
Reflections 
on 

Metaprogramming 

Arthur H. Lee 
Joseph L. Zachary 

UUCS-93-004 

Department of Computer Science 
University of Utah 

Salt Lake City, UT 84112 USA 

March 1, 1993 

Abstract 
The spread of object-oriented technology has led to object-oriented programming languages 
with object-oriented implementations. By encapsulating part of the semantics of a language 
within a set of default classes and empowering the programmer to derive new versions of 
these base classes, a designer can provide a language whose semantics can be tailored by 
individual programmers. The degree to which such languages are simultaneously flexible 
and efficient is an open question. We address this question by reporting our experience with 
using this technique to incorporate support for persistence into the Common Lisp Object 
System via its metaobject protocol. For many aspects of our implementation we found that 
the metaobject protocol was perfectly suitable. In other cases we had to variously extend the 
protocol, pay an unacceptable performance penalty, or modify the language implementation 
directly. Based on our experience we propose some improvements to the protocol. We 
also present some performance measurements that reveal the need for improved language 
implementation techniques. 



Contents 

1 Introduction 1 

2 Background 2 

2.1 The CLOS Metaobject Protocol 2 

2.2 An Application 2 

2.3 MetaStore ... 2 

3 Implementation Experience 3 

3.1 Structure and Behavior of Objects. 3 

3.2 Indirection on Slot Access 4 

3.3 Maintaining Dirty Bits 4 

3.4 Shared Structures 5 

4 Observations 6 

4.1 Abstraction Mismatch 6 

4.2 Short-Term Improvements 6 

4.3 Long-Term Improvements 7 

5 Performance Measurements 1 

5.1 PCL and Lucid Performance Measurements 7 

5.2 Implementation of Persistence in MetaStore 9 

6 Related Work 10 

7 Summary 11 



1 Introduction 

The spread of object-oriented technology has led to object-oriented programming languages 
with object-oriented implementations. By encapsulating part of the semantics of a language 
within a set of default classes and empowering the programmer to derive new versions of 
these base classes, a designer can provide a language whose semantics can be tailored by 
individual programmers. The process of modifying language semantics in this way is called 
metaprogramming. 

The degree to which such languages are simultaneously flexible and efficient is an open 
question. In this paper we address this question by reporting our experience with using 
metaprogramming to incorporate support for persistent objects into the Common Lisp Ob
ject System (CLOS) [BDG+88]. This experiment was possible because CLOS provides for 
metaprogramming via its metaobject protocol [KdRB91]. 

The goal of our experiment was to see if we could obtain a version of CLOS with persis
tence to which we could easily port a commercial CAD system already written in CLOS. We 
originally wanted to modify CLOS strictly via the metaobject protocol, so that no changes 
to the compiler or run-time system would be required~ Although we ultimately compromised 
slightly on this point and devoted considerable engineering effort to the implementation, the 
final product, although fully expressive, was judged too inefficient for commercial use. 

Our intent in this paper is to highlight the strengths and weaknesses exhibited by the 
CLOS metaobject protocol during our experiment. Adding persistence to CLOS is no small 
undertaking, and the metaobject protocol is quite general, so we are convinced that our 
experience is relevant to metaprogramming in general. For many aspects of the implemen
tation we found that the metaobject protocol was perfectly suitable. In other cases we had 
to choose among paying a large performance penalty, extending the protocol, and bypassing 
the protocol entirely and modify the language implementation directly. Based on our expe
rience we propose some improvements to the protocol. We also present some performance 
measurements that reveal the need for improved language implementation techniques. 

The remainder of this paper is organized as follows. In Section 2 we briefly describe 
the CLOS metaobject protocol, the problem of object persistence, and our approach to 
adding persistence via metaprogramming. In Section 3 we describe in detail how we made 
four particular extensions and discuss the problems that we encountered; in section 4 we 
propose some improvements to the protocol; and in section 5 we present some performance 
measurements. After we survey other uses of metaprogramming in section 6, we conclude in 
section 7. 

