <alphanum> I <alphabet>

<int>.<int> I - <int>.<int> I

<int> | - <int>

<digit> <int> I <digit>

86

<alphanum>

<alphabet>

<digit>

<comparison-op>

<alphabet> <alphanum> I

<digit> <alphanum> I

<alphabet> I <digit>

a..z | A. .Z | _

0. .9

= | < | > | <= | >= | <>

The following is an example of some constraints described using this syntax:

begin-constraints

linkl_length >1.2 ;

link2_length >1.5 ;

link3_length >0.8 ;

link2_length + link3_length < MAX_T0T_LEN

linkl_mass < 1 . 4 ;

link2_mass + link3_raass <4.0 ;

jointl_gear_ratio <5.0 ;
end-constraints

Another example showing some update rules using the same syntax:

begin-rules

linkl_mass = linkl_length * linkl_density * linkl_cross_area ;

link2_mass = link2_length * link2_density * link2_cross_area ;

link3_mass = link3_length * link3_density * link3_cross_area ;

jointl_gear_ratio = motorl_speed / linkl_raax_speed ;

end-rules

From these examples it is clear that adding arrays to this language can reduce the
length of the programs, but given the fact that these constraints and rules will be entered
once at installation time, then adding or changing these rules and constraints will not be
so frequent, thus, we will not complicate the compiler, at least in the first design phase.
Some error detection and recovery modules for syntax error handling can be added to this
compiler later.

87

As mentioned before, this compiler generates C + + code which is integrated with the CI
system to check the constraint or apply the update rule. Each variable in the input to the
compiler corresponds to one design parameter. For example, “linklJength” corresponds to
the variable in the CI system that represents the length of link number one in the robot
configuration. The code generator uses a lookup table to find the corresponding variable
name, and this table is part of the CI database. A simple flat file is used to store this table
since the number of the design parameters is small.

The generated code for the constraints is the function “pe.check_constraints” that re­
turns true if all constraints are satisfied, else it returns false, and reports which constraints
are not satisfied. For the rules, the code generated is the function “pe.apply_rules” which
calculates all corresponding design variables according to the given rules. The following
examples are the code generated for the two examples shown in the previous section.

7.6.2 T h e Generated C o d e

bool

ci::check_constraints()

{
bool status[no_of.constraints]

int i = 0 :

status[i++]

status[i++]

status[i++]

status[i++]

status[i++]

status [i++]

status[i]

robot

robot

robot

robot

robot

robot

robot

robot

robot

.configuration.link[0].length > 1.2

.configuration.link[1].length > 1.5

.configuration.link[2].length > 0.8

.configuration.link[1].length +

.configuration.link[2].length < 3.0 ;

.configuration.link[0].mass < 1.4 ;

.configuration.link[1].mass +

.configuration.link[2].mass < 4.0 ;

.configuration.joint [t].gear_ratio < 5.0

constraints.generate_report(status) ; // report the result

return (and_all(status)) ;

void

ci::apply_rules()

8 8

{
r o b o t .c o n f ig u r a t io n .lin k [0] .mass =

r o b o t . c o n fig u r a tio n . lin k [0] .le n g th *
r o b o t .c o n fig u r a t io n . lin k [0] ,c r o s s _ a r e a *
r o b o t . c o n fig u r a tio n . lin k [0] .d e n s it y ;

r o b o t . c o n fig u r a t io n .l in k [1] .mass =
r o b o t . c o n fig u r a tio n . l i n k [1] . length * •
r o b o t . c o n fig u r a tio n . l i n k [l] . cross_a rea *
r o b o t . c o n fig u r a tio n . l i n k [l] . d en sity ; ,

r o b o t .c o n fig u r a t io n .lin k [2] .m a s s = '
r o b o t . c o n fig u r a tio n . l i n k [2] . length *
r o b o t . c o n fig u r a tio n . l i n k [2] ,c ro ss_a re a *
r o b o t . c o n fig u r a tio n . lin k [2] .d e n s it y ;

r o b o t . c o n f ig u r a t io n .jo in t [0] .g e a r _ r a tio =
ro b o t.m o to r [0] .speed /
r o b o t . c o n f ig u r a t io n .jo in t [0] .max_speed ;

}

In the first example, the function generate.report reports the results of checking the
constraints; if all constraints are satisfied it reports that, otherwise, it will generate a list
of the unsatisfied constraints. The function and-all is obvious. It returns the result of
ANDing the elements in the array status.

In the second example, some of the design parameters are calculated given the values of
some other parameters. The compiler should not allow the change of any parameter that
should not be changed by the CI system. This can be detected using the alter-flag in the
design parameters table.

To update the constraints or the update rules the file containing the old definition will
be displayed and the user can add, delete, or update any of the old definitions. Then the
new file will be compiled and integrated with the system.

7 .7 I m p l e m e n t a t i o n

In the following subsections some implementation issues are investigated, and the different
components in our design and how we implemented each of them are described.

7.7.1 The Central Interface

The central-interface (CI) is the core program that handles the communication between
the subsystems, and maintains a global database for the current design and a history of

89 -

previous designs. There are several types of messages used in the communication. Table 4
shows the different types of messages with a brief description and the direction of each.

The Cl is the implementation of the communication protocols described in Section 7.3.1.
There are some features and enhancement to the protocols has been added to the CL
For example, W hen the Cl receives a change message from an SSI, it directly sends lock
messages to the other subsystems so that no more changes can be sent from any SSI until
they receive a steady message. This solves the concurrency problem of more than one
system send changes to the Cl at the same time. The first message received by the Cl will
be handled and the others will be ignored. If an SSI receives a lock message after it sent
a change message, that means its message was ignored. Another feature added to the Cl
is the ability to detected if an SSI is working or not by tracing the SSLStart and SSI-Stop
messages.

The Cl is managing a number of data files that contains information about the robot
configuration, platforms, reports, design history, subsystems, and some general information
about the project. The basic file operation was implemented by defining a file class, and
by adding some member functions to each class in the system that performs the required
file management operations. The file operations that are implemented in the system are:

open: open a file in one of three modes: input, output, or input-output mode.

close: close an open file.

top: go to the first record in the file.

end: go after the last record in the file.

next: go to next record.

prev: go to previous record.

read: read the current record.

write: write a record to the end of the file.

find: find a record that contains a certain key.

file_size: returns the number of records in the file.

Some of these operations are class-specific functions such as, read, write, and find, while
the rest are general operations that are implemented as member functions in the basic file
class.

90

7.7.2 T h e P E Control System

The CI as described above has no user interface. To be able to control and manage the
coordination between the subsystems, the PE control system (PECS) was implemented
with some functionalities that enable the user to have some control over the CI.

The PECS is on top of the simple DBMS and a simple compiler for the update rules and
the constraints. The user specifies the constraints and/or the update rules using a certain
format (a language), then the compiler transforms this to C code that will be integrated
with the system for constraint checking, and for applying the update rules. The compiler
consists of two parts, a parser and a code generator. In the first phase the complexity of
the compiler was reduced by making the user language less sophisticated. Later on this
can be easily replaced by a more complicated compiler with an easier interface and more
sophisticated error checking and optimization capabilities. A schematic view of the PECS
is shown in Figure 38. Figure 39 shows the user interface for the PECS.

The PECS functions include:

Queries: which are some simple reports about the current robot configuration, previous
configuration, general information about the system, the platforms, and the subsys­
tems of the prototyping environment. Figure 40 shows a query for the current robot
configuration.

Actions: which are the actual operations that control the CI. these actions include up­
dating the constraints and the update rules, compiling the CI after including the new
constraints and update rules, activating, and terminating the CI. Figure 41 shows
one of these operations which is updating the constraints.

Reports: which are operations to manage the reports in the system, and to send and
receive reports to and from the subsystems. The report can be text, graph, figure,
postscript, or data file. Each report is saved with its type, date, sender, and the file
that contains the report contents.

7.7.3 Initial Implementation of the SSIs

In the first phase of implementation, the SSIs serve as a simple interface layer between the
CI and the user at each subsystem. They receive messages from the CI and display them
to the user who takes any necessary actions. They also report any changes to the CI, and
this is done by sending a message to the CI with the changes. Figure 42 shows that user
interface for one of the SSIs.

In the next implementation phase, some of the actions will be automated and the user
at each subsystem will be notified with any action taken. For example, updating a data

91

Table 4: Message types used in the communication protocols.

Type Description Direction

Change Data change reported SSI — ► CI
Const_Not_Ok Constraints not satisfied CI — ► SSI
Notify Send changes to subsystems CI — ► SSI
Ack. Positive acknowledgment SSI — ► CI
Neg_Ack. Negative acknowledgment SSI — ► CI
Back Change back CI — ► SSI
Steady Final acknowledgment CI — ► SSI
Request Request for data CI <— 4 SSI
Found Data found CI <— >• SSI
Not_Found Data not found CI <— 4 SSI
Lock lock messages CI — > SSI
SSLStart SSI is activated SSI — > CI
SSLStop SSI is terminated SSI — > CI
Terminate Terminate the CI. PE control — t CI

Robot Prototyping Environment

Queries Actions Reports

Information 1Upd. Constrains Create

Configuration Upd, Rules Read

Prev, Config. Compile List

Sub-systens Save Config.

Platfoms Data Entry quiT

Figure 39: The main window for the PE control system.

ttrttntt i»«f±gtlrtitiiiit

R o b o t C on fig u ra tio n

Version# 31 Date 1/16/1994 Platform SUN-SPARCStation-10-41 Update Rate 40

Links
Lengh 2.9 5.4 4.1

Mass 6j09 7.938 4.4485

Density 1.75 7.75 1.75

Joints
Friction 2.49 2.11 1J8

(rear Ratio 5 4 2

Sensors
Brand SENS-28 SENS-28 SENs-28

75pe Position Position Position

Range -5.5 -5,5 -5,5

M otors
Brand NTX-303 NTX-304 NTX-304

Tape DC DC DC

Speed 600 600 600

Range -20,20 -10,10 -10,10

(W)

Figure 40: The current robot configuration window.

93

Figure 41: Updating the design constraints through the PECS

94

..... .

Optimal Design Subsystem Interface I

Requests Changes Reports |

Send Changes Request Send
a

Accept
r \

Data Found Read
I 1

Reject Not Found QUIT

... Idle _ Waitingfor event... l

Figure 42: The user interface for the SSI

file that is used by the subsystem can be automatically done by the SSI, given that it has
the necessary information about the file format and the location of the changed data.

7.7.4 The Central Interface Monitor

The central interface monitor (CIM) enables the user to monitor the actions and the mes­
sages passing between the CI and the SSIs with a graphical interface. This interface shows
the CI in the middle and the SSIs as small boxes surrounding the CI. The CIM also has a
small text window at near the bottom. This text window displays a text describing the cur­
rent action (See Figure 43). The messages are represented by an arrow from the sender to
the receiver. Some results of testing the CI and the SSIs are represented in Section 8.4 with
sequences of the CIM window showing the activities that took place in each experiment.

8 T e s t i n g a n d R e s u l t s

In this section, several test cases are described along with the results obtained for the
different components of the system that has been implemented. Some experiments that
were performed for the one-link and the three-link robot are described, with the results
shown graphically.

95

Central Interface Monitor

Figure 43: The user interface for the SSI.

8 .1 O n e - l i n k R o b o t

Building the three-link robot has passed through several stages until the final version was
reached. As mentioned before, The first phase was controlling a one-link robot.

Three input sequences have been used for the desired positions, and after applying
the voltage files to the motor using the I /O card, the actual positions and velocities are
measured using a potentiometer for the position, and a tachometer for the angular velocity.
These measured values are saved in other files, then a graphical simulation program was
used to display the movement of the link, the desired and actual positions, the desired and
actual velocity, and the error in position and velocity. Figures 44, 45, and 46 show the
output windows displaying the link and graphs for the position and the velocity.

8 .2 S i m u l a t o r f o r t h r e e - l i n k R o b o t

This simulator was used to give some rough estimates about the required design parameters
such as link lengths, link masses, update rate, feedback gains, etc. It is also used in the
benchmarking described earlier. Figure 47 shows the simulated behavior of a three-link
robot. It shows the desired and actual position and velocity for each link and the error for
each of them. It also shows a line drawing for the robot from two different view points.

This simulator uses an approximate dynamic model for the robot, and it allows any of
the design parameters to be changed. For example, the effect of changing the update rate
on the position error is shown in Figure 48. From this figure, it is clear that increasing the
update rate decreases the position error.

8 .3 S o f t w a r e P I D C o n t r o l l e r

A software controller was implemented for the three-link robot. This controller uses a
simple local PID control algorithm, and simulates three PID controllers; one for each link.
Several experiments and tests have been conducted using this software to examine the
effects of changing some of the control parameters on the performance of the robot.

The control parameters that can be changed in this program are:

• forward gain (kg)

• proportional gain (kv)

• differential gain (kv)

• integral gain (&,)

97

Position error, Update Frequency = 150 Hz.
Pos. Error

0.00 2.00 4.00 6.00 8.00 10.00

Position error, Update Frequency = 1000 Hz.
Pos. Error

0.00 2.00 4.00 6.00 8.00 10.00

Figure 48: The effect of changing the update rate on the position error.