1 



2 Background 

2.1 The CLOS Metaobject Protocol 

CLOS has an object-oriented implementation. This allows users to alter the semantics of the 
language by using the standard object-oriented techniques of subclassing and specialization. 

In the design of CLOS, the basic elements of the programming language-classes, slots, 
methods, generic functions, and method combinations-are made accessible as objects. Be
cause these objects represent fragments of a program, they are given the special name melaob
ject. Individual decisions about the behavior of the language are encoded in a protocol oper
ating on these metaobjects-thus the term metaobject protocol. For each kind of metaobject 
a default class is created, which delineates the default behavior of the language in the form 
of methods. 

In the metaobject protocol, for example, the meaning of object instantiation is imple
mented by a small number of generic functions. These semantics can be changed by defining 
a subclass in which these generic functions are specialized. In doing this, the user is making 
an incremental adjustment to the meaning of the language. Most aspects of the language's 
behavior and implementation remain unchanged, with just the semantics of instances being 
altered. 

2.2 An Application 

Our work was initially motivated by the problems of object persistence encountered with 
the Conceptual Design and Rendering System (CDRS) [Lee89,Lee90]. CDRS is a geometric 
CAD modeler that is used by designers in a dozen major automotive and product design 
companies worldwide. It is written mostly in Common Lisp [Ste90] as extended by CLOS. 
A typical model manipulated by CDRS contains tens of thousands of objects that may not 
all fit in virtual memory, a wide variation in the sizes of objects, complex data structures 
within objects, and rich relationships (both semantic and structural) among objects. 

CDRS uses a naive batch approach to object persistence that has proven to be ill-suited 
[Lee92]. All objects in a design session are saved to a file at the end of a modeling session and 
are reloaded at the beginning of the next session. This approach requires a huge amount of 
virtual memory, frequent large garbage collections, and a long time to load and save models. 
For example, CDRS usually uses 500 megabytes of swap space, requires up to 128 megabytes 
of main memory, and spends almost 30 minutes loading or saving a typical model. 

2.3 MetaStore 

We tried to address these problems by adding the notion of persistent objects to CLOS. 
The resulting system, which we call MetaStore, has two major components: the language 

2 



extension portion implemented via the metaobject protocol, and the database management 
portion that provides a persistent object store. We are concerned in this paper with the 
language extension component and the degree to which the metaobject protocol facilitated 
and frustrated our efforts. For a complete discussion of the resulting system see [Lee92]. 

MetaStore maintains a virtual object space within virtual memory. As the object space 
fills, it writes the least recently used persistent objects to disk and makes their virtual im
ages available for garbage collection. Saves are done incrementally (only modified objects are 
written to disk) and loads are done on demand (objects are loaded as they are needed). This 
approach amortizes the cost of saving and loading models over the entire design session. To 
support this, we had to make substantial modifications to the way objects are represented 
and manipulated by CLOS. The question that concerned us throughout design and imple
mentation was whether the overhead imposed by the metaprogramming would be too costly. 
It was. 

3 Implementation Experience 

We used the metaobject protocol to make dozens of substantial modifications to CLOS. In 
this section we discuss four of these modifications, which illustrate the kinds of situations 
in which the metaobject protocol is and is not applicable. For each problem and difficulty 
we encountered, we indicate whether it was a language-specific problem (due to CLOS) or a 
problem-specific difficulty (due to adding persistence to a language). 

3.1 Structure and Behavior of Objects 

The metaobject protocol is ideal for language extensions that involve modifications to the 
structure of objects or simple changes to their behavior. Changes to other kinds of data 
structures (such as arrays) are much more difficult. We were able to make a wide variety 
of such modifications, a few of which we describe here. All of these modifications were 
supported by changing the class meta-class via inheritance. 

In addition to the user-defined slots, we maintain several other slots in each object. A 
unique object identifier and a "dirty bit" which flags unsaved objects are included. Since 
the majority of the objects in a typical model are not intended to be saved, we must be 
careful to distinguish between transient and persistent objects. This burden is borne by the 
programmer, who must choose between defining classes relative to the standard class meta
class (in the case of transience) or the derived class meta-class (in the case of persistence). 

Each read or write access to a persistent object is intercepted so that appropriate actions 
can be carried out. For example, a read access may result in a composite slot being loaded 
from disk, and a write access results in a dirty bit being set. These kinds of actions are 
implemented by modifying the appropriate methods via inheritance. 

3 



3.2 Indirection on Slot Access 

MetaStore supports persistence at the slot level, and Common Lisp allows structure sharing. 
These two facts required us to maintain one level of indirection for each persistent composite 
slot. The contents of a persistent composite slot is a pointer to a data structure called a 
phole, which (among other things) contains a pointer to the composite value. 

When a user program issues a slot-value call to a persistent slot, MetaStore must follow 
pointers and return the value stored in the phole. The implementation of MetaStore, how
ever, must sometimes directly obtain the phole via the same call. Supporting this behavior 
was not entirely straightforward. 

The solution requires providing two different semantics for the method (slot-value) 
depending upon where and for what purpose it is called. The metaobject protocol provides 
no support for this. Solving this problem involved making minor modifications to the pro
tocol. Specifically, we had to add an extra method for accessing slot values at the protocol 
implementation level. This kind of language-specific problem in CLOS could be avoided by 
a minor change to the design of the protocol. 

3.3 Maintaining Dirty Bits 

Only dirty (modified) persistent objects are ever saved to disk. Because the smallest grain 
size of persistence is the composite slot, each persistent object and persistent composite slot 
value has its own dirty bit. We will concern ourselves here with composite slots. The dirty 
bit of a composite slot is kept in its phole. 

The dirty bit of an object or composite slot must be set whenever a write access is made. 
Doing this via the metaobject protocol proved difficult. Performing a write upon a slot 
value via the public interface of the containing object, i.e., via (setf slot-value), poses 
no problem. The problem occurs when programmers obtain a slot value via a read access 
and then mutate that value. The following code fragment demonstrates the problem. 

(let «arr1 (slot-value object1 'slot1))) 
(setf (aref arr1 3) 4.5)) 

Here, the value (an array) of the slot slot1 is read and locally bound to arr1. The array 
is then modified. However, since this modification is not made via the phole of slot1, the 
phole's dirty bit cannot be set. To make sure that the dirty bit is set, the user program 
could do the following. 

(let «arr1 (slot-value object1 'slot1))) 
(setf (aref arr1 3) 4.5) 
(setf (slot-value object1 'slot1) arr1)) (1) 

The extra call, labeled (1), would solve the problem since (setf slot-value) can be 
easily modified via the metaobject protocol to maintain dirty bits. However, requiring this 

4 



01: a 3.4 a1: 

b I I I I -I 

c 50 

I a2 I 

02: a 4.6 

b 45 a3: 

c 1 I I 1 

Figure 1: An array shared by two objects 

extra call changes the semantics of CLOS. This is a problem-specific difficulty due to adding 
persistence to a programming language. 

An expensive solution that maintains dirty bits without any help from either the appli
cation program or the compiler is described in [Lee92] although we chose to implement a 
simpler solution along the lines suggested above that requires help from user programs for 
efficiency reasons. 

3.4 Shared Structures 

Structured data in Common Lisp can be shared freely. This freedom adds much difficulty in 
supporting persistence of shared structures. We could find no acceptably efficient solution 
within the metaobject protocol since it does not deal with structured data that are not 
objects. The central problem is that structures such as arrays and lists, unlike objects, 
cannot be given unique identifiers via the protocol. 

To illustrate the problem, suppose a composite slot value, the arrayal of the object 01 
in Figure 1, is ready to be saved. Also suppose that a1 has another array, say a2, as one 
of its elements. Finally, suppose that a slot of another object 02 also has a2 as its value 
through a third array a3. Thus, a2 is shared indirectly by 01 and 02. 

This sort of sharing is perfectly legal in Common Lisp. Assuming that only objects have 
dirty bits, and also assuming both 01 and 02 are dirty, if both 01 and 02 are saved, two 
copies of a2 will be saved: once by 01 and again by 02. When 01 and 02 are both loaded 
at some later time, b of 01 and c of 02 will have their own copies of the original array a2, 
say a2-1 and a2-2. This again is a problem-specific difficulty due to adding persistence to 

5 



a programming language. 