• input trajectory

• update rate

In these experiments, the program was executed on a Sun SPARCStation-10, and the
A /D chip was connected to the serial port of the workstation. One problem we encountered
with this workstation is the slow protocol for reading the sensor data, since it waits for
an I /O buffer to be filled before it returns control to the program. W e tried to change
the buffer size or the time-out value that is used, but we had no success in that. This
problem causes the update rate to be very low (about 30 times per second), and this affects
the positional accuracy of the robot. W e were able to solve this problem on an HP-700
machine, and we reached an update rate of 120 times per second which was good enough
for our robot.

Figures 49, 50, 51, and 52 show the desired and actual position for different test cases
using different feedback gains.

8 .4 T h e P r o t o t y p i n g E n v i r o n m e n t

In this section, we will show several test cases for the prototyping environment. In the first
test (Figure 53), the optimal design subsystem sent a data-change message to the CI. The
CI in turn sent lock messages to all other subsystems notifying them that no changes will
be accepted until they receive a final acknowledgment message. Then, the CI applied the
relations and checked the design constraints. In this test case the constraints were satisfied,
so the CI sent these changes to the subsystems that needed to be notified. After that, the
CI waited for acknowledgments from the subsystems. In this case it received positive
acknowledgments from the specified subsystems. Finally, the CI updated the database and
sent final acknowledgment messages to all subsystems.

The second test case (Figure 54), was the same as the first case except that one of the
subsystems (the C A D /C A M subsystem) has rejected the changes by sending negative ac­
knowledgment message to the CI. Thus, the CI sent a change-back message to the specified
subsystems and then sent a final acknowledgment messages to all subsystems. No changes
in the database took place in this case.

In the last test case (Figure 55), the design constraints were not satisfied. Therefore,
the CI sent a report about the nonsatisfied constraints to the sender (the optimal design
subsystem). Then it sent final acknowledgment messages to all subsystems. Again, in this
case, no changes in the database took place.

103

P o s i t i o n a c c u r a c y w h e n K p = 4 , K g = 0 . 5
Position

Figure 49: Desired and actual position for test case (1).

P o s i t i o n a c c u r a c y w h e n K p = 8 , K g = 0 . 5

2.04 2.05 2.06 2.06 2.06

Figure 50: Desired and actual position for test case (2).

P o s i t i o n a c c u r a c y w h e n K p = 3 , K g = 0 . 7 5
Position

1.15 1.16 1.16 1.17 1.17

Figure 51: Desired and actual position for test case (3).

106

P o s i t i o n a c c u r a c y w h e n K p = 5 , K g = 1 . 0
Position

Figure 52: Desired and actual position for test case (4).

107

8 .5 C a s e S t u d y

So far we have been talking about the three-link robot and the prototyping environment
(PE) as separate subjects. In this section we will relate them by analyzing the problems
that we have faced while designing and building the three-link robot, and how some of these
problems could have been avoided if the prototyping environment was used in the design
process. W e will do that by addressing some of the design problems and what facilities the
PE offers to solve some of these problems. Also we will discuss some of the problems that
the PE — with its current design — will not be able to solve.

Most of the problems we had were due to the lack of communication between the
different groups involved in the design. This lack of communication resulted in data incon­
sistency among the different groups. One of the problems was changing the mass of the
links by the C A D /C A M group without notifying the robotics group. The reason for this
change was that the links were too heavy to be driven by small motors. All simulations
and benchmarking that were done by the robotics group were based on the original design
parameters, and they had to repeat all these tests and simulations after they knew about
these changes. The PE can solve this problem since there is an SSI at each subsystem.
This SSI will report any changes in the design parameters to the CI, which in turn will
report these changes to all subsystems that need to know.

Another problem was selecting the necessary motors to drive the robot links, and satisfy
the speed requirements specified by the robotics group. All motors available in the market
that can drive the robot links have high rpm. To reduce the speed, gears needed to be used
at each joint. Adding these gears caused increases in the weight of each link, and again, the
other groups did not know about this change until the assembly process was started. The
part-ordering subsystem, suggested in the PE design, can solve this problem by sending
a request from the robotics or the C A D /C A M groups to the part-ordering system asking
for information about the available motors that satisfy the design requirements. This
information would have informed the robotics and C A D /C A M groups about the necessity
of adding gears at each joint earlier in the design phase.

The major problem we have faced in this project was the communication between the
robot and the workstation. The problem was that the communication rate was too low
due to the protocol in the operating system of the Sun Station which waits until a buffer
is filled or timeout occurs before it accepts any readings through the serial port. We were
able to solve this problem for the HP machine by changing the buffer size to be one byte,
but we were not able to do that for the Sun machine. This problem caused the update
rate to be as low as 30 Hz. Using The HP-720 we were able to reach an update rate of
120 Hz. However, we used the Sun machine even with its low update rate and we were
able to control the three-link robot with an acceptable performance. The results shown in
Section 6.3 were generated using a Sun Station-10 model 41, with update rate of 33 Hz.

I l l

This problem would not have been avoided even using the PE with its current design,
since the PE database does not include detailed information about the platforms. This can
be solved by adding more information about the platforms, or by calculating the actual
update rate using each platform and put this value as a field in the platforms data file.

Another problem was to select a power amplifier to amplify the signals from the D /A
chip to the motors. The power amplifier that we bought was not compatible with the
motors we had, and we ended up using some power amplifiers from the M E lab to run
our tests. This problem can also be solved using the part-ordering subsystem to select a
suitable power amplifier given the motor parameters that we had.

The PE has some limitations with its current implementation. For example, there
might be some data inconsistency due to the nonautomated SSIs. Currently, the SSI just
informs the user of any change in the design parameters and the user makes the changes
in the local files at each subsystem. This process is subject to human error and might
yield an inconsistent situation. To solve that, all SSIs need to be automated so that the
changes in the local data files of each subsystem are done automatically, and the user at
each subsystem is notified of this change.

The automation of the SSIs requires that the subsystems used in the PE should be
flexible enough to enable the SSI to make the necessary changes. In other words, it is not
possible to make automatic changes if some of the design parameters are hard-wired in the
code of the subsystem, because this will require changing the source code (which might
not be available), and recompiling the program each time we need to change any of the
“hard-wired” parameters. For example, we can not use a simulation subsystem that has
a fixed update rate, since we will not be able to study the behavior of the robot under
different values for the update rate.

This puts limitations on the subsystems that can be used in the PE. However, most
of the “general-purpose” software robotic systems provide an easy way to alter any of the
design parameters.

9 C o n c l u s i o n s

A prototype three-link robot manipulator was built to determine the required components
for a flexible prototyping environment for electro-mechanical systems in general, and for
robot manipulators in particular. A local linear PD feedback law was used for controlling
the robot for positioning and trajectory tracking. A graphical user interface was imple­
mented for controlling and simulating the robot. This robot is intended to be an educational
tool; therefore it was designed to be easy to install and manipulate. The design process
of this robot helped us determine the necessary components for building a prototyping
environment for electro-mechanical systems.

112

The design basis for building a prototyping environment for robot manipulators were
investigated and the design options were explained. A simple implementation of a central
interface was done to demonstrate the functionality of the proposed environment. Also
the theoretical basis for an optimal design subsystem was investigated and illustrated by
several examples.

The following points summarize the main contributions of this thesis:

• W e are proposing an integrated environment rather than developing separate systems

• This environment is flexible enough to accommodate changes or additions to the

• An interactive user friendly interface is provided to improve and facilitate the usability

• A three-link robot prototype that can be easily connected to any workstation or
PC was built, and a controller for this robot was developed with an interface that
enables the study of the manipulator’s behavior for different design parameters and

• The manipulator was designed in such a way that enables the change of any of its

• The prototype robot will be used as an educational tool in the robotics and automatic

• The controller subsystem that simulates a PID controller can be used to control any
electro-mechanical device controlled by a PID control law. This subsystem can also
be used as an educational tool to demonstrate the effect of changing the feedback

• This project establishes the basis and the framework for design automation of robot
manipulators in the department.

9 .3 P o s s i b l e F u t u r e E x t e n s i o n s

The following are some possible extensions and enhancements to the current design.

• Complete implementation for the central interface with more functionality and a user
friendly interface.

• Use a database query language to enable generating more sophisticated queries and
to enhance the report generating capabilities.

• Implement some of the subsystems with their SSIs and increase the automation in
these interfaces.

• Extend this environment to deal with generic n-link robots by using automatic gen­
eration of the kinematics and dynamics equations. Also this will require a robot
description language to specify the robot configuration and parameters.

• Implement the PC version of the controller to enable using any PC to control the
robot.

• Use special hardware solution to implement some parts of the communication and
the control.

114

R e f e r e n c e s

[1] AHMAD, S. Real-time multi-processor based robot control. In IE E E Int. Conf.
Robotics and Automation (1986), pp. 858-863.

[2] AHMAD, S ., AND Li, B . Optimal design of multiple arithmetic processor-based robot
controllers. In IE E E Int. Conf. Robotics and Automation (1987), pp. 660-663.

[3] ASADA, H ., AND SLOTINE, J. J. E . Robot Analysis and Control. J. W iley and Sons,
1986.

[4] B u k h r e s , O . A . , C h e n , J ., D u , W ., a n d E l m a g a r m i d , A . K . Interbase: An
execution environment for heterogeneous software systems. IE E E Computer Magazine
(Aug. 1993), 57-69.

[5] CHEN, Y . Frequency response of discrete-time robot systems - limitations of pd
controllers and improvements by lag-lead compensation. In IE E E Int. Conf. Robotics
and Automation (1987), pp. 464-472.

[6] CHIU, S. L . Kinematic characterization of manipulators: An approach to defining
optimality. In IE E E Int. Conf. Robotics and Automation (1988), pp. 828-833.

[7] CRAIG, J. Introduction To Robotics. Addison-Wesley, 1989.

[8] C u t k o s k y , M . R ., E n g e l m o r e , R . S ., F i k e s , R . E . , G e n e s e r e t h , M . R .,
G r u b e r , T . R ., M a r k , W . S ., T e n e n b a u m , J. M . , a n d W e b e r , J. C . PACT:
An experiment in integrating concurrent engineering systems. IE E E Computer Mag­
azine (Jan. 1993), 28-37.

[9] DEKHIL, M ., SOBH, T . M ., a n d H e n d e r s o n , T . C . Prototyping environment for
robot manipulators. Tech. Rep. UUCS-93-021, University of Utah, Sept. 1993.

[10] D e k h i l , M ., S o b h , T . M ., a n d H e n d e r s o n , T . C . URK: Utah Robot Kit -
a 3-link robot manipulator prototype. In IE E E Int. Conf. Robotics and Automation
(May 1994).

[11] D E P K O V IC H , T . M ., AND S T O U G H T O N , R . M . A general approach for manipu­
lator system specification, design, and validation. In IE E E Int. Conf. Robotics and
Automation (1989), pp. 1402-1407.

[12] D E W A N , P ., AND R i e d l , J. Toward computer-supported concurrent software engi­
neering. IE E E Computer Magazine (Jan. 1993), 17-27.

115

[13] D U H O V N IK , J ., T A V C A R , J ., AND K O P O R E C , J. Project manager with quality
assurance. Computer-Aided Design 25 , 5 (May 1993), 311-319.

[14] FUJIOKA, Y . , AND KAMEYAMA, M . 2400-mflops reconfigurable parallel VLSI proces­
sor for robot control. In IEEE Int. Conf. Robotics and Automation (1993), pp. 149-154.

[15] GEFFIN, S ., AND FURH T, B . A dataflow multiprocessor system for robot arm control.
Int. J. Robotics Research 9 , 3 (June 1990), 93-103. •

[16] GOTTFRIED, B . S ., AND W e i s m a N , J. Introduction To Optimization Theory.
Printice-Hall, 1973. ■

[17] HASHIMOTO, K ., AND K im u ra , H . A new parallel algorithm for inverse dynamics.
Int. J. Robotics Research 8, 1 (Feb. 1989), 63-76.

[18] H e r r e r a - B e n d e z u , L. G ., M u , E ., AND C a i n , J. T . Symbolic computation of
robot manipulator kinematics. In IE E E Int. Conf. Robotics and Automation (1988),
pp. 993-998.

[19] HOLLERBACH, J. Optimum kinematic design for a seven degree of freedom manipu­
lator. In Robotics Research: 2nd Int. Symp. (1985), H. Hanafusa and H. Inous, Eds.,
M IT Press, pp. 215-222.

[20] I z a g u i r r e , A ., H a s h i m o t o , M ., P a u l , R . P . , a n d H a y w a r d , V . A new compu­
tational structure for real-time dynamics. Int. J. Robotics Research 8, 1 (Feb. 1989),
346-361.

[21] KAWAMURA, S ., MIYAZAKI, F ., AND ARIMOTO, S. Is a local linear pd feedback
control law effictive for trajectory tracking of robot motion? In IEEE Int. Conf.
Robotics and Automation (1988), pp. 1335-1340.