A solution that, while inefficient, handles persistent shared structures entirely within the 
metaobject protocol is described in [Lee92]. We chose, however, a different approach in 
MetaStore in which we require that composite structures be shared only at the slot level. 
This approach works because a phole can contain a unique identifier for a composite slot 
value. 

4 Observations 

4.1 Abstraction Mismatch 

The metaobject protocol is designed to support language extensions that have to do with 
the structure or behavior of objects. As soon as we try to augment the language with a 
feature that is not a property of objects, the protocol is no longer sufficient. 

As we have seen, supporting object persistence required some changes that were object 
related as well as others that were base language related. Dealing with the kinds of mod
ifications described in sections 3.3 and 3.4 was difficult because there are no metaobjects 
corresponding to the nonobject structures; i.e., there is an abstraction mismatch. 

CLOS can be viewed as having five levels of implementation ranging from high-level 
to low-level: CLOS objects, Common Lisp, garbage collection, data types, and memory. 
Dealing with dirty bits and structure sharing can best be done at levels such as "Common 
Lisp" and/or "garbage collection" in the list above. In MetaStore we tried to solve these 
issues at the "CLOS objects" level, so it is not surprising that it was not natural. We had to 
leave the metaobject protocol at times to deal with these issues by devising extra mechanisms 
that required some help from user programs and/or the Common Lisp compiler. 

4.2 Short-Term Improvements 

Based on the experience of adding object persistence to CLOS in MetaStore, a few minor 
improvements are proposed here to the existing protocol. They are related to slot accessing 
as described in section 3.2. We propose that the protocol support a mechanism for one level 
of indirection on slot accesses. One possibility would be to provide two more routines as 
follows: 

• slot-value-using-class-direct: 
This routine is identical in all respects to slot-val ue-using-class, which performs 
read accesses to slots. We sometimes want to use the default behavior of 
slot-value-using-class and at other times the changed behavior, and this new 
routine would always give the default behavior. This changed behavior is typically 
obtained by specializing the default method. With the current protocol, once we modify 
the behavior of a method this way, we cannot use the default behavior anymore. 

6 



• (setf slot-value-using-class-direct): 
This is the dual of slot-value-using-class-direct for write accesses to slots. 

When a method in CLOS is changed via specialization, there is no easy way to get the 
default behavior any more. We may want to extend the semantics of method combinations 
as follows. Even after a method is specialized, we are given the option of executing the 
original version alone. This is not an easy extension to support in general since it requires 
elaborate control. The copy-as operation of Jigsaw [Bra92] would solve this problem. 

4.3 Long-Term Improvements 

As discussed in sections 3.3 and 3.4, a seamless extension to CLOS of object persistence 
requires support from the base language implementation leveL Judging from our experience 
with MetaStore, the metaobject protocol of CLOS seems well designed to support extensions 
to CLOS as long as the extension is inherently object-oriented. 

To stay with the spirit of the metaobject protocol of CLOS to "open" up the language, 
it would be useful to push the metaobject protocol idea further down to the level of the 
base language implementation. If we could support the metaobject protocol at the Common 
Lisp data type level or at the garbage collection level, the problems that we experienced in 
MetaStore (dirty bits and shared structures) could be easily solved. With this change, the 
protocol would allow more flexibility for extensions of the sort done in MetaStore. (Perhaps 
we would then call it the metadata protocol or metatype protocol.) 

5 Performance Measurements 

In this section we present some performance comparisons of two implementations of the 
CLOS metaobject protocol. We also give performance measurements for our implementation 
of MetaStore. The machine and the configuration we used are not included since we are 
primarily interested in relative comparisons. 

5.1 peL and Lucid Performance Measurements 

We had originally intended to use the Lucid CLOS version of the metaobject protocol, but 
it did not have a complete implementation of slot-level metaobjects. As a result we were 
forced to use the PCL version, even though it is not an industrial-strength implementation. 

Before we present the measurements of MetaStore, we describe one significant inefficiency 
we found with PCL [BS83] and Lucid CLOS [Luc90]. In implementing MetaStore, a number 
of : around methods are used to specialize the protocol routines. (An: around method is a 
commonly used CLOS construct for specializing other methods.) The three most notable are 
make-instance for creating objects, slot-value-using-class for read accessing an object, 

7 



and (setf slot-value-using-class) for write accessing an object. To measure the cost 
of : around methods, an : around method was defined for each of these methods whose body 
did nothing but call call-next-method. The measurements in this section are based on 
PCL and we also present what we learned about Lucid CLOS where appropriate. 

• Creation: Creating 1,000 objects showed: 

Time Bytes Consed 
Transient 3.40 sec 256,008 
After :around methods 4.32 368,008 
Ratio 1.27 1.43 

Other measurements showed that creating objects with : around methods was about 
50 times slower than without in Lucid CLOS [LZ92]. In PCL we do not see as big a 
difference as with Lucid CLOS since creating objects in PCL without: around methods 
is already much slower than it is in Lucid CLOS. 

• Read Access: Read accessing a slot of the "self" object 100,000 times showed: 

Time 
Before MetaStore 0.13 sec 
After :around Methods 34.86 
Ratio 268.15 

Dummy: around methods made read accesses almost 300 times slower than the normal 
transient read accesses. 

• Write Access: Write accessing a slot of the "self" object 100,000 times showed: 

Time 
Before MetaStore 0.11 sec 
After :around Methods 35.90 
Ratio 326.36 

Dummy : around methods made write accesses over 300 times slower than the normal 
transient write accesses. 

The extent to which dummy: around methods compromise the performance of both the 
PCL and Lucid implementations of CLOS belies the claim of [KdRB91] that the metaobject 
protocol is both elegant and efficient. Specializing default behavior by the use of : around 
methods is the most commonly used tool in the metaobject protocol. 

Notice that in PCL we observed a 300 times slowdown when reading and writing slots, 
whereas in Lucid we observed a 50 times slowdown when creating objects. Neither of these 
figures can be tolerated in a commercial application. In fairness, we must emphasize that 
Lucid is in general far more efficient than PCL. 

8 



5.2 Implementation of Persistence in MetaStore 

In this section we present measurements based on our implementation of the MetaStore 
kernel. This is the cost of the basic mechanism of MetaStore that allows the minimum 
functionality of MetaStore: being able to define persistent classes, being able to selectively 
declare slots to be persistent, being able to perform incremental saves, being able to load on 
demand, etc. We maintain such things as object identities, pholes, the object table, dirty 
bits, and model identities for interfacing the object base at this level. These measurements 
also include the cost of metaobject classes, : around methods, and slot level persistence. 
Shared structures and virtual object memory are not included. 

• Creation: The measurements were made while creating 1,000 objects: 

Time Bytes Consed 
Transient 3.40 sec 256,008 
MetaStore Kernel 56.35 6,152,008 
Ratio 16.57 24.04 

The MetaStore kernel made creating objects about 16 times slower than creating tran
sient objects. Creating objects in the MetaStore kernel used about 24 times more space 
than creating transient objects. 

• Read Access: The measurements were made while read accessing an object 100,000 
times. A slot of the "self" object within a method was accessed that many times: 

Time 
Transient 0.13 sec 
MetaStore Kernel 35.62 
Ratio 274.00 

Read accesses in the MetaStore kernel was about 270 times slower than the normal 
transient read accesses. 

• Write Access: The measurements were made while write accessing an object 100,000 
times. A slot of the "self" object within a method was accessed that many times: 

Time 
Transient 0.11 sec 
MetaStore Kernel 254.70 
Ratio 2,315.45 

Write accesses in the MetaStore kernel was over 2,000 times slower than the normal 
transient write accesses. 

9 



Read accesses in the MetaStore kernel did not add any additional cost because there is no 
extra work added to the read mechanism at the kernel level. The main cost added on object 
creation is due to the addition of pholes to persistent composite slots and the case analysis of 
slot values that are being used as the initial values. Write accesses added substantial extra 
cost. Most of it is caused by (i) the use of : around methods and (ii) the case analysis on 
the slot values in order to add or remove a phole if necessary. 