[22] KAZANZIDES, P ., WASTI, H ., AND W o lo v ic h , W . A . A multiprocessor system for
real-time robotic control: Design and applications. In IEEE Int. Conf. Robotics and
Automation (1987), pp. 1903-1908.

[23] K E L M A R , L ., AND KH OS LA , P . K . Automatic generation of forward and inverse
kinematics for a reconfigurable manipulator system. Journal of Robotic Systems 7, 4
(1990), 599-619.

[24] K h o s l a , P ., K a n a d e , T ., H o f f m a n , R ., S c h m i t z , D ., a n d D e l o u i s , M .
The Carnegie Mellon reconfigurable modular manipulator system project. Tech. rep.,
Carnegie Mellon University, 1992.

116

[25] KH OS LA , P . K . Choosing sampling rates for robot control. In IEEE Int. Conf.
Robotics and Automation (1987), pp. 169-174.

[26] KlRCANSKI, N ., PETROV1C, T . , AND VUKOBRATOVIC, M . A parallel computer
architecture for real-time control applications in grasping and manipulation. In IEEE
Int. Conf. Robotics and Automation (1993), pp. 410-415.

[27] K U N G , S ., AND H W A N G , J. Neural network architectures for robot applications.
IE E E Trans. Robotics and Automation 5, 5 (Oct. 1989), 641-657.

[28] L a m b , D . A . Software Engineering; Planning for Change. Prentice Hall, 1988.

[29] L a t h r o p , R . H . Parallelism in manipulator dynamics. Int. J. Robotics Research 4,
2 (1985), 80-102.

[30] L e e , C . S. G ., AND C h a n g , P . R . Efficient parallel algorithms for robot forward
dynamics computation. In IEEE Int. Conf. Robotics and Automation (1987), pp. 654­
659.

[31] LEUNG, S . S . , AND S h a n b l a t t , M . A . Computer architecture design for robotics.
In IE E E Int. Conf. Robotics and Automation (1988), pp. 453-456.

[32] L e u n g , S. S ., an d S h a n b la t t , M . A . A conceptual framework for designing
robotic computational hardware with asic technology. In IEE E Int. Conf. Robotics
and Automation (1988), pp. 461-464.

[33] L ew is, F . L ., A b d a l la h , C . T . , an d D a w so n , D . Control of Robot Manipulator.
Macmillan, 1993.

[34] Li, C ., H e m a m i , A ., AND S a n k a r , T . S. A new computational method for linearized
dynamics models for robot manipulators. Int. J. Robotics Research 9, 1 (Feb. 1990),
134-146.

[35] L i n g , Y . L . C ., S a d a y a p p a n , P ., O l s o n , K . W . , a n d O r i n , D . E . A VLSI
robotics vector processor for real-time control. In IE E E Int. Conf. Robotics and Au­
tomation (1988), pp. 303-308.

[36] LlU, C . , a n d C h e n , Y . Multi-processor-based cartesian-space control techniques for
a mechanical manipulator. IE E E Trans. Robotics and Automation 2, 2 (June 1986),
110-115.

[37] L u h , J. Y . S ., AND L lN , C . S. Scheduling of parallel computation for a computer-
controlled mechanical manipulator. IE E E Trans. Systems Man and Cybernetics 12, 2
(1984), 214-234.

117

[38] M a , O ., AND A n g e l e s , J. Optimum design of manipulators under dynamic isotropy
conditions. In IEEE Int. Conf. Robotics and Automation (1993), pp. 470-475.

[39] M AR EF AT , M . , M a l h o r t a , S . , AND K a s h y a p , R . L . Object-oriented intelligent
computer-integrated design, process planning, and inspection. IEEE Computer Mag-

[40] M A Y O R G A , R . V ., R e s s a , B ., AND W o n g , A . K . C . A kinematic criterion for the
design optimization of robot manipulators. In IE E E Int. Conf. Robotics and Automa-

[41] M A Y O R G A , R . V ., R e s s a , B ., AND W o n g , A . K . C . A kinematic design opti­
mization of robot manipulators. In IEEE Int. Conf. Robotics and Automation (1992),

[42] M O T O R O L A In c. M C68H C11E 9 H CM O S Microcontroller Unit, 1991.

[43] N lCO L , J. R ., W i l k e s , C . T., AND M a n o l a , F . A . Object orientation in het­
erogeneous distributed computing systems. IE E E Computer Magazine (June 1993),

[44] N l G A M , R ., AND L e e , C . S. G . A multiprocessor-based controller for mechanical
manipulators. IE E E Journal of Robotics and Automation / , 4 (1985), 173-182.

[45] PAUL, B ., AND R o s a , J. Kinematics simulation of serial manipulators. Int. J.

[46] PAUL, R . P . Robot Manipulators: Mathematics, Programming, and Control. The

[47] RlESELER, H ., AND W a h l , F . M . Fast symbolic computation of the inverse kine­
matics of robots. In IE E E Int. Conf. Robotics and Automation (1990), pp. 462-467.

[48] SADAYAPPAN, P ., L i n g , Y . C ., AND O l s o n , K . W . A restructable VLSI robotics
vector processor architecture for real-time control. IE E E Trans. Robotics and Automa-

[49] SHILLER, Z ., AND SUNDAR, S. Design of robot manipulators for optimal dynamic
performance. In IEE E Int. Conf. Robotics and Automation (1991), pp. 344-349.

[50] S o b h , T . M ., D e k h i l , M ., a n d H e n d e r s o n , T . C . Prototyping a robot manipu-

118

[51] SRIRAM, D ., AND LOGCHER, R . The M IT dice project. IEEE Computer Magazine
(Jan. 1993), 64-71.

[52] TAKANO, M ., MASAKI, H ., and S a sa k i, K . Concept of total computer-aided design
system of robot manipulators. In Robotics Research: 3rd Int. Symp. (1986), pp. 289­
296.

[53] TAROKH, M ., AND SERAJI, H . A control scheme for trajectory tracking of robot
manipulators. In IE E E Int. Conf. Robotics and Automation (1988), pp. 1192-1197.

[54] TOOLE, H . Optimization Methods. Springer-Verlag, 1975. 1

[55] W ILL, P . Information technology and manufacturing. C S T B /N R C Preliminary Re­
port 1, National Academy Press, Nov. 1993.

[56] ZHANG, H ., and P a u l, R . P . A parallel inverse kinematics solution for robot
manipulators based on multiprocessing and linear extrapolation. In IE E E Int. Conf.
Robotics and Automation (1990), pp. 468-474.

1 0 A p p e n d i x A

The following is the dynamics and kinematics of the three robot models which was generated

form the gendyn program. These dynamics equations are not simplified.

/* Dynamics equations for the first model */

#include <math.h>

#include "dynl.h"

void dynlDyn (M, V, G, F, J_pos, J_vel, B_acc, External_F, External_M)

double **M, *V, *G, *F, *J_pos, *J_vel, *B_acc, *External_F, *External_M;

{
double external_force_x = External_F[0];

double external_force_y = External_F[1] ;

double external_force_z = External_F[2] ;

double external_moment_x = External_M[0] ;

double external_moment_y = External_M[1];

double external_moment_z = External_M[2];

double base_x = B_acc[0];

double base_y = B_acc[1];

double base_z = B_acc[2];

double T1 = J_pos[0];

double T2 = J_pos[1];

double D3 = J_pos[2];

double vel_Tl = J_vel[0];

double vel_T2 = J_vel[1];

double vel_D3 = J_vel[2];

double sinTl = sin(Tl);

double cosTl = cos(Tl);

double sinT2 = sin(T2);

double cosT2 = cos(T2);

M [0][0] = 2 * -JXY * cosT2+90 * sinT2+90
- 2.0 * -KXZ * cosT2+90 * sinT2+90

+ 0.5+L2 * 0.5*L2 * M2 * cosT2+90 * cosT2+90

+ A2 * A2 * M3 * cosT2+90 * cosT2+90

+ A2 * C3+D3 * M3 * cosT2+90 * sinT2+90

120

+ 2 * A2 * C4-0.5*L3 * M3 * cosT2+90 * sinT2+90

+ 2.0 * C3+D3 * C4-0.5*L3 * M3 * sinT2+90 * sinT2+90

+ C4-0.5*L3 * C4-0.5*L3 * M3 * sinT2+90 * sinT2+90 + IZZ

+ JXX * sinT2+90 * sinT2+90 + JYY * cosT2+90 * cosT2+90

+ KXX * sinT2+90 * sinT2+90 + KZZ * cosT2+90 * cosT2+90 ;

-JXZ * sinT2+90 + -JYZ * cosT2+90 + -KXY * sinT2+90 .

- 1.0 * -KYZ * cosT2+90 ;

0 ; •

-JXZ * sinT2+90 + -JYZ * cosT2+90 + -KXY * sinT2+90

- 1.0 * -KYZ * cosT2+90 ;

0.5*L2 * 0.5*L2 * M2 + A2 * A2 * M3

+ 2.0 * C3+D3 * C4-0.5*L3 * M3 + C4-0.5*L3 * C4-0.5*L3 * M3

+ JZZ + KYY ;

-1.0 * A2 * M3 ;

0 ;

-1.0 * A2 * M3 ;

M3 ;

-JXY * cosT2+90 * cosT2+90 * vel.Tl * vel_T2

2 * -JXY * sinT2+90 * sinT2+90 * vel.Tl * vel_T2

-JXZ * cosT2+90 * vel_T2 * vel_T2

1 * -JYZ * sinT2+90 * vel_T2 * vel_T2

-KXY * cosT2+90 * vel_T2 * vel_T2

2.0 * -KXZ * cosT2+90 * cosT2+90 * vel_Tl * vel_T2

2.0 * -KXZ * sinT2+90 * sinT2+90 * vel.Tl * vel_T2

-KYZ * sinT2+90 * vel_T2 * vel_T2

2 * 0.5*L2 * 0.5*L2 * M2 * cosT2+90 * sinT2+90 * vel_Tl * vel_T2

2 * A2 * A2 * M3 * cosT2+90 * sinT2+90 * vel.Tl * vel_T2

2.0 * A2 * C3+D3 * M3 * cosT2+90 * cosT2+90 * vel.Tl * vel_T2

2.0 * A2 * C4-0.5*L3 * M3 * cosT2+90 * cosT2+90 * vel.Tl * vel_T2

2 * A2 * C4-0.5*L3 * M3 * sinT2+90 * sinT2+90 * vel.Tl * vel T2

+ 2 * A2 * M3 * cosT2+90 * sinT2+90 * vel_D3 * vel_Tl

+ 3.0 * C3+D3 * C4-0.5*L3 * M3 * cosT2+90 * sinT2+90 * vel_Tl * vel_T2

+ 2.0 * C4-0.5*L3 * C4-0.5*L3 * M3 * cosT2+90 * sinT2+90 * vel.Tl * vel_TS

+ 2 * C4-0.5*L3 * M3 * sinT2+90 * sinT2+90 * vel_D3 * vel.Tl
+ 2 * JXX * cosT2+90 * sinT2+90 * vel_Tl * vel_T2

- 2 * JYY * cosT2+90 * sinT2+90 * vel_Tl * vel_T2

+ 2.0 * KXX * cosT2+90 * sinT2+90 * vel_Tl * vel_T2 .