If we were to factor out the constant overhead imposed by the use of : around methods, 
object creation and write accesses would be about 13 and 7 times slower respectively than 
the transient case; read accesses would be about the same as the transient case. 

If MetaStore were to run on Lucid CLOS with the: around overhead removed, our 
measurements predict that object creation and write accesses would be about 4 and 7 times 
slower respectively than the transient case; read accesses would be about the same as the 
transient case. Although obviously not ideal, we believe that these overheads would be 
tolerable in CDRS, which is governed by the speed of user interaction. 

6 Related Work 

Metaprogramming has been used in a variety of different applications by a number of 
researchers. Interestingly, none of these researchers reported the kinds of problems with 
meta programming that we have observed. We believe that this is because our application 
was much more ambitious than any of the others. 

Rodriguez, with Anibus [Rod91,Rod92], investigated whether it was possible to use 
the metaobject protocol approach to develop an open parallelizing compiler in which new 
"marks" for parallelization could be defined in a simple and incremental way. Anibus has 
its own metaobject protocol. Unlike the metaobject protocol of CLOS, which is intended to 
be used in executing CLOS programs at run-time, that of Anibus was intended to be used 
to map a Scheme [SS75] program to an SPMD Scheme [Rod91] program at compile-time. 

The authors in [ABB89] present three examples of how the CLOS metaobject protocol 
could be used. The first example shows how atomic objects could be implemented for 
concurrency control. Their second example outlines how persistence could be implemented 
through metalevel manipulations. This supports persistence at the object level. Their final 
example illustrates how graphic objects could be implemented via the protocol. 

PCLOS [Pae90] is CLOS extended with persistence via the metaobject protocol of CLOS. 
PCLOS also supports persistence at the object level. It uses data base management systems 
for secondary storage management, which suffers from the phenomenon known as impedance 
mismatch [BM88,CM84]. 

Unlike PCLOS [Pae90] and the work described in [ABB89], MetaStore supports persis
tence at the slot level, which we believe is critical for the performance of a CAD application. 
Therefore, neither of these efforts experienced the kinds of problems that we described in 
section 3. Two other important differences are that MetaStore, unlike [Pae90] and [ABB89], 

10 



supports incremental saves and persistence of shared structures. 

7 Summary 

The authors in [KdRB91] state that they have simultaneously achieved elegance, and effi
ciency by basing language design on metaobject protocols. Our experience of extending 
CLOS with persistence via the metaobject protocol shows that current implementations do 
not live up to this claim. The extent to which even dummy : around methods compromise 
the performance of both the PCL and Lucid implementations of CLOS makes them unac
ceptable for production programming. We observed up to 300 time slowdowns in PCL, and 
up to 50 time slowdowns in Lucid. Specializing default behavior by the use of : around 
methods is the most commonly used tool in the metaobject protocol. 

Nevertheless, most of the extensions required to support object persistence were easily 
carried out in the metaobject protocol. We are convinced that the idea of metaprogram
ming is the right approach for applications such as ours. A few extensions to the protocol, 
coupled with better implementation techniques, would yield a uniquely useful tool. Adding 
persistence to CLOS is no small undertaking, and the metaobject protocol is quite general, 
so we are convinced that our experience is relevant to metaprogramming in general. 

The protocol is sufficient to support language extensions as long as these extensions 
involve modifying or augmenting the structure or behavior of objects. Since most of what 
was required to extend CLOS with object persistence was related to objects, it was done 
easily via the protocol. 

To support persistence at the slot level requires one level of indirection on slot accesses 
and the current protocol does not provide this feature. We were, however, able to deal with 
this by extending the protocol by adding two more interface routines. We propose that two 
new routines be added to the protocol so that one level of indirection on slot accesses can 
be done. An even better solution would be to extend the semantics of method combinations 
in CLOS in such a way that specialized methods such as an : around method can optionally 
be skipped during execution. 