- 2.0 * KZZ * cosT2+90 * sinT2+90 * vel.Tl * vel_T2 ;

V[1] = -1 * -JXY * cosT2+90 * cosT2+90 * vel_Tl * vel.Tl

+ -JXY * sinT2+90 * sinT2+90 * vel_Tl * vel_Tl

+ -KXZ * cosT2+90 * cosT2+90 * vel.Tl * vel.Tl

- 1 * -KXZ * sinT2+90 * sinT2+90 * vel_Tl * vel.Tl

+ 0.5*L2 * 0.5*L2 * M2 * cosT2+90 * sinT2+90 * vel_Tl * vel.Tl

+ A2 * A2 * M3 * cosT2+90 * sinT2+90 * vel_Tl * vel.Tl

+ A2 * C3+D3 * M3 * sinT2+90 * sinT2+90 * vel.Tl * vel_Tl

+ A2 * C3+D3 * M3 * vel_T2 * vel_T2

- 1 * A2 * C4-0.5*L3 * M3 * cosT2+90 * cosT2+90 * vel_Tl * vel.Tl

+ A2 * C4-0.5*L3 * M3 * sinT2+90 * sinT2+90 * vel_Tl * vel_Tl

- 1.0 * C3+D3 * C4-0.5*L3 * M3 * cosT2+90 * sinT2+90 * vel_Tl * vel_Tl

- 1.0 * C4-0.5*L3 * C4-0.5*L3 * M3 * cosT2+90 * sinT2+90 * vel.Tl * vel TJ

+ 2 * C4-0.5*L3 * M3 * cosT2+90 * vel_D3 * vel_Tl

- 1 * JXX * cosT2+90 * sinT2+90 * vel_Tl * vel_Tl

+ JYY * cosT2+90 * sinT2+90 * vel_Tl * vel.Tl

- 1.0 * KXX * cosT2+90 * sinT2+90 * vel.Tl * vel_Tl

+ KZZ * cosT2+90 * sinT2+90 * vel_Tl * vel_Tl ;

V[2] = -1.0 * A2 * M3 * cosT2+90 * sinT2+90 * vel.Tl * vel_Tl

- 1.0 * C3+D3 * M3 * sinT2+90 * sinT2+90 * vel_Tl * vel_Tl

- 1.0 * C3+D3 * M3 * vel_T2 * vel_T2

- 1 * C4-0.5*L3 * M3 * sinT2+90 * sinT2+90 * vel_Tl * vel_Tl

- 1 * C4-0.5*L3 * M3 * vel_T2 * vel_T2 ;

G [0] = 0.5*L2 * GRAVITY * M2 * cosTl * cosT2+90

+ A2 * GRAVITY * M3 * cosTl * cosT2+90

+ C4-0.5*L3 * GRAVITY * M3 * cosTl * sinT2+90 ;

G[1] = -1 * 0.5+L2 * GRAVITY * M2 * sinTl * sinT2+90

- 1.0 * A2 * GRAVITY * M3 * sinTl * sinT2+90

122

G[2] = GRAVITY * M3 * sinTl * sinT2+90 ;

/* Torque due to external moments */

F[0] = -1.0 * cosT2+90 * external_moment_z

+ external_moment_x * sinT2+90 ;

F[1] = external_moment_y ; '

F [2] = 0 ;

/* Torque due to external forces */

F[0] += -1 * A2 * cosT2+90 * external_force_y

- 1.0 * C3+D3 * external_force_y * sinT2+90

- 1 * C4 * external_force_y * sinT2+90 ;

F[1] += -1.0 * A2 * external_force_z + C3+D3 * external.force

+ C4 * external_force_x ;

F[2] += external_force_z ;

i
/* Torque due to base movement */

F[0] += 0.5*L2 * M2 * base_y * cosTl * cosT2+90

+ A2 * M3 * base_y * cosTl * cosT2+90

+ C4-0.5*L3 * M3 * base_y * cosTl * sinT2+90 ;

F[1] += -1 * 0.5*L2 * M2 * base_x * cosTl * sinT2+90

- 1 * 0.5*L2 * M2 * base_y * sinTl * sinT2+90

+ 0.5*L2 * M2 * base_z * cosT2+90

- 1.0 * A2 * M3 * base_x * cosTl * sinT2+90

- 1.0 * A2 * M3 * base_y * sinTl * sinT2+90

+ A2 * M3 * base_z * cosT2+90

+ C4-0.5*L3 * M3 * base_x * cosTl * cosT2+90

+ C4-0.5*L3 * M3 * base_y * cosT2+90 * sinTl

+ C4-0.5*L3 * M3 * base z * sinT2+90 :

+ C4-0.5*L3 * GRAVITY * M3 * cosT2+90 * sinTl ;

T[3] [3] = 1

T = TransformList[3];

T [0] [0]
T [0] [1]
T [0] [2]
T[0] [3]

t[l] [

1—
1

O

T [i][l]

1_____
1

H

i][2]

TC

I_____
i

I—
i

tH 1-----
1

CO

t l 2] [0]
T [2] [1]
T[2] [2]

T [2] [3]

T [3] [0]

T [3] [1]

T[3] [2]

T [3] [3]

cosTl * cosT2+90 ;

sinTl ;

cosTl * sinT2+90 ;

C4 * cosTl * sinT2+90 + A2 * cosTl * cosT2+90

+ C3+D3 * cosTl * sinT2+90 ;

cosT2+90 * sinTl ; ’

-1.0 * cosTl ;

sinTl * sinT2+90 ;

C4 * sinTl * sinT2+90 + A2 * cosT2+90 * sinTl

+ C3+D3 * sinTl * sinT2+90 :

sinT2+90 ;

0 ;
-1.0 * cosT2+90 ;

* cosT2+90 + A2 * sinT2+90= -1.0 * C4 - 1.0 * C3+D3 * cosT2+90

0
0
0
1

/* /

/* Dynamics equations for the second model */

#include <math.h>

#include "dyn2.h"

void dyn2Dyn (M, V, G, F, J_pos, J_vel, B_acc, External_F, External_M)

double **M, *V, *G, *F, *J_pos, *J_vel, *B_acc, *External_F, *External_M;

double external_force_x = External_F[0] ;

double external_force_y = External_F[1] ;

126

double external_force_z = External_F[2];

double external_moment_x = External_M[0]

double external_moment_y = External_M[1]

double external_moment_z = External_M[2]

double base_x = B_acc[0]

double base_y = B_acc[1]

double base_z = B_acc[2]

double T1 = J_pos[0];

double T2 = J_pos[1];

double D3 = J_pos[2] ;

double vel_Tl = J_vel[0]

double vel_T2 = J_vel[1]

double vel_D3 = J_vel[2]

double sinTl = sin(Tl)

double cosTl = cos(Tl)

double sinT2 = sin(T2)

double cosT2 = cos(T2)

M [0J [0] = 2 * -JXY * cosT2 * sinT2 + 2 * -KXZ * cosT2 * sinT2

+ 0.5+L2 * 0.5+L2 * M2 * cosT2 * cosT2

+ A2 * A2 * M3 * cosT2 * cosT2

- 2.0 * A2 * C4-0.5*L3 * M3 * cosT2 * sinT2

- 2.0 * A2 * D3 * M3 * cosT2 * sinT2

+ C4-0.5*L3 * C4-0.5*L3 * M3 * sinT2 * sinT2

+ 2.0 * C4-0.5*L3 * D3 * M3 * sinT2 * sinT2

+ D3 * D3 * M3 * sinT2 * sinT2 + IZZ + JXX * sinT2 * sinT2

+ JYY * cosT2 * cosT2 + KXX * sinT2 * sinT2

+ KZZ * cosT2 * cosT2 ;

M[0] [1] = inT2 + -JYZ * cosT2 - 1.0 * -KXY * sinT2
-KYZ * eosT9 :

-JXZ * s

- 1.0 * -KYZ * cosT2

M[0] [2]

M[1] [0]

= 0

-JXZ * sinT2 + -JYZ * cosT2 - 1.0 * -KXY * sinT2

- 1.0 * -KYZ * cosT2 ;

M [1][1] = 0.5*L2 * 0.5*L,2 * M2 + A2 * A2 * M3

+ C4-0.5*L3 * C4-0.5*L,3 * M3 + 2.0 * C4-0.5*L3 * D3 * M3

127

- 1 * -JYZ * sinT2 * vel_T2 * vel_T2

- 1.0 * -KXY * cosT2 * vel_T2 * vel_T2

+ 2.0 * -KXZ * cosT2 * cosT2 * vel.Tl * vel_T2

- 2.0 * -KXZ * sinT2 * sinT2 * vel_Tl * vel_T2

+ -KYZ * sinT2 * vel_T2 * vel_T2
- 2 * 0., 5*L2 * 0.5*L2 * M2 * cosT2 * sinT2 * vel_Tl * vel_T2

- 2..0 * A2 * A2 * M3 * cosT2 * sinT2 * vel.Tl * vel_T2

- 2..0 * A2 * C4-0..5*L3 * M3 * cosT2 * cosT2 * vel_Tl * vel_T2

+ 2..0 * A2 * C4-0..5*L3 * M3 * sinT2 * sinT2 * vel_Tl * vel_T2
- 2..0 * A2 * D3 * M3 * cosT2 * cosT2 * vel.Tl * vel_T2
+ 2,.0 * A2 * D3 * M3 * sinT2 * sinT2 * vel.Tl * vel_T2

- 2..0 * A2 * M3 * cosT2 * sinT2 * vel_D3 * vel.Tl

+ 2..0 * C4-0 . 5*L3 * C4-0.5*L3 * M3 * cosT2 * sinT2 * vel.Tl * vel
+ 4.,0 * C4-0 . 5*L3 * D3 * M3 * cosT2 * sinT2 * vel.Tl * vel_T2
+ 2 * C4-0.5*L3 * M3 * sinT2 * sinT2 * vel_D3 * vel.Tl

+ 2,.0 * D3 * D3 * M3 * cosT2 * sinT2 * vel.Tl * vel_T2
+ 2..0 * D3 * M3 * sinT2 * sinT2 * vel,_D3 * vel.Tl
+ 2 * JXX * cosT2 * sinT2 * vel_Tl * vel_T2
- 2 * JYY * cosT2 * sinT2 * vel_Tl * vel_T2
+ 2,.0 * KXX :* cosT2 * sinT2 * vel_Tl * vel_T2
- 2..0 * KZZ * cosT2 * sinT2 * vel_Tl * vel_T2 ;

* -JXY * cosT2 * cosT2 * vel_Tl * vel_Tl

+ -JXY * sinT2 * sinT2 * vel_Tl * vel_Tl

- 1.0 * -KXZ * cosT2 * cosT2 * vel_Tl * vel_Tl

+ -KXZ * sinT2 * sinT2 * vel T1 * vel T1

+ 0.5*L2 * 0.5*L2 * M2 * cosT2 * sinT2 * vel_Tl * vel_Tl

+ A2 * A2 * M3 * cosT2 * sinT2 * vel_Tl * vel.Tl

+ A2 * C4-0.5*L3 * M3 * cosT2 * cosT2 * vel.Tl * vel_Tl
- 1 * A2 * C4-0.5*L3 * M3 * sinT2 * sinT2 * vel.Tl * vel_Tl

+ A2 * D3 * M3 * cosT2 * cosT2 * vel.Tl * vel.Tl

- 1 * A2 * D3 * M3 * sinT2 * sinT2 * vel_Tl * vel.Tl

- 1.0 * C4-0.5*L3 * C4-0.5*L3 * M3 * cosT2 * sinT2 * vel_Tl * vel.Tl

- 2.0 * C4-0.5*L3 * D3 * M3 * cosT2 * sinT2 * vel_Tl * vel_Tl

- 2.0 * C4-0.5*L3 * M3 * cosT2 * vel_D3 * vel.Tl

- 1 * D3 * D3 * M3 * cosT2 * sinT2 * vel_Tl *'vel_Tl

- 2 * D3 * M3 * cosT2 * vel_D3 * vel_Tl

- 1 * JXX * cosT2 * sinT2 * vel_Tl * vel_Tl

+ JYY * cosT2 * sinT2 * vel_Tl * vel_Tl

- 1.0 * KXX * cosT2 * sinT2 * vel_Tl * vel_Tl

+ KZZ * cosT2 * sinT2 * vel_Tl * vel.Tl ;

V[2] = A2 * M3 * cosT2 * sinT2 * vel_Tl * vel.Tl

- 1 * C4-0.5*L3 * M3 * sinT2 * sinT2 * vel_Tl * vel_Tl

- 1.0 * C4-0.5*L3 * M3 * vel_T2 * vel_T2

- 1 * D3 * M3 * sinT2 * sinT2 * vel_Tl * vel_Tl

- 1 * D3 * M3 * vel_T2 * vel_T2 ;

G [0] = 0.5*L2 * GRAVITY * M2 * cosTl * cosT2

+ A2 * GRAVITY * M3 * cosTl * cosT2

- 1.0 * C4-0.5*L3 * GRAVITY * M3 * cosTl * sinT2

- 1.0 * D3 * GRAVITY * M3 * cosTl * sinT2 ;

G[1] = -1 * 0.5*L2 * GRAVITY * M2 * sinTl * sinT2

- 1 * A2 * GRAVITY * M3 * sinTl * sinT2

- 1.0 * C4-0.5*L3 * GRAVITY * M3 * cosT2 * sinTl

- 1 * D3 * GRAVITY * M3 * cosT2 * sinTl ;

G[2] = -1 * GRAVITY * M3 * sinTl * sinT2 :

/* Torque due to external moments */

F[0] = cosT2 * external_moment_z + external_moment_x * sinT2

F[1] = -1.0 * external_moment_y ;

F [2] = 0 ;

129

/* Torque due to external forces */

F [0] += A2 * cosT2 * external_force_y - 1 * C4 * external_force_

- 1.0 * D3 * external_force.y * sinT2 ;

F [1] += A2 * external_force_z - 1.0 * C4 * external_force_x

- 1 * D3 * external_force_x ;

F [2] += external_force.z ; '

/* Torque due to base movement */

F[0] += 0.5*L2 * M2 * base_y * cosTl * cosT2

+ A2 * M3 * base_y * cosTl * cosT2

- 1.0 * C4-0.5*L3 * M3 * base_y * cosTl * sinT2

- 1.0 * D3 * M3 * base_y * cosTl * sinT2 ;

F [1] += -1 * 0.5*L2 * M2 * base_x * cosTl * sinT2

- 1 * 0.5*L2 * M2 * base_y * sinTl * sinT2

+ 0.5*L2 * M2 * base_z * cosT2

- 1 * A2 * M3 * base.x * cosTl * sinT2

- 1 * A2 * M3 * base.y * sinTl * sinT2

+ A2 * M3 * base_z * cosT2

- 1.0 * C4-0.5*L3 * M3 * base_x * cosTl * cosT2

- 1.0 * C4-0.5*L3 * M3 * base_y * cosT2 * sinTl

- 1.0 * C4-0.5*L3 * M3 * base_z * sinT2

- 1 * D3 * M3 * base_x * cosTl * cosT2

- 1 * D3 * M3 * base_y * cosT2 * sinTl

- 1 * D3 * M3 * base_z * sinT2 ;

F [2] += -1 * M3 * base_x * cosTl * sinT2

- 1 * M3 * base_y * sinTl * sinT2 + M3 * base_z * cosT2

/* Force due to friction forces */

>

void dyn2Frm (TransformList, J_pos)

double ***TransformList, *J_pos;

double Tl = J

double T2 = J

double D3 = J

double sinTl :

double cosTl ;

double sinT2 :

double cosT2 :

double **T;

_pos[0]

_pos[1]

_pos[2]

= sin(Tl)

= cos(Tl)

= sin(T2)

= cos(T2)

T = TransformList[0] ;

T [0] [0] = cosTl ;
T[0][1] = -1 * sinTl
T[0] [2] = 0
T[0] [3] = 0
T [XI I 0] = sinTl ;
T[1] [1] = cosTl ;
T[1] [2] = 0

T [1] [3] = 0

T[2] [0] = 0

T[2] [1] = 0

T[2] [2] = 1
T[2] [3] = 0

T [3] [0] = 0

T [3] [1] = 0

T[3] [2] = 0

T [3] [3] = 1

T = TransformList[1];

T[0][0] = cosTl * cosT2 ;

T[0][1] = -1 * cosTl * sinT2

T[0] [2] = sinTl ;

T[0] [3] = 0 ;

131

1______
1

H

1][1]

i______
i

H

1][2]

T [

1______
1

1------
1

rH 3]

cosTl ;

-1 * sinTl * sinT2 ;

-1 * C4 * sinTl * sinT2 + A2 * cosT2 * sinTl

- 1 * D3 * sinTl * sinT2 :

T [2] [0]
T [2] [1]
T [2] [2]
T [2] [3]

T [3] [0]

T [3] [1]

T [3] [2]

T [3] [3]

sinT2 ;

0 ;
cosT2 ;

C4 * cosT2 + A2 * sinT2 + D3 * cosT2

0

0

0

1

/**/

/* Dynamics equations for the third model */

#include <math.h>

#include "dyn3.h"

void dyn3Dyn (M, V, G, F, J_pos, J_vel, B_acc, External_F, External_M)

double **M, *V, *G, *F, *J_pos, *J_vel, *B_acc, *External_F, *External_M;

double external_force_x =

double external_force_y =

double external_force_z =

double external_moment_x :

double external_moment_y :

double external_moment_z :

double base_x = B_acc[0]

double base_y = B_acc[1]

double base_z = B_acc[2]

double T1 = J_pos[0]

double T2 = J_pos[1]

double T3 = J_pos[2]

External_F[0] ;
External_F[1] ;

External_F[2] ;

= External_M[0]

= External_M[1]

= External_M[2]

133

double vel_Tl = J_vel[0]

double vel_T2 = J_vel[1]

double vel_T3 = J_vel[2]

double sinTl = sin(Tl)

double cosTl = cos(Tl)

double sinT2 = sin(T2)

double cosT2 = cos(T2)

double sinT3 = sin(T3)

double cosT3 = cos(T3)

M[0] [0] = 2 * - JXY * cosT2 * sinT2

+ 2 * -KXY * cosT2 * cosT2 * cosT3 * sinT3

+ 2 * -KXY * cosT2 * cosT3 * cosT3 * sinT2

- 2 * -KXY * cosT2 * sinT2 * sinT3 * sinT3

- 2 * -KXY * cosT3 * sinT2 * sinT2 * sinT3
+ 0.5*L2 * 0.5*L2 * M2 * cosT2 * cosT2

+ 0.5*L3 * 0.5*L3 * M3 * cosT2 * cosT2 * cosT3 * cosT3

- 1 * 0.5*L3 * 0.5*L3 * M3 * cosT2 * cosT3 * sinT2 * sinT3

+ 2 * 0.5*L3 * A2 * M3 * cosT2 * cosT2 * cosT3

- 1 * 0.5*L3 * A2 * M3 * cosT2 * sinT2 * sinT3

+ A2 * A2 * M3 * cosT2 * cosT2 + IZZ + JXX * sinT2 * sinT2

+ JYY * cosT2 * cosT2 + KXX * cosT2 * cosT2 * sinT3 * sinT3

+ 2 * KXX * cosT2 * cosT3 * sinT2 * sinT3

+ KXX * cosT3 * cosT3 * sinT2 * sinT2

+ KYY * cosT2 * cosT2 * cosT3 * cosT3

- 2 * KYY * cosT2 * cosT3 * sinT2 * sinT3
+ KYY * sinT2 * sinT2 * sinT3 * sinT3 ;

M[0][1] = -JXZ * sinT2 + -JYZ * cosT2 + -KXZ * cosT2 * sinT3

+ -KXZ * cosT3 * sinT2 + -KYZ * cosT2 * cosT3

- 1 * -KYZ * sinT2 * sinT3 ;

M[0][2] = -KXZ * cosT2 * sinT3 + -KXZ * cosT3 * sinT2

+ -KYZ * cosT2 * cosT3 ;

M[1][0] = -JXZ * sinT2 + -JYZ * cosT2 + -KXZ * cosT2 * s:

+ -KXZ * cosT3 * sinT2 + -KYZ * cosT2 * cosT3

- 1 * -KYZ * sinT2 * sinT3 ;

inT3

134

M[1] [2]

M[2] [0]

M[2] [1]

M[2] [2]

V[0] = 2

M[1] [1] = 0.5*L2 * 0.5*L2 * M2 + 0.5*L3 * 0.5*L3 * M3

+ 2 * 0.5*L3 * A2 * M3 * cosT3

+ A2 * A2 * M3 * cosT3 * cosT3

+ A2 * A2 * M3 * sinT3 * sinT3 + JZZ + KZZ ;

= 0.5*L3 * 0.5*L3 * M3 + 0.5*L3 * A2 * M3 * cosT3 + KZZ ;

= -KXZ * cosT2 * sinT3 + -KXZ * cosT3 * sinT2

+ -KYZ * cosT2 * cosT3 - 1 * -KYZ * sinT2 * sinT3 ;

= 0.5*L3 * 0.5*L3 * M3 + 0.5*L3 * A2 * M3 * cosT3 + KZZ ;

= 0.5*L3 * 0.5*L3 * M3 + KZZ ;

* -JXY * cosT2 * cosT2 * vel_Tl * vel_T2

- 2 * -JXY * sinT2 * sinT2 * vel_Tl * vel_T2
+ -JXZ * cosT2 * vel_T2 * vel_T2

- 1 * -JYZ * sinT2 * vel_T2 * vel_T2

+ 2 * -KXY * cosT2 * cosT2 * cosT3 * cosT3 * vel_Tl * vel_T2
+ 2 * -KXY * cosT2 * cosT2 * cosT3 * cosT3 * vel_Tl * vel_T3
- 2 * -KXY * cosT2 * cosT2 * sinT3 * sinT3 * vel_Tl * vel_T2
- 2 * -KXY * cosT2 * cosT2 * sinT3 * sinT3 * vel_Tl * vel_T3
- 7 * -KXY * cosT2 * cosT3 * sinT2 * sinT3 * vel.Tl * vel_T2

- 7 * -KXY * cosT2 * cosT3 * sinT2 * sinT3 * vel_Tl * vel_T3

- 2 * -KXY * cosT3 * cosT3 * sinT2 * sinT2 * vel.Tl * vel_T2
- 2 * -KXY * cosT3 * cosT3 * sinT2 * sinT2 * vel_Tl * vel_T3
+ -KXY * sinT2 * sinT2 * sinT3 * sinT3 * vel_Tl * vel_T2

+ -KXY * sinT2 * sinT2 * sinT3 * sinT3 * vel_Tl * vel_T3

- 1 * -KXZ * cosT2 * cosT2 * sinT2 * sinT3 * sinT3 * sinT3 * vel_Tl * vel

- 2 * -KXZ * cosT2 * cosT3 * sinT2 * sinT2 * sinT3 * sinT3 * vel_Tl * vel
+ -KXZ * cosT2 * cosT3 * vel_T2 * vel_T2

+ 2 * -KXZ * cosT2 * cosT3 * vel_T2 * vel_T3
+ -KXZ * cosT2 * cosT3 * vel_T3 * vel_T3
- 1 * -KXZ * cosT3 * cosT3 * sinT2 * sinT2 * sinT2 * sinT3 * vel_Tl * vel

- 1 * -KYZ * cosT2 * cosT2 * cosT3 * sinT2 * sinT3 * sinT3 * vel_Tl * vel

- 1 * -KYZ * cosT2 * cosT3 * cosT3 * sinT2 * sinT2 * sinT3 * vel_Tl * vel

+ -KYZ * cosT2 * sinT2 * sinT2 * sinT3 * sinT3 * sinT3 * vel_Tl * vel_Tl

- 1 * -KYZ * cosT2 * sinT3 * vel_T2 * vel_T2

- 2 * -KYZ * cosT2 * sinT3 * vel_T2 * vel_T3

135

1 * -KYZ * cosT2 * sinT3 * vel_T3 * vel_T3

-KYZ * cosT3 * sinT2 * sinT2 * sinT2 * sinT3 * sinT3 * vel_Tl * v

1 * -KYZ * cosT3 * sinT2 * vel_T2 * vel_T2

2 * -KYZ * cosT3 * sinT2 * vel_T2 * vel_T3

1 * -KYZ * cosT3 * sinT2 * vel_T3 * vel_T3

2 * 0.5*L2 * 0.5*L2 * M2 * cosT2 * sinT2 * vel.Tl * vel_T2

2 * 0.5*L3 * 0.5*L3 * M3 * cosT2 * cosT2 * cosT3 * sinT3 * vel_Tl

2 * 0.5*L3 * 0.5*L3 * M3 * cosT2 * cosT2 * cosT3 * sinT3 * vel_Tl

2 * 0.5*L3 * 0.5*L3 * M3 * cosT2 * cosT3 * cosT3 * sinT2 * vel_Tl

2 * 0.5*L3 * 0.5*L3 * M3 * cosT2 * cosT3 * cosT3 * sinT2 * vel_Tl

2 * 0.5*L3 * A2 * M3 * cosT2 * cosT2 * sinT3 * vel.Tl * vel_T2

2 * 0.5+L3 * A2 * M3 * cosT2 * cosT2 * sinT3 * vel_Tl * vel_T3

4 * 0.5*L3 * A2 * M3 * cosT2 * cosT3 * sinT2 * vel_Tl * vel_T2

2 * 0.5+L3 * A2 * M3 * cosT2 * cosT3 * sinT2 * vel_Tl * vel_T3

2 * A2 * A2 * M3 * cosT2 * sinT2 * vel_Tl * vel_T2

JXX * cosT2 * sinT2 * vel.Tl * vel_T2

JYY * cosT2 * sinT2 * vel.Tl * vel_T2

KXX * cosT2 * cosT2 * cosT3 * sinT3 * vel _T1 * vel _T2

KXX * cosT2 * cosT2 * cosT3 * sinT3 * vel _T1 * vel _T3

KXX * cosT2 * cosT3 * cosT3 * sinT2 * vel _T1 * vel _T2

KXX * cosT2 * cosT3 * cosT3 * sinT2 * vel _T1 * vel _T3

KXX * cosT2 * sinT2 * sinT3 * sinT3 * vel _T1 * vel _T2

KXX * cosT2 * sinT2 * sinT3 * sinT3 * vel _T1 * vel _T3

KXX * cosT3 * sinT2 * sinT2 * sinT3 * vel _T1 * vel _T2

KXX * cosT3 * sinT2 * sinT2 * sinT3 * vel _T1 * vel _T3

KYY * cosT2 * cosT2 * cosT3 * sinT3 * vel _T1 * vel _T2

KYY * cosT2 * cosT2 * cosT3 * sinT3 * vel _T1 * vel _T3

KYY * cosT2 * cosT3 * cosT3 * sinT2 * vel _T1 * vel _T2

KYY * cosT2 * cosT3 * cosT3 * sinT2 * vel _T1 * vel _T3

KYY * cosT2 * sinT2 * sinT3 * sinT3 * vel _T1 * vel _T2

KYY * cosT2 * sinT2 * sinT3 * sinT3 * vel _T1 * vel _T3

KYY * cosT3 * sinT2 * sinT2 * sinT3 * vel _T1 * vel _T2

KYY * cosT3 * sinT2 * sinT2 * sinT3 * vel _T1 * vel _T3

KZZ * cosT2 * sinT2 * sinT3 * sinT3 * vel _T1 * vel _T2

KZZ * cosT2 * sinT2 * sinT3 * sinT3 * vel _T1 * vel _T3

KZZ * cosT3 * sinT2 * sinT2 * sinT3 * vel _T1 * vel _T2

KZZ * cosT3 * sinT2 * sinT2 * sinT3 * vel _T1 * vel _T3

-JXY * cosT2 * cosT2 * vel T1 * vel.Tl

+ -JXY * sinT2 * sinT2 * vel_Tl * vel_Tl

- 1 * -KXY * cosT2 * cosT2 * cosT3 * cosT3 * vel_Tl * vel_Tl
+ -KXY * cosT2 * cosT2 * sinT3 * sinT3 * vel_Tl * vel_Tl
+ 4 * -KXY * cosT2 * cosT3 * sinT2 * sinT3 * vel_Tl * vel_Tl

+ -KXY * cosT3 * cosT3 * sinT2 * sinT2 * vel_Tl * vel_Tl

- 1 * -KXY * sinT2 * sinT2 * sinT3 * sinT3 * vel_Tl * vel_Tl

+ 0.5*L2 * 0.5*L2 * M2 * cosT2 * sinT2 * vel_Tl * vel.Tl .