There were a few difficulties that we faced that could not be resolved with the protocol 
alone. They were maintaining dirty bits for composite values and handling persistence of 
shared nonobject structured data. They are not object related and do not belong to the 
domain of the metaobject protocol. Instead they belong to the base language implementation 
level, thus requiring help from the language compiler and the run-time support system. Since 
we could not get help from these either, we handled them with some help from application 
programs. Here, we propose that all persistent data types be implemented as objects so that 
they can be included in the metaobject protocol. This would be a significant effort and we 
consider this a long-term goal. 

11 



References 

[ABB89] G. Attardi, C. Bonini, M. R. Boscotrecase, T. Flagella, and M. Gaspari. Metalevel 
programming in CLOS. In Proceedings of the European Conference on Object
Oriented Programming, 1989. 

[BM88] F. Bancilhon and D. Maier. Multilanguage object-oriented systems: new answer 
to old database problems? In Programming of Future Generation Computers II, 
K. Fuchi and L. Kott, editors. Elsevier Science Publishers. B.V. (North-Holland), 
1988. 

[BDG+88] D. G. Bobrow, L. DeMichiel, R. P. Gabriel, G. Kiczales, D. Moon, and S. E. 
Keene. The Common Lisp Object System Specification: Chapters 1 and 2. Tech
nical report 88-002R, X3J13 Standards Committee Document, 1988. 

[BS83] D. G. Bobrow and M. Stefik. The Loops Jl.Janual. Intelligent Systems Laboratory, 
Xerox Palo Alto Research Center, 1983. 

[Bra92] G. Bracha. The programming language Jigsaw: mixins, modularity, and multiple 
inheritance. Ph.D. dissertation, Dept. of Computer Science, Univ. of Utah, 1992. 

[CM84] G. Copeland and D. Maier. Making Smalltalk a database system. In Proceedings 
of the ACM SIGMOD International Conference on Management of Data (June 
1984). ACM SIGMOD Record 14, 2 (1984). 

[KdRB91] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Jl.letaobject 
Protocol. The MIT Press, 1991. 

[Lee89] A. H. Lee. An object-oriented programming approach to geometric modeling. In 
Proceedings of Evans (3 Sutherland Technical Retreat, Ocho Rio, Jamaica, 1989. 

[Lee90] A. H. Lee. Managing hierarchical complex objects. Internal report, Evans & 
Sutherland Computer Co., 1990. 

[Lee92] A. H. Lee. The persistent object system MetaStore: persistence via metaprogram
mingo Ph.D. dissertation, Dept. of Computer Science, Univ. of Utah, 1992. 

[LZ92] A. H. Lee and J. 1. Zachary. Using metaprogramming to add persistence to CLOS. 
Technical report UUCS-93-001, Dept. of Computer Science, Univ. of Utah, 1993. 

[Luc90] Lucid Common Lisp/MIPS Version 4.0, Advanced User's Guide. Lucid, Inc., 
1990. 

[Pae90] A. Paepcke. PCLOS: stress testing CLOS: experiencing the metaobject protocol. 
In Proceedings of the A CM Conference on Object-Oriented Programming Systems, 
Languages, and Applications, 1990. 

12 



[Rod91] L. H. Rodriguez, Jr. Coarse-grained parallelism using metaobject protocols. M.S. 
Thesis, Massachusetts Institute of Technology, 1991. (Also available as Technical 
report SSL-91-06, Xerox Palo Alto Research Center, 1991.) 

[Rod92] L. H. Rodriguez, Jr. Towards a better understanding of compile-time metaobject 
protocols for parallelizing compilers. In Proceedings of IMSA '92: International 
Workshop on Reflection and Meta-level Architecture, Tokyo, Japan, 1992. 

[SS75] G. 1. Steele, Jr and G. J. Sussman. Scheme: An interpreter for the extended 
lambda calculus. Memo 349, MIT Artificial Intelligence Laboratory, 1975. 

[Ste90] G. 1. Steele, Jr. Common Lisp: The Language, Second edition. Digital Press, 
1990. 

13 