+ 0.5*L3 * 0.5*L3 * M3 * cosT2 * cosT2 * cosT3 * sinT3 * vel_Tl * vel_Tl

+ 0.5*L3 * 0.5*L3 * M3 * cosT2 * cosT3 * cosT3 * sinT2 * vel_Tl * vel_Tl

- 1 * 0.5+L3 * 0.5*L3 * M3 * cosT2 * sinT2 * sinT3 * sinT3 * vel_Tl * vel_

- 1 * 0.5*L3 * 0.5*L3 * M3 * cosT3 * sinT2 * sinT2 * sinT3 * vel_Tl * vel_

+ 0.5+L3 * A2 * M3 * cosT2 * cosT2 * sinT3 * vel_Tl * vel_Tl

+ 0.5*L3 * A2 * M3 * cosT2 * cosT3 * cosT3 * cosT3 * sinT2 * vel_Tl * vel_

+ 0.5*L3 * A2 * M3 * cosT2 * cosT3 * sinT2 * sinT3 * sinT3 * vel_Tl * vel_

+ 0.5*L3 * A2 * M3 * cosT2 * cosT3 * sinT2 * vel_Tl * vel_Tl

- 1 * 0.5*L3 * A2 * M3 * cosT3 * cosT3 * sinT2 * sinT2 * sinT3 * vel_Tl *

- 1 * 0.5*L3 * A2 * M3 * sinT2 * sinT2 * sinT3 * sinT3 * sinT3 * vel_Tl * •

- 2 * 0.5*L3 * A2 * M3 * sinT3 * vel_T2 * vel_T3

- 1 * 0.5*L3 * A2 * M3 * sinT3 * vel_T3 * vel_T3

+ A2 * A2 * M3 * cosT2 * cosT3 * cosT3 * sinT2 * vel_Tl * vel_Tl

+ A2 * A2 * M3 * cosT2 * sinT2 * sinT3 * sinT3 * vel_Tl * vel.Tl

- 1 * JXX * cosT2 * sinT2 * vel_Tl * vel.Tl

+ JYY * cosT2 * sinT2 * vel_Tl * vel.Tl

- 1 * KXX * cosT2 * cosT2 * cosT3 * sinT3 * vel_Tl * vel_Tl

- 1 * KXX * cosT2 * cosT3 * cosT3 * sinT2 * vel_Tl * vel_Tl

+ KXX * cosT2 * sinT2 * sinT3 * sinT3 * vel_Tl * vel_Tl

+ KXX * cosT3 * sinT2 * sinT2 * sinT3 * vel_Tl * vel_Tl

+ KYY * cosT2 * cosT2 * cosT3 * sinT3 * vel_Tl * vel_Tl

+ KYY * cosT2 * cosT3 * cosT3 * sinT2 * vel_Tl * vel_Tl

- 1 * KYY * cosT2 * sinT2 * sinT3 * sinT3 * vel_Tl * vel_Tl
- 1 * KYY * cosT3 * sinT2 * sinT2 * sinT3 * vel_Tl * vel_Tl ;

V[2] = -1 * -KXY * cosT2 * cosT2 * cosT3 * cosT3 * vel_Tl * vel.Tl

+ -KXY * cosT2 * cosT2 * sinT3 * sinT3 * vel_Tl * vel_Tl

+ 4 * -KXY * cosT2 * cosT3 * sinT2 * sinT3 * vel_Tl * vel_Tl

+ -KXY * cosT3 * cosT3 * sinT2 * sinT2 * vel_Tl * vel_Tl

- 1 * -KXY * sinT2 * sinT2 * sinT3 * sinT3 * vel_Tl * vel_Tl

+ 0.5*L3 * 0.5*L3 * M3 * cosT2 * cosT2 * cosT3 * sinT3 * vel_Tl * vel_Tl

+ 0.5*L3 * 0.5+L3 * M3 * cosT2 * cosT3 * cosT3 * sinT2 * vel_Tl * vel_Tl

137

- 1 * 0.5*L3 * 0.5*L3 * M3 * cosT2 * sinT2 * sinT3 * sinT3 * vel.Tl * vel.

- 1 * 0.5*L3 * 0.5*L3 * M3 * cosT3 * sinT2 * sinT2 * sinT3 * vel_Tl * vel.

+ 0.5*L3 * A2 * M3 * cosT2 * cosT2 * sinT3 * vel_Tl * vel_Tl

+ 0.5*L3 * A2 * M3 * cosT2 * cosT3 * sinT2 * vel.Tl * vel.Tl

+ 0.5*L3 * A2 * M3 * sinT3 * vel_T2 * vel_T2

- 1 * KXX * cosT2 * cosT2 * cosT3 * sinT3 * vel_Tl * vel_Tl

- 1 * KXX * cosT2 * cosT3 * cosT3 * sinT2 * vel_Tl * vel_Tl

+ KXX * cosT2 * sinT2 * sinT3 * sinT3 * vel_Tl * vel_Tl

+ KXX * cosT3 * sinT2 * sinT2 * sinT3 * vel_Tl * vel_Tl

+ KYY * cosT2 * cosT2 * cosT3 * sinT3 * vel_Tl * vel_Tl

+ KYY * cosT2 * cosT3 * cosT3 * sinT2 * vel_Tl * vel_Tl

- 1 * KYY * cosT2 * sinT2 * sinT3 * sinT3 * vel.Tl * vel_Tl

- 1 * KYY * cosT3 * sinT2 * sinT2 * sinT3 * vel_Tl * vel_Tl ;

G [0] = 0.5*L2 * GRAVITY * M2 * cosTl * cosT2

+ 0.5*L3 * GRAVITY * M3 * cosTl * cosT2 * cosT3

+ A2 * GRAVITY * M3 * cosTl * cosT2 ;

G[1] = -1 * 0.5*L2 * GRAVITY * M2 * sinTl * sinT2

- 1 * 0.5*L3 * GRAVITY * M3 * cosT3 * sinTl * sinT2

+ A2 * GRAVITY * M3 * cosT2 * cosT3 * sinTl * sinT3

- 1 * A2 * GRAVITY * M3 * cosT3 * cosT3 * sinTl * sinT2

- 1 * A2 * GRAVITY * M3 * sinTl * sinT2 * sinT3 * sinT3 ;

G[2] = -1 * 0.5*L3 * GRAVITY * M3 * cosT3 * sinTl * sinT2 ;

/* Torque due to external moments */

F[0] = cosT2 * cosT3 * external_moment_y
+ cosT2 * external_moment_x * sinT3

+ cosT3 * external_moment_x * sinT2 ;

F[1] = external_moment_z ;

F[2] = external_moment_z ;

/* Torque due to external forces */

F[0] += -1 * A2 * cosT2 * external_force_z

138

- 1 * A3 * cosT2 * cosT3 * external_force_z ;

F [1] += A2 * cosT3 * external_force_y + A2 * external_force_x *

+ A3 * external_force_y ;

F[2] += A3 * external_force_y ;

/* Torque due to base movement */

F[0] += 0.5*L2 * M2 * base_y * cosTl * cosT2 '

+ 0.5*L3 * M3 * base_y * cosTl * cosT2 * cosT3

+ A2 * M3 * base_y * cosTl * cosT2 ;

F[1] += -1 * 0.5*L2 * M2 * base_x * cosTl * sinT2

- 1 * 0.5*L2 * M2 * base_y * sinTl * sinT2

+ 0.5*L2 * M2 * base_z * cosT2

- 1 * 0.5*L3 * M3 * base_x * cosTl * cosT3 * sinT2

- 1 * 0.5*L3 * M3 * base_y * cosT3 * sinTl * sinT2

+ 0.5*L3 * M3 * base_z * cosT2 * cosT3

+ A2 * M3 * base_x * cosTl * cosT2 * cosT3 * sinT3

- 1 * A2 * M3 * base_x * cosTl * cosT3 * cosT3 * sinT2

- 1 * A2 * M3 * base_x * cosTl * sinT2 * sinT3 * sinT3

+ A2 * M3 * base_y * cosT2 * cosT3 * sinTl * sinT3

- 1 * A2 * M3 * base_y * cosT3 * cosT3 * sinTl * sinT2

- 1 * A2 * M3 * base_y * sinTl * sinT2 * sinT3 * sinT3

+ A2 * M3 * base_z * cosT2 * cosT3 * cosT3

+ A2 * M3 * base_z * cosT2 * sinT3 * sinT3

+ A2 * M3 * base_z * cosT3 * sinT2 * sinT3 ;

F[2] += -1 * 0.5*L3 * M3 * base_x * cosTl * cosT3 * sinT2

- 1 * 0.5*L3 * M3 * base_y * cosT3 * sinTl * sinT2

+ 0.5*L3 * M3 * base_z * cosT2 * cosT3 :

/* Force due to friction forces */

T [0] [3]

T[1] [0]

T [1] [1]
T [1][2]

T [1] [3]

T [2] [0]
T [2] [1]
T [2] [2]

T [2] [3]

T [3] [0]

T [3] [1]

T [3] [2]

T [3] [3]

= 0

cosT2 * sinTl ;

-1 * sinTl * sinT2

-1.0 * cosTl ;

0 ;
sinT2 ;

cosT2 ;

0

0

0

0

0

1

1 *

-----* — j
sT3 * sinTl - 1 * sinTl * sinT2 * sinT3 ;

cosT3 * sinTl * sinT2

T = TransformList[2] ;

T [0][0] = cosTl * cosT2 * cosT3 - 1

T[0][1] = -1 * cosTl * cosT2 * sinT3

T[0] [2] = sinTl ;

T[0][3] = A2 * cosTl * cosT2
T[lj [0] = cosT2 * c o o u -r oiuii x - ox

T[1][1] = -1 * cosT2 * sinTl * sinT3 - 1

T [1][2] = -1.0 * cosTl ;

T [1J [3] = A2 * cosT2 * sinTl ;

T[2][0] = cosT3 * sinT2 + cosT2 * sinT3 ;

T[2][1] = -1 * sinT2 * sinT3 + cosT2 * cosT3

T[2] [2] = 0 ;

T[2] [3] = A2 * sinT2 ;

T [3] [0] = 0

T [3] [1] = 0

T[3] [2] = 0

T[3] [3] = 1

* cosTl * sinT2 * sinT3 ;

cosTl * cosT3 * sinT2

T = TransformList[3];

T [0] [0]
T [0] [1]
T [0] [2]
T[0] [3]

cosTl * cosT2 * cosT3 - 1 * cosTl * sinT2 * sinT3 ;

-1 * cosTl * cosT2 * sinT3 - 1 * cosTl * cosT3 * sinT2 ;

sinTl ;

A3 * cosTl * cosT2 * cosT3 - 1 * A3 * cosTl * sinT2 * sinT3

+ A2 * cosTl * cosT2 ;

141

T[1] [0] = cosT2 * cosT3 * sinTl - 1 * sinTl * sinT2 * sinT3 ;

T[1] [1] = -1 * cosT2 * sinTl * sinT3 - 1 * cosT3 * sinTl * sinT2

T[1] [2] = -1 .0 * cosTl ;

T [1] [3] = A3 * cosT2 * cosT3 * sinTl - 1 * A3 * sinTl * sinT2 *

+ A2 * cosT2 * sinTl ;

T [2] [0] = cosT3 * sinT2 + cosT2 * sinT3 ;

T [2] [1] = -1 * sinT2 * sinT3 + cosT2 * cosT3 ;

T[2] [2] = 0 1

T[2] [3] = A3 * cosT3 * sinT2 + A3 * cosT2 * sinT3 + A2 * sinT2

1______
1

H

3] [0] = 0 >

i______
i

H

3] [1] = 0 >

T [3] [2] = 0 J

T [3] [3] = 1 t

142

1 1 A p p e n d i x B

The following are the simplified dynamics using M athem atica and also using some manual
simplifications for the trig functions.

/* Simplified dynamics equations for the first model */

M [1][1] = 2.*K3 + A2*K3 + K4 + 2*A2*K4 + K4*D3 + IZZ - 0.5*K4*L3 +

JYY*s2*s2 + KZZ*s2*s2 + 0.25*L2*L2*m2*s2*s2 -

A2*A2*m3*s2*s2 + JXX*c2*c2 + KXX c2*c2 -

L3*m3*c2 + JXY*sin(2*T2) + 0.5*KXZ*sin(2*T2) -

0.5*D3*m3*sin(2*T2) + 0.25*L3*m3*sin(2*T2) ;

M [1][2] = -1. + JYZ*s2 + KYZ*s2 - JXZ*c2 - KXY*c2 ;

M [1] [3] = 0 ;

M[2][l] = -1. + JYZ*s2 + KYZ*s2 - JXZ*c2 - KXY*c2 ;

M[2][2] = 2.*K3 + K4 + K4*D3 + JZZ + KYY - 0.5*K4*L3 + 0.25*L2*m2 + A2*m3 - L3*m3

M [2] [3] = - A2*m3 ;

M[3] [1] = 0 ;

M: [3] [2] = -A2*m3 ;

M[3] [3] = m3 ;

V [1] = -1. + 3.*K3 + 2.A2*K3 + 4.*K4 + K4*D3 - 0.5*K4*L3 -

0.25*L3*m3*vel_D3*vel_Tl +

0.25*L3*m3*cos(l80+2*T2)*vel_D3*vel_Tl -

JXY*vel_Tl*vel_T2 - KXZ*vel_Tl*vel_T2 +

0.5*D3*m3*vel_Tl*vel_T2 - 0.5*L3*m3*vel_Tl*vel_T2 +

0 .5*D3*m3*cos(l80+2*T2)*vel_Tl*vel_T2 +

JXZ*s2*vel_T2*vel_T2 + KXY*s2*vel_T2*vel_T2 -

JYZ*vel_T2*vel_T2*c2 - KYZ*vel_T2*vel_T2*c2 +

A2*m3*vel_D3*vel_Tl*sin(180+2*T2) +

JXX*vel_Tl*vel_T2*sin(180+2*T2) -

JYY*vel_Tl*vel_T2*sin(180+2*T2) +

KXX*vel_Tl*vel_T2*sin(180+2*T2) -

KZZ*vel_Tl*vel_T2*sin(180+2*T2) -

0.25*L2*L2*m2*vel_Tl*vel_T2*sin(180+2*T2) - .

A2*A2*m3*vel_Tl*vel_T2*sin(180+2*T2) -

0.5*L3*m3*vel_Tl*vel_T2*sin(l80+2*T2) ;

V [2] = -2. - K3 + 2.*A2*K3 + K4 + K4*D3 - 0.5 K4*L3 +

0.5*L3*m3*s2*vel_D3*vel_Tl - JXY*vel_Tl*vel_Tl

KXZ*vel_Tl*vel_Tl + 0.5*D3*m3*vel_Tl*vel_Tl -

0.5*L3*m3*vel_Tl*vel_Tl -

0.5*D3*m3*cos(l80+2*T2)*vel_Tl*vel_Tl + D3*m3*vel_T2*vel_T2 -

0.5*JXX*vel_Tl*vel_Tl*sin(180+2*T2) + 0.5*JYY*vel_Tl*vel_Tl*sin(180+2 T2)

0.5*KXX*vel_Tl*vel_Tl*sin(180+2*T2) + 0.5*KZZ*vel_Tl*vel_Tl*sin(180+2*T2)

0.125*L2*L2*m2*vel_Tl*vel_Tl*sin(180+2*T2) +

0.5*A2*A2*m3*vel_Tl*vel_Tl*sin(180+2*T2) -

0.5*L3*m3*vel_Tl*vel_Tl*sin(l80+2*T2) ;

V [3] = -2.*K3 - 2.*K4 + D3*m3*vel_T2*vel_T2 - 0.5*L3*m3*vel_T2*vel_T2 +

D3*m3*vel_Tl*vel_Tl*c2*c2 -

0.5*L3*m3*vel_Tl*vel_Tl*c2*c2 -

0.5*A2*m3*vel_Tl*vel_Tl*sin(180+2*T2) ;

G [1] = -2.*K3 - 2.*K4 + D3*m3*vel_T2*vel_T2 - 0.5*L3*m3*vel_T2*vel_T2 +

D3*m3*vel_Tl*vel_Tl*c2*c2 -

0.5*L3*m3*vel_Tl*vel_Tl*c2*c2 -

0.5*A2*m3*vel_Tl*vel_Tl*sin(180+2*T2) ;

G[2] = K4 + 0.5*g*L3*m3*s2*sl -

0.5*g*L2*m2*sl*c2 - A2*g*m3*sl*c2 ;

G[3] = g*m3*sl*c2 ;

144

/* Simplified dynamics equations for the second model */

M [1][1] = 4. + 3.*C4 - 2.*A2*C4 + IZZ - 0.5*C4*L3 +

JYY*cosT2*cosT2 + KZZ*cosT2*cosT2 + 0.25*L2*L2*m2*cosT2*cosT2 +

A2*A2*m3*cosT2*cosT2 + JXX*sinT2*sinT2 + KXX*sinT2*sinT2 +

D3*D3*m3*sinT2*sinT2 - 0 . 5*L3*m3*sinT2*sinT2 - 0 . 5*D3*L3*m3*sinT2*sinT2 -

0 . 5*JXY*sin2T2 - 0. 5*KXZ*sin2T2 - A2*D3*m3*sin2T2 -

0.25*L3*m3*sin2T2) ;

M [1][2] = -2. - JYZ*cosT2 - KYZ*cosT2 - JXZ*sinT2 - KXY*sinT2 ;

M [1] [3] = 0 ;

M[2][1] = -2. - JYZ*cosT2 - KYZ*cosT2 - JXZ*sinT2 - KXY*sinT2 ;

M [2] [2] = 0.5*(6 .*C4 + 2.*JZZ + 2.*KYY - C4*L3 + 0.5*L2*m2 + 2.*A2*m3 +

2.*D3*D3*m3 - L3*m3 - D3*L3*m3) ;

M [2][3] = A2*m3 ;

M[3] [1] = 0 ;

M[3] [2] = A2*m3 ;

M [3] [3] = m3 ;

V[l] = 0.5*(-4. + 16.+C4 - C4+L3 + 2.*D3*m3*(vel_D3)* (vel_Tl) -

0.5*L3*m3*(vel_D3)* (vel_Tl) - 2.*D3*m3*cos2T2*(vel_D3)*(vel_Tl) +

0.5*L3*m3*cos2T2*(vel_D3)*(vel_Tl) - 2.*JXY*(vel_Tl)*(vel_T2) -

2.*KXZ*(vel_Tl)*(vel_T2) - L3*m3*(vel.Tl)* (vel_T2) -

4.*A2*D3*m3*cos2T2*(vel_Tl)*(vel_T2) - 2.*JXZ*cosT2*(vel_T2)*(vel_T2) -

2.*KXY*cosT2*(vel_T2)*(vel_T2) - 2.*JYZ*(vel_T2)*(vel_T2)*sinT2 -

2.*KYZ*(vel_T2)*(vel_T2)*sinT2 - 2.*A2*m3*(vel_D3)*(vel_Tl)*sin2T2 +

2.*JXX*(vel_Tl)* (vel_T2)*sin2T2 -

2.*JYY*(vel_Tl)*(vel_T2)*sin2T2 +

2.*KXX*(vel_Tl)* (vel_T2)*sin2T2 -

145

2.*KZZ*(vel_Tl)* (vel_T2)*sin2T2 -

0.5*L2*L2*m2*(vel_Tl)*(vel_T2)*sin2T2 -

2.*A2*A2*m3*(vel_Tl)* (vel_T2)*sin2T2 +

2.*D3*D3*m3*(vel.Tl)* (vel_T2)*sin2T2 -

0.5*L3*m3*(vel_Tl)*(vel_T2)*sin2T2 -

0.5*D3*L3*m3*(vel_Tl)*(vel_T2)*sin2T2) ;

V [2] = 0.5*(-4. - 10.*C4 - C4*L3 - 4.*D3*m3*cosT2*(vel_D3)*(vel_Tl) -

L3*m3*cosT2*(vel_D3)*(vel_Tl) - 2.*JXY*(vel_Tl)* (vel_Tl) -

2.*KXZ*(vel_Tl)*(vel_Tl) - L3*m3*(vel.Tl)* (vel_Tl> +

2.*A2*D3*m3*cos2T2*(vel_Tl)*(vel_Tl) - JXX*(vel_Tl)*(vel_Tl)*sin2T2 +

JYY*(vel_Tl)* (vel_Tl)*sin2T2 - KXX*(vel_Tl)*(vel_Tl)*sin2T2 +

KZZ*(vel_Tl)* (vel_Tl)*sin2T2 + 0.25*L2*L2*m2*(vel_Tl)* (vel.Tl)*sin2T2 +

A2*A2*m3*(vel_Tl)*sin2T2 - D3*D3*m3*(vel_Tl)*(vel_Tl)*sin2T2 -

0.5*L3*m3*(vel_Tl)*(vel_Tl)*sin2T2 -

0 .5*D3*L3*m3*(vel_Tl)*(vel_Tl)*sin2T2) ;

V [3] = 2.*(-C4 - 0.5*D3*m3*(vel_T2)*(vel_T2) -

0.25*L3*m3*(vel_T2)*(vel_T2) -

0.5*D3*m3*(vel_Tl)*(vel_Tl)*sinT2*sinT2 -

0.25*L3*m3*(vel_Tl)* (vel_Tl)*sinT2*sinT2 +

0.25*A2*m3*(vel_Tl)*(vel_Tl)*sin2T2) ;

G[l] = -C4 + 0.5*g*L2*m2*cosTl*cosT2 +

A2*g*m3*cosTl*cosT2 - D3*g*m3*cosTl*sinT2 -

0.5*g*L3*m3*cosTl*sinT2 ;

G[2] = -C4 - D3*g*m3*cosT2*sinTl -

0.5*g*L3*m3*cosT2*sinTl -

0 . 5*g*L2*m2*sinTl*sinT2 - A2*g*m3*sinTl*sinT2 ;

G[3] = -g*m3*sinTl*sinT2 ;

/* Simplified dynamics equations for the third model */

146

M[i;|[l] = 2 + IZZ + (JXX+JYY+KXX+KYY) / 2 .0 + 0 .125*L2*L2*m2 +

A2*A2*m3/2.0 + 0.0625*L3*L3*m3 -

(JXX*cos2T2+JYY*cos2T2)/2.0 + 0.125*L2*L2*m2*cos2T2 +

A2*A2*m3*cos2T2/2.0 + 0.0625*L3*L3*m3*cos2T2 +

0.125*A2*L3*m3*cos2T2mT3 + 0.5*A2*L3*m3*cosT3 +

0.0625*L3*L3*m3*cos2T3 - (KXX cos2_T2pT3 +

KYY cos2_T2pT3)/2.0 + 0.0625*L3*L3*m3*cos2_T2pT3 + ,

0.375*A2*L3*m3*cos2T2pT3 -

(JXY*sin2T2 - KXY*sin2T2 - KXY*sin2T3)/2.0 ;

M [1][2] = -1 - JYZ*cosT2 - KYZ*cosT2mT3 - JXZ*sinT2 - KXZ*sinT2pT3 ;

M[lJ[3] = -(KYZ*cosT2*cosT3) - KXZ*cosT3*sinT2 - KXZ*cosT2*sinT3 ;

M [2][1] = -1 - JYZ*cosT2 - KYZ*cosT2mT3 - JXZ*sinT2 - KXZ*sinT2pT3

M[2][2] = JZZ + KZZ + 0.25*L2*L2*m2 + A2*A2*m3 + 0.25*L3*L3*m3 + *A2*L3*m3*cosT3 ;

M[2][3] = KZZ + 0.25*L3*L3*m3 + 0.5*A2*L3*m3*cosT3 ;

M[3][l] = -1 - KYZ*cosT2mT3 - KXZ*sinT2pT3 ;

M[3][2] = JZZ + KZZ + 0.25*L2*L2*m2 + A2*A2*m3 + 0.25*L3*L3*m3 + A2*L3*m3*cosT3 ;

M [3] [3] = KZZ + 0.25*L3*L3*m3 ;

V [1] = (-992 - KXZ*cosT2m3T3*theta_dot[1]*theta_dot[l] -

7*KXZ*cosT2mT3*theta_dot[1]*theta_dot[1] +

KXZ*cos3_T2mT3*theta_dot[1]*theta_dot[1] -

KXZ*cos3T2mT3*theta_dot[1]*theta_dot[1] +

5*KXZ*cosT2pT3*theta_dot[1]*theta_dot[1] -

3*KXZ*cos3_T2pT3*theta_dot[1]*theta_dot[l] +

3*KXZ*cos3T3pT3*theta_dot[1]*theta_dot[l] +

3*KXZ*cosT2p3T3*theta_dot[l]*theta_dot[l] -

32*JXY*theta_dot[l]*theta_dot[2] -

32*KXY*theta_dot[l]*theta_dot[2] -

147

4*KXY*cos2_T2mT3*theta_dot[1]*theta_dot[2] +

4*KXY*cos2_T2pT3*theta_dot[1]*theta_dot[2] -

32*JXZ*cosT2*theta_dot[2]*theta_dot[2] -

16*KXZ*cosT2mT3*theta_dot[2]*theta_dot[2] -

16*KXZ*cosT2pT3*theta_dot[2]*theta_dot[2] -

32*KXY*theta_dot[1]*theta_dot[3] -

4*KXY*cos2_T2mT3*theta_dot[1]*theta_dot[3] +

4*KXY*cos2_T2pT3*theta_dot[l]*theta_dot[3] -

16*KXZ*cosT2mT3*theta_dot[2]*theta_dot[3] -

16*KXZ*cosT2pT3*theta_dot[2]*theta_dot[3] -

16*KXZ*cosT2mT3*theta_dot[3]*theta_dot[3] -

16*KXZ*cosT2pT3*theta_dot[3]*theta_dot[3] -

32*JYZ*theta_dot[2]*theta_dot[2]*sinT2 +

32*JXX*theta_dot[1]*theta_dot[2]*sin2T2 -

32*JYY*theta_dot[1]*theta_dot[2] *sin2T2 +

8 *KXX*theta_dot[1]*theta_dot[2]*sin2T2 -

8 *KZZ*theta_dot[1]*theta_dot[2]*sin2T2 -

8 .*L2*L2*m2*theta_dot[1]*theta_dot[2]*sin2T2 -

32*A2*A2*m3*theta_dot[1]*theta_dot[2] *sin2T2 -

4.*L3*L3*m3*theta_dot[1]*theta_dot[2]*sin2T2 +

8 *KXX*theta_dot[1]*theta_dot[3]*sin2T2 -

8 *KZZ*theta_dot[1]*theta_dot[3]*sin2T2 -

4.*L3*L3*m3*theta_dot[1]*theta_dot[3]*sin2T2 +

4*KYZ*theta_dot[1]*theta_dot[l]*sinT2m3T3 -

8 .*A2*L3*m3*theta_dot[1]*theta_dot[2]*sin2T2mT3

4*KYZ*theta_dot[1]*theta_dot[1]*sin3T2mT3 -

16.*A2*L3*m3*theta_dot[1]*theta_dot[2]*sinT3 -

16.*A2*L3*m3*theta_dot[1]*theta_dot[3]*sinT3 +

8 *KXX*theta_dot[1]*theta_dot[2]*sin2T3 -

8 *KZZ*theta_dot[1]*theta_dot[2]*sin2T3 -

4.*L3*L3*m3*theta_dot[1]*theta_dot[2]*sin2T3 +

8 *KXX*theta_dot[1]*theta_dot[3] *sin2T3 -

8 *KZZ*theta_dot[l]*theta_dot[3]*sin2T3 -

4.*L3*L3*m3*theta_dot[1]*theta_dot[3]*sin2T3 -

8 *KYZ*theta_dot[1]*theta_dot[i] *sinT2pT3 -

32*KYZ*theta_dot[2]*theta_dot[2]*sinT2pT3 -

32*KYZ*theta_dot[2]*theta_dot[3]*sinT2pT3 -

32*KYZ*theta_dot[3]*theta_dot[3]*sinT2pT3 +

24*KXX*theta_dot[1]*theta_dot[2]*sin2_T2pT3 -

32*KYY*theta_dot[1]*theta_dot[2]*sin2_T2pT3 +

8 *KZZ*theta_dot[l]*theta_dot[2] *sin2_T2pT3 -

4.*L3*L3*m3*theta_dot[1]*theta_dot[2]*sin2_T2pT3 +

24*KXX*theta_dot[l]*theta_dot[3]*sin2_T2pT3 -

32*KYY*theta_dot[1]*theta_dot[3]*sin2_T2pT3 +

8 *KZZ*theta_dot[1]*theta_dot[3]*sin2_T2pT3 -

4.*L3*L3*m3*theta_dot[1]*theta_dot[3]*sin2_T2pT3 -

24.*A2*L3*m3*theta_dot[l]*theta_dot[2]*sin2T2pT3 -

16.*A2*L3*m3*theta_dot[1]*theta_dot[3]*sin2T2pT3 +

4*KYZ*theta_dot[l]*theta_dot[1]*sin3T3pT3 + '

4*KYZ*theta_dot[1]*theta_dot[l]*sinT2p3T3) / 32 ;

1 - JXY*theta_dot[l]*theta_dot[1] -

KXY*theta_dot[1]*theta_dot[1] -

(KXY*cos2_T2mT3*theta_dot[l]*theta_dot[1])/8 +

KXY*cos2_T2pT3*theta_dot[l]*theta_dot[1] /8 -

JXX*theta_dot[1]*theta_dot[1]*sin2T2/2

JYY*theta_dot[1]*theta_dot[1]*sin2T2/2 +

0.125 L2*L2 m2 (theta_dot[1]*theta_dot[1]*sin2T2 +

A2*A2*m3*theta_dot[1]*theta_dot[j] *sin2T2/2 -

A2*L3*m3*theta_dot[2]*theta_dot[3]*sinT3 -

0.5*A2*L3*m3*theta_dot[3]*theta_dot[3]*sinT3 -

KXX*theta_dot[1]*theta_dot[1]*sin2_T2pT3/2 +

KYY*theta_dot[1]*theta_dot[1]*sin2_T2pT3/2 +

0.125*L3*L3*m3*theta_dot[1]*theta_dot[l]*sin2_T2pT3 +

0.5*A2*L3*m3*theta_dot[l]*theta_dot[l] *sin2T2pT3 ;

(16 - 8 *KXY*theta_dot[1]*theta_dot[1] -

KXY*cos2_T2mT3*theta_dot[1]*theta_dot[1] +

KXY*cos2_T2pT3*theta_dot[l]*theta_dot[l] +

2.*A2*L3*m3*theta_dot[1]*theta_dot[1]*sinT3 +

4.*A2*L3*m3*theta_dot[2]*theta_dot[2]*sinT3 -

4*KXX*theta_dot[l]*theta_dot[l]*sin2_T2pT3 +

4*KYY*theta_dot[1]*theta_dot[1]*sin2_T2pT3 +

L3*L3*m3*theta_dot[1]*theta_dot[1]*sin2_T2pT3 +

2.*A2*L3*m3*theta_dot[1]*theta_dot[1]*sin2T2pT3) / 8

G Li] = 0.5*(g*L2*m2*cosTl*cosT2 +

2.*A2*g*m3*cosTl*cosT2 +

g*L3*m3*cosTl*cosT2*cosT3) ;

G [2] = 0.5*(-l. g*L2*m2*sinTl*sinT2 -

g*L3*m3*cosT3*sinTl*sinT2 -

2.*A2*g*m3*cosT3*cosT3*sinTl*sinT2 -

2.*A2*g*m3*sinTl*sinT2*sinT3*sinT3 +

A2*g*m3*cosT2*sinTl*sin2T3) ;

G[3] = -0.5*g*L3*m3*cosT3*sinTl*sinT2 ;

150

1 2 A p p e n d i x C

The assembly program used for the chip is described bellow. The comments explain what
the program does at each step.

* USING OWN COMMUNICATION ROUTINES *

* RECEIVES 3 BYTES FROM COMPUTER AND SENDS OUT TO PORT B AND CONVERTS

* 3 BYTES TO DIGITAL AND SENDS TO COMPUTER *

* PORT B IS USED TO OUTPUT THE 8 BIT DATA TO BE CONVERTED

* TO ANALOG ALONG WITH 3 CONTROL BITS OF PORTC-0,1,2. '

ORG $B600

PORTA EQU $1000

PORTB EQU $1004

PORTC EQU $1003

DDRC EQU $1007

10 DEV EQU $00A7

AUTOLF EQU $00A6

INIT EQU $FFA9

ADCTL EQU $1030

ADR1 EQU $1031

ADR2 EQU $1032

ADR3 EQU $1033

ADR4 EQU $1034

OPTION EQU $1039

INTMP1 EQU $0101

INTMP2 EQU $0102

INTMP3 EQU $0103

INTMP4 EQU $0104

0UTMP1 EQU $0111

0UTMP2 EQU $0112

0UTMP3 EQU $0113

0UTMP4 EQU $0114

BAUD EQU $102B

SCCR1 EQU $102C

SCCR2 EQU $102D

SCSR EQU $102E

SCDAT EQU $102F

COPRST EQU $103A

* MAIN PROGRAM THAT I]

VALUE TO SPECIFY PORT TO BE USED

AUTO LF/CR CONTROL

USEFUL SUBROUTINES

CONTROL FOR A/D CONVERSION

A/D RESULT REGISTERS

TO POWER UP THE A/D SYSTEM

151

MAIN CLR AUTOLF

INC AUTOLF

LDAA #$00

STAA IODEV

LDAA #$FF

STAA DDRC

LDAA #$00

STAA PORTC

LDAA #$80

STAA PORTB

JSR INIT

LDAA #$FF

STAA PORTC

LDAA #$41

STAA INTMP2

LDAA #$42

STAA INTMP3

LDAA #$43

STAA INTMP4

JSR INITAD

JSR CHKST

JSR TXDAT

MLOOP JSR RXDAT

JSR GETANL

JSR OUTDAT

JMP MLOOP

* INPUT SUBROUTINE *

INPUT PSHX

LDAA #$55

STAA COPRST

LDAA #$AA

STAA COPRST

LDAA IODEV

BNE INPUT1

LDAA SCDAT

INSCI LDAA SCSR

ANDA #$20

BEQ INPUT1

LDAA SCDAT

SET PORTC AS OUTPUT PORT

SELECTING ALL 3 d/a’s

INITIALIZE d/a's TO OV

AFTER A DELAY, DESELECTING ALL d/

first 3 bytes test characters

INPUT1 PULX

RTS

* OUTPUT SUBROUTINE *

OUTPUT PSHA

PSHB

PSHX

LDAB IODEV

BNE OUTPUT1

OUTSCI LDAB SCSR

BITB #$80 '

BEq OUTSCI LOOP TILL TRDRE=1

STAA SCDAT

OUTPUT1 PULX

PULB

PULA

RTS

* SUBROUTINE THAT WAITS FOR 3 CHARS FROM WORKSTATION *

CHKST JSR INPUT

TSTA

BEQ CHKST CHECK IF ANY CHARACTER RECEIVED

CL00P1 JSR INPUT

TSTA

BEQ CL00P1 CHECK FOR SECOND BYTE

CL00P2 JSR INPUT

TSTA

BEq CL00P2 CHECK FOR THIRD BYTE

RTS

* SUBROUTINE TO INITIALIZE A/D CQNVERION UNIT *

INITAD LDAA #$80

STAA OPTION SET ENABLE BIT FOR THE A/D SYS.

LDAA #$30

STAA ADCTL START CONTINIOUS CONVERSION OF 4 INPUTS

ALOOP LDAA ADCTL

ANDA #$80

BEq ALOOP CHK IF ONE CONVERSION COMPLETE

RTS

* GET ANALOG INPUTS AND OUTPUT THEM TO COMPUTER *

GETANL LDAA ADR1 FIRST BYTE STRAY INPUT

LDAA ADR2

153

JSR OUTPUT

LDAA ADR3

JSR OUTPUT

LDAA ADR4

JSR OUTPUT

RTS

* SUBROUTINE TO TRANSMIT 3 BYTES OF DATA FROM INTMP REGISTERS *

TXDAT LDAA INTMP2

JSR OUTPUT

LDAA INTMP3 '

JSR OUTPUT

LDAA INTMP4

JSR OUTPUT

RTS

* SUBROUTINE TO RECEIVE 3 BYTES OF DATA FROM WORKSTATION *

RXDAT JSR INPUT

TSTA

BEq RXDAT IF NO CHR RECEIVED GO BACK

STAA OUTMP1 IF YES, STORE

RLOOP1 JSR INPUT

TSTA

BEq RLOOP1

STAA 0UTMP2

RL00P2 JSR INPUT -

TSTA

BEq RL00P2

STAA 0UTMP3

RTS

* SUBROUTINE TO SEND OUT THE DATA TO THE 3 D / A’S *

* ALSO HAVE TO OUTPUT CONTROL ON PORT A TO CHOOSE 1 D/A AT EACH TIME *

OUTDAT LDAA OUTMP1

STAA PORTB

LDAA #$FE

STAA PORTC SELECT FIRST d/a.

NOP

NOP

NOP

LDAA #$FF

STAA PORTC AFTER A DELAY DISABLE

154

LDAA 0UTMP2

STAA PORTB

LDAA #$FD

STAA PORTC SELECT SECOND d/a.

NOP

NOP

NOP

LDAA #$FF

STAA PORTC

LDAA 0UTMP3

STAA PORTB

LDAA #$FB

STAA PORTC

NOP ^

NOP

NOP

LDAA #$FF

STAA PORTC AFTER A DELAY DISABLE

RTS .

AFTER A DELAY DISABLE

SELECT THIRD d/a.

155

